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1. Introduction 4. Technical approach
Belief Space Planning (BSP) determines optimal control over the belief , ,
. _ . . S . We consider R robots, each choosing ol tonolosv induced by FG
space with respect to a given objective, e.g. minimize state uncertainty between finite number of discrete 02 00 eoresented by a graph G = (" E}
instantiation of a Partially-Observable Markov Decision Process (POMDP) actions/paths in each planning session |
T . . . . and pose SLAM framework. o] oy
finding optimal solution to POMDP in the most general form is ‘ topological
. . Xy =A20, 21, .-, xL}  robot’s state (trajectory) metric s(G)
COmpUtathna”y IntraCtabIe T (T T observations and controls up to
multi-robot (MR) BSP in unknown environments is such a case because of ) fii;:;ture

high dimensionality of the state space and exponential growth of the Let a robot r select a candidate path

number of objective function evaluations with the number of robots multi-robot pose SLAM

) A 14 = :
1 k+1 k+L} posterior factor graph

b[P"] = P(Xy, Zpyas - -+ Thoy | HE, U(PT), Z(P))

belief evolution over the future path

2. COntribUtion of a single robot r
* we introduce a novel concept, topological belief space planning (tBSP),

that uses topological properties of the underlying factor graph X, = {XT}E_ multirobot (joint) state at time k Two graph signatures considered in tBSP:

representation of future posterior beliefs to direct a search for an optimal b~ (prys  action= single variation of
SOIUtion - { r=1 robots’ candidate paths

MR inference

T VDY Von Neumann entropy
$(G) = Hyn(G) == TI™E of G (VN) whichis

no explicit inference required in optimization nor partial state covariance L™ PR 5 1 forthef Simpf“fied r\]Nith
o . ~ 2 - -\ a function of grap
recove ry b[P] - P(Xk”'[k) ?1;[1 11;[1 P(xk+l|xk+l_1,uk+l_1) ‘F‘ ‘F‘ (t,7)eE d(z)d(]) node degrees d
* enabling planning in high dimensional state spaces ' -
P(Zp | Xi1) H P(Z{’Jr ‘55':7517; )

{i.5} J 3 T| signature based
multi-robot pose SLAM s(G) = §T(G) + 7[111 Q0| — In(2me)]  on the number
posterior belief of spanning

3' Concept trees of G (ST)
¢ Key observations: . : . Optimization problem Approximate solution based only on
: . o topological properties of FG
— topological properties of factor graphs n 1
P : 5 PTOP : : & p J(U) = §ln(27re) + §1H|E(Xk+L)‘ . maximize function of the
dominantly determine the estimation U* = arg max s[GU)]  graph topology (a proxy for
accuracy U* = arg min J(U) the true objective)

graph entropy

U

find control //* to improve
estimation accuracy of the joint
state X, 1 by minimizing the global
entropy at the end of planning
horizon of length L

topological space is often less dimensional

than the embedded state space
Computation of topological metric is much
faster then explicit evaluation of an objective
function

Algorithm 1 Topological BSP

Require: set of factor graphs F'G

Ensure: approximate solution to the BSP, U
represent each F'G with a topological graph G
determine S¢g, set of graph signatures of G
rank graphs according to their signatures

U = { top ranked candidates in S}

U = arg min J(U)
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5. Results
* tBSP applied to multi-robot collaborative active SLAM problem: R=2, |A| =10, 25 planning sessions
a7 W * |leads to significantly improved relative error convergence speed w.r.t.
=3 ¥, exhaustive (EX) undirected evaluation of candidate actions (Fig. 1) VN ST AP EX

mean | 2.12 1.52 41.92 50
min 1 1 24 1
max 12 59 60 100

* not sensitive to initialization, as local methods are, e.g. announced
path (AP) approach and with much less number of objective function
evaluations until convergence (Table 1)
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Table. 1. number of objective function evaluations

East |m] until convergence
PRM with candidate paths of two robots 5

(red and green) in a single planning session (S) S2: chosen paths S2: optimal paths
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Fig. 1. relative error and its 95 % confidence region

Spearman's

. . Spearman's
correlation: -0.99649

correlation: -0.99086

6. Conclusions

£ . £ . - a novel concept introduced, topological belief space planning to tackle
E 096 | “ue, £ 095 ' . . : : .
£ oo | i £ oo computational complexity aspects of belief space planning (BSP) in
é é 0.94

o
©
o

high dimensional state spaces

- this general concept can be applied in multi-robot BSP to overcome
main drawbacks of the state-of-the art exhaustive search and
announced paths approaches

S1: optimal solution found after one sample S2: relative error 2.5% after the first sample




