

Concurrent Filtering and Smoothing

Michael Kaess¹, Stephen Williams², Vadim Indelman², Richard Roberts², John Leonard¹, Frank Dellaert²

- 1) CSAIL, Massachusetts Institute of Technology (MIT)
- 2) College of Computing, Georgia Institute of Technology

Navigation

• Tracking position, velocity and orientation of an observer using IMU, GPS, LBL (acoustic), wind speed, camera...

Aircraft [wikipedia]

Mars Rover

Underwater [MIT]

How to solve? Depends on who you ask!

Navigation Community: Filtering

- Established, well-tested solution in Aerospace etc.
- Estimate current state
- Objective:

$$\hat{x}_t = \arg\max_{x_t} p(x_t|Z)$$

Update:

$$p(x_{t+1}|Z) = \int_{x_t} p(x_{t+1}, x_t|Z)$$

[wikipedia]

Robotics Community: Smoothing

- Full SLAM (Simultaneous Localization and Mapping)
- Estimate all states, current and past
- Objective:

$$\hat{X}_t = \arg\max_{X_t} p(X_t|Z)$$

Update:

$$p(X_{t+1}|Z) = p(x_{t+1}, X_t|Z)$$

Map of Intel Labs

Filtering vs. Smoothing

Filtering

Smoothing

t=0

t=1

t=2

- Constant high frame rate
- Only current state is tracked
- Allows loop closure
 - No constant time guarantee

Can we combine the advantages of both methods?

Filtering and Smoothing

Can we combine the advantages of both methods?

Goals:

- Perform smoothing in a separate, asynchronous process
- Maintain real-time performance of the filtering process
 - Minimize calculations of any required synchronization
- Produce the optimal Bayesian solution

Related Work

- Combining filtering and loop closing [Eustice, Singh, and Leonard 2006]
 - Uses an augmented state filter to allow loop closures
 - Maintains real-time performance
 - Produces only an approximate solution
- Parallel tracking and mapping [Klein and Murray 2007] [Newcombe et al. 2011]
 - Performs Bundle Adjustment (BA) in a separate process
 - Relocalizes after BA instead of fusing results
 - Does not incorporate additional navigation sensors
- Dual-layer estimator [Mourikis and Roumeliotis 2008]
 - Combines an EKF with BA
 - EKF must be rolled back to incorporate the BA update in a consistent manner

Filtering and Smoothing (Cont.)

- In this work:
 - We perform smoothing and filtering in parallel
 - High-rate measurements are processed by the filter
 - Loop closures are added directly to the smoother
 - Smoothing and filtering are considered two components of a single optimization problem
 - Ensures the optimal Bayesian estimate is obtained
 - The problem is represented using a Bayes tree
 - Intuitive graphical model
 - Exploits sparsity
 - Allows incremental inference

Bayes Tree

The maximum a posteriori (MAP) estimate is given by

torization: $p(x_5,x_1|x_2) \underbrace{x_2,x_3}_{x_2,x_3} p(x_2,x_3)$ $p(x_4|x_3)$ $p(x_6|x_5) \underbrace{x_2,x_3}_{x_4:x_3} p(x_2,x_3)$

Applying the chain rule yields a factorization:

$$p(X) = \prod_{i} p(X_i|S_i)$$

- where $X_i, S_i \subset X$

- Different factorizations exist, depending on the order in which variables are chosen
- Given a particular factorization, a unique Bayes tree can be constructed
 - Each node represents a conditional distribution
 - Each node is conditioned only on its ancestors in the tree
 - Solving for \hat{X} involves applying the chain rule, starting from the root

Bayes Tree

The maximum a posteriori (MAP) estimate is given by

Bayes Tree – Gaussian Distribution

Bayes tree corresponds to the square root information matrix $\mathcal{I}=R^TR$

- **Factorization\Elimination** (i.e. calculation of R) corresponds to constructing the Bayes tree
 - Performed from bottom upwards
- Solving for \hat{X} :
 - Performed by back-substitution, from root of Bayes tree downwards

Efficient Bayes Tree Updates [Kaess et al IJRR 12]

- Key Insights
 - Incorporating new measurements can be done efficiently
 - Affects only variables involved in the measurement model and their ancestors
 - Only affects variables in the path to the top of the tree
 - Branches remain unaffected

Efficient Bayes Tree Updates [Kaess et al IJRR 12]

- Key Insights
 - Many variable orderings exist
 - Ordering affects:
 - Tree structure different factorization of $p(X) = \prod p(X_i|S_i)$
 - Number of variables in each node / Computational complexity
 - Does not affect the solution

Factorization based on suitable variable ordering:

$$p(X) = p(X_R \mid X_s) p(X_s) p(X_t \mid X_s)$$

- Corresponding Bayes tree:
- Allows concurrent updates to filter and smoother!

- Filter and smoother are kept periodically synchronized
 - Information flows between the smoother and the filter via the separator

- Loop closure measurements are added to the smoother
 - Smoother processes new measurements in a background process
 - Upon completion, the separator (root of the Bayes tree) is updated
 - Updates from the root are propagated to the filter in a fast process
 - Involves only a small number of variables

- High-rate measurements are added to the filter
 - Filter processes measurements in real time
 - Separator (root) is updated as part of this process
 - The separator accumulates updates
 - When the smoother is available:
 - Propagate these updates to the smoother

Performed in a background process

 $p(X_s)$ Separator **Back-substitution** X_{s} **Elimination** $p(X_t \mid X_s)$ $p(X_R \mid X_s)$ $X_t:X_s$ Filter $X_R:X_s$ Smoother

How to move variables from the filter to the smoother?

Moving Variables to the Smoother

- As time progresses, the filter maintains a sparse set of variables
- These variables form a chain of nodes on the filter side of the Bayes tree
- Whenever the smoother is available:
 - The current separator (root) node is moved to the smoother
 - A new separator is formed from the chain on the filter side
 - This is achieved by choosing a new variable ordering for these two nodes

Evaluation: Simulation

- Simulated flight of an aerial vehicle
 - Velocity: 40 m/s
 - Constant height: 200 m above mean ground level
 - Ground elevation: \pm 50 m
- Synthetic measurements of different sensors
 - IMU at 100 Hz
 - Stereo camera at 0.5Hz
 - Produces **relative pose** measurements §
 - Sparse loop closures found in camera data
 - 22 loop closure events identified
 - Provided directly to the smoother

Evaluation: Positional Error

- Compared methods:
 - Filter alone
 - **Concurrent Filter and Smoother** (Our approach)
 - **Incremental Batch**

Evaluation: Rotational Error

- Compared methods:
 - Filter alone
 - **Concurrent Filter and Smoother** (Our approach)
 - **Incremental Batch**

Evaluation: Velocity Error

- Compared methods:
 - Filter alone
 - **Concurrent Filter and Smoother** (Our approach)
 - **Incremental Batch**

Timing: Filter Update

Filter updates in constant time

Confirmed by evaluation:

Timing: Synchronization

- Synchronization only affects top of tree
 - Performed after smoother is done
- Depends on size of root clique
- Evaluation shows very fast synchronization

Future Work

- Relinearization
 - Filter produces linear conditionals
 - "Lifting" of linear constraints (Konolige, TRO 2008)
- Bound complexity of smoother
 - Fixed-lag
 - Sparsification (SLAM)

Summary

- We combined filtering and smoothing
 - Parallel formulation in Bayes tree
 - Constant time filtering
 - Loop closing capability

• Tomorrow:

"Factor Graph Based Incremental Smoothing in Inertial Navigation Systems" V. Indelman, S. Williams, M. Kaess, F. Dellaert

