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Introduction 

§ Key components for autonomous operation include 
–  Perception: Where am I? What is the surrounding environment? 

–  Planning: What to do next? 

Perception Planning 

Integrated planning and perception 

§ Belief space planning - fundamental problem in robotics 
§ Computationally intractable to solve exactly (POMDP), approximate 

suboptimal approaches exist 
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Related Work – Belief Space Planning 

§ Existing approaches typically assume environment/map is known 
[Prentice and Roy ‘09], [Miller et al. ‘09], [Platt et al. ‘10], [Van den Berg et al. ‘12], [Hollinger et al. ‘13] 

§ Recent research relaxes this assumption, incorporates map uncertainty 
within the belief 
[Valencia et al. ‘12], [Kim and Eustice ‘14], [Indelman et al. ’15] 

§ This work:  
–  Extension to multi-robot centralized framework 

–  Opportunistic collaborative active state estimation in unknown environments 

–  Direct trajectory optimization approach (starting from a nominal solution) 



V. Indelman, Towards Multi-Robot Active Collaborative State Estimation via Belief Space Planning, IROS 2015 4 

Contribution 

§ Framework for active collaborative state estimation while operating in 
unknown environments  

§ Key idea 
–  Incorporate into belief indirect multi-robot constraints 

–  To reduce uncertainty, each robot is guided to re-observe areas previously 
observed (only) by other robots.  

§ Approach does not require rendezvous between robots (enhanced 
flexibility for the group) 
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Spoiler 
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Notations and Probabilistic Formulation 

§ State transition and observation models: 
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§ Joint state: 

§ Joint probability distribution function (pdf) at planning time    : tk
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Notations and Probabilistic Formulation 

§ Joint state for R robots: 
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§ Joint multi-robot pdf at planning time  
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Multi-robot Belief Space Planning 

§ Multi-robot belief at a future time       : b (⇥k+l)
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§ Multi-robot objective function: 

§ Optimal controls for all R robots: 
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Direct Trajectory Optimization Approach 

§ Calculate locally-optimal controls              for all robots 
§ Starting from a nominal trajectory or controls 

Outer layer: iterative optimization 
over the controls 

Inner layer: inference over beliefs 
from different time instances 
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Incorporating Future Multi-Robot Constraints 

b (⇥k+l) = p (⇥k+l|Z0:k+l, u0:k+l�1)

§ Joint belief at the l-th look ahead step: 

§ Recall it is a function of the (unknown) future observations             and 
controls             of all robots 

Zk+1:k+l

uk:k+l�1

§ Model probabilistically if a future observation will be indeed acquired 
(similar to [Kim and Eustice IJRR’14, Indelman et al. IJRR15]) 

§ Similar treatment for future multi-robot indirect constraints  
(mutual observations of the same landmark(s) possibly at different times) 
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Incorporating Future Multi-Robot Constraints 

§  Introduce two types of latent binary variables 
–           - loop closure event to happen at time      : robot r re-observes 3D 

points    (previously seen by robot r or by other robots) 

–            - observations, to be made by robot r, of 3D points     that were 
only observed by other robots 
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§ Collect variables of both types for all robots: 
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§  Incorporate latent variables into the joint belief: 
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Inference over the Belief 

§ Recall – inner layer performs inference over the belief: 
b (⇥k+l) ⇠ N
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§ The MAP estimate can be written recursively as (see paper) 
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§ Models robot r’s observations of landmarks that were only previously 
observed by other robots 

§  Intuition: much to gain (for robot r) by observing informative such landmarks 

§ How to accomplish? Model these probabilistic terms to induce non-zero 
contribution to the gradient 
(more details in the paper) 
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Experiments 
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Experiments – Monte Carlo Runs 
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Experiments 
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Conclusions 

§ Active collaborative state estimation in unknown environments via belief 
space planning 
–  Incorporate into belief indirect multi-robot constraints 

–  To reduce uncertainty, each robot is guided to re-observe areas previously 
observed (only) by other robots 

–  Enhanced flexibility to the group - rendezvous are no longer necessary 
–  Centralized framework 


