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Navigation

e Tracking position, velocity and orientation of an observer using
IMU, GPS, LBL (acoustic), wind speed, camera...

Mars Rover
[TPL]

Aircraft
[wikipedia]

Underwater
[MIT]

* How to solve? Depends on who you ask!
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Navigation Community: Filtering

e Established, well-tested solution in Aerospace etc.
e Estimate current state

e Objective:

Ty = argmax p(x¢|Z)
Tt

e Update:

[wikipedia]
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Robotics Community: Smoothing

e Full SLAM (Simultaneous Localization and Mapping)
e Estimate all states, current and past

e Objective:

Xy = arg maxp(X;|Z)

e Update:

p(Xe4112) = p(@i41, Xi|Z)

Map of Intel Labs
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Filtering vs. Smoothing

Filtering Smoothing
@ t=0 @
X——e t=1 ——0
X——0 t=2 <00
e Constant high frame rate * Allows loop closure

e Only current state is tracked * No constant time guarantee

Can we combine the advantages of both methods?
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Filtering and Smoothing

e Can we combine the advantages of both methods?

e Goals:
— Perform smoothing in a separate, asynchronous process
— Maintain real-time performance of the filtering process
e Minimize calculations of any required synchronization

— Produce the optimal Bayesian solution
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Related Work

e Combining filtering and loop closing [Eustice, Singh, and Leonard 2006]

— Uses an augmented state filter to allow loop closures
— Maintains real-time performance
— Produces only an approximate solution

e Parallel tracking and mapping [kiein and Murray 2007] [Newcombe et al. 2011]

— Performs Bundle Adjustment (BA) in a separate process
— Relocalizes after BA instead of fusing results
— Does not incorporate additional navigation sensors

o DuaI-Iayer estimator [Mourikis and Roumeliotis 2008]

— Combines an EKF with BA

— EKF must be rolled back to incorporate the BA update in a consistent
manner
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Filtering and Smoothing (Cont.)

e In this work:

— We perform smoothing and filtering in parallel
e High-rate measurements are processed by the filter
e Loop closures are added directly to the smoother
— Smoothing and filtering are considered two components of
a single optimization problem

e Ensures the optimal Bayesian estimate is obtained

— The problem is represented using a Bayes tree
e |ntuitive graphical model
e Exploits sparsity

e Allows incremental inference
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Bayes Tree

The maximum a posteriori (MAP) estimate is given by

X = argmax (p(X))

X p(xo, x
Applying the chain rule yields a factorization: 2 23)
— Hp(Xz‘Sz) 3357551‘332

(]
— where X;,5; C X p(zg|zs) @

Different factorizations exist, depending on the order in which variables are chosen
Given a particular factorization, a unique Bayes tree can be constructed

— Each node represents a conditional distribution
— Each node is conditioned only on its ancestors in the tree

— Solving for X involves applying the chain rule, starting from the root

p(w4]z3)
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Bayes Tree

e The maximum a posteriori (MAP) estimate is given by

A

X = argmax (p(X))

e Applying tt
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Bayes Tree — Gaussian Distribution

 Bayes tree corresponds to the square root information matrix Z = R' R

X X T5
X 1

R = . o p(xs, z1|72) p(z4|z3)

xX X 3

X o
a:6|:1:5
e XLy X1 X4 X3 X2

* Factorization\Elimination (i.e. calculation of R) corresponds to constructing the
Bayes tree

— Performed from bottom upwards
e Solving for X :
— Performed by back-substitution, from root of Bayes tree downwards
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Efficient Bayes Tree Updates [kaess et al RR 12]

e Key Insights
— Incorporating new measurements can be done efficiently
— Affects only variables involved in the measurement model and
their ancestors
e Only affects variables in the path to the top of the tree

e Branches remain unaffected
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Efficient Bayes Tree Updates [kaess et al RR 12]

e Key Insights
— Many variable orderings exist
— Ordering affects:

e Tree structure - different factorization of p (X Hp (X3[55)
* Number of variables in each node / Computational complexity

e Does not affect the solution
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Parallelizing Filtering and Smoothing

e Factorization based on suitable variable ordering:

p(X) :p(XR ‘ Xs)p(Xs)p(Xt | Xs)

p(Xs)

e Corresponding Bayes tree: Separator

p(Xr | Xs) p(X: | Xs)

e Allows concurrent updates
to filter and smoother!

Filter

Smoother
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Parallelizing Filtering and Smoothing

e Filter and smoother are kept periodically synchronized
— Information flows between the smoother and the filter via the separator

Smoother
i {%—15& Georgialnstiuie e .
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Parallelizing Filtering and Smoothing

e Loop closure measurements are added to the smoother
— Smoother processes new measurements in a background process

— Upon completion, the separator (root of the Bayes tree) is updated
— Updates from the root are propagated to the filter in a fast process

e |nvolves only a small number of variables

EIiminaticV

p(Xr | Xs) p(X¢ | Xs)

Back-substitution
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Parallelizing Filtering and Smoothing

* High-rate measurements are added to the filter
— Filter processes measurements in real time

e Separator (root) is updated as part of this process
— The separator accumulates updates
— When the smoother is available:

* Propagate these updates to the smoother

e Performed in a background process

Back—substituticy

p(Xr | Xs)

Separator

Elimination
p(Xy¢ | Xs)

How to move variables from
the filter to the smoother?

Smoother

. - .
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Moving Variables to the Smoother

* As time progresses, the filter maintains a sparse set of variables
e These variables form a chain of nodes on the filter side of the Bayes tree

e Whenever the smoother is available:

— The current separator (root) node is moved to the smoother
— A new separator is formed from the chain on the filter side
— This is achieved by choosing a new variable ordering for these two nodes

new Separator

current separator

future separator

Filter

Smoother Smoother

. i ) . - . .
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Evaluation: Simulation

e Simulated flight of an aerial vehicle
— Velocity: 40 m/s
— Constant height: 200 m above mean ground level

— Ground elevation: =50 m

e Synthetic measurements of different sensors
— IMU at 100 Hz

— Stereo camera at 0.5Hz

R Ground truth |
Inertial

1000
800
600 -

4004
2004

— Sparse loop closures found in camera data  °)

-200

Down [m]

e Produces relative pose measurements

1500

e 22 loop closure events identified

e Provided directly to the smoother

East [m] North [m]
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Evaluation: Positional Error

e Compared methods:
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Evaluation: Rotational Error

e Compared methods:
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Evaluation: Velocity Error

e Compared methods:
— Filter alone

— Concurrent Filter and S
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— Incremental Batch
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Timing: Filter Update

e Filter updates in constant time

e Confirmed by evaluation:
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Timing: Synchronization

e Synchronization only affects top of tree
— Performed after smoother is done

30

e Depends on size of root clique e

e Evaluation shows very fast 20

synchronization 151

10

0
0.4 0.6 0.8 1
Synchronization Time (ms)
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Future Work

e Relinearization

— Filter produces linear conditionals

— “Lifting” of linear constraints (Konolige, TRO 2008)
e Bound complexity of smoother

— Fixed-lag

— Sparsification (SLAM)
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Summary

e We combined filtering and smoothing
— Parallel formulation in Bayes tree

— Constant time filtering

— Loop closing capability

e Tomorrow:
“Factor Graph Based Incremental Smoothing in Inertial Navigation Systems”

V. Indelman, S. Williams, M. Kaess, F. Dellaert
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