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Abstract— In this paper we introduce a novel concept,
topological belief space planning (BSP), that uses topological
properties of the underlying factor graph representation of
future posterior beliefs to direct the search for an optimal
solution. This concept deviates from state-of-the-art BSP ap-
proaches and is motivated by recent results which indicated,
in the context of graph pruning, that topological properties of
factor graphs dominantly determine the estimation accuracy.
Topological space is also often less dimensional than the
embedded state space. In particular, we show how this novel
concept can be used in multi-robot belief space planning in high-
dimensional state spaces to overcome drawbacks of state-of-the-
art approaches: computational intractability of an exhaustive
objective evaluation for all candidate path combinations from
different robots and dependence on the initial guess in the
announced path approach, which can lead to a local minimum
of the objective function. We demonstrate our approach in a
synthetic simulation.

I. INTRODUCTION

Planning under uncertainty or Belief Space Planning

(BSP) can be formulated as a Partially Observed Markov

Decision Process (POMDP) [17] defined over the space of

probability distributions of the state space, also referred to as

the belief space. The goal of multi-robot BSP is to determine

optimal control actions for all robots in a group over the

belief space according to a specific task-related objective.

In collaborative estimation, sensor deployment, multi-robot

tracking, an objective is often defined as an information-

theoretic cost over the variables of interest (e.g. minimizing

the state uncertainty). On the other hand, multi-robot search

and rescue applications might require fast coverage of the

environment and high mapping accuracy, and collaborative

robotic manipulators highly accurate pose of their end ef-

fectors to avoid potential collisions and low control effort to

produce smooth motions.

In the context of mobile robots navigation and planning,

this problem is found in active SLAM in which a robot,

while operating in an unknown or uncertain environment,

has to autonomously decide its future motion and estimate

its own pose and the state of the environment simultaneously

using only on-board sensors (see e.g. [29], [16], [15], [9]).

Finding globally optimal solutions to the POMDP problem

is computationally intractable, even with finite planning

horizons, discrete states, actions, and observations [22]. In

particular, solving exactly the decentralized POMDP has
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Fig. 1: Concept illustration. Information-theoretic cost in BSP is
mainly influenced by topology of the underlying factor graphs
represented by simple undirected graphs. More complex graphs
tend to have higher entropy and produce more accurate estimates.
Each point in the plot corresponds to a multi-robot posterior belief
associated with a single variation of robots’ control actions.

been shown to be nondeterministic exponential (NEXP)

complete [3]. As a result, a large subset of prior work

has focused on approximately solving the POMDP problem

for Gaussian belief spaces using sampling-based motion

planners (e.g. [11], [19], [25], [1]) or optimization-based

methods (e.g. [9], [24], [30]).

In a decentralized discrete BSP framework, each robot

r in a group of R robots generates a finite number of

candidate paths by sampling the environment among which

it has to determine the best one according to a specified

objective function. Let us assume for simplicity that each

robot generates N candidate paths. Determining the optimal

controls involves considering all path combinations between

different robots (NR combinations), which is computation-

ally intractable for large number of candidate paths and

high-dimensional state spaces since evaluating the objective

function for each combination involves multi-robot inference.

Instead, a common (sub-optimal) approach for decentral-

ized belief space planning is for each robot r to consider only

its own candidate paths and the announced paths of other

robots, see e.g. [20], [2]. The robot can then select the best

path, according to the objective function, and announce this

path to other robots, which then repeat the same procedure

on their end. Such an approach reduces the exponential com-

plexity in number of robots to a linear complexity, and can

be viewed as a decentralized coordindated descent [20], [2],

i.e. where robots either repeat this process until convergence

[2] or at some frequency [20]. Performance guarantees of

such an approach are analyzed in [2]. In [27] an approach

is developed to identify and efficiently re-evaluate, while re-



using calculations, only impacted candidate paths due to an

update in the announced path. However, this strategy still

requires R ·N ·Niter objective function evaluations, where

Niter is the number of iterations until all robots reach an

agreement and do not change their decisions any more. The

other problem of the announced paths approach is that it can

be stuck in local minimum depending on the initialization.

As our first contribution, we propose a novel concept,

named topological belief space planning, that uses topolog-

ical properties of the underlying factor graph representation

of future posterior beliefs to direct the search for an optimal

solution. Additionally, we show in this paper how this general

concept can be applied to multi-robot decentralized BSP in

high dimensional state spaces to reduce its computational

complexity. In multi-robot BSP we sub-sample the set of

robots’ candidate actions in a topological space. In our

approach, each multi-robot belief that corresponds to a

certain combination of robots’ actions, is represented by a

factor graph to which we assign a signature in a topological

space. Signatures are ranked, and then sub-sampled and the

objective function is only evaluated on those samples, rather

than on all NR action combinations, yet with the accuracy

compared to exhaustive (optimal) approach. This main idea

is illustrated in Figure 1.

Topological representations in SLAM have been studied

mostly through higher-level representations of the envi-

ronment. In [28], an algorithm for multi-robot topological

description and exploration of unknown environments is

presented. Homology classes of trajectories are identified

and used to distribute the task of exploration among dif-

ferent groups of robots when confronted by obstacles. A

systematic algorithm for probabilistic topological mapping

of an environment from a sequence of sensor-independent

measurements is proposed in [26].

Only recently, an impact of the topology of the under-

laying estimation problem has been given more attention.

In their seminal work on the impact of graph connectivity

on the reliability of SLAM [13], the authors give bounds of

the maximum likelihood estimation error of the pose SLAM.

They show that D-optimal design is the one that maximizes

the number of spanning trees (tree-connectivity) of the corre-

sponding SLAM graph in special classes of the pose SLAM

problem, with linear measurement model, like those arising

in sensor networks and 2D/3D SLAM with a known robot’s

orientation, and isotropic noise. Furthermore, it was demon-

strated that in general non-linear SLAM, determinant of the

information matrix is strongly positively correlated with tree-

connectivity of the graph. Analytical expressions are given

for finding the bounds of an error of such approximation

that depends on the distances between graph nodes and the

noise variances. The authors show how this metric can be

used also in solving a problem of measurement selection and

graph pruning. Although sparsity of the SLAM structure can

be exploited in calculating the number of spanning trees, it

still depends on the state dimension.

Our proposed concept of topological BSP is motivated

by the above work but addresses a BSP problem. This

problem is different and more general than graph-pruning

and measurement selection problems described above, since

it considers multiple path realizations from different controls,

with greater variety in other non-topological factors that

influence estimation accuracy, e.g non-fixed geometry and

different path lengths.

As our second contribution in this work, we propose a new

topology metric, Von Neumann entropy ([21], [23]), to be

used in topological BSP as graph signature, and show empir-

ically how it is related to D-optimality criterion. This metric

depends on the whole graph spectrum (all eignevalues) and

can be calculated efficiently without depending on the state

dimension by approximating it with a function of graph node

degrees which is especially important when operating in high

dimensional state space as in a multi-robot BSP problem.

II. PROBABILISTIC FORMULATION AND NOTATIONS

Decentralized multi-robot belief space planning (BSP)

considers a group of R robots operating in unknown or

uncertain environment, aiming to autonomously decide their

future actions based on information accumulated thus far and

given an user defined objective function J . In this work, we

further assume that each robot can obtain full information

about the state of the multi-robot system in every planning

step. This makes the inference process centralized while only

the planning is decentralized.

Let P(Xr
k |Z

r
0:k,U

r
0:k−1) represent the posterior probability

density function (pdf) at planning time tk over states of

interest Xr
k of robot r. In this work, for simplicity we

assume pose SLAM framework where states of interest are

robot’s current and past poses, i.e. Xr
k = {xr

0, x
r
1, . . . , x

r
k}.

Zr
0:k and Ur

0:k−1 denote, respectively, all observations and

controls by time tk. Consider conventional state transition

and observation models

xi+1 = f(xi, ui, wi) , zi,j = h(xi, xj , vi,j) (1)

with zero-mean Gaussian process and measurement noise

wi ∼ N(0,Ωw) and vi,j ∼ N(0,Ωvij), and with known

information matrices Ωw and Ωvij . Denoting the correspond-

ing probabilistic terms to Eq. (1) by P(xi|xi−1, ui−1) and

P(zi,j |xi, xj), the pdf P(Xr
k |Z

r
0:k,U

r
0:k−1) can be written as

P(Xr
k |H

r
k)∝P(xr

0)

k
∏

i=1

P(xr
i |x

r
i−1, u

r
i−1)p(Z

r
i |X

r
i ) (2)

where the history Hr
k is defined as Hr

k
.
= {Zr

0:k,U
r
0:k−1}.

The measurement likelihood term P(Zr
i |X

r
i ) can be ex-

panded in terms of individual observations, P(Zr
i |X

r
i ) =

∏ni

j=1 P(z
r
i,j |X

r
i,j). Here, Zr

i
.
= {zri,j}

ni

j=1 and ni denotes the

number of observations acquired at time ti and Xr
i,j ⊆ Xr

i

represents involved variables in the jth observation model.

In the case of pose SLAM, zri,j is a relative pose constraint

between poses xr
i and xr

j .

Now, consider all the R robots in the group. Let P(Xk|Hk)
represent the pdf over the joint state Xk at time tk, where

Xk
.
= {Xr

k}
R
r=1 and Hk

.
= {Z0:k,U0:k−1}, with Z0:k

.
=

{Zr
0:k}

R
r=1 and U0:k−1

.
= {Ur

0:k−1}
R
r=1.



In a decentralized multi-robot framework, each robot

maintains the joint belief P(Xk|Hk) on its own while com-

municating to each other relevant pieces of information. We

assume, for simplicity, each robot is capable of calculating

the joint pdf at planning time P(Xk|Hk) using one of the

recently developed approaches (e.g. [5], [10]). We note that

given transition and observation models (1), it is sufficient for

each robot to only transmit (in addition to what is required

by multi-robot inference) its own control actions. Any other

robot that receives this information can then formulate the

multi-robot belief P(Xk|Hk) [20].

Let a user-defined objective function be J(U) =
E [cl(b[Xk+L])] , where the expectation is taken with respect

to future observations of all robots, and where cl represents

a cost function of the joint belief b[Xk+L] (to be defined)

at the end of the planning horizon. For simplicity, we use

the same planning horizon L for all robots. In this paper

we aim to minimize an entropy of the multi-robot belief.

The objective function J for multivariate Gaussian belief is

therefore:

J(U) =
n

2
ln(2πe) +

1

2
ln|Σ(Xk+L)|, (3)

where Σ(Xk+L) denotes estimated covariance of the multi-

robot belief b[Xk+L], and n dimensionality of the joint state

Xk+L. Notice that minimizing the global entropy (3) corre-

sponds to maximizing the total information gain obtained by

robots executing the same trajectories. Such a form naturally

supports collaborative active state estimation, where each

robot aims to improve estimation accuracy of the joint state.

Therefore, our objective is to find the optimal controls

U⋆ = argmin
U

J(U) (4)

for all robots in the group, considering a multi-robot decen-

tralized discrete BSP framework, as described below.

A. Generating actions

Each robot r in every planning session at time tk generates

finite number (Nr) of candidate paths. One way to generate

them is by using one of the existing sampling-based motion

planning approaches (e.g. RRT, RRG, PRM). Every such

path corresponds to one non-myopic control action. This

means that a set U of all possible combinations of control

actions of R different robots in the group contains
R
∏

r=1
Nr

elements. Since the robots can have numerous candidate

paths, determining the optimal controls (4) is computa-

tionally intractable in particular for high-dimensional state

spaces considered herein since it requires multi-robot belief

propagation for all controls.

B. Multi-robot inference

Considering for now only a single robot r, let us as-

sume that future sampled states of robot r along one

of its candidate paths generated at planning time tk are

{xr
k+1, . . . , x

r
k+L}. The corresponding joint belief over the

entire path Pr, is

b[Pr]
.
= P(Xr

k , x
r
k+1, . . . , x

r
k+L|H

r
k, U(Pr), Z(Pr)), (5)

where U r(Pr) and Zr(Pr) represent, respectively, the corre-

sponding controls and (unknown) observations to be acquired

by following the path Pr. This pdf can be explicitly written

in terms of the belief at planning time and the corresponding

state transition and observation models as (see Eq. (2))

b[Pr] = P(Xr
k |H

r
k)P(P

r|U r(Pr), Zr(Pr)) (6)

= P(Xr
k |H

r
k)

L(Pr)
∏

l=1

P(xr
k+l|x

r
k+l−1, u

r
k+l−1)P(Z

r
k+l|X

r
k+l).

The measurement likelihood term P(Zr
k+l|X

r
k+l) can be

further expanded, similarly to Eq. (2). Here, Xr
k+l is the

joint state up to the lth future state from the current state

along the path Pr, i.e.:

Xr
k+l = Xr

k+l(P
r) ≡ Pr

k+l
.
= {Xr

k, x
r
k+1, . . . , x

r
k+l}. (7)

We now proceed to the multi-robot case and consider dif-

ferent paths Pr for each robot r ∈ {1, . . . , R}. Letting

P
.
= {Pr}Rr=1, the multi-robot belief is given by

b[P ] = P(Xk|Hk)

R
∏

r=1





L(Pr)
∏

l=1

P(xr
k+l|x

r
k+l−1, u

r
k+l−1)

·P(Zr
k+l|X

r
k+l)

∏

{i,j}

P(zr,r
′

i,j |xr
i , x

r′

j )



 , (8)

where the last product corresponds to multi-robot constraints

that can involve different time instances, representing mutual

observations of a scene. The ordered index set {i, j} in

Eq. (8) represents the time indices that facilitate multi-

robot constraints among the robots {r, r′}. We assume a

given criteria function crMR(xr
i , x

r′

j ) that determines if there

should be a multi-robot constraint between the two vertices

xr
i and xr′

j . This function is conceptually similar to the

indicator function used in [20], while in our previous work

[8] we used a simpler criteria (relative distance).

C. Topology of multi-robot belief

The joint belief (8) can be represented by a factor graph

graphical model [18], as illustrated in Figure 2a. A factor

graph (FG) is a bipartite graph whose nodes consist of

factors F and variables V . The variables represent the

random variables in the estimation problem, whereas the

factors represent probabilistic information on those variables,

derived from measurements or prior knowledge. Different

candidate paths P typically yield different factor graphs.

Now, let us consider a topology induced by FG that

represents the multi-robot belief (8). In the case F contains

only binary factors, topology of the FG can be further

simplified in the following way.

Let L be a vertex labeling function of FG that

assigns to its variables V a set of unique labels

Γ = {1, 2, . . . , |V |}. We define a topological graph

G
.
= (Γ, E) as a graph whose nodes are in the

set Γ and whose edges are E = {(i, j), i, j ∈ Γ ⇔
a factor exists in F involving variables L−1(i) and L−1(j)}.
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Fig. 2: Graph representations of the multi-robot belief. (a) Factor
graph; (b) Topological graph.

The corresponding topological graph to factor graph from

Figure 2a is shown in Figure 2b.

In this paper, we study BSP structural properties based

on the spectrum of the normalized Laplacian matrix L̂
associated to the graph G. Laplacian matrix of a graph G
is by definition L(G) = D(G) − A(G), where A(G) is its

|Γ| × |Γ| adjacency matrix with elements

A(i, j) =

{

1, if (i, j) ∈ E
0, otherwise

and D(G) its node degree matrix defined as a diagonal

matrix with graph node degrees on its main diagonal, i.e.

D(i, i) = d(i) =
∑

j∈Γ A(i, j). Finally, a normalized

Laplacian matrix is defined as L̂(G) = D−1/2LD−1/2 which

can be also written in the form

L̂(i, j) =















1, if i = j, d(i) 6= 0
−1

√

d(i)d(j)
, (i, j) ∈ E

0, otherwise

Let a spectral decomposition of the normalized Laplacian

matrix be L̂ = QΛQ−1, where Λ = diag(λ̂1, λ̂2, . . . , λ̂|Γ|)

is a diagonal matrix of the eigenvalues of L̂, and Q is an

orthogonal matrix whose columns are their corresponding

eigenvectors. The normalized Laplacian matrix of G is

symmetric and positive semi-definite so all its eigenvalues

are real and non-negative. Hence, they can be ordered

λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂|Γ|,

with λ̂1 = 0, λ̂|Γ| ≤ 2, and
∑|Γ|

i=1 λ̂i = |Γ| since G has no

isolated nodes (for proof see [4]).

III. APPROACH

We propose a method that reduces the complexity of multi-

robot decentralized belief space planning in high dimensional

state spaces by sub-sampling the set of robots’ candidate

actions in a topological space. Each factor graph, resulted

from a certain combination of robots’ actions, is represented

by a signature in a topological space. Signatures are clustered

ranked, and then sub-sampled and objective is only evaluated

on those samples (much less than exhaustive) yet with the

accuracy compared to exhaustive (optimal) approach. Since

we operate on the whole topological space of the resulting

FGs, our method is not prone to local minima.
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Fig. 3: Signatures based on the number of spanning trees (ST) vs
cost (3). (a) Normalized tree connectivity; (b) Adapted ST signature
(15).

Our method, topological BSP, is summarized in Algorithm

1 and in the following we discuss its main parts.

Algorithm 1 Topological BSP

Input: set of factor graphs FG
Output: approximate solution to the BSP, Û

1: represent each FG with a topological graph G
2: determine SG, set of graph signatures of G
3: rank graphs according to their signatures

4: U = { top ranked candidates in SG}
5: Û = arg min J(U)

A. Graph signature

The crucial idea in designing a graph signature is that it

should reflect, in great extent, an optimization objective J ,

i.e. there should exist a strong correlation between a graph’s

topological signature and an objective. If such a signature

exists, then it can be used to direct the search for an optimal

solution. Another important property it should possess is that

its computation is much faster than explicit evaluation of an

objective function.

In this work, we propose a new metric of graph complexity

for characterizing a graph G associated with a factor graph

FG as signature candidate for the optimization objective

defined by (3), the Von Neumann entropy of a graph.

The von Neumann entropy HV N (G) of graph G is the

Shannon entropy associated with its normalized Laplacian’s

eigenvalues {λ̂i}
|Γ|
i=1 and was introduced in [23]

HVN(G) = −

|Γ|
∑

i=1

λ̂i

|Γ|
ln

λ̂i

|Γ|
. (9)

Using Han’s quadratic approximation [7], it can be simplified

to

HV N (G) ≈

|Γ|
∑

i=1

λ̂i

|Γ|

(

1−
λ̂i

|Γ|

)

(10)

=

∑|Γ|
i=1 λ̂i

|Γ|
−

∑|Γ|
i=1 λ̂

2
i

|Γ|2
=

Tr[L̂]

|Γ|
−

Tr[L̂2]

|Γ|2
. (11)

The normalized Laplacian matrix L̂ is symmetric with unit

diagonal. Therefore, Tr[L̂] = |Γ|, and, after some basic

matrix manipulations, that we omit here for space reasons,

Tr[L̂2] = |Γ|+
∑

(i,j)∈E

1

d(i)d(j)
.



Putting all together, the final expression for the Von Neu-

mann entropy approximation we use as a graph signature

is

HV N (G) ≈ 1−
1

|Γ|
−

1

|Γ|2

∑

(i,j)∈E

1

d(i)d(j)
. (12)

Notice that its computation depends only on the degree ma-

trix D(G) and, in general case, has quadratic complexity in

the number of nodes, O(|Γ|2) but in the case of BSP, where

L̂ is sparse it depends only on the small number of non-zero

elements of A(G), i.e. the number of edges |E| in the graph

G. Also, the expression (12) can be computed incrementally,

as new edges (measurements) are added to the multi-robot

factor graph as the robots explore the environment or re-plan

their paths. We leave further investigation of this aspect to

future research.

Here, we also analyzed the tree connectivity metric

τ(G)
.
= ln(t(G)) proposed in [13] in the context of mea-

surement selection and graph prunning. This metric is based

on the number of spanning trees t(G) in a graph G, and we

show how it can be adapted for use in BSP for optimizing

objective (3).

In [12], normalization of τ(G) was proposed to deal with

different state dimensions of SLAM pose graphs, but this

normalization does not give good signature candidate (we

denote it ST signature 1) in BSP problem, see Fig. 3a.

Instead, we derive another signature candidate, denoted as ST

signature 2, based on τ(G) in the following way. According

to [13]

ln|Σ(Xk+L)| ≈ −3ln(t(G)) − ln(η), (13)

where η depends on the noise variances and geometry and, in

the case of BSP, on the state dimension n. We can write η =
Cξ, where C captures the geometry and the noise parameters

and is assumed constant, i.e. independent on the FG topology,

while ξ is a function of state dimension n. Minimizing (3)

can be therfore formulated as

U⋆ = argmax
U

[−J(U)] ≈

argmax
U

[

3

2
lnt(G) +

ln(ξ)

2
−

n

2
ln(2πe) + const.

]

. (14)

ξ can be determined from the odometry factor graph associ-

ated with b[Xk+L]. Given that process noise information ma-

trix is Ωw and its topological graph Go contains n nodes, it

follows from (13) since t(Go) = 1, that ln(η) = n ln (|Ωw|)
1

Finally, it follows that, ST signature 2, the signature that

maximizes (14), can be determined up to a constant as

3

2
τ(G) +

n

2
[ln |Ωw| − ln(2πe)], (15)

and one can observe it better captures the correlation with

the cost on the same set of candidate actions (Fig. 3b).

1Here we used a property that the determinant of a block diagonal matrix
is the product of the determinants of its diagonal blocks and Lemma 3 from
[14] under the same assumptions.

B. Sub-sampling and Optimization

After obtaining graph signatures for all the possible path

combinations, we proceed by sub-sampling them (Alg. 1,

step 4). The sub-sampling strategy depends on the opti-

mization objective’s relation to the signature and on the

available time resources we have. If we can assume that

the BSP solution has high correlation with the signature,

e.g. minimizing uncertainty (3) corresponds to maximizing

graph’s complexity (12), we can then choose top Ns best

ranked signatures, evaluate the objective function for the

corresponding actions, and then select the best among them

(Alg. 1, step 5). Another alternative we envision, is to cluster

the signatures and search for the solution inside the best

topology cluster. In that case, Ns is proportional to the

number of clusters and we assume that similar topology

classes will produce similar cost. Notice that the proposed

topological BSP algorithm can be considered as anytime

algorithm, as its solution quality depends on the the available

computational budget and gets monotonically improved as

more samples are considered.

IV. RESULTS

We evaluate our approach in a simulation of collaborative

active SLAM involving two robots operating in unknown and

GPS-deprived environment. We study empirically different

signature candidates and their correspondences to informa-

tion theoretic cost, D-optimality criterion (3). The first one is

based on the number of spanning trees in a topological graph

(ST), and the second, on the graph entropy newly introduced

in this paper in the context of BSP, the von Neumann

entropy (VN). We also analyze convergence rate of the

proposed algorithm and state-of-the-art non-topological multi

robot BSP algorithms, announced path (AP) and exhaustive

search (EX), with respect to the number of objective function

evaluations.

In this basic evaluation we use a prototype implementation

in Matlab using GTSAM [6] to investigate key aspects of the

proposed approach. A probabilistic roadmap (PRM) [11] is

used to discretize the environment and generate candidate

paths over the roadmap. Figure 5g shows the considered

scenario for two robots and the generated 10 candidate paths

for each robot in a single planning session.

In the first experiment, we ran 25 planning sessions per

every considered algorithm, each time generating randomly

candidate paths of the robots in the same scenario (fixed

start and goal positions, the process and the measurement

noise). Given two robots, each having 10 candidate paths,

means that in every planning session 100 different factor

graphs are formed representing the multi-robot belief of the

corresponding controls and predicted observations. Similar to

[27], we use a simple heuristic for the function crMR(xr
i , x

r
j)

to determine if two poses admit a multi-robot constraint:

these constraints, possibly involving different future time

instances, are formulated between any two poses with rel-

ative distance closer than d = 320 meters. In every planning

session, topological BSP algorithms choose one sample (path

combination) to evaluate the objective function according to
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Fig. 4: Convergence rate of the relative error. In the zoomed in
region we show its statistics. Solid lines represent a mean of the
relative error, circles its median and shaded areas 95% confidence
region.

their corresponding signature and sub-sampling strategy. For

the objective of minimizing the global entropy, we select the

top best ranked signature. We denote these approaches VN-

RANK and ST-RANK. In Fig. 4, we show performance of

VN-RANK, ST-RANK and exhaustive approach after each

sampling session in terms of an average relative error (RE)

defined as

RE
.
= |1− J/J∗|. (16)

Here, J∗ .
= J(U⋆), while J represents objective function

value for the best action (path combination) sampled thus far.

Exhaustive approach randomly selects the candidates until it

evaluates all of them. We confirm that topological properties

are indeed an effective discriminant of the accuracy of BSP

since both VN-RANK and ST-RANK converge much faster

than random sampling. Also, ST-RANK and VN-RANK

have similar performance which justifies the use of VN-

RANK as the graph signature since its computation can be

done much faster for high dimensional state spaces due to

its dependence only on the graph node degrees. To compare

to the announced path (AP) approach, we measured the

number of objective function evaluations until convergence.

In the case of VN-RANK and ST-RANK, that was reaching

a global optimum, while for AP, convergence could be also

local. Still, both topological approaches outperform non-

toplogical ones by an order of magnitude, as can be seen

in Table I.

VN ST AP EX

mean 2.12 1.52 41.92 50
min 1 1 24 1
max 12 5 60 100

TABLE I: Number of objective function evaluations until conver-
gence.

In the second experiment, a limited number of samples is

evaluated to demonstrate the concept and show the difference

between our BSP solution based on the VN signature and

the optimal solution, considering one of the cases when RE

was relatively large according to the error distribution shown

in Figure 4. Even for small number of samples, in this case

only one sample was considered, i.e. Ns = 1, the topological

solution is still very close to the optimal solution (see Figure

5). From Figure 5 it can be also seen that in the case when

optimal solution is found, one distinctive topological class

can be identified corresponding to the most complex graph,

while in the case it was not found, many similar topologies

exist and then other factors, e.g. linearization point and noise

levels, determine the BSP solution.

V. CONCLUSIONS

In this preliminary work, we introduced a novel concept,

topological belief space planning to tackle computational

complexity aspects of belief space planning (BSP) in high

dimensional state spaces. We demonstrated how this general

concept can be applied in multi-robot decentralized BSP to

overcome main drawbacks of the state-of-the art exhaustive

search and announced paths approaches. Evaluating an objec-

tive function requires multi-robot belief propagation and, in

high dimensional state spaces like in active SLAM problem,

constitutes the main computational burden. In topological

space, due its lower dimension compared to an embedded

state space, computation of certain topological metrics can

be performed more efficiently. We demonstrated that topo-

logical properties of the underlying factor graph representa-

tions of future posterior beliefs exhibit high correlation to

information-theoretic cost and proposed a topological metric

dependent only on the graph node degrees, the approximation

of the Von Neumann entropy, to direct the search for an

optimal BSP solution by sub-sampling the topological space.

Therefore, our algorithm can be seen as an anytime algo-

rithm that will eventually converge to the optimal solution.

Moreover, in cases where a strong correlation exists between

the objective and the topological metric, this convergence is

by an order of magnitude faster than existing state-of-the-art

approaches.

In future work, we plan to investigate incremental aspects

of topological BSP and design topological metrics that would

be relevant for solving other interesting BSP objectives,

e.g. maximizing exploration gain. We also plan to analyze

time complexity of different BSP approaches together with

presenting formal guarantees of global optimality of our

approach in terms of deriving approximation error bounds

of the proposed topological metric.
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