On Decision Making and Planning in the Conservative Information Space - Is the Concept Applicable to Active SLAM?

Vadim Indelman*

Decision making under uncertainty is essential in numerous problems involving robot autonomy and artificial intelligence, including informative planning, active sensing, sensor deployment and active simultaneous localization and mapping (SLAM). These problems are typically addressed using information-theoretic decision making and belief-space planning approaches, where one looks for the most informative action(s) according to a given objective function.

In many cases, however, decision making should be performed over a high-dimensional information space that captures spatial and, perhaps also temporal relations between the random variables. For example, in active SLAM, the state represents the robot trajectories and the observed environment, while in the context of environment modeling it represents a multidimensional field which can be dynamically changing over time. In these cases, evaluating the impact of a single candidate action (or sequence of actions), for example considering entropy as an information-theoretic objective function, is by itself an expensive operation. Considering an \(n \) dimensional state and without resorting to any assumptions on the sparsity of the information (covariance) matrix, the computational complexity is \(O(n^3) \). The complexity can be significantly reduced in the case the involved matrices are sparse. In the limit, if the information matrix was diagonal, i.e. no correlations between states, the complexity of evaluating a single candidate action would be \(O(n) \).

We suggest a new paradigm [1] for decision making under uncertainty: The basic idea is to resort to conservative information fusion techniques for information-theoretic decision making. Such a concept is motivated by the fact that conservative information fusion techniques, e.g. covariance intersection [2], allow the correlations between different modalities and are to decide what parts of the state space to consider, for example, different types of sensors with varying accuracy.

The concept is formulated in the following theorem considering, for now, a one-dimensional state \(X \in \mathbb{R} \) and some two candidate actions \(a \) and \(b \).

Theorem 1:

\[
|I^a_+| \leq |I^b_+| \quad \text{iff} \quad |I^a_+| \leq |I^b_+|.
\]

Here, \(I^a_+ \) and \(I^b_+ \) represent the a posteriori information matrices after performing action \(a \) and \(b \), respectively.

\[
I^a_+ = I + A^T \Sigma_v^{-1} A, \quad I^b_+ = I_c + A^T \Sigma_v^{-1} A,
\]

where \(A = \frac{\partial h_a}{\partial x} \) is the measurement Jacobian corresponding to the measurement model (1) of action \(a \). The information matrices \(I^b_+ \) and \(I^b_+ \) are simply defined for action \(b \) with a measurement Jacobian \(B = \frac{\partial h_b}{\partial x} \).

Theorem 1 states the impact of any two candidate actions on entropy, or other information-theoretic utility measures involving the determinant operator, has the same trend regardless if it is calculated based on the original pdf \(p(x) \) or based on the conservative pdf \(p_c(x) \). The proof of this theorem for a single dimensional state is trivial [1].

*Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
High-Dimensional State Spaces

Theorem 1 provides a mechanism to calculate the impact of candidate actions using some conservative information matrix. While formulated for a single dimensional state, the question is whether it is valid also for high-dimensional states \(X \in \mathbb{R}^n \). Intuitively, if Theorem 1 is indeed valid, then one may construct a sparse conservative approximation of the information matrix \(I \), which will yield significant reduction in computational complexity (e.g. when calculating the determinant), especially in problems that involve many states and a dense \(I \). Importantly, Theorem 1 states this will be obtained for free, without any sacrifice in performance.

In recent work [1], we took this idea to the extreme and considered a conservative approximation that decouples the states in \(X \), leading to a diagonal matrix \(I_c \). This decoupled conservative approximation can be obtained as

\[
p_c(X) = \eta \prod_i p^{w_i}(x_i),
\]

with \(x_i \) being the \(i \)th component in \(X \), \(\eta \) a normalization constant, and \(w_i \) are weights such that \(\sum_i w_i = 1 \). Here, \(p(x_i) \) is the marginal distribution over \(x_i \): \(p(x_i) = \int_{-\infty}^{\infty} p(X) \).

For Gaussian distributions, this is equivalent to scaling the covariance of each component of \(\Sigma \) by a factor of \(1/w \), and can be considered as a special instance of covariance intersection [2]. As a result, the (square root) information matrix \(I_c \) and the covariance \(\Sigma_c \), representing the second moment of the pdf (4), become diagonal matrices.

We can then formulate the following theorem, which is illustrated in Figure 1 and proved in [1].

Theorem 2: Theorem 1 holds for high dimensional state spaces for unary measurement models (1) and the decoupled conservative approximation (4).

According to Theorem 2, decision making involving unary observation models (1) can be performed over the decoupled conservative information space, represented by the diagonal information matrix \(I_c \). This framework admits decision making without accounting for any correlations between the states while guaranteeing to yield exactly the same decisions as would be obtained by using the original information space. As a result, the computational complexity of evaluating a single candidate action is reduced from \(O(n^3) \) to \(O(n) \) without sacrificing performance and without making any assumptions on the sparsity pattern of the original information matrix.

Applicability to Active SLAM

Is the concept of decision making over a conservative information space applicable also to active single- and multi-robot SLAM and belief space planning problems? To answer this question, a number of aspects should be further considered, including:

- More general observation models: e.g. pairwise observation models, where each observation typically involves robot pose and either past pose or a landmark. We note, it was demonstrated in [1] that Theorem 1 in conjunction with the decoupled belief (4) is valid in certain cases also for pairwise observation models.
- Active SLAM can often be considered as active focused inference [3], where only a subset of states is of interest. Is the concept valid also for active focused inference?
- Multi-step planning horizon: while the proposed concept can be applied in a greedy fashion, an open question is whether it is also valid to non-myopic planning.

We note the decoupled conservative belief (4) is only one (and extreme) alternative and additional conservative approximations exist that could be better suited for the above aspects. Furthermore, since the general problem is NP-complete, it might make sense to consider a tradeoff between suboptimal performance and computational complexity. Ongoing research aims to address these aspects.

References

