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No Correlations Involved: Decision Making
Under Uncertainty in a Conservative

Sparse Information Space
Vadim Indelman

Abstract—This letter is concerned with decision making under
uncertainty in problems involving high dimensional state spaces.
Inspired by conservative information fusion techniques, we pro-
pose a novel paradigm where decision making is performed over
a conservative rather than the original information space. The
key idea is that regardless of the sparsity pattern of the latter,
one can always calculate a sparse conservative information space,
which admits computationally efficient decision making. In this
letter, we take this concept to the extreme and consider a conser-
vative approximation that decouples the state variables, leading
to a conservative diagonal information matrix. As a result, the
computational complexity involved with evaluating impact of a
candidate action is reduced to O (n), for an n-dimensional state,
as the calculations do not involve any correlations. Importantly,
we show that for measurement observation models involving arbi-
trary single state variables, this concept yields exactly the same
results compared to using the original information matrix. We
demonstrate applicability of this concept to a sensor deployment
problem.

Index Terms—Autonomous Agents, AI Reasoning Methods,
Optimization and Optimal Control, SLAM.

I. INTRODUCTION

D ECISION making under uncertainty is essential in
numerous problems involving robot autonomy and arti-

ficial intelligence, including informative planning, active sens-
ing, sensor deployment and active simultaneous localization
and mapping (SLAM). These problems are typically addressed
using information-theoretic decision making and belief-space
planning approaches, where one looks for the most informative
action(s) according to a given objective function.

Different information-theoretic objective functions have
been proposed, including entropy and mutual information.
These functions are used to evaluate the impact of a candi-
date action, in the discrete case, or calculating the appropriate
gradient, in the continuous case. In the more general problem
setting of planning under uncertainty, the objective function
may include also additional terms, expressing, for example in
an autonomous navigation scenario distance to goal and control
usage. Calculating an optimal solution involves identifying a
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sequence of actions that minimizes the objective function, a
problem that was shown to be NP-complete.

The problem becomes even more computationally chal-
lenging when considering high dimensional state spaces.In
particular, evaluating the impact of a single candidate action,
e.g. calculating the conditional entropy, is by itself an expen-
sive operation: considering an n dimensional state and without
making any assumptions on the sparsity of the information
(covariance) matrix, the computational complexity is O

(
n3

)
.

This complexity can be significantly reduced in the case the
involved matrices are sparse, e.g. as in SLAM problems. In the
limit, if the information matrix was diagonal, i.e. no correlations
between states, the complexity would be O (n). Deciding which
action is the best, in a discrete case with m possible actions,
is therefore O

(
mn3

)
in general and, hypothetically, could be

reduced to O (mn) in case states are not correlated.
In this letter we suggest a new paradigm for decision making

under uncertainty, where the complexity of choosing a sin-
gle best action is O (mn) without assuming sparse matrices.
Specifically, we consider decision making with no dynamics
and unary measurement models that possibly involve different
states, a formulation relevant to problems such as active sens-
ing and sensor deployment. We show that for such problems
the proposed paradigm reduces significantly computational
complexity without sacrificing performance.

Inspired by conservative information fusion techniques, we
propose to perform decision making while considering a con-
servative approximation of the underlying probability distribu-
tion function (pdf), which corresponds in the Gaussian case
to decision making in the conservative rather than the original
information space.

Such a concept is motivated by the fact that conservative
information fusion techniques, e.g. covariance intersection [1],
allow the correlations between different states to be unknown,
while yielding consistent (but sub-optimal) state estimates.
What happens if similar ideas are used for information-theoretic
decision making?

In general, regardless of the sparsity pattern of the original
information space, one can always resort to a sparse conser-
vative information space, where some of the correlations are
appropriately dropped, and perform decision making consider-
ing that information space. Clearly, this would result in a greatly
reduced computational complexity. The question, however, is
whether the performance is sacrificed with respect to using
the original information space, i.e. whether the same decisions
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Fig. 1. Concept illustration for a two dimensional case, X =
[
x1 x2

]T
, considering two candidate actions corresponding to measuring either the first or

the second state. (a)–(b) Figures show an a priori covariance Σ and the conservative covariance Σc with no correlations between states, and the a posteriori
covariances corresponding to two actions a and b that are equivalent to choosing the appropriate measurement model (2). (c) A posteriori covariances for each
action using original and conservative a priori covariances: Σa+,Σb+,Σa+

c ,Σb+
c . Conjecture 3 states that if the area enclosed by Σa+ is smaller (larger) than

the area enclosed by Σb+, then necessarily, the same relation holds also between Σa+
c and Σb+

c .

would be made in both cases. The best one could hope for, is
that such a concept would allow evaluating a candidate action
without accounting for any correlations while guaranteeing no
sacrifice in performance.

In this letter we show, for the first time, this is indeed possi-
ble. We take the mentioned concept to the extreme, and consider
a conservative pdf that decouples the correlations between the
states, yielding a diagonal information matrix. Importantly,
considering decision making with unary observation models
over different state variables (as mentioned above), we prove
decision making over this decoupled conservative information
space yields identical results to those that would be obtained
by using an original information space, see Figure 1. As a
result, the complexity of evaluating a single candidate action
is reduced from O

(
n3

)
to O (n), regardless if the original

information space is sparse or not.

II. RELATED WORK

Information-theoretic decision making approaches have been
investigated in different contexts for several decades. These
include classical sensor selection and sensor management prob-
lems (e.g. [2]–[4]), informative path planning and active sens-
ing [5], [6], sensor deployment [7], active vision [8], and active
SLAM and belief space planning [9], [10], [11], [12], [13],
[14] approaches. In the latter case, the objective function is
not purely information-theoretic, as it also includes additional
terms, such as distance to goal.

Since calculating a globally optimal solution is computa-
tionally intractable (at least NP-complete, see e.g. [7], [4]),
different approaches have been developed that trade-off com-
putational complexity with performance. These include greedy
approaches that make a single decision at a time given the
decisions made thus far (e.g. [7], [15]), branch and bound
approaches (e.g. [6]), and direct optimization methods that
calculate a locally-optimal solution given a nominal solution
[10], [12], [14]. In particular, Krause et al. [7] presented
a polynomial-time approximation for the sensor placement
problem considering submodular objective functions, such as
mutual information. Importantly, in that work the authors prove

the performance of their greedy approach is within a constant
factor from the optimal performance.

In this letter we develop a greedy algorithm that uses the con-
cept of decision making in a conservative, sparse, information
space to substantially reduce computational complexity. To the
best of our knowledge, this concept is novel and has been only
recently introduced in our work [16], [17]. With respect to the
latter, in this letter we make a number of contributions. First,
we formulate the concept within sequential decision making
framework and consider its application to sensor deployment
problems. Second, we make significant progress in rigorously
proving the concept for high dimensional state spaces and show
numerically the remaining presumed relations indeed hold. Due
to space limitation, the letter is accompanied with supple-
mentary material [18], that provides a detailed exposition of
the proofs and additional results. Third, we analyze the con-
cept’s computational complexity and compare to computational
complexity of state of the art approaches.

III. PROBLEM FORMULATION

Let p (X) denote a probability distribution function
(pdf) over variables of interest X ∈ R

n, which could represent,
for example, robot poses, observed environment or an uncer-
tainty field, such as temperature in different locations. In this
letter, we model p (X) by a multivariate Gaussian pdf

p (X) = N(X̂,Λ−1) (1)

with estimate X̂ and information matrix Λ. These parameters
are conisidered to be known at the current time, e.g. esti-
mated via maximum a posteriori (MAP) inference based on all
information available thus far.

Suppose we have access to different sensor modalities
and are to decide what parts of the state space to mea-
sure. Specifically, consider different measurement likelihoods
pi (zi|xi) involving arbitrary state variables xi from X , with
i ∈ [1, n], and the corresponding observation models of the
form

zi = hi (xi) + vi, vi ∼ N (0,Σvi) , (2)
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where hi and Σvi are, respectively, a nonlinear observation
model and measurement noise covariance. Both hi and Σvi can
vary with i.

In the considered problem setup, we assume a determinstic
control and no dynamics. This is a fairly typical assumption
in sensor deployment and additional related problems (see, e.g.
[4]). In other words, given a decision what state variable to mea-
sure (e.g. by deploying a sensor to the corresponding location),
we assume this state variable will indeed be measured upon exe-
cution of the command. Future research will examine the more
general case with stochastic control, for example, in the context
of belief space planning.

A single decision involves evaluating the impact of each
candidate measurement likelihood pi (zi|xi) according to a
given information-theoretic utility measure J . In this letter we
will consider entropy as the utility function J . For Gaussian
distribution (1), entropy can be expressed as

H (p (X)) =
1

2
log

[
(2πe)

n |Λ|−1
]
. (3)

The a posteriori pdf incorporating the dth candidate measure-
ment likelihood pd (zd|xd) is given by

p (X|d, zd) ∝ p (X) pd (zd|xd) , (4)

where we included conditioning on the candidate decision d to
explicitly state the considered measurement likelihood.

One can now evaluate J for all possible decisions d and
choose the best decision as

d� = arg min
d

J (d) . (5)

It is often the case, however, that we are to make k best deci-
sions at each time. Such a problem is encountered in numerous
application domains, e.g. in the context of sensor selection,
sensor deployment, and informative planning. This problem
was shown to be computationally intractable, and is thus com-
monly addressed by approximate approaches; in particular,
these include greedy methods that aim to make the best single
decision given the decisions made thus far.

Assume l decisions have been already made and let the set
Dl = {d1, . . . , dl} represent these decisions. The correspond-
ing pdf is thus

p (X|Dl,Zl) ∝ p (X)
l∏

i=1

pdi
(zdi
|xdi

) , (6)

The measurements setZl = {zdi
} represents the measurements

corresponding to the l decisions Dl. We note that at deci-
sion time these measurements are typically unknown, e.g. in
sensor deployment we reason about where to position the
sensors such that these would yield most informative obser-
vations. Nevertheless, assuming Gaussian distributions, the
second moment of the pdf (6), which is involved in information-
theoretic utility measures, can be typically approximated well
by performing a single Gauss Newton iteration [19] and thus is
not a function of the (unknown) measurements Zl.

To make the next decision (decision number l + 1) with the
considered greedy approach, one has to evaluate J (d) for each

candidate action d with the following a posteriori pdf (similarly
to Eq. (4))

p (X|Dl,Zl, d, zd) ∝ p (X|Dl,Zl) pd (zd|xd) , (7)

and then choose dl+1 according to (5). This process continues
until k decisions are made.

The computational complexity of this process depends on
several factors, including the objective function J and the
involved correlations between the different states in X . Because
of the latter, although the observation model is unary (involves
only a single, arbitrary, state variable), additional states in X are
impacted. In particular, in the fully-correlated case, all the states
will be updated for any unary observation model. Moreover, the
objective function J typically involves calculating the deter-
minant of the a posteriori information (covariance) matrix, a
computationally expensive operation in the general case.

In the following we develop an alternative approach that
attains the same results, i.e. the same decisions, while drasti-
cally reducing computational complexity.

At this point it is beneficial to summarize the key assump-
tions made thus far: (i) the pdf p(X) is assumed to be a
Gaussian distribution; (ii) unary observation models (2) on arbi-
trary state elements from X are considered; (iii) in this letter we
do not consider dynamics, and assume deterministic control as
mentioned above.

IV. APPROACH OVERVIEW

Our approach is based on the concept of performing decision
making in the conservative information space [16]. Consider, as
before, the first l decisions have been made, with l ∈ [0, k), and
we are to make the next decision.

The key idea is to replace Eq. (7) with

pc (X|Dl,Zl, d, zd) ∝ pc (X|Dl,Zl) pd (zd|xd) , (8)

where pc (X|Dl,Zl) represents a conservative approximation
of the pdf p (X|Dl,Zl) from Eq. (7).

The conservative pdf pc (X|Dl,Zl) can be constructed such
that its information matrix Λc is sparse regardless of the spar-
sity pattern of the information matrix Λ corresponding to
p (X|Dl,Zl). By doing so, the computational complexity of
evaluating the information-theoretic objective J (d) with the a
posteriori pdf from Eq. (8) can be significantly reduced.

In this letter we take this concept into the extreme and con-
sider a conservative pdf pc (X|Dl,Zl) where all the states are
independent, with a corresponding diagonal information matrix
Λc. We refer to this specific pdf as a decoupling conservative
pdf. An illustration for a 2D case is given in Figures 1a–1b,
which are further explained in Section V-C.

As we show next, this concept allows to determine the best
action according to Eq. (5) by evaluating the objective func-
tion J using the conservative pdf (8) instead of the original pdf
(7). Importantly, we prove that for unary observation models (2)
this concept yields identical decisions as would be obtained by
using the original pdf (7).

Because Λc is diagonal, calculating the a posteriori pdf (8)
is a trivial operation for the considered unary observation mod-
els (2). Moreover, the corresponding a posteriori information
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Algorithm 1. Decision making in the conservative information
space

1 Inputs:
2 k: number of decisions to make
3 p(X) = N(X̂,Λ): a priori pdf over X
4 pi(zi|xi): available measurement likelihoods i ∈ [1, N ]
5 Outputs:
6 Decisions set D
7 Initialize: D = φ
8 for l = 1 : k do
9 Calculate Λc from Λ via Eq. (13)

/* Evaluate H for each candidate */
10 for d = 1 : N do
11 Ad = ∂hd

∂X |X̂ /* Calculate Jacobian Ad */
12 Λ+

c = Λc +AT
d Σ

−1
vd Ad /* Calculate Λ+

c */
13 |Λ+

c | =
∏n

i=1(r
+
c,ii)

2 /* Calculate |Λ+
c | */

14 Calculate H from |Λ+
c | using Eq. (3)

15 end
16 Choose d� according to Eq. (5)
17 D ← D ∪ {d�}
18 Λ = Λ+AT

d�Σ
−1
vd�Ad�

19 end
20 return D

matrix Λ+
c , given by

Λ+
c = Λc +ATΣ−1

v A, (9)

where A = ∂hd

∂X is an appropriate measurement Jacobian, lin-
earized about the estimate X̂ from Eq. (1), remains to be diag-
onal. As a result, calculating the determinant |Λ+

c |, as required
by most information-theoretic measures (e.g. entropy, mutual
information), has linear computational complexity O (n) in the
number of states:

∣∣Λ+
c

∣∣ =
n∏

i=1

(
r+c,ii

)2
, (10)

where
(
r+c,ii

)2
is the ith entryon the diagonal of Λ+

c . We note
that this linear complexity is obtained regardless of the actual
correlations between the states.

Algorithm 1 summarizes the proposed greedy approach for
decision making in the conservative information space.

V. DECISION MAKING IN THE CONSERVATIVE

INFORMATION SPACE

In this section we present the concept of decision making
in the conservative information space, first discussing a single
dimensional case, and then focusing on high dimensional state
spaces.

A. 1D Case

The concept is formulated in the following theorem consid-
ering a one-dimensional state X ∈ R and some two candidate
actions a and b.

Theorem 1:

∣∣Λa+
∣∣ ≤ ∣∣Λb+

∣∣ iff
∣∣Λa+

c

∣∣ ≤ ∣∣Λb+
c

∣∣ . (11)

Here, Λa+ and Λa+
c represent the a posteriori information

matrices after performing action a

Λa+ = Λ+ATΣ−1
v A, Λa+

c = Λc +ATΣ−1
v A, (12)

where A
.
= ∂ha

∂x is the measurement Jacobian corresponding
to the measurement model (2) of action a. The information
matrices Λb+ and Λb+

c are similarly defined for action b with
a measurement Jacobian B

.
= ∂hb

∂x .
Theorem 1 states the impact of any two candidate actions on

entropy, or other information-theoretic utility measures involv-
ing the determinant operator, has the same trend regardless if
it is calculated based on the original pdf p (x) or based on the
conservative pdf pc (x). The proof of this theorem for a single
dimensional state is trivial [16].

B. High-Dimensional State Space

Theorem 1 provides a mechanism to calculate the impact of
candidate actions using some conservative information matrix.
While formulated for a single dimensional state, the question
is whether it is valid also for high-dimensional states X ∈ R

n.
Intuitively, if Theorem 1 is indeed valid, then one may construct
a sparse conservative approximation of the information matrix
Λ, which will yield significant reduction in computational com-
plexity (e.g. when calculating the determinant), especially in
problems that involve many states and a dense Λ. Importantly,
Theorem 1 states this will be obtained for free, without any
sacrifice in performance.

Here, we take this idea to the extreme and consider a conser-
vative approximation that decouples the states in X , leading to
a diagonal matrix Λc. This decoupled conservative approxima-
tion can be obtained as follows

pc (X)
.
= η

∏
i

pwi (xi) , (13)

with xi being the ith component in X , η a normalization con-
stant, and wi are weights such that

∑
i wi = 1. Here, p (xi) is

the marginal distribution over xi : p (xi) =
∫
¬xi

p (X).
For Gaussian distributions, this is equivalent to scaling the

covariance of each component of Σ by a factor of 1/w, and can
be considered as a special instance of covariance intersection
[1], i.e. Σc,ii = Σii/wi where Σii is the ith diagonal entry in
Σ. Thus, if p (xi) = N(x̂i,Σii), we have

ηip
wi (xi) = N(x̂i,Σii/wi), (14)

with an appropriate normalization constant ηi (see, e.g., [20]).
As a result, the covariance Σc and the (square root) informa-

tion matrix Λc = Σ−1
c , representing the second moment of the

pdf (13), become diagonal matrices.
In practice, one can directly calculate these diagonal entries

from non-zero elements in the square root information matrix
R, with Λ = RTR, thereby avoiding calculating an inverse
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of a large matrix (information matrix Λ). The corresponding
equations are [21] (see also [15])

Σll =
1

rll

⎛
⎝ 1

rll
−

n∑
j=l+1

rljΣjl

⎞
⎠ (15)

Σil =
1

rii

⎛
⎝−

l∑
j=i+1

rijΣjl −
n∑

j=l+1

rijΣlj

⎞
⎠ (16)

for l = n, . . . , 1 and i = l − 1, . . . , 1. Here, rij and Σlj corre-
spond respectively to the element from row i and column j in
the matrices R and Σ.

Remark: Observe the difference with conservative informa-
tion fusion formulation, that can be written for any two pdfs
pa (X) and pb (X) as pc (X) = ηpwa (X) p1−w

b (X), where η
is a normalization constant [20]. Referring to Eqs. (7) and (8),
the formulation considered herein differs in two respects [16]:
(a) it calculates a conservative approximation of one of the pdfs
via Eq. (13), leaving the other unchanged; (b) in the context of
decision making, only the trend in entropy (or other measure)
of a posteriori distributions for different candidate actions is of
interest.

Let Λ+ and Λ+
c represent the a posteriori information matri-

ces defined for an arbitrary Jacobian A = ∂hi

∂X , according to
measurement model (2), as given by Eq. (12).

The following Lemmas and Conjectures are necessary for
stating our main result (Conjecture 3).

Lemma 1: The determinant Λ+ can always be written as

∣∣Λ+
∣∣ = ηn + a2γn (17)

where γn > 0 is only a function of entries of R, and ηn is
defined as

ηn
.
=

n∏
i=1

r2ii. (18)

The proof of Lemma 1 is given in Appendix A in [18].
Proof sketch: We use mathematical induction to prove

Eq. (17) holds for any n. To do so, we recall that |Λ+| can
be calculated from the diagonal of the corresponding square
root information matrix R+. The relation in Eq. (17) then fol-
lows by analyzing, using Givens rotations, how an a priori
square root information matrix R is updated, due to observation
model (2).

Lemma 2: The determinant Λ+
c can always be written as

∣∣Λ+
c

∣∣ = αn

βn

[
ηn + na2γc,n

]
(19)

where γc,n > 0 is only a function of entries of R,

αn
.
= n−n

n∏
i=2

r
2(i−1)
ii , (20)

and βn is given by βn =
∏n

i=1 γc,n−i+1.
The proof of Lemma 2 is given in Appendix B in [18].

Fig. 2. Numerical evaluation comparing
∣
∣
∣Λ+

c

∣
∣
∣ calculated by taking the deter-

minant of Λ+
c , with the same quantity calculated according to Conjectures 1–2,

i.e. via Eq. (21). For numerical reasons, calculations are performed in log space.

Proof sketch: Recall Eq. (10): |Λ+
c | =

∏n
i=1

(
r+c,ii

)2
.

According to Eq. (13), r2c,ii = wiΣ
−1
ii where Σii is

the corresponding entry on the diagonal of the covari-
ance matrix Σ ≡ Λ−1. Writing the Jacobian explicitly as
A

.
=

[
a1 · · · an

]
, and considering some ith state variable

is measured, we have ai ≡ a and aj = 0 for j 	= i. Since
Rc is diagonal, one can verify that r+c,jj = rc,jj for j 	= i.
Without loss of generality, we now arbitrarily assume the
first state is measured, i.e. i = 1. Using Givens rotations we
then show [18] that |Λ+

c | =
(
Σ−1

11 + na2
)
n−n

∏n
i=2 Σ

−1
ii . The

covariance entries Σii can be efficiently calculated directly
from the non-zero entries in matrix R [21], as shown in Eqs.
(15)–(16). Manipulating algebraically the resulting expressions
and resorting to recursive formulation yields Eq. (19).

We note that αn, ηn and βn are only functions of entries of
R and do not involve any entries of the Jacobian A.

Conjecture 1: ∀n : γn ≡ γc,n.
Conjecture 2: The determinants of Λ+

c and Λ+ are related
according to

∣∣Λ+
c

∣∣ = αn

βn

[
n
∣∣Λ+

∣∣− (n− 1) ηn
]
, (21)

Proof: The relation immediately follows from Lemmas 1
and 2 and Conjecture 1. �

In Appendix C in [18], we prove Conjecture 1 for the cases
n = 2 and n = 3. Figure 2 provides numerical evidence that
Eq. (21), and therefore Conjecture 1, holds within the range
n ∈ [1, 200], and suggests the relation is valid for any n: In
that figure the a priori information matrix Λ and the Jacobian
A describing the unary observation model (2) were randomly
generated for different considered dimensions (parameter n). In
each case, the determinant |Λ+

c | was evaluated directly and via
Eq. (21). As seen, these calculations yielded identical results
(also when repeated numerous times). Of course, while encour-
aging, these empirical results cannot replace a formal proof and
for that reason we use the term ’Conjecture’ and not ’Lemma’
(see also Remark at the end of this section).

We can now formulate the main result of this letter.
Conjecture 3: Theorem 1 holds for high dimensional state

spaces for unary measurement models (2) and the decoupled
conservative approximation (13).
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Proof: Consider the Jacobians A and B that corre-
spond to two arbitrary measurement models (2). According to
Conjecture 2, the following holds:

∣∣Λa+
c

∣∣ = αn

βn

[
n
∣∣Λa+

∣∣− (n− 1) ηn
]
, (22)

∣∣Λb+
c

∣∣ = αn

βn

[
n
∣∣Λb+

∣∣− (n− 1) ηn
]
. (23)

Therefore:
∣∣Λa+

c

∣∣− ∣∣Λb+
c

∣∣ = n
αn

βn

[∣∣Λa+
∣∣− ∣∣Λb+

∣∣] . (24)

However, according to Eq. (20) and Lemma 1, both αn and βn

are always positive and are not functions of a. Therefore, the
relation given in Eq. (11), and thus also Conjecture 3, directly
follows from Eq. (24). �

Remark: We note that Conjectures 2-3 rely on Conjecture 1.
Proving Conjecture 1 for general n will thus allow reformulat-
ing these Conjectures into Theorems - this endeavor is left to
future research.

C. Discussion

According to Conjecture 3, decision making involving unary
observation models (2) can be performed over the decoupled
conservative information space, represented by the diagonal
information matrix Λc. This framework admits decision mak-
ing without accounting for any correlations between the states
while guaranteeing to yield exactly the same decisions as
would be obtained by using the original information space, and
without making any assumptions regarding the latter.

The practical implication is a major reduction in computa-
tional complexity: evaluating the impact of a candidate action
typically involves calculating the determinant |Λ+|, which is
O
(
n3

)
in the general case. Our approach instead operates

over the conservative information space, thus replacing this
calculation with |Λ+

c |. Since Λ+
c is diagonal, computational

complexity is reduced to O (n). We note this reduced computa-
tional complexity is obtained regardless if Λ+ ∈ R

n×n is sparse
or not.

However, there is also a conceptual implication: decision
making involving unary measurement models (2) can be per-
formed without accounting for the correlations between the
states.

We illustrate this statement in Figure 1 in a simple example
involving two states, i.e. X ∈ R

2. Figures 1a and 1b show the a
priori covariance Σ and the calculated conservative covariance
Σc according to Eq. (13). One can observe the two states are not
correlated in the latter case. These two figures also show the a
posteriori covariances that correspond to two actions a and b
with the measurement models (2) involving different states:

ATΣ−1
va A=

[
0 0
0 0.2

]
, BTΣ−1

vb B=

[
24.7 0
0 0

]
. (25)

Note that each observation model involves a different state.
However, because of correlation terms, each such observation
model effects both states, as indicated by Σa+ and Σb+ in the
figures. In contrast, since Λc is diagonal, each unary observation

Fig. 3. Uncertainty field synthetic example: (a) A priori variance in each cell

of the N ×N grid; (b) A priori covariance Σ ∈ R
N2×N2

.

model involving state xi, has impact only on the state xi and not
on the rest of the states, regardless of the actual correlations -
this is shown by Σa+

c and Σb+
c .

Nevertheless, Conjecture 3 states that if the area covered by
Σa+ is larger (smaller) than the area covered by Σb+, then nec-
essarily, the area covered by Σa+

c is larger (smaller) than the
area covered by Σb+

c ; See Figure 1c. Thus, decision making
can be performed based on Σ+

c instead of Σ+.
In the next section we consider an application of Conjecture

3 to sensor deployment and other closely related problems,
developing a greedy approach with a significantly reduced
computational complexity.

VI. APPLICATION TO SENSOR DEPLOYMENT PROBLEMS

In this section we show how our approach can be applied
to sensor deployment, sensor selection and other similar prob-
lems. The basic problem can be described as follows. There are
k sensors that should be scattered in a much larger area such
that these can, for example, monitor best a physical phenom-
ena (e.g. temperature, wind), or provide localization for robots
operating in different regions within the area.

For the sake of simplicity, we discretize the area into an N ×
N grid and thus would like to identify k cells for deployment
of our k sensors. We note that, alternatively, we could avoid
this discretization with a pre-defined resolution and resort to
Gaussian Processes, as in [7].

Similar to [7], we assume there is some a priori covariance
Σ ∈ R

n×n, with n
.
= N2, that either describes prior knowledge

on the uncertainty field we are to monitor, or is empirically
determined from data.

As an optimal solution to this problem is NP-hard, we con-
sider a greedy approach, as discussed in Sections III and IV, and
use entropy over the entire N ×N area as the utility measure
function.

Applying our approach for selecting the best k sensor loca-
tions, considering entropy as the objective function, is straight-
forward, as summarized in Algorithm 1. For the lth decision
(l ∈ [1, k]), we first calculate the diagonal conservative infor-
mation matrix Λc from the information matrix Λ that accounts
for all the decisions made thus far (line 9). Then, we should
evaluate the impact of each candidate sensor location by calcu-
lating the entropy over the a posteriori information matrix Λ+

c .
To do so, we compute the determinant |Λ+

c | (line 13) which is
O (n) as the matrix Λ+

c is diagonal. Given |Λ+
c |, entropy cal-

culation is trivial. Next, the best location is chosen according
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Fig. 4. Variance of each cell after placing k sensors (cross-covariances between cells are not shown). Sensor chosen locations are denoted by red points. Colors
indicate different uncertainty levels, with high and low uncertainty represented by yellow and blue colors, respectively.

Fig. 5. (a) Impact of each candidate decision (sensor location) using the orig-
inal and conservative information matrices (Λ and Λc). Although values are
different, the trend is identical in both cases for any two candidate actions,
as stated by Conjecture 3. (b) Processing time as a function of number of
cells n = N ×N in each case. Each run corresponds to solving the sensor
deployment problem for k = 10 sensors.

to minimum entropy (line 16), and the information matrix Λ
is updated accordingly (line 18). This procedure is repeated k
times.

Next we demonstrate the method by presenting typical
results in a synthetic scenario, and then in Section VI-B analyze
the computational complexity of our approach.

A. Typical Results

Figure 3 shows the a priori covariance Σ = Λ−1 ∈ R
N×N ,

which was randomly generated, while enforcing a positive
definite symmetric matrix. A relatively small problem is consid-
ered, with N = 10 and therefore X ∈ R

100, to clearly illustrate
the key points; results for a larger scenario with N = 40
(i.e. X ∈ R

1600) are provided in Appendix D in [18]. The vari-
ance in each cell in the grid is shown in Figure 3a, while
Figure 3b provides the entire joint covariance Σ. From the lat-
ter figure, one can clearly see the non-zero correlations between
different cells.

Figure 4 shows several snapshots of the evolution of the a
posteriori covariance after deploying a number of sensors that
are chosen using our approach (Algorithm 1). As expected,
one can observe uncertainty is greatly reduced upon deploy-
ing additional sensors. Identical sensor deployment results were
obtained when using the conservative and the original infor-
mation space. This is demonstrated in Figure 5 which shows
the impact of each candidate action, sensor locations in our
case, in terms of |Λ+| and |Λ+

c |. The shown results refer to a

single decision making event given candidate actions. As seen,
while the actual values are different, the trend is identical. A
similar behavior is also obtained while considering a larger sce-
nario and with sequential greedy decision making, as shown
in Appendix D in [18]. Thus, information-theoretic decision
making can be performed using the conservative information
space.

Figure 5b shows processing time for the sensor deployment
problem with k = 10 sensors as a function of number of cells
n. The shown timing results were obtained in a Matlab imple-
mentation of both methods. One can clearly observe decision
making in a conservative information space requires much less
processing time compared to using the original information
space, especially as n increases.

B. Computational Complexity

Evaluating the impact of a single sensor location using our
approach is O (n) and doing so for all n location candidates
is therefore O

(
n2

)
, after which the best sensor location can

be determined. Making k such decisions using this greedy
approach is therefore O

(
kn2

)
.

At this point, it is beneficial to compare this complexity to
other greedy approaches. Using the original information space
and without making any assumptions on the sparsity pattern
of Λ, the computational complexity is O

(
kn4

)
, since a sin-

gle determinant calculation |Λ+| is O
(
n3

)
. Robertazzi and

Schwartz [22] and Krause et al. [7] propose the so called lazy
evaluation technique that reduces, under certain conditions, the
complexity to O

(
kn3

)
. Exploiting the problem structure and

using local kernels, i.e. assuming sparsity of the information
matrix Λ, Krause et al. [7] are able to reduce the complexity to
O (kn).

Note that while the complexity of our approach is higher
(O

(
kn2

)
vs O (kn)), no assumption regarding the sparsity pat-

tern of Λ was made. We envision, however, that using similar
concepts as in [7], computational complexity of our approach
could be reduced even further.

VII. LIMITATIONS AND POTENTIAL EXTENSIONS

While the approach developed herein addresses a specific
family of problems, i.e. sensor deployment and related
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problems, an interesting question is whether it can be extended
to more general settings, for example in the context of belief
space planning. Addressing this question requires relaxing
(some of) the assumptions that are mentioned towards the end
of Section III (e.g. incorporating stochastic control and pairwise
observation models) and to consider more general objective
functions. The latter could include besides the information the-
oretic measure (e.g. entropy) also additional terms such as
distance to goal and penalty on control usage (see e.g. [12],
[14]). These aspects are outside the scope of this letter and
should be investigated in future research.

We note the proposed concept of sparsifying the information
space without, or with minimal, sacrifice in decision making
performance is quite general. The decoupled conservative infor-
mation space (13) considered in this letter is an extreme case for
sparsification (since all correlations are appropriately dropped).
Thus, other sparisfication approaches, including those dis-
cussed in [23], [24] in the context of long-term autonomy, could
be appropriate to handle more general cases mentioned above.

VIII. CONCLUSIONS

We introduced a new paradigm where information-theoretic
decision making is performed over a conservative information
space. The concept is motivated by the fact that, regardless of
the sparsity pattern of the original information space, one can
always calculate a sparse conservative approximation of the
latter, which admits computationally efficient decision making
over high dimensional state spaces. Considering Gaussian dis-
tributions and unary measurement models possibly involving
different state variables, we took this concept to the extreme
and proved that using a decoupled conservative information
space (diagonal information matrix) for decision making yields
exactly the same results as would be obtained by the original,
possibly highly-correlated, information space. As a conse-
quence, regardless whether the latter is sparse or not, computa-
tional complexity for evaluating the impact of a single candidate
action becomes linear in the number of states. We applied this
concept to a sensor deployment problem, developing a greedy
algorithm that uses a decoupled conservative information space
for determining sensor locations.

Future research aims to extend the proposed concept to more
general cases, including non Gaussian probability distributions,
non-myopic planning and pairwise potentials.
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