
4.	Experiments	I:	Sensor	Deployment	

•! Select	most	informa/ve	loca/ons	
				to	deploy	sensors:	
	
	
•! Comparing	standard	and	
						presented	techniques:	

5.	Experiments	II:	Measurement	Selec:on	

•! Selec/ng	most	informa/ve	
					measurements	in	SLAM:	
	
	
	
•! Comparing	standard	and	presented	techniques:	
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3a.	IG,	Matrix	Determinant	Lemma	
•! Key	idea:	avoid	calcula/ng	determinants	of	large	matrices	
•! IG	(suggested	also	in	[4])	keeps	same	trend	of	ac/on	impacts:	
																																																																														
•! Generalized	matrix	determinant	lemma	[2]:	
																																																																														

•! Final	Cost:	
-! 		is	set	of	involved	variables	in	new	terms	

•! Given												,	complexity	depends	on							only	
2.	Problem	Formula:on	

•! Gaussian	distribu/on:	
•! Given	ac/on																										and	new	observa/ons,	future	belief	is:	

•! A	posteriori	informa/on	matrix:	
•! Final	objec/ve	func/on:	

	

	
•! Jacobian																					is	sparse				•						is	big,								is	small	
•! Most	columns	are	zero	

1.	Introduc:on	
•! Decision	making	under	uncertainty	over	high-dim.	state	spaces	
•! Belief	space	planning,	ac/ve	SLAM/sensing,	graph	sparsifica/on	
•! Objec:ve:	 Find	 ac/on(s)	 that	minimizes	 an	 informa/on-theore/c	

objec/ve	func/on	(e.g.	entropy)	of	future	belief	
-! !"#$%&'() 	case:	future	belief	over	all	states	
-! *$%&'()	case:	future	belief	over	only	subset	of	states	

•! Standard	approach	to	evaluate	impact	of	a	single	ac/on:	
-! calculates	determinant	of	nxn	matrix,												,	with		
-! or,	in	square-root	info	form,	updates	posteriors		

•! Decision	making	over	high-dim.	state	spaces	is	Expensive!	
•! Previously	solved	for	specific	cases	via	conserva/ve	info.	space	[1]	

3b.	Re-use	of	Calcula:on	
•! Re-use	expensive	computa/on	of													for	all	candidate	ac/ons	
•! 									-	is	set	of	all	involved	variables	in	all	ac/ons	
•! Compute	prior	marginal	covariance		
•! Using	it,	calculate														for	each	ac/on	
•! One-/me	calcula/on	depends	on	
•! Per-candidate	calcula/on	depends	only	on	

Jacobian	of	ac:on	

3c.	Focused	Decision	Making	
•! Same	ideas	(IG,	re-use)	are	applicable	for	!"#$%&'	scenario	
•! Matrix	Par//ons:	
	
	

•! Schur	complement:	
	
•! Determinant	Lemma	of	
					Schur	complement	[3]:	

•! Final	Cost:																																																																

•! Calcula/on	re-use	can	be	applied	here	in	the	same	way	
•! Also	here,	per-candidate	calcula/on	depends	only	on	

!"#$%&'()+,

6.	Conclusions	
•! Decision	making	($(!"#$%&'	and	!"#$%&')	through	calcula/on	re-use	
•! Determinant	Lemma	–	reduces	problem	dimension	
•! Calc.	re-use	–	combine	and	compute	expensive	computa/on	only	once	
•! Per-candidate	complexity	doesn’t	depend	on	state	dimension	
•! Exact	(no	approxima/ons	applied)	
•! General	(any	measurement	model)	
•! Applicable	to	many	domains	
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