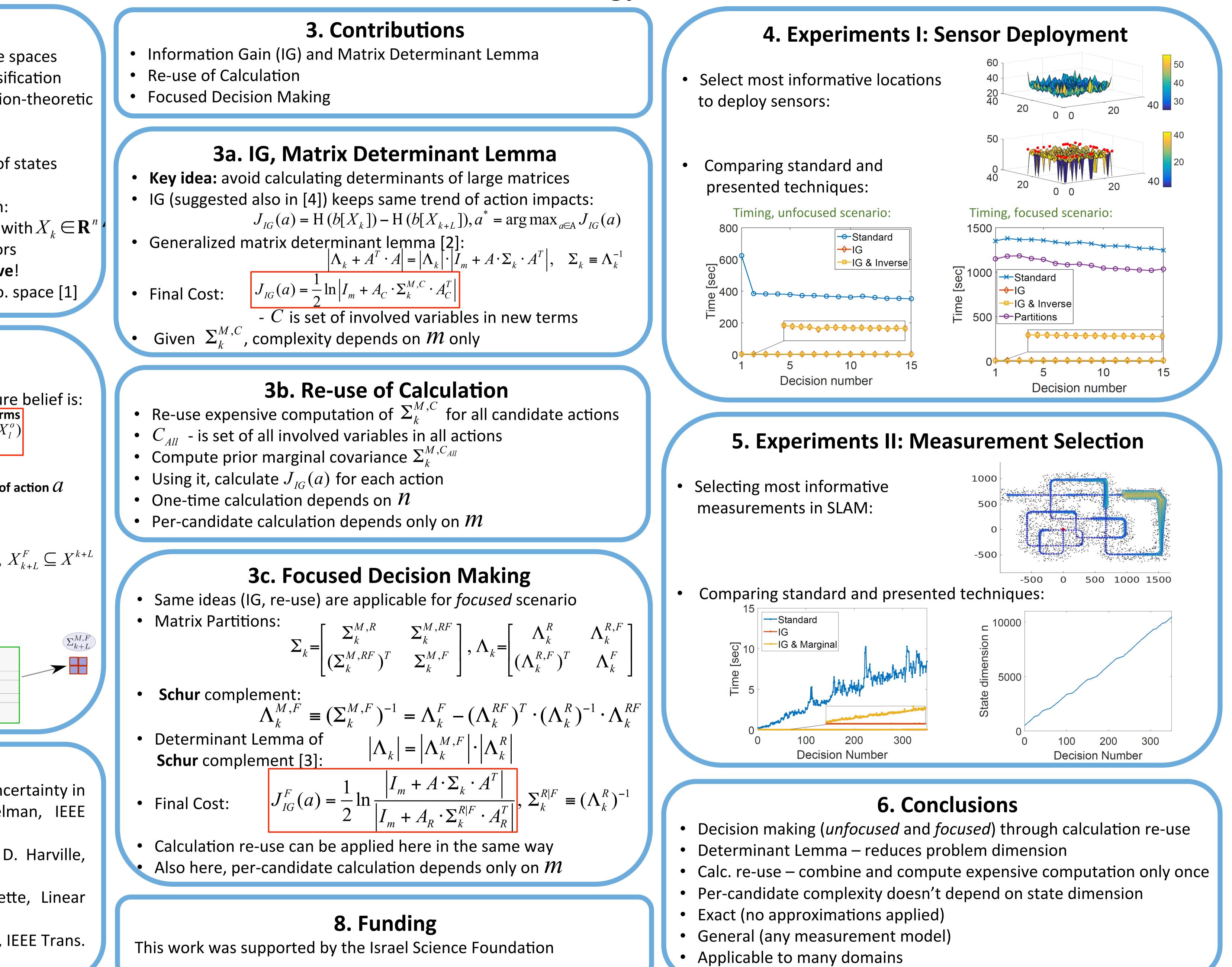


Belief space planning, active SLAM/sensing, graph sparsif Objective: Find action(s) that minimizes an informatic objective function (e.g. entropy) of future belief - Unfocused case: future belief over <u>all</u> states - Focused case: future belief over <u>only subset</u> of Standard approach to evaluate impact of a single action: - calculates determinant of nxn matrix, $O(n^3)$, w - or, in square-root info form, updates posterior Decision making over <u>high-dim</u> . state spaces is Expensive Previously solved for specific cases via conservative info. C. Problem Formulation • Gaussian distribution: $p(X_k Z_{0k}, u_{0k-1}) = N(\hat{X}_k, \Lambda_k^{-1})$ • Given action $a = u_{k:k+L-1}$ and new observations, futur $b[X_{k+L}] = \eta p(X_k Z_{0k}, u_{0k-1}) \prod_{i=k+1}^{k+L} p(x_i x_{I-1}, u_{I-1}) p(Z_i X_i)$ • A posteriori information matrix: $\Lambda_{k+L} = \Lambda_k + A^T A$ • Final objective function: $unfocused: J_H(a) = H(b[X_{k+L}]) = \frac{n}{2} \cdot (1 + \ln(2\pi)) - \frac{1}{2} \ln \Lambda_{k+L} $		
• Gaussian distribution: $p(X_k Z_{0:k}, u_{0:k-1}) = \mathbb{N}(\hat{X}_k, \Lambda_k^{-1})$ • Given action $a = u_{k:k+L-1}$ and new observations, futur $b[X_{k+L}] = \eta p(X_k Z_{0:k}, u_{0:k-1}) \prod_{l=k+1}^{k+L} p(x_l x_{l-1}, u_{l-1}) p(Z_l X_l)$ • A posteriori information matrix: $\Lambda_{k+L} = \Lambda_k + A^T A$ • Final objective function: $Unfocused: J_H(a) = \mathbb{H}(b[X_{k+L}]) = \frac{n}{2} \cdot (1 + \ln(2\pi)) - \frac{1}{2} \ln \Lambda_{k+L} $ Focused: $J_H^F(a) = \mathbb{H}(X_{k+L}^F) = \frac{n_F}{2} \cdot (1 + \ln(2\pi)) + \frac{1}{2} \ln \Sigma_{k+L}^{M,F} $, $A = 1$ • Jacobian $A \in \mathbb{R}^{m \times n}$ is sparse • \mathcal{N} is big, \mathcal{M} is small • Most columns are zero $X_{i+1} = \frac{1}{2} X_{i-1} X_i$	 Decision making under uncertainty over higher in the selief space planning, active SLAM/sensing Objective: Find action(s) that minimizes objective function (e.g. entropy) of future - Unfocused case: future belief over - Focused case: future belief over - Focused case: future belief over - Calculates determinant of nxn making over high-dim. state space 	gh-dim. state , graph sparsif an informatio belief er <u>all</u> states <u>only subset</u> of single action: atrix, $O(n^3)$, w ates posterior es is Expensive
• Gaussian distribution: $p(X_k Z_{0:k}, u_{0:k-1}) = \mathbb{N}(\hat{X}_k, \Lambda_k^{-1})$ • Given action $a = u_{k:k+L-1}$ and new observations, future $b[X_{k+L}] = \eta p(X_k Z_{0:k}, u_{0:k-1}) \prod_{l=k+1}^{k+L} p(x_l x_{l-1}, u_{l-1}) p(Z_l X_l)$ • A posteriori information matrix: $\Lambda_{k+L} = \Lambda_k + A^T A$ • Final objective function: $Unfocused: J_H(a) = \mathbb{H}(b[X_{k+L}]) = \frac{n}{2} \cdot (1 + \ln(2\pi)) - \frac{1}{2} \ln \Lambda_{k+L} $ Focused: $J_H^F(a) = \mathbb{H}(X_{k+L}^F) = \frac{n_F}{2} \cdot (1 + \ln(2\pi)) + \frac{1}{2} \ln \Sigma_{k+L}^{M,F} $, $A = 1$ • Jacobian $A \in \mathbb{R}^{m \times n}$ is sparse • \mathcal{N} is big, \mathcal{M} is small • Most columns are zero $X_{i+1} = X_i = \frac{1}{2} \cdot X_{i-1} X_i$		
• Final objective function: Unfocused: $J_{H}(a) = H(b[X_{k+L}]) = \frac{n}{2} \cdot (1 + \ln(2\pi)) - \frac{1}{2} \ln \Lambda_{k+L} $ Focused: $J_{H}^{F}(a) = H(X_{k+L}^{F}) = \frac{n_{F}}{2} \cdot (1 + \ln(2\pi)) + \frac{1}{2} \ln \Sigma_{k+L}^{M,F} $, • Jacobian $A \in \mathbb{R}^{m \times n}$ is sparse • \mathcal{N} is big, \mathcal{M} is small • Most columns are zero Σ_{k+L} Σ_{k+L} Σ_{k+L} Σ_{k+L}	• Gaussian distribution: $p(X_k Z_{0:k}, u_{0:k-1}) =$ • Given action $a = u_{k:k+L-1}$ and new obser $b[X_{k+L}] = \eta p(X_k Z_{0:k}, u_{0:k-1}) \prod_{l=k+1}^{k+L} p(x_l x_l)$	= N $(\hat{X}_k, \Lambda_k^{-1})$ vations, futur New tern $\hat{X}_{l-1}, u_{l-1}) p(Z_l X_l$
f_1 :	• Final objective function: $Unfocused: J_H(a) = H(b[X_{k+L}]) = \frac{n}{2} \cdot (1 + \ln(2\pi)) - Focused: J_H^F(a) = H(X_{k+L}^F) = \frac{n_F}{2} \cdot (1 + \ln(2\pi))$ • Jacobian $A \in \mathbb{R}^{m \times n}$ is sparse • \mathcal{N} is big, • Most columns are zero	Jacobian of $\frac{1}{2} \ln \Lambda_{k+L} $ $+ \frac{1}{2} \ln \Sigma_{k+L}^{M,F} ,$ <i>M</i> is small
	$f_1:$	

7. References

[1] "No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space", V. Indelman, IEEE Robotics And Automation, 2016


[2] "Matrix algebra from a statistician's perspective", D. Harville, Technometrics, 1998.

[3] "Schur complements and statistics", D. V. Ouellette, Linear Algebra and its Applications, 1981

[4] "Information-based compact Pose SLAM", V. Ila et al., IEEE Trans. Robotics, 2010

Computationally Efficient Model-Based Decision Making in High-Dimensional State Spaces

Dmitry Kopitkov, Vadim Indelman Technion – Israel Institute of Technology

