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and Perception Lab

Information-Theoretic BSP - Problem Types

= Unfocused BSP — reduce uncertainty of all variables

T (@) =dim.const ; O(N?)complexity!l

= Focused BSP - reduce uncertainty of a subset of variables

Ji(a)=H (X, ,)=dimconst + %111

Requires Schur complement. Even more expensive!!!

= Existing approaches: per each action propagate posterior belief,
compute determinants of huge matrices

= Expensive for high-dimensional state spaces!

Addressed Setting — Augmented BSP
= Candidate actions may introduce new factors and new state variables

(e.g. new robot poses)

= Propagation of posterior information matrix:
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= More complex scenario w.r.t not-augmented case where action
introduces only new factors (handled in previous work)
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Problem Formulation

= Consider state vector X; € R" attime ¢,
e.g. history of robot poses, landmarks, etc.
7 can be huge (> 10000), for example..

= Consider its belief 5[.X,1=N (X;,Z,)
= Consider candidate actions A = {a1,az,...,ax}
= Each candidate a; provides different posterior belief 5[X,., |a ]

= The goal is to choose optimal action according to some objective:

a’ =argmin J(a)
aeA

= Example from mobile robotics domain:

— Given action @ =ug._; and new observations Z.1.x+1,, future belief is:
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(Image is taken from Indelman15ijrr)
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motion model measurement

» L is planning horizon model
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Key Ideas

= Develop and Use Augmented Matrix Determinant Lemma (AMDL)
— Anew variant of known Matrix Determinant Lemma for augmented matrices

= Use Information Gain (IG)
— Mathematically identical to posterior entropy
— Usually can be calculated more efficiently than posterior entropy

= Exploit Sparsity of Jacobian matrix of new factors

= Re-use of calculations between actions

Contributions

= Computationally-efficient information-theoretic BSP approach
— Without posterior propagation for each candidate action
— Avoid calculating determinants of large matrices
— Calculation Re-use

= Per-action evaluation does not depend on state dimension

= Exact and general solution

= Approach addresses both unfocused and focused cases
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Problem Formulation - Focused setting:
= This work — information-theoretic objectives - Consider focused variables X', < X,.,

— Its posterior marginal covariance: |5

(Differential) Entropy — measures uncertainty of estimation

k+L \Al~ L
H(X) =~ p(x)-log p(x)dx - %o
) - _x P(x)-log p(x) Cpr = A;]+L) """"" > E
BSP Information term (Unfocused): . < HE |
. 0 . “Ak+L
— (Differential) Entropy: J,(@)=H (b[Xk-L]) H =
a’ =argminJ, (a)

agA

— Measure the posterior information (entropy, IG) for these variables:

- Information Gain: Jio(@=HEX,)-HEX,, )

JE@) =H (X[ ,) =dim.const + %m 7y
a =argmaxJ ;(a)
acA

MF
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MLF
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Jig@=HX)-HX,) = Eln
— Mathematically identical

— Each can be computationally preferable in different scenarios

Jacobian Structure Sparsity
= Assuming Gaussian Distributions

= Matrix 4 is Jacobian of new factors, with dimension mx N
= Its rows represent new factors (measurements)

= Its columns represent state variables (old and new)

= Objectives for Unfocused BSP:

1A

J,, (@) = dim.const —% , Jg(a)=dim.const+ Eln

= Only variables involved in new factors will have non-zero columns in 4

A, = Typically m and number of involved variables is very small

O(N?)complexity!!!

Factors

Appropriate rows in Action Jacobian
= Where 6)/;1\/)(\ y %o X.
o . ) j i-1 X
— A, is prior information matrix \_I z A y
P - . . fi: H =
- A, =A% +A4" -4 is posterior information matrix
Action Jacobian fy: - -

_ f2
)
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Augmented Matrix Determinant Lemma (AMDL) Calculation Re-use Focused Setting X/, c X
. 1 1 - 1 = Consider state partitioning: e
= Augmented case (new variables were introduced by action): J i (a) = dim.const + 5111|P|+51D|Dr -P*-D|, P=1 +C"-ZF -(C") ! partitioning o P .
A i focuse wsed
Ag Ak:«z Apsr « Note: ~state Xeiy auv X-l,p‘ X1V QB  (new variabls)
Ay =A% +4"-4 » We can avoid posterior propagation and determinants of large matrices v -
» Calculation of action impact does not depend on N c1Gof X 1 ¢ 1 . . . .
1 ~L* = — P - - LS.
» Still, we need Z;{ kot J,G(a)—z(]n‘P|+ln|D P D| In|s| 1n|D s D|)
= Partitioning of: » Different candidate actions often share many involved variables X! P=1 +C'.3* _(CI)T S=1 +CW.xx"F .(CI.U)T
ot involved involved 4 “im k ’ k
- state Xyir, /XJI ! Xll ! (new \‘z.‘.m\\ "
- matrix / c! c!
A ‘ = We propose re-use of calculation:
c
» Combine variables involved in all candidate actions into set X 4; C X = Calculation complexity depends on 71, dim(XI) and dim(Y)
= We developed AMDL: A =|A|p"-a"-D| A=I,+C-Z,-C" » Perform one-time calculation of i (depends on N) = Given E;{' and wa'F, does not depend on state dimension N
|Ak| " » Calculate J, () for each action, using =«
Unfocused IG - Final Expression Focused Setting X/, cY

X

= Consider state partitioning: (o v X

iables)

= Consider state partitioning:

(new variables)
not involved involved

el e v Focused Setting Sstate Xy, X1 X yU @R

not invol

- state Xsr X
c D
. Ei " . 1 1 = Di . = Posterior Entropy of X/ ,:  *(2)=di Loty -p-p¢| - Linlpr . p-
Final expression for IG: J;(a) = dim.const +Eln| P| +Eln| pT.p. D| Different cans. i Py k-1t () dtm.const+21n|(D )y -P*-DY| 21n|D PD|
, 1. X".*L c Y, for example robot last pose P=1 +C -2{/ (C'Y
P=1 +C'-ZF (C') 2. X}, X, forexample mapped landmarks
3. X/, c{xuy} hardtofind example
. . = Calculation complexity depends on m, dim(X") and dim(Y’
= Calculation complexity depends on m, dim(X') and dim(Y) aled IX: piextly dep Atm( i ) im(Y)
" x! . . = We handle first 2 cases = Given E,‘ , does not depend on state dimension N
= Given Zk , does not depend on state dimension ¥ ) i i X
= Only few entries from the prior covariance are actually required!
= Only few entries from the prior covariance are actually required! « Very cheap

= Very cheap
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Application to Autonomous Navigation in Unknown Environment Application to Autonomous Navigation in Unknown Environment
= Significant time reduction in Focused case — focus on robot's last pose x, ., - IS'Qg'ﬁcal:‘t time reduction in Focused case — focus on mapped
andmarks
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— Exact (identical to original objectives)
— General (any measurement model)
— Per-candidate complexity does not depend on state dimension

Unfocused and Focused problem formulations

— Applicable to Sensor Deployment, Measurement Selection, Graph Sparsification,
Active SLAM and many more..




