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Abstract We investigate the problem of cooperative multi-
robot planning in unknown environments, which is important
in numerous applications in robotics. The research com-
munity has been actively developing belief space planning
approaches that account for the different sources of uncer-
tainty within planning, recently also considering uncertainty
in the environment observed by planning time. We fur-
ther advance the state of the art by reasoning about future
observations of environments that are unknown at planning
time. The key idea is to incorporate within the belief indi-
rect multi-robot constraints that correspond to these future
observations. Such a formulation facilitates a framework
for active collaborative state estimation while operating in
unknown environments. In particular, it can be used to
identify best robot actions or trajectories among given can-
didates generated by existing motion planning approaches,
or to refine nominal trajectories into locally optimal paths
using direct trajectory optimization techniques. We demon-
strate our approach in a multi-robot autonomous navigation
scenario and consider its applicability for autonomous nav-
igation in unknown obstacle-free and obstacle-populated
environments. Results indicate that modeling future multi-
robot interaction within the belief allows to determine robot
actions (paths) that yield significantly improved estimation
accuracy.

This is one of several papers published in Autonomous Robots
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1 Introduction

Autonomous operation under uncertainty is essential in
numerous problem domains, including autonomous navi-
gation, object manipulation, multi-robot localization and
tracking, and robotic surgery. As the robot state is never accu-
rately known due to motion uncertainty and imperfect state
estimation obtained from partial and noisy sensor measure-
ments, planning future actions should be performed in the
belief space - a probability distribution function (pdf) over
robot states and additional states of interest.

Belief space planning has been investigated extensively
in the last two decades. While the corresponding problem
can be described in the framework of partially observable
Markov decision process (POMDP), which is known to be
computationally intractable for all but the smallest problems
(Papadimitriou and Tsitsiklis 1987), several approaches that
tradeoff optimal performance with computational complex-
ity have been recently developed. These approaches can be
segmented into several categories: point-based value itera-
tion methods, simulation based approaches, sampling based
approaches and direct trajectory optimization approaches.

Point-based value iteration methods (e.g. Pineau et al.
2006; Kurniawati et al. 2008) select a number of repre-
sentative belief points and calculate a control policy over
belief space by iteratively applying value updates to these
points. Simulation-based approaches (e.g. Stachniss et al.
2005; Valencia et al. 2013) generate a few potential plans
and select the best policy according to a given metric. They
are referred to as simulation-based approaches, since they
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simulate the evolution of the belief for each potential plan to
quantify its quality.

Sampling based approaches (e.g. Prentice and Roy 2009;
Bry and Roy 2011; Hollinger and Sukhatme 2014) discretize
the state space using randomized exploration strategies to
explore the belief space in search of an optimal plan. While
many of these approaches, including probabilistic roadmap
(PRM) (Kavraki et al. 1996), rapidly exploring random trees
(RRT) (LaValle and Kuffner 2001) and RRT* (Karaman and
Frazzoli 2011), assume perfect knowledge of the state, deter-
ministic control and a known environment, efforts have been
devoted in recent years to alleviate these restricting assump-
tions. These include, for example, the belief roadmap (BRM)
(Prentice and Roy 2009) and the rapidly-exploring random
belief trees (RRBT) (Bry and Roy 2011), where planning
is performed in the belief space, thereby incorporating the
predicted uncertainties of future position estimates. Another
impressive recent work that incorporates motion and sens-
ing uncertaintywithin sampling based planning, generalizing
thePRMframework, is feedback-based information roadmap
(FIRM) (Agha-Mohammadi et al. 2014). We note that sim-
ilar strategies are used to address also informative planning
problems (see, e.g., Hollinger and Sukhatme 2014).

Online planning approaches for POMDP, actively being
developed by the AI community, are also related to the
research reported herein. These approaches alleviate compu-
tational complexity by computing good local policies at each
decision step during the execution (Ross et al. 2008). In par-
ticular, Monte-Carlo tree search methods (Silver and Veness
2010) have become a dominant class of solution methods
for POMDPs because they can scale to large problems and
use online planning to incrementally generate solutions. As
will be seen in the sequel, these and other online planning
approaches are relevant to the proposed method in the con-
text of re-planning upon obstacle detection or upon obtaining
new information regarding expected landmark distribution in
unknown areas.

Direct trajectory optimization methods (including Platt
et al. 2010; Van Den Berg et al. 2012; Indelman et al.
2015a; Patil et al. 2014) calculate locally optimal trajec-
tories and control policies, starting from a given nominal
path. Approaches in this category perform planning over
a continuous state and action spaces, which is often con-
sidered more natural as the robot states (e.g., poses) and
controls (e.g., steering angles) are not constrained to few
discrete values. For example, Platt et al. (2010) apply lin-
ear quadratic regulation (LQR) to compute locally optimal
policies, while Van Den Berg et al. (2012) develop a related
method using optimization in the belief space and avoid-
ing assumingmaximum likelihoodobservations in predicting
the belief evolution. These approaches reduce computational
complexity to polynomial at the cost of guaranteeing only
locally optimal solutions.

While typically, belief space planning approaches con-
sider the environment is known, in certain scenarios of
interest (e.g. navigation in unknown environments) this is
not a feasible assumption. In these cases, the environment is
either a priori unknown, uncertain or changes dynamically,
and therefore should be appropriately modeled as part of the
inference and decisionmaking processes. Such a conceptwas
recently developed in Indelman et al. (2013, 2015a), where
random variables representing the observed environment
have been incorporated into the belief and locally optimal
motion plans were calculated using a direct trajectory opti-
mization approach. In Indelman (2015a), the approach was
extended to a multi-robot belief space planning centralized
framework and was used to facilitate active collabora-
tive estimation in unknown environments. Simulation- and
sampling-based approaches that consider a priori unknown
environments have also been recently developed in the con-
text of active SLAM (see, e.g. Valencia et al. 2013; Chaves
et al. 2014). A limitation of these approaches is that the belief
only considers the environment observed by planning time
and does not reason, in the context of uncertainty reduction,
about new environments to be observed in the future as the
robot continues exploration.

In this work we alleviate this limitation, considering the
problem of cooperative multi-robot autonomous navigation
in unknown environments.While it iswell known that collab-
oration between robots can significantly improve estimation
accuracy, existing approaches (e.g. Roumeliotis and Bekey
2002; Carlone et al. 2010; Indelman et al. 2012) typically
focus on the inference part, considering robot actions to be
determined externally. On the other hand, active multi-robot
SLAM approaches (e.g. Burgard et al. 2005) typically focus
on coordination aspects and on the trade-off between explor-
ing new regions and reducing uncertainty by re-observing
previously mapped areas (performing loop closures). In con-
trast, in this paper we consider the question - how should the
robots act to collaboratively improve state estimation while
autonomously navigating to individual goals and operating
in unknown environments?

Addressing this question requires incorporating multi-
robot collaboration aspects into belief space planning. To
that end, we present an approach to evaluate the probability
distributions of multiple robot states while modeling future
observations of mutual areas that are unknown at planning
time (Fig. 1). The key idea is that although the environment
may be unknown a priori, or has not been mapped yet, it
is still possible to reason in terms of robot actions that will
result in the same unknown environments to be observed by
multiple robots, possibly at different future time instances.
Such observations can be used to formulate non-linear con-
straints between appropriate robot future states. Importantly,
these constraints allow collaborative state estimation without
the need for the robots to actually meet each other, in con-
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Fig. 1 Illustration of the proposed concept. Multi-robot indirect
constraints representing mutual future observations of unknown envi-
ronments are shown in blue (Color figure online)

trast to the commonly used direct relative pose observations
that require rendezvous between robots (e.g. Roumeliotis and
Bekey 2002). We show how such constraints can be incor-
porated within a multi-robot belief, given candidate paths
that can be generated by any motion planning method. One
can then identify the best path with respect to a user-defined
objective function (e.g. reaching a goal withminimumuncer-
tainty), and also refine best alternatives using direct trajectory
optimization techniques (e.g. Van Den Berg et al. 2012; Patil
et al. 2014; Indelman et al. 2015a).

In this paper we also consider a simple variation of the
proposed approach to enable operation in the presence of
obstacles that are initially unknown and instead detected
on the fly. Such a capability is important in variety of
applications, such as quadrotor navigation in uncertain envi-
ronments. Upon obstacle detection, robot paths that were
considered previously as optimal, do not necessarily remain
as such. Thus, beyond locally modifying robot paths to avoid
the detected obstacle, there is a need to replan and to update
the robot optimal paths accordingly (Koenig and Likhachev
2005).We adapt the proposed approach to address this aspect
by re-planning each time an obstacle is detected, while con-
sidering multi-robot collaboration aspects within the belief
to yield superior estimation accuracy.

The present paper is an extension of the work pre-
sented in Indelman (2015b). As a further contribution, in
this manuscript we present a more extensive performance
evaluation that includes a statistical study with two differ-
ent scenarios, and consider applicability of the method to
autonomous operation in unknown obstacle-populated envi-
ronments.

The remaining of this manuscript is structured as fol-
lows. Section 2 introduces notations and formulates the
problem addressed herein. Section 3 presents the proposed
approach; in particular, Sect. 3.2 discusses how to incorpo-
rate future multi-robot constraints that correspond to mutual

observations of environments unknown at planning time
within the multi-robot belief, while Sect. 3.5 considers the
mentioned adaptation of our approach to support operation
within unknown obstcale-populated environments. Section 4
presents performance evaluation, while Sect. 5 concludes the
discussion and suggest some possible directions for future
research.

2 Notations and problem formulation

Let xri represent the pose of robot r at time ti and denote by
Lr
i the perceived environment by that robot, e.g. represented

by 3D points, by that time. We let Zr
i represent the local

observations of robot r at time ti , i.e. measurements acquired
by its onboard sensors, anddefine the joint stateΘr over robot
past and current poses and observed 3D points as

Θr
k

.= Xr
k ∪ Lr

k , Xr
k

.= {
xr0, . . . , x

r
k

}
. (1)

The joint probability density function (pdf) over this joint
state given local observations Zr

0:k
.= {

Zr
0, . . . , Z

r
k

}
and con-

trols ur0:k−1
.= {

ur0, . . . , u
r
k−1

}
is given by

P(Θr
k |Zr0:k , ur0:k−1) ∝ P(xr0)

k∏

i=1

[
P(xri |xri−1, u

r
i−1)P(Zri |Θro

i )
]
,

(2)

where Θro
i ⊆ Θr

i are the involved random variables in the
measurement likelihood term P(Zr

i |Θro
i ). Assuming data

association is given, this term can be further expanded
in terms of individual measurements zri, j ∈ Zr

i repre-
senting observations of 3D points l j : P(Zr

i |Θro
i ) =∏

j P(zri, j |xri , l j ).
Themotion and observationmodels in Eq. (2) are assumed

to be with additive zero-mean Gaussian white noise,

xri+1 = f
(
xri , u

r
i

) + wr
i , zri, j = h

(
xri , l j

) + vri (3)

where wi ∼ N (
0,Σr

w

)
, vi ∼ N (

0,Σr
v

)
, with Σr

w and
Σr

v representing process and measurement noise covariance
matrices, respectively. Such amodel is common in numerous
problems in robotics, see e.g. Thrun et al. (2005).

We consider now a group of R collaborating robots, and
denote by Θk the corresponding joint state

Θk
.= Xk ∪ Lk , Xk

.= {
Xr
k

}R
r=1 (4)

comprising the past and current poses Xk of all robots, and
where Lk represents the perceived environment by the entire
group. Assuming a common reference frame between the
robots is established, Lk includes all the 3D points in Lr

k for
each r , expressed in that reference frame.
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The joint pdf over Θk , the belief at planning time tk , can
now be written as

b (Θk)
.= P(Θk |Z0:k, u0:k−1)

∝
R∏

r=1

{

P(xr0)
k∏

i=1

[
P(xri |xri−1, u

r
i−1)P(Zr

i |Θro
i )

]
}

, (5)

where u0:k−1 represents the controls of all robots and is
defined as u0:k−1

.= {
ur0:k−1

}R
r=1

. Similar to the single-
robot case, the above decomposition is obtained by assuming
the measurements are not correlated, i.e. vri |� vr ′

j for any
r 	= r ′ ∈ [1, R] and i, j ∈ [0, k] (or i 	= j ∈ [0, k] in
case r = r ′).

The joint belief at a future time tk+l can now be similarly
defined as

b (Θk+l)
.= P(Θk+l |Z0:k+l , u0:k+l−1), (6)

where uk:k+l−1 are future actions for a planning horizon of l
steps and Zk+1:k+l are the corresponding observations to be
obtained. We will discuss in detail how such a belief can be
formulated in the sequel (Sects. 3.1 and 3.2).

We can now define a general multi-robot objective func-
tion

J (uk:k+L−1)
.= E

[
L∑

l=0

cl (b (Θk+l) , uk+l) + cL (b (Θk+L ))

]

,

(7)

that involves L future steps for all robots, and where cl is
the immediate cost function for the lth step. The expecta-
tion operator accounts for all the possible future observations
Zk+1:k+l . While for notational convenience the same num-
ber L of future steps is assumed for all robots in Eq. (7), this
assumption can be easily relaxed.

Our objective is to find the optimal controls u�
k:k+L−1 for

all R robots:

u�
k:k+L−1 = arg min

uk:k+L−1

J (uk:k+L−1) . (8)

3 Approach

In this work we show how to incorporate into belief space
planning multi-robot collaboration aspects such that estima-
tion accuracy is significantly improved while operating in
unknownenvironments.Our approach extends the state of the
art by incorporating into the belief (6)multi-robot constraints
induced by multiple robots observing, possibly at different
future time instances, environments that are unknown at plan-
ning time. In lack of sources of absolute information (such

as reliable GPS, beacons, and known 3D points), these con-
straints are the key for collaboratively improving estimation
accuracy.

One can then identify best robot actions or motion
plans, according to Eq. (8), among those generated by
existing motion planning approaches (e.g. sampling based
approaches), or resort to direct optimization techniques to
obtain locally optimal solutions in a timely manner. In this
work, we focus on the former case, and consider we are given
candidate paths for different robots (generated, e.g. by PRM
or RRT). A schematic illustration of the proposed approach
is shown in Fig. 1.

We start with a recursive formulation of the multi-robot
belief (Sect. 3.1) and then discuss in Sect. 3.2 our approach to
incorporate into the multi-robot belief future constraints that
correspond to mutual observations of unknown scenes. Eval-
uating the objective function (7) involves simulating belief
evolution along candidate robots paths.

3.1 Recursive formulation of a multi-robot belief

We begin with a recursive formulation of the multi-robot
belief (6), considering future controls u0:k+l−1 for all robots
to be given. These are determined from candidate robot paths
that are being evaluated, or alternatively in the case of direct
trajectory optimization approaches, the controls are deter-
mined from either nominal or perturbed robot paths (see,
e.g. Indelman et al. 2015a for further details).

Given future controls for all robots, the multi-robot belief
b (Θk+l) at the lth future step can be written recursively as
follows (see also Eq. (2)):

b (Θk+l)
.= P(Θk+l |Z0:k+l , u0:k+l−1)

= ηb (Θk+l−1)

R∏

r=1

P(xrk+l |xrk+l−1, u
r
k+l−1)P(Zr

k+l |Θro
k+l),

(9)

where η is a normalization constant, and
P(xrk+l |xrk+l−1, u

r
k+l−1) and P(Zr

k+l |Θro
k+l) are respectively

the motion model and measurement likelihood terms.
We now focus on the measurement likelihood term

P(Zr
k+l |Θro

k+l), noting that it appears recursively in Eq. (9),
for each look ahead step. As earlier, this term represents sen-
sor observations of the environment (represented e.g. by 3D
points), see Eq. (2). However, now, these are future obser-
vations of the environment to be made according to robot
r ’s planned motion. It therefore makes sense to distinguish
between the following two cases: (a) observation of 3Dpoints
from Lk ⊂ Θk representing environments already mapped
by planning time tk , and (b) observation of new areas that
were not previously explored by any of the robots.
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The former case allows to plan single- and multi-robot
loop closures (e.g. as in Indelman et al. 2015a), i.e. to quan-
tify the expected information gain due to re-observation of
previously mapped areas by any of the robots.

We focus on the latter case, which has not been inves-
tigated, to the best of our knowledge, in the context of
collaborative active state estimation and uncertainty reduc-
tion. Since environments that are unknown at planning time
tk are considered, the key question is how to quantify the
corresponding measurement likelihood term.

3.2 Incorporating future multi-robot constraints

Despite the fact that the environments (or objects) to be
observed are unknown at planning time, it is still possible
to reason in terms of mutual observations of these unknown
environments to be made by different robots, possibly at
different future time instances. We can then formulate con-
straints relating appropriate robot states while marginalizing
out the corresponding random variables representing the
unknown environments.

More specifically, let us consider robots r and r ′ mutu-
ally observing at future times tk+l and tk+ j , respectively,
an unknown environment represented, e.g., by 3D points
Lr,r ′
k+l,k+ j , with 1 ≤ j ≤ l. The joint pdf involving the corre-

sponding states and these 3D points is

P(xrk+l , x
r ′
k+ j , L

r,r ′
k+l,k+ j |Zr

k+l , Z
r ′
k+ j ). (10)

Wecan nowmarginalize out the unknown3Dpoints Lr,r ′
k+l,k+ j

to get

P(xrk+l , x
r ′
k+ j |Zr

k+l , Z
r ′
k+ j )

=
∫

P(xrk+l , x
r ′
k+ j , L

r,r ′
k+l,k+ j |Zr

k+l , Z
r ′
k+ j )dL

r,r ′
k+l,k+ j ,

(11)

which corresponds to a multi-robot constraint involving dif-
ferent time instances.

In the passive problem setting, i.e. controls and mea-
surements are given, this constraint is typically a nonlinear
function that involves the robot poses, say xri and xr

′
j , and

the measured constraint ζ
r,r ′
i, j which is obtained by match-

ing the measurements zri and zr
′
j . Typical examples include

matching laser scans or images using standard techniques
(e.g. ICP, vision-based motion estimation). The correspond-
ing measurement likelihood term can thus be written as

P(ζ
r,r ′
i, j |xri , xr

′
j ) ∝ exp

(
−1

2
‖ζ r,r ′

i, j − g
(
xri , x

r ′
j

)
‖2
ΣMR

v

)

(12)

whereΣMR
v is the corresponding measurement noise covari-

ance matrix, and g is an appropriate measurement function
(the specific function used in our implementation is provided
in Sect. 4.1). For example, this function could represent a
nonlinear relative pose constraint.

We note that in SLAM literature, Eq. (12) is commonly
termed a factor, and the product of all existing probabilistic
terms (or factors), e.g. such as in Eq. (2), can be represented
by a graphical model, a factor graph, which admits compu-
tationally efficient sparsity-aware inference (Dellaert 2012;
Kaess et al. 2012).

Revisiting Eq. (11), while in our case the future obser-
vations are not given, the reasoning is very similar: we can
denote by ζ

r,r ′
k+l,k+ j the measured constraint that would be

obtained by matching zrk+l and zr
′
k+ j if these were known,

and considering, as before, the match is successful (i.e. not
outlier), it is possible to quantify the measurement likelihood
(11) as

P(ζ
r,r ′
k+l,k+ j |xrk+l , x

r ′
k+ j )

∝ exp

(
−1

2
‖ζ r,r ′

k+l,k+ j − g
(
xrk+l , x

r ′
k+ j

)
‖2
ΣMR

v

)
(13)

Note the above assumes robots r and r ′ will observe the
same unknown scene from future states xrk+l and xr

′
k+ j . How

to determine if two future measurements (e.g. images, laser
scans), to be captured from robot poses xrk+l and x

r ′
k+ j , will be

overlapping, i.e. represent a mutually observed a scene? The
answer to this question is scenario specific. For example,
in an aerial scenario with robots equipped with downward
looking cameras, it is possible to assess if the images are
overlapping given robot poses and a rough estimate of height
above ground. Ground scenarios allow similar reasoning,
however here it is more likely that the same (unknown) scene
is observed from multiple views (e.g. autonomous driving
with a forward looking camera), and moreover, obstacles,
that are unknown at planning time, may prevent two adja-
cent views to observe a mutual scene in practice.

In this paper we assume one is able to predict if two future
poses will mutually observe a scene. Specifically, in Sect.
4 we consider aerial robots with downward facing cameras
and take a simplified approach, considering two future poses
xrk+l and xr

′
k+ j to overlap if they are “sufficiently” nearby,

quantified by a relative distance below a threshold d (in
our implementation we use d = 300m). Naturally, more
advanced approaches can be considered (e.g. account also
for viewpoint variation) and be encapsulated by an indica-
tor function as in Levine et al. (2013), Regev and Indelman
(2016) - we leave the investigation of these aspects to future
research.

Given candidate robot paths it is possible to determine
using the abovemethodwhich future views (poses) will over-
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lap and formulate the corresponding multi-robot constraints
(13). In particular, multi-robot constraints between robot r at
time tk+l and other robots r ′ at time tk+ j with 0 ≤ j ≤ l can
be enumerated as

∏

j

P(ζ
r,r ′
k+l,k+ j |xrk+l , x

r ′
k+ j ). (14)

A similar reasoning we can be also applied considering
future viewpoints of any single robot r ∈ [1, R], given a can-
didate path: for viewpoints xrk+l that pass through a currently
unknown environment (i.e. previously unobserved areas), it
is possible to write the following constraints for any suffi-
ciently overlapping two views

∏

s

P(ζ rk+l,k+l−s |xrk+l , x
r
k+l−s), (15)

with the same criteria for determining if two views xrk+l
and xrk+l−s are sufficiently nearby as in the multi-robot case
(e.g. in the current implementation, relative distance below
a threshold d = 300m).

We can now write the measurement likelihood term
P(Zr

k+l |Θro
k+l) from Eq. (9) as:

P(Zrk+l |Θro
k+l )

=
∏

l j∈Θro
k+l

P(zrk+l, j |xrk+l , l j ) ·
∏

s
P(ζ rk+l,k+l−s |xrk+l , x

r
k+l−s) ·

·
∏

j

P(ζ
r,r ′
k+l,k+ j |xrk+l , x

r ′
k+ j ). (16)

Before proceeding further, recall the notations used in the
above equation: zrk+l, j refers to a raw measurement made by
robot r from viewpoint xrk+l of landmark l j , while ζ rk+l,k+l−s
refers to a relative pose constraint calculated from raw mea-
surements Zr

k+l and Zr
k+l−s (ζ

r,r ′
k+l,k+ j is defined similarly);

Zr
i denotes all the raw observations obtained by robot r at

time instant i .
The first product represents observations of previously

mapped 3D points l j ∈ Lk , with Θro
k+l including those 3D

points that are actually visible from xrk+l . Determining the lat-
ter requires solving data association; while this task can by
itself be challenging, especially in perceptually aliased envi-
ronments, here we assume data association to be externally
solved and perfect, as typically done in belief space plan-
ning literature. We refer the interested reader to our recent
research (Pathak et al. 2016b, a) that relaxes this assumption
and incorporates reasoning regarding data association within
belief space planning.

The second and the third products in Eq. (16) correspond,
respectively, to constraints stemming from mutually observ-
ing unknown scenes from different viewpoints to be taken

either by a single or multiple robots. See schematic illustra-
tion in Fig. 1, where these future constraints are shown in
blue.

Substituting Eq. (16) into Eq. (9) yields the final expres-
sion for b (Θk+l):

b (Θk+l) = ηb (Θk+l−1)

R∏

r=1

⎡

⎣P(xrk+l |xrk+l−1, u
r
k+l−1)

∏

l j∈Θro
k+l

P(zrk+l, j |xrk+l , l j )

∏

s

P(ζ rk+l,k+l−s |xrk+l , x
r
k+l−s)

·
∏

j

P(ζ
r,r ′
k+l,k+ j |xrk+l , x

r ′
k+ j )

⎤

⎦ . (17)

Several remarks are in order at this point. First, observe
that direct multi-robot constraints, where a robot measures
its pose relative to another robot, are naturally supported
in the above formulation by considering the same (future)
time index, i.e. P(ζ

r,r ′
k+l,k+l |xrk+l , x

r ′
k+l). Of course, being able

to formulate constraints involving also different future time
instances, as in Eq. (17), provides enhanced flexibility since
planning rendezvous between robots is no longer required.

Second, observe the constraint formulations in Eqs. (14)
and (15) is an approximation of the underlying joint pdf of
multiple views X making observations Z of an unknown
scene L , since it only considers pairwise potentials. More
concretely, marginalizing L out,

P(X |Z) =
∫

P(X, L|Z)dL , (18)

introduces mutual information between all views in X ,
i.e. any two views in X become correlated (see related aspects
also in structureless bundle adjustment, e.g. Indelman et al.
2015b; Indelman and Dellaert 2015). Thus, a more accurate
formulation than (14) would consider all robot poses observ-
ing a mutual scene together. We note, however, that using a
pairwise potentials formulation is fairly standard in PoseS-
LAM literature (e.g. Eustice et al. 2006; Kim and Eustice
2014).

Finally, one could also incorporate reasoning regarding
(robust) data association, i.e. whether a constraint ζ

r,r ′
k+l,k+ j

stemming from matching raw measurements (images, laser
scans) Zr

k+l and Zr ′
k+ j is expected to be an inlier, as for exam-

ple done in Indelman et al. (2014), Indelman et al. (2016) for
the passive case, and in Pathak et al. (2016b), Pathak et al.
(2016a) for the active case.
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3.3 Inference over multi-robot belief given controls

Having described in detail the formulation of a multi-robot
belief b (Θk+l−1) at each future time tk+l , this section focuses
on simulating belief evolution over time given robot controls
or paths. As discussed in Sect. 3, this calculation is required
both for samplingbasedmotionplanning anddirect trajectory
optimization approaches.

Thus, we are interested in evaluating the belief b (Θk+l)

from Eq. (17). Considering Gaussian prior and noise distri-
butions, and given data association, as assumed herein, this
belief is the Gaussian

b (Θk+l) ≡ P(Θk+l |Z0:k+l , u0:k+l−1) = N (
Θ�

k+l ,Σk+l
)
,

(19)

with appropriate mean Θ�
k+l ≡ Θ̂k+l|k+l and covariance

Σk+l = Λ−1
k+l , where Λk+l ≡ Λk+l|k+l is the correspond-

ing information matrix.
This process involves maximum a posteriori (MAP) infer-

ence

Θ�
k+l = arg max

Θk+l

b (Θk+l) = arg min
Θk+l

[− log b (Θk+l)
]
,

(20)

which also determines the information matrix Λk+l .
To perform this inference, recall the recursive formulation

(9) and denote the MAP inference of the belief at a previous
time by b (Θk+l−1) = N

(
Θ�

k+l−1, Ik+l−1
)
. The belief at

time tk+l can therefore be written as

− log b (Θk+l) = ∥∥Θk+l−1 − Θ�
k+l−1

∥∥2
Σk+l−1

+
R∑

r=1

[∥∥xrk+l − f (xrk+l−1, u
r
k+l−1)

∥∥2
ΣQ

− logP(Zr
k+l |Θro

k+l)
]

(21)

We now focus on the term − logP(Zr
k+l |Θro

k+l). Recalling
the discussion from Sect. 3.2 and Eq. (16), this term can be
written as

− log p
(
Zr
k+l |Θro

k+l

) =
∑

l j∈Θro
k+l

∥∥∥zrk+l, j − h(xrk+l , l j )
∥∥∥
2

Σv

+
∑

s

∥∥ζ rk+l,k+l−s − g(xrk+l , x
r
k+l−s)

∥∥2
Σv

+
∑

j

∥∥∥ζ
r,r ′
k+l,k+ j − g(xrk+l , x

r ′
k+ j )

∥∥∥
2

ΣMR
v

, (22)

where the motion and measurement models f and h are
defined in Sect. 2, and the nonlinear function g was intro-

duced in Eqs. (12) and (13). We note that while here we
consider the measurement noise covariance ΣMR

v to be
constant, one could go further and model also accuracy dete-
rioration, e.g. as the relative distance between robot poses
increases.

We now proceed with the MAP inference (20), which, if
the future observations Zr

k+l were known, could be solved
using standard iterative non-linear optimization techniques
(e.g. Gauss–Newton and Levenberg–Marquardt): in each
iteration the system is linearized, the delta vector ΔΘk+l

is recovered and used to update the linearization point, and
the process is repeated until convergence.

Let us first describe in more detail this fairly standard
approach, considering for amoment the futuremeasurements
Zr
k+l are known. The linearization point Θ̄k+l is discussed

first. Recalling that we are to evaluate belief evolution given
robot paths, these paths can be considered as the lineariza-
tion point for robot poses. On the other hand, in the case of
direct trajectory optimization approaches, the nominal con-
trols over the planning horizon can be used to generate the
corresponding nominal trajectories according to (similar to
the single robot case, see, e.g. Indelman et al. 2015a)

x̄rk+l =
{
f (x̄rk+l−1, u

r
k+l−1), l > 1

f (x̂rk , u
r
k), l = 1

(23)

The linearizaiton point for the landmarks Lk ⊂ Θk+l (see
Sect. 2) is taken as their most recent MAP estimate. We first
linearize Eq. (21)

− log b (Θk+l) = ‖Bk+lΔΘk+l‖2Σk+l−1

+
R∑

r=1

[∥∥Fr
k+lΔΘk+l − brk+l

∥∥2
ΣQ

− logP(Zr
k+l |Θro

k+l)
]

(24)

and then linearize the term − log p
(
Zr
k+l |Θro

k+l

)
from

Eq. (22):

− log p
(
Zr
k+l |Θro

k+l

) =
∑

l j∈Θro
k+l

∥∥∥Hr
k+l, jΔΘk+l − brk+l, j

∥∥∥
2

Σv

+
∑

s

∥∥Gr
k+l,k+l−sΔΘk+l − brk+l,k+l−s)

∥∥2
Σv

+
∑

j

∥∥∥Gr,r ′
k+l,k+ jΔΘk+l − br,r

′
k+l,k+ j )

∥∥∥
2

ΣMR
v

, (25)

where the matrices F, H and G and the vectors b are the
appropriate Jacobians and right-hand-side (rhs) vectors. The
binary matrix Bk+l in Eq. (24) is conveniently defined such
that Bk+lΔΘk+l = ΔΘk+l−1.

Using the relation Σ−1 ≡ Σ− T
2 Σ− 1

2 to switch from

‖a‖2Σ to ‖Σ− 1
2 a‖2 and stacking all the Jacobians and rhs

vectors into Ak+l and b̆k+l , respectively, we get
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ΔΘ�
k+l = arg min

ΔΘk+l

∥∥∥Ak+lΔΘk+l − b̆k+l

∥∥∥
2
. (26)

The a posteriori information matrixΛk+l of the joint state
vector Θk+l can thus be calculated as

Λk+l = AT
k+lAk+l . (27)

This constitutes the first iteration of the nonlinear opti-
mization. Recalling again that the future observations Zr

k+l
are unknown, it is not difficult to show (Indelman et al. 2015a
that, while the a posteriori information matrix Ik+l is not a
function of these observations, the equivalent rhs vector b̆k+l

from Eq. (26) does depend on Zr
k+l . This presents difficulties

in carrying out additional iterations as the linearization point
itself becomes a function of the unknown random variables
Zr
k+l .
As common in related works (e.g. Platt et al. 2010; Van

DenBerg et al. 2012; Patil et al. 2014; Indelman et al. 2015a),
we assume a single iteration sufficiently captures the impact
of a candidate action(s). Alternatively, to better predict uncer-
tainty evolution, one could resort to using the unscented
transformation, as in He et al. (2008), or to particle filter-
ing techniques. Furthermore, for simplicity in this paper we
also make the maximum-likelihood measurement assump-
tion, according to which a future measurement z is assumed
equal to the predicted measurement using the most recent
state estimate. As a result, it can be shown that the rhs vec-
tor b̆k+l becomes zero and thus Θ�

k+l = Θ̄k+l . We note one
could avoid making this assumption altogether at the cost of
more complicated expressions, see, e.g. Van Den Berg et al.
(2012), Indelman et al. (2015a).

To summarize, the output of the described inference pro-
cedure is a Gaussian that models the multi-robot belief as in
Eq. (19):

b (Θk+l) = N (
Θ�

k+l ,Λk+l
)
. (28)

3.4 Cooperative belief space planning

Solving optimally1 the cooperative belief space planning
problem involves considering all the combinations between
candidate paths of different robots. Specifically, given can-
didate paths for robots in the group, one can identify the
best candidates by evaluating the objective function J from
Eq. (7) for different path combinations. Such a process
involves simulating belief evolution along the candidate
paths of different robots in the group, as discussed in
Sect. 3.3, while accounting for multi-robot collaboration in

1 Optimality here refers to choosing the best actions from the given set
of candidate paths.

terms of mutual observations of unknown environments (as
discussed in Sect. 3.2).

The focus of this paper is primarily given to incorpo-
rating within the belief multi-robot factors that represent
mutual observations of environments unknown at planning
time (see Sect. 3.2), and evaluating the improvement in esti-
mation accuracy as a result of planned collaboration between
robots. Thus, while the computational complexity of the
above process is exponential with the number of robots, we
leave the investigation of the proposed concept within other
planning alternatives (e.g. Levine et al. 2013; Amato et al.
2014; Atanasov et al. 2015) to future research. In our recent
research (Regev and Indelman 2016) we made a first step in
this direction. Additionally, although also outside the scope
of this paper, one could resort to direct trajectory optimization
approaches (e.g. Indelman et al. 2015a; Patil et al. 2014; Van
Den Berg et al. 2012; Indelman 2015a) to calculate locally
optimal robot paths given nominal paths.

3.5 Unknown environment with obstacles

While previously the environment was assumed to be
unknown and obstacle-free, in this section we show applica-
bility of our approach also to the case when the environment
includes obstacles. There are two cases of interest: the obsta-
cles can be either a priori known or unknown.

In the first case, the known obstacles can be efficiently
avoided by discarding appropriate candidate paths, as com-
monly done in sampling based approaches. Moreover, one
could envision using the known obstacles as landmarks to
localize the robots, if it can be assumed that the obstacles are
different in appearance such that one can reliably determine
which one is being observed (i.e. data association is solved).

The more challenging case, however, is when the envi-
ronment includes obstacles which are unknown and should
therefore be detected on the fly. In this section we consider
a simple modification of our approach to support such a sce-
nario. We assume existence of a black box algorithm capable
of obstacle detection. For simplicity, we consider the entire
obstacle to be detected once it is within the field of view of
the sensor. We leave further investigation of the proposed
approach while relaxing this assumption to future research.

Once an obstacle is detected, it triggers re-calculation of
robot candidate paths, performing collision checking with
respect to the obstacle(s) detected thus far and discarding
those paths that collide with any of the obstacles. The objec-
tive function is then evaluated for the valid candidate paths
and the best path for each robot is selected. In essence,
this framework is closely related to model predictive control
(MPC) based belief space planning, where only a portion of
the optimal actions is executed, followed by re-planning. In
the current case, re-planning is simply triggered by detection
of a new obstacle.
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Uncertainty evolution could also be considered in the
context of obstacle collision avoidance, as commonly done
within chance-constrained motion planning approaches (see,
e.g. Bry and Roy 2011). However, these approaches typically
consider known obstacles, which makes it essential to quan-
tify chances of collision given the evolving uncertainty. In
contrast, we consider a priori unknown obstacles that are
detected on-line. In such a setting, the absolute uncertainty
(with respect to some global frame) has less of a mean-
ing in the context of collision avoidance and only relative
uncertainty, with respect to the uncertainty from the time
the obstacle has been detect could matter. For simplicity,
we assume herein this relative uncertainty is small and do
not consider it while determining valid robot paths. Further
investigation of related aspects is left to future research.

4 Simulation results

In this section we demonstrate the proposed approach con-
sidering the problem of multi-robot autonomous navigation
while operating in unknown GPS-deprived environments.
We consider an aerial scenario, where each robot has its own
goal and the objective is to reach these goals in minimum
time but also with highest accuracy. This can be quantified
by the follwing objective function:

J =
∑R

r=1

[

κrpathpathlen
r
goal + κruncert

√

tr
(
Σr

goal

)]

,

(29)

where Σr
goal and pathlenrgoal represent, respectively, the

covariance upon reaching the goal and path length for robot r .
A robot decides it reached a goal if its estimated location and
the goal location coincide or sufficiently small. This means
we do not assume availability of known characteristics of
the goal (such as visual appearance) that could be used to
reset the estimation error; estimation quality is thus of prime
importance in such a setting. The design parameters κrpath
and κruncert weight the importance of each term. In our cur-
rent implementation, we use κrpath = 0.1 and κruncert = 10.

As the environment is unknown and there are no bea-
cons, radio sources or any other means to reset estimation
error, the robots can only rely on onboard sensing capabili-
ties and collaboration with each other to reduce drift as much
as possible. We assume each robot is equipped with camera
and range sensors and can observe natural landmarks in the
environment, which are used to estimate robot pose within a
standard SLAM framework. However, since the environment
is unknown ahead of time, these landmarks are discovered
on the fly while the planning process has access only to envi-
ronments observed by planning time (Sect. 3). Initial relative

poses between the robots are assumed to be known, such that
the robots have a common reference frame—approaches that
relax this assumption do exist (e.g. Indelman et al. 2014).

In this basic study we use a state of the art sampling
based motion planning approach, a probabilistic roadmap
(PRM) Kavraki et al. (1996), to discretize the environment
and generate candidate paths for different robots over the
generated roadmap. We use uniform sampling within PRM,
which corresponds to assuming uninformative prior regard-
ing the landmark distributions in unknown environments.
The sampling process could be accordingly biased in case
another distribution is available, or learned on-line. The
approach should be also applicable to other alternatives, such
as the recently introduced RRT* and RRG. As discussed in
Sect. 3.4, in this paper we consider a centralized framework
and exhaustively evaluate the objective function for all can-
didate combinations between different robots.

The next section provides some implementation details
and then Sect. 4.2 examines the performance of the pro-
posed approach and compare it to an alternative approach that
does not incorporate multi-robot factors within belief space
planning. Section 4.2 assumes an obstacle-free unknown
environment and considers only a few candidate paths to
demonstrate key aspects. Section 4.3 then reports the results
of a statistical study, where each run involves numerous can-
didate paths, still assuming an obstacle-free environment.
Results for two scenarios are presented. Finally, in Sect. 4.4
we consider unknownobstacle-populated environments, triv-
ially adjust the method to an incremental setting and re-plan
each time an obstacle is detected (see Sect. 3.5).

4.1 Implementation details

The developed approach was implemented in MATLAB
using the GTSAM toolbox Dellaert (2012). In this imple-
mentation, the mentioned multi-robot constraints, possibly
involving different future time instances, are formulated
between any two poses with relative distance closer than d
meters.Weused = 300m for this threshold parameter (in the
considered scenario the aerial robots height is about 500 m).
More advanced methods could be implemented of course,
considering also viewpoint variation, uncertainty associated
with involved estimation of viewpoints and incorporating sta-
tistical knowledge. Investigating this direction is left to future
research.

In all cases, a downward facing camera and a range sensor
were simulated, with the nominal (ideal) measurements cor-
rupted by a zero-mean white noise drawn from a Gaussian
with standard deviation (std) of σv = 0.5 pixels (for each
axis) and σv = 1 meters for image and range observations,
respectively. The camera calibration matrix was
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K =
⎡

⎣
2080 0 1200
0 2570 900
0 0 1

⎤

⎦ (30)

The motion model (3) was represented by odometry cor-
rupted with Gaussian noise with std of 0.5◦ in rotation and
1 m in translation, in each axis. All robots shared the same
motion and observation models.

The correspondingmeasurement model functions h (from
Eq. (3)) to the camera and range sensors are, respectively

hcam(xi , l j )
.= π(xi , l j ) = K [xi .R, xi .t]

(
l j
1

)
, (31)

with π(.) denoting a projection operator Hartley and Zisser-
man (2004), and

hrange(xi , l j )
.= ‖xi .t − l j‖. (32)

Here, xi .R and xi .t denote the rotation and translation of pose
xi .

The multi-robot future constraints ζ
r,r ′
i, j (see Eq. (13))

represent, in our current implementation, relative pose mea-
surements; thus the measurement function g is defined as

g(xri , x
r ′
j )

.= xri � xr
′
j . (33)

Single robot constraints are similarly defined. Here, we fol-
low Lu and Milios (1997) and use the notation � in a � b to
express b locally in the frame of a for any two poses a and
b.

Finally, the implemented criteria for considering if two
robot views xri and xr

′
j overlap (see Eqs. 14–15) is given by

‖xi .t − x j .t‖ < d (34)

with d = 300 m.

4.2 Obstacle-free unknown environment

Figure 3 shows some of these candidate paths considering
a scenario of two robots starting operating from different
locations. In each case we also show the belief evolution (in
terms of uncertainty covariance) along each path, calculated
as described in Sect. 3.3, and the multi-robot constraints that
have been incorporated into the appropriate beliefs (denoted
by cyan color).

As seen in Fig. 3, only in two of the considered cases
(Fig. 3b, c), robot paths were sufficiently close to facili-
tate multi-robot constraints within belief space planning. In
practice, however, only in the latter case numerous informa-
tive constraints have been incorporated. Figure 4 compares
between the two terms in the considered objective function

Fig. 2 3D view of the scenario from Fig. 5b: Robots operate in
an unknown environment and follow paths generated by PRM that
have been identified by the proposed approach to provide the best
estimation accuracy upon reaching the goals. One can observe the
mutually-observed 3D points that induce indirect multi-robot con-
straints involving different time instances; these constraints have been
accounted for in the planning phase. Robot initial positions are denoted
by asterisks marks (at the top of the figure); uncertainty covariances of
robot poses are represented by ellipsoids

(29), path length and uncertainty upon reaching the goal, for
the candidate paths shown in Fig. 3.

The lowest predicted uncertainty covariances are obtained
for candidate paths with identified multi-robot constraints as
shown in Fig. 4b. In particular, the predicted uncertainty is
reduced by about 40% from 35 m to below 20 m for the first
(red) robot. There is a price to pay, however, in terms of path
lengths (or time of arrival): as shown in Fig. 4a, to attain these
levels of uncertainty, the path of the second (green) robot is
not the shortest among the considered candidate paths. The
actual decision regarding the best path for each robot depends
on the specific values of the weights κpath and κuncert in the
objective function J from Eq. (29), which are to be defined
by the user.

Next, we consider actual performance while navigating to
pre-defined goals in unknown environments using as controls
the identified robot paths in the planning phase described
above. The results are shown in Fig. 5 for two alterna-
tives from Fig. 3a, c. Only the latter included multi-robot
constraints within planning. One can observe that also in
practice, using controls from Configuration C drives the
robots sufficiently close to make mutual observations of 3D
points (that were unknown at planning time) and as a result
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(c) Configuration C (d) Configuration D

Fig. 3 Different candidate paths for red and green robots calculated
over a PRM. Robot initial positions are denoted by asterisks marks;
each robot has to navigate to a different goal, while operating in an
unknown environment. The figures show the covariance evolution along
each path. Multi-robot constraints have been incorporated (denoted
by cyan color) whenever robot poses are sufficiently close, which

happens mainly in c; as a result, uncertainty covariances are dras-
tically reduced. Note these constraints involve different future time
instances. Covariances were artificially inflated by a constant factor
for visualization—actual values are shown in Fig. 4. a Configuration A.
b Configuration B. c Configuration C. d Configuration D. (Color figure
online)

Configuration number
A B C D

P
at

h 
le

ng
th

 [m
]

400

450

500

550

600

650

700

750

800
Robot 1
Robot 2

Configuration number
A B C D

S
qu

ar
e 

ro
ot

 p
os

. c
ov

. [
m

]

0

5

10

15

20

25

30

35

40

45

Robot 1
Robot 2

(a) Path length (b) Trace of square root final position covari-
ance

Fig. 4 Quantitative comparison between the four alternatives shown in Fig. 3: a path length; b covariance upon reaching the goals. Multi-robot
constraints lead to lowest predicted uncertainty represented by configuration C from Fig. 3c
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Fig. 5 Autonomous navigation to goals according to identified robot
paths in the planning phase. The environment, represented by a sparse
set of landmarks, is initially unknown and only gradually discovered.
Figures a, b show robot trajectories and landmark observations using
paths defined, respectively, by Configuration A and C (see Fig. 3). The

latter involves numerous mutual observations of landmarks, that induce
indirectly multi-robot constraints. A 3D view is also shown in Fig. 2. c,
dShows the corresponding estimation errors and developing covariance
over time, which, in overall, agree with the predicted belief evolution
from Fig. 4b.

significantly improve estimation accuracy for both robots
(see Figs. 5c, d, and 2 for a 3D view).

4.3 Obstacle-free unknown environment: statistical
study

In this section we present a statistical study comprising 50
runs, considering two scenarios in an obstacle-free unknown
environment: Scenario A and Scenario B. These sce-
narios only differ in the starting position and goal of each
robot, as shown in Fig. 6. The scenario in Fig. 6a is identi-
cal to the one considered in Sect. 4.2. Scenario B (Fig.
6b) represents opportunistic active collaborative estimation,
along the lines of Indelman (2015a).

Figure 6 also shows, for both scenarios, 25 candidate
paths for each robot. These paths are randomly generated
and thus change from one run to another. The process and
measurement noise in SLAM are randomly drawn from a
Gaussian distribution for each run as well, see Sect. 4.1.

First scenario

The results for Scenario A (Fig. 6a) are reported in
Figs. 7 and 8. These figures compare between the pro-
posed approach that incorporates multi-robot factors within
belief space planning to an equivalent approach that does
not do so. In particular, Fig. 7a shows for each run the
identified best paths by the belief space planning algorithm
considering the appropriate set of candidate paths (since
the latter change from one run to another). It can be seen
that the proposed approach tends to prioritize paths along
which multi-robot factors can be generated, since the lat-
ter contribute to accuracy at the cost of longer path. In
contrast, as seen in the second column of Fig. 7a, with-
out incorporating multi-robot factors within belief space
planning generally does not motivate collaborative estima-
tion between the robots—in such a setting, the best path
for each given run, are typically far away from each other
and thus there will be no mutual observations made by the
robots.
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Fig. 6 Two considered scenarios in statistical study. Note candidate
paths change from one run to another. Shown are candidate paths for
one of the runs

The weight parameters κuncertain and κpath (see Eq. (29)),
and in particular the ratio κuncertain/κpath can be consid-
ered as tuning parameters, with higher values of κuncertain
assigning greater importance to reducing uncertainty. The
latter would typically result in determined best paths of cor-
responding runs to be closer to each other such that more
multi-robot factors can be generated.

Figure 7b, c show the corresponding position estimation
errors and square root position covariances as a function of
time, as obtained from SLAM (i.e. inference) by executing
the best paths identified for each run. As expected, it can be
clearly seen that the errors in the first column are typically
lower then those in the second column.

The above insights are quantified in Fig. 8, which shows
statistics (in terms of box plots) upon reaching the goal.
In particular, Fig. 8a, b show statistics within the planning
algorithm: position covariance that corresponds to belief at
the goal for determined best paths and the corresponding
path lengths. The trade-off between accuracy and path length
can be clearly seen here—incorporating multi-robot factors
(denoted as MR in the figures) within belief space plan-
ning improves accuracy at the cost of somewhat longer path

length. Figure 8c reports statistics regarding estimation error
at the goal as obtained from SLAM; the beneficial impact
of the proposed approach can be seen here. For example,
the median estimation error for the first and second robot is
reduced from about 30 and 25 to about 20 and 12 m respec-
tively.

Table 1 provides running time statistics for the performed
50 runs in this statistical study. The reported running time
refers to a single planning session which is performed at
the beginning of each run, and the entire multi-robot SLAM
session along the chosen paths (see Fig. 7a). Similar SLAM
and per-planning session timing results are also obtained in
the obstacle-populated unknown environments considered in
Sect. 4.4, which involve multiple planning sessions.

Second scenario

Similar aspects can be also observed in Scenario B (Fig.
6b). The results are shown in Figs. 9 and 10. Here, however,
the beneficial impact of incorporating multi-robot factors
within belief space planning is even more significant. This
canbe clearly seenby comparing thefirst and second columns
of Fig. 9c; for example, estimation errors of the second robot
(green) drop to around 10 m in the proposed approach but
are much higher in the alternative approach.

Figure 10 quantifies the above in terms of box plots depict-
ing position covariance, path length and estimation error
upon reaching the goals (see more detailed explanation in
Scenario A). In particular, the median estimation error
without using multi-robot factors is about 30 and 45 m for
the red and green robots; these are reduced to below 10 m by
the propose approach.

4.4 Unknown environment with obstacles

In this section we examine the proposed method consider-
ing an unknownobstacle-populated environment.We assume
a black-box object detector and consider for simplicity the
entire obstacle is detected once it is within the camera field of
view. Upon obstacle detection, there is a need to re-calculate
the best paths since those paths that were considered as opti-
mal before obstacle detection do not necessarily remain as
such once an obstacle is detected.

Clearly, there are numerous efficiency-related aspects one
could consider at this point. However, since in this work
we focus mainly on the impact of future multi-robot factors
on the estimation performance, a naïve approach is consid-
ered: in each re-planning sessionwe recalculate the candidate
paths for each robot, re-evaluate the objective function J
from (29) for all combinations between different robots, and
choose the best paths accordingly. In the results reported
herein, only two robots are considered, each generating 50
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(a) Determined best paths for different runs

(b) First robot (red)

(c) Second robot (green)

Fig. 7 Statistical study of 50 runs for Scenario A from Fig. 6a,
with (first column) and without (second column) incorporating multi-
robot factors within belief space planning: a Determined best paths by
the planning approach for each run from appropriate candidate paths

(each run has a different set of candidate paths); b–c Position estimation
error norm (solid) and position square root covariance norm (dashed)
of the first and second robot, as obtained from SLAM upon executing
the paths from a

candidate paths. Running time for each planning session is
typically similar to the results reported in Table 1.

Figure 13 shows a representative scenario where two
robots are assigned to navigate to pre-defined goals in an
unknown environment populated with landmarks and ran-
domly generated obstacles. In all figures in this section, we
will use the following color convention to ease results inter-
pretation: an obstacles is shown in gray if it is not yet detected

and in black after detection. Obviously, in the beginning all
obstacles are undetected and hence appear as gray.

The figure shows the candidate paths for each re-planning
session (first column), the identified best paths for each
robot with both multi-robot factors and factors to previ-
ouslymapped landmarks shown in cyan (second column), see
Eq. (17). Additionally, in the third column the figure shows
the estimated robot trajectories as obtained from SLAM. To
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Fig. 8 Statistical study of 50 runs for Scenario B from Fig. 6a,
with and without incorporating multi-robot (MR) factors within belief
space planning: a box plots of the square root position covariance, calcu-

lated within belief space planning, upon reaching the goal of the chosen
best paths; b box plots of the corresponding path lengths; c box plots
of SLAM estimation errors at the goal of each robot

reduce clutter, landmark estimations are not shown. One
can see that some of the candidate paths go through the
undetected obstacles (gray color), while once an obstacle
is detected the newly calculated paths avoid the obstacle.

As expected, overall, the planner typically chooses as best
paths those path combinations that admit multi-robot factors
(see, e.g., Fig. 11b). The corresponding belief uncertainty in
such combinations is smaller compared to those path candi-
dates without multi-robot factors. Similarly to the discussion
in Sect. 4.2, this often comes with a price of larger path
lengths, since the robots typically need to deviate from the
individual shortest paths to facilitate the mentioned multi-
robot factors. The actual decision regarding the best path for
each robot depends on the specific values of theweights κpath

and κuncert .

To evaluate the impact of incorporating multi-robot fac-
tors within belief space planning, as proposed herein, we also
consider performance without using such a multi-robot col-
laboration within belief space planning. Figure 12 shows the
corresponding results in this case. As seen, the determined
best paths are different—since there is no incentive to move
the robots into positions from which the same (unknown)

Table 1 Running time in a statistical study of 50 runs for Scenario
A.

Mean [sec] Min [sec] Max [sec]

BSP 78.5 73.1 89.4

SLAM 25.9 21.9 30.3

Multi-robot belief space planning (the proposed approach) is performed
once at the beginning. The presented SLAM running time refers to
performing multi-robot SLAM along chosen paths for each run

environment could be mutually observed, the chosen paths
typically correspond to shortest paths since the uncertainty
develops rapidly with path length. Although the same is also
true in the proposed approach, multi-robot factors constrain
the uncertainty development, often making longer paths with
multi-robot factors more attractive than shorter paths without
multi-robot factors. Thus, without incorporating multi-robot
factors the evolving uncertainty at the goal is significantly
higher—compare, for example, the results in the 3rd re-
planning session (Fig. 11h vs. Fig. 12h).

Figure 13 presents a quantitative comparison between the
two methods (with and without incorporating multi-robot
factors). In particular, Fig. 13a shows the uncertainty at the
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(a) Determined best paths for different runs

(b) First robot (red)

(c) Second robot (green)

Fig. 9 Statistical study of 50 runs for Scenario B from Fig. 6b,
with and without incorporating multi-robot factors within belief space
planning: a determined best paths by the planning approach for each
run from appropriate candidate paths (each run has a different set of

candidate paths); b, c Position estimation error norm (solid) and posi-
tion square root covariance norm (dashed) of the first and second robot,
as obtained from SLAM upon executing the paths from a

goal for the identified best paths for each robot in each
re-planning session. As mentioned above, one can clearly
see uncertainty is significantly reduced, often by a factor of
two, when using the proposed formulation with multi-robot
factors—for example, the uncertainty at the goal for r1 and
r2 in the final re-planning phase is about 25 and 20 m with-
out using multi-robot factors, and is reduced, respectively, to
only about 15 and 10 m.

Since the proposedmethod facilitates better paths in terms
of estimation quality, it is not surprise that the inference pro-
cess (SLAM) indeed performs better when using such paths
over those generated without incorporating multi-robot fac-
tors within belief space planning. This can be clearly seen
from Fig. 13b that provides the uncertainty covariance in
both cases for each robot. Thus, the covariance of r1 upon
reaching the goal is reduced from about 25 to 15 m, at the
cost of a longer path.
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Fig. 10 Statistical study of 50 runs for Scenario B from Fig. 6b,
with and without incorporating multi-robot (MR) factors within belief
space planning: a box plots of the square root position covariance, calcu-

lated within belief space planning, upon reaching the goal of the chosen
best paths; b box plots of the corresponding path lengths; c box plots
of SLAM estimation errors at the goal of each robot

As an additional “sanity” check, one can also see there
is a good agreement between the uncertainty predicted in
the planning phase and the actual evolving uncertainty, even
though the former does not incorporate actual landmark
observations from unmapped areas and instead abstracts
these using the mentioned multi-robot factors (see Eq. (17)).

5 Conclusions

We presented an approach for collaborative multi-robot
belief space planning while operating in unknown envi-
ronments. Our approach advances the state of the art in
belief space planning by reasoning about observations of
environments that are unknown at planning time. The key
idea is to incorporate within the belief constraints that
represent multi-robot observations of unknown mutual envi-
ronments. These constraints can involve different future time
instances, thereby providing enhanced flexibility to the group
as rendezvous are no longer necessary. The corresponding
formulation facilitates an active collaborative state estima-
tion framework. Given candidate robot actions or paths, it
allows to determine best paths according to a user-defined

objective function, while modeling future multi-robot inter-
action and its impact on the belief evolution. Candidate
robot paths can be generated by existing motion planning
algorithms, and most promising candidates could be further
refined into locally optimal solutions using direct trajectory
optimization approaches. The approach has been also triv-
ially adapted to support autonomous operation in unknown
obstacle-populated environments, where upon detection of
anobstacle, the proposed approach is triggered to re-calculate
the best paths since previously identified best paths not
necessarily remain optimal given the newly detected obsta-
cle. We examined the performance of our approach in
simulation, considering as application autonomous naviga-
tion to pre-defined goals within unknown obstacle-free and
obstacle-populated environments. Simulation results demon-
strate estimation performance is significantly improved as a
consequence of identifying more informative robot actions.
While scenario-dependent, these results show uncertainty
covariance could be reduced by more than 50%, while oper-
ating in GPS-deprived unknown environments.

There are a number of possible directions for future
research to improve the proposed approach. The current
formulation involves exhaustive evaluation of all candidate
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11 Performance with incorporating multi-robot factors within
belief space planning. Each row represents a different re-planning ses-
sion with detected and undetected obstacles shown in black and gray,
respectively. First column shows all candidate paths for both robots on
top of PRM, and the identified best paths. Second column shows belief
evolution for determined best paths, along with multi-robot factors and

factors to previously mapped landmarks (e.g. igure e). Third column
shows SLAM solution before the next re-planning phase that is trig-
gered by obstacle detection. Figure (l) shows the final SLAM solution
upon reaching both goals. To reduce clutter, mapped landmarks are not
explicitly shown. See quantitative evaluation in Fig. 13

123



Auton Robot
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Fig. 12 Performance without incorporating multi-robot factors within belief space planning. Refer to caption of Fig. 11 for an explanation
regarding the shown sub-figures. See quantitative evaluation in Fig. 13
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(a) Belief space planning performance (b) Inference (SLAM) performance

Fig. 13 Quantitative comparison of the proposed method with an
alternative that does not incorporate multi-robot collaboration aspects
within belief space planning, considering in both cases operation in
obstacle-populated unknown environments. See Figs. 11 and 12 for
further details. a Predicted covariance of the belief at the goalΣr

goal for
each robot r using determined best paths for each re-planning phase. b

Inference performance using paths determined by belief space planning
with and without incorporating multi-robot collaboration. It is evident
that considering multi-robot collaboration within belief space planning,
as proposed herein, significantly improves overall estimation perfor-
mance

paths for all robots, and as such scales poorly. Thus, while
the concept of reasoning about collaborative aspects also
within unknown environments is general, additional, pos-
sibly approximate, approaches will have to be considered for
improved scalability. We note such approaches addressing
related problems have been actively developed in the last few
years (e.g. Levine et al. 2013; Atanasov et al. 2015), includ-
ing our recent work (Regev and Indelman 2016). Another
interesting direction for future research is to consider decen-
tralized and distributed multi-robot frameworks, as well as
biasing the sampling according to on-line learned landmarks
distribution. Finally, evaluating the method in more realistic
simulations and in real-world experiments is clearly also an
important avenue for future research.
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