Computationally Efficient Decision Making Under Uncertainty in High-Dimensional State Spaces

1

Dmitry Kopitkov and Vadim Indelman

International Conference on Intelligent Robots and Systems (IROS), October 2016

Introduction

- Decision making under uncertainty fundamental problem in autonomous systems and artificial intelligence
- Examples
 - Belief space planning in uncertain/unknown environments (e.g. for autonomous navigation)
 - Active simultaneous localization and mapping (SLAM)
 - Informative planning, active sensing
 - Sensor selection, sensor deployment
 - Multi-agent informative planning and active SLAM
 - Graph sparsification for long-term autonomy

Introduction

- Information-theoretic decision making
 - Objective: find action that minimizes an information-theoretic metric (e.g. entropy, information gain, mutual information)
 - Problem types: <u>Unfocused</u> (entropy of all variables), and <u>Focused</u> (entropy only of subset of variables)
- Decision making over <u>high-dimensional</u> state spaces is expensive!

 $X \in \mathbb{R}^n \qquad \Lambda \equiv \Sigma^{-1} \in \mathbb{R}^{n \times n}$

- Evaluating action impact typically involves determinant calculation: $O(n^3)$ (smaller for sparse matrices)
- Existing approaches typically calculate posterior information (covariance) matrix for each candidate action, and then its determinant

Key idea

Resort to matrix determinant lemma and calculation re-use techniques for information-theoretic decision making

$$\left|\Lambda_{k} + A^{T}A\right| = \left|\Lambda_{k}\right| \cdot \left|I_{m} + A \cdot \Sigma_{k} \cdot A^{T}\right| \qquad \Sigma_{k} \equiv \Lambda_{k}^{-1}$$

High-level overview:

- Avoid calculating determinants of large matrices
- Re-use of calculations
- Per-action evaluation does not depend on state dimension
- Yet exact and general solution

Problem Formulation

• Given action $a = u_{k:k+L-1}$ and new observations $Z_{k+1:k+L}$, future belief is:

$$b\left[X_{k+L}\right] = p\left(X_{k+L}|Z_{0:k+L}, u_{0:k+L-1}\right) \propto p\left(X_{k}|Z_{0:k}, u_{0:k-1}\right) \prod_{l=k+1}^{k+L} \underbrace{p\left(x_{l}|x_{l-1}, u_{l-1}\right) p\left(Z_{l}|X_{l}^{o}\right)}_{\text{motion model measurement}}$$

Problem Formulation

$$b[X_{k+L}] = p(X_{k+L}|Z_{0:k+L}, u_{0:k+L-1}) \propto p(X_k|Z_{0:k}, u_{0:k-1}) \prod_{l=k+1}^{k+L} p(x_l|x_{l-1}, u_{l-1}) p(Z_l|X_l^o)$$

- Information-theoretic cost (entropy): $J_{\mathcal{H}}(a) = \mathcal{H}(p(X_{k+L}|Z_{0:k+L}, u_{0:k+L-1}))$
- Decision making: $a^{\star} = \underset{a \in \mathcal{A}}{\operatorname{arg\,min}} J_{\mathcal{H}}(a) \qquad \mathcal{A} \doteq \{a_1, a_2, \dots, a_N\}$

Gaussian distributions:

$$\Lambda_{k+L} = \Lambda_k + A^T A$$
Action Jacobian
$$J_{\mathcal{H}(a)} = \frac{n}{2} \left(1 + \ln \left(2\pi \right) \right) - \frac{1}{2} \ln |\Lambda_{k+L}|$$

• Impact evaluation for a candidate action is in the general case: $O(n^3)$

Information Gain (IG) & Matrix Determinant Lemma

Use IG instead of entropy:

$$J_{IG}(a) \doteq \mathcal{H}(b[X_k]) - \mathcal{H}(b[X_{k+L}]) = \frac{1}{2} \ln \frac{\left|\Lambda_k + A^T A\right|}{\left|\Lambda_k\right|}$$

Applying matrix determinant lemma:

$$\begin{split} |\Lambda_k + A^T A| &= |\Lambda_k| \cdot |I_m + A \cdot \Sigma_k \cdot A^T| \\ \downarrow \\ J_{IG}(a) &= \frac{1}{2} \ln |I_m + A \cdot \Sigma_k \cdot A^T| \\ J_{IG}(a) &= \frac{1}{2} \ln |I_m + A \cdot \Sigma_k \cdot A^T| \\ \end{split}$$

$$\begin{split} \Sigma_k &\equiv \Lambda_k^{-1} \in \mathbb{R}^{n \times n} \\ A \in \mathbb{R}^{m \times n} \\ K &= n \\ \text{Examples: sensor deployment, active SLAM} \end{split}$$

Cheap, given Σ_k !

Sparse Structure of Action Jacobian

- Jacobian $A \in \mathbb{R}^{m \times n}$ of action a represents new terms in the joint pdf:

$$b[X_{k+L}] = p(X_{k+L}|Z_{0:k+L}, u_{0:k+L-1}) \propto p(X_k|Z_{0:k}, u_{0:k-1}) \prod_{l=k+1}^{k+L} p(x_l|x_{l-1}, u_{l-1}) p(Z_l|X_l^o)$$

Illustration example:

• Columns of *A* that are not involved in new terms, contain only zeros

Using Sparsity of Action Jacobian

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + A \cdot \Sigma_k \cdot A^T \right| \quad \Longrightarrow \quad J_{IG}(a) = \frac{1}{2} \ln \left| I_m + A_C \cdot \Sigma_k^{M,C} \cdot A_C^T \right|$$

- C is set of variables involved in A
- A_C is constructed from A by removing all zero columns - $\Sigma_k^{M,C}$ is prior marginal covariance of C

Only few entries from the prior covariance are actually required!

Re-use of Calculation

Key observations:

– Given $\Sigma_k^{M,C}$, calculation of action impact depends only on action Jacobian:

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + A_C \cdot \Sigma_k^{M,C} \cdot A_C^T \right|$$

- Different candidate actions often share many involved variables

Re-use calculations:

- Combine variables involved in all candidate actions into set C_{All}
- Perform <u>one-time calculation</u> of $\Sigma_k^{M,C_{All}}$
 - Can be calculated efficiently from square root information matrix
 - Depends on state dimension *n*
- Calculate $J_{IG}(a)$ for each action, using $\Sigma_k^{M,C_{All}}$

Focused Decision Making

• Posterior entropy over focused variables $X_{k+L}^F \subseteq X_{k+L}$

$$J_{\mathcal{H}}^{F}(a) = \mathcal{H}\left(X_{k+L}^{F}\right) = \frac{n_{F}}{2}\left(1 + \ln\left(2\pi\right)\right) + \frac{1}{2}\ln\left|\Sigma_{k+L}^{M,F}\right|$$

Applying IG and matrix determinant lemma of Schur complement:

$$J_{IG}^{F}(a) = \frac{1}{2} \ln \frac{\left|I_{m} + A \cdot \Sigma_{k} \cdot A^{T}\right|}{\left|I_{m} + A_{R} \cdot \Sigma_{k}^{R|F} \cdot A_{R}^{T}\right|}$$

$$A_R$$
 – columns of A related to X_k^R
 $\sum_k^{R|F}$ – is inverse of Λ_k^R

Application to Sensor Deployment Problems

Significant time reduction in Unfocused case

Application to Sensor Deployment Problems

Application to Measurement Selection (in SLAM Context)

Conclusions

Decision making via matrix determinant lemma and calculation re-use

- Exact (no approximations applied)
- General (any measurement model)
- Per-candidate complexity does not depend on n
- Unfocused and Focused problem formulations
- Applicable to Sensor Deployment, Measurement Selection, Graph Sparsification, and many more..
- Multiple extensions to be investigated

