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Abstract

We develop a computationally efficient approach for evaluating the information-theoretic term within belief space plan-

ning (BSP), where during belief propagation the state vector can be constant or augmented. We consider both unfocused

and focused problem settings, whereas uncertainty reduction of the entire system or only of chosen variables is of interest,

respectively. State-of-the-art approaches typically propagate the belief state, for each candidate action, through calcula-

tion of the posterior information (or covariance) matrix and subsequently compute its determinant (required for entropy).

In contrast, our approach reduces runtime complexity by avoiding these calculations. We formulate the problem in terms of

factor graphs and show that belief propagation is not needed, requiring instead a one-time calculation that depends on (the

increasing with time) state dimensionality, and per-candidate calculations that are independent of the latter. To that end,

we develop an augmented version of the matrix determinant lemma, and show that computations can be re-used when eval-

uating impact of different candidate actions. These two key ingredients and the factor graph representation of the problem

result in a computationally efficient (augmented) BSP approach that accounts for different sources of uncertainty and can

be used with various sensing modalities. We examine the unfocused and focused instances of our approach, and compare it

with the state of the art, in simulation and using real-world data, considering problems such as autonomous navigation in

unknown environments, measurement selection and sensor deployment. We show that our approach significantly reduces

running time without any compromise in performance.
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1. Introduction

Decision making under uncertainty and belief space plan-

ning (BSP) are fundamental problems in robotics and arti-

ficial intelligence, with applications including autonomous

driving, surveillance, sensor deployment, object manipu-

lation, and active simultaneous localization and mapping

(SLAM). The goal is to autonomously determine the best

actions according to a specified objective function, given

the current belief about random variables of interest that

could represent, for example, robot poses, a tracked tar-

get, or mapped environment, while accounting for different

sources of uncertainty.

Since the true state of interest is typically unknown and

only partially observable through acquired measurements,

it can only be represented through a probability distribution

conditioned on available data. BSP and decision-making

approaches reason how this distribution (the belief ) evolves

as a result of candidate actions and future expected obser-

vations. Such a problem is an instantiation of a partially

observable Markov decision process (POMDP), while cal-

culating an optimal solution of a POMDP was proven to be

computationally intractable (Kaelbling et al., 1998) for all

but the smallest problems due to curse of history and curse

of dimensionality. Recent research has therefore focused on

the development of sub-optimal approaches that trade-off

optimality and runtime complexity. These approaches can

be classified into those that discretize the action, state, and

measurement spaces, and those that operate over continuous

spaces.
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Approaches from the former class include point-based
value iteration methods (Pineau et al., 2006), simula-
tionbased (Stachniss et al., 2005), and sampling-based
approaches (Agha-Mohammadi et al., 2014; Prentice and
Roy, 2009). On the other hand, approaches that avoid dis-
cretization are often termed direct trajectory optimization
methods (e.g. Indelman et al., 2015; Patil et al., 2014;
Platt et al., 2010; Van Den Berg et al., 2012; Walls et
al., 2015); these approaches typically calculate a locally
optimal solution from a given nominal solution.

Decision making under uncertainty, also sometimes
referred to as active inference, and BSP can be for-
mulated as selecting an optimal action from a set of
candidates, based on some cost function. In information-
based decision making, the cost function typically con-
tains terms that evaluate the expected posterior uncertainty
upon action execution, with commonly used costs includ-
ing (conditional) entropy and mutual information (MI).
Thus, for Gaussian distributions the corresponding cal-
culations typically involve calculating a determinant of a
posteriori covariance (information) matrices and, more-
over, these calculations are to be performed for each
candidate action.

Decision making and BSP become even more chal-
lenging problems when considering high-dimensional state
spaces. Such a setup is common in robotics, for example
in the context of BSP in uncertain environments, active
SLAM, sensor deployment, graph reduction, and graph
sparsification. In particular, calculating a determinant of
information (covariance) matrix for an n-dimensional state
is in general O(n3), and is smaller for sparse matrices as in
SLAM problems (Bai et al., 1996).

Moreover, state-of-the-art approaches typically perform
these calculations from scratch for each candidate action.
For example, in the context of active SLAM, state-of-
the-art BSP approaches first calculate the posterior belief
within the planning horizon, and then use that belief to
evaluate the objective function, which typically includes an
information-theoretic term (Huang et al., 2005; Indelman
et al., 2015; Kim and Eustice, 2014; Valencia et al., 2013).
These approaches then determine the best action by per-
forming the mentioned calculations for each action from
a given set of candidate actions, or by local search using
dynamic programming or gradient descent (for continuous
setting).

Sensor deployment is another example of decision mak-
ing in high-dimensional state spaces. The basic formula-
tion of the problem is to determine locations to deploy
the sensors such that some metric can be measured most
accurately through the entire area (e.g. temperature). The
problem can also be viewed as selecting the optimal action
from the set of candidate actions (available locations) and
the objective function usually contains a term of uncer-
tainty, such as the entropy of a posterior system (Krause
et al., 2008). Also here, state-of-the-art approaches evaluate
a determinant over large posterior covariance (information)

matrices for each candidate action, and do so from scratch
(Zimmerman, 2006; Zhu and Stein, 2006).

A similar situation also arises in measurement selection
(Carlone et al., 2014; Davison, 2005) and graph pruning
(Carlevaris-Bianco et al., 2014; Huang et al., 2012; Mazu-
ran et al., 2014; Vial et al., 2011) in the context of long-term
autonomy in SLAM. In the former case, the main idea is to
determine the most informative measurements (e.g. image
features) given measurements provided by robot sensors,
thereby discarding uninformative and redundant informa-
tion. Such a process typically involves reasoning about MI
(see e.g. Chli and Davison, 2009; Davison, 2005), for each
candidate selection. Similarly, graph pruning and sparsifi-
cation can be considered as instances of decision making
in high-dimensional state spaces (Carlevaris-Bianco et al.,
2014; Huang et al., 2012), with decision corresponding to
determining what nodes to marginalize out (Ila et al., 2010;
Kretzschmar and Stachniss, 2012), and avoiding the result-
ing fill-in in an information matrix by resorting to sparse
approximations of the latter (Carlevaris-Bianco et al., 2014;
Huang et al., 2012; Mazuran et al., 2014; Vial et al., 2011).
Also here, existing approaches typically involve calcula-
tion of the determinant of large matrices for each candidate
action.

In this paper we develop a computationally efficient
and exact approach for decision making and BSP in high-
dimensional state spaces that addresses the aforementioned
challenges. The key idea is to use the (augmented) general
matrix determinant lemma to calculate action impact with
complexity independent of state dimensionality n, while re-
using calculations between evaluating impact for different
candidate actions. Our approach supports general observa-
tion and motion models, and non-myopic planning, and is
thus applicable to a wide range of applications such as those
mentioned above, where fast decision making and BSP in
high-dimensional state spaces is required.

Although many particular domains can be specified as
decision-making and BSP problems, they all can be clas-
sified into two main categories, one where state vector is
fixed during belief propagation and another where the state
vector is augmented with new variables. Sensor deployment
is an example of the first case, while active SLAM, where
future robot poses are introduced into the state, is an exam-
ple of the second case. Conceptually the first category is a
particular case of the second, but as we will see both will
require different solutions. Therefore, in order to differenti-
ate between these two categories, in this paper we consider
the first category (fixed-state) as a BSP problem, and the
second category (augmented-state) as an augmented BSP
problem.

Moreover, we show the proposed concept is appli-
cable also to active focused inference. Unlike the
unfocused case discussed thus far, active focused
inference approaches aim to reduce the uncertainty over
only a predefined set of the variables. The two problems
can have significantly different optimal actions, with an



Dmitry Kopitkov et al. 3

optimal solution for the unfocused case potentially per-
forming badly for the focused setup, and vice versa (see
e.g. Levine and How, 2013). While the set of focused
variables can be small, exact state-of-the-art approaches
calculate the marginal posterior covariance (information)
matrix, for each action, which involves a computationally
expensive Schur complement operation. For example, Mu
et al. (2015) calculate posterior covariance matrix per each
measurement and then use the selection matrix in order to
obtain the marginal of the focused set. Levine and How
(2013) developed an approach that determines MI between
focused and unfocused variables through message-
passing algorithms on Gaussian graphs but their approach
is limited to only graphs with unique paths between the
relevant variables.

In contrast, we provide a novel way to calculate posterior
entropy of focused variables, which is fast, simple, and
general; yet, it does not require calculation of a posterior
covariance matrix. In combination with our re-use algo-
rithm, it provides a focused decision-making solver that
is significantly faster compared with standard approaches.

Calculating the posterior information matrix in aug-
mented BSP problems involves augmenting an appropri-
ate prior information matrix with zero rows and columns,
i.e. zero padding, and then adding new information due to
candidate action (see Figure 1). While the general matrix
determinant lemma is an essential part of our approach,
unfortunately it is not applicable to the mentioned aug-
mented prior information matrix since the latter is singular
(even though the posterior information matrix is full rank).
In this paper, we develop a new variant of the matrix deter-
minant lemma, called the augmented matrix determinant
lemma (AMDL), that addresses the general augmentation
of a future state vector. Based on AMDL, we then develop
a augmented BSP approach, considering both unfocused
and focused cases.

Finally, there is also a relation to the recently intro-
duced concept of decision making in a conservative sparse
information space (Indelman, 2015b, 2016). In particular,
considering unary observation models (involving only one
variable) and greedy decision making, it was shown that
appropriately dropping all correlation terms and remain-
ing only with a diagonal covariance (information) matrix
does not sacrifice performance while significantly reduc-
ing computational complexity. While the approach pre-
sented herein confirms this concept for the case of unary
observation models, our approach addresses a general non-
myopic decision-making problem, with arbitrary observa-
tion and motion models. Moreover, compared with state-
of-the-art approaches, our approach significantly reduces
runtime while providing identical decisions.

To summarize, our main contributions in this paper are
as follows: (a) we formulate (augmented) BSP in terms of
factor graphs, which allow us to see the problem in a more
intuitive and simple way; (b) we develop an augmented
version of matrix determinant lemma (AMDL), where the

subject matrix is first augmented by zero rows/columns and
only then new information is introduced; (c) we develop
an approach for a non-myopic focused and unfocused
(augmented) BSP in high-dimensional state spaces that uses
the (augmented) matrix determinant lemma to avoid cal-
culating determinants of large matrices, with per-candidate
complexity independent of state dimension; (d) we show
how calculations can be re-used when evaluating impacts
of different candidate actions; we integrate the calcula-
tions re-use concept and AMDL into a general and highly
efficient BSP solver, that does not involve explicit calcu-
lation of posterior belief evolution for different candidate
actions, naming this approach rAMDL; (e) we introduce an
even more efficient rAMDL variant specifically addressing
a sensor deployment problem.

This paper is an extension of the work presented in
Kopitkov and Indelman (2016, 2017). As a further contri-
bution, in this manuscript we show the problem of (aug-
mented) BSP can be formulated through factor graphs
(Kschischang et al., 2001), thereby providing insights into
the sparsity patterns of Jacobian matrices that correspond to
future posterior beliefs. We exploit the sparsity of the aug-
mented BSP problem and provide a solution for this case
which outperforms our previous approach from Kopitkov
and Indelman (2017). In addition, we present an improved
approach, compared with Kopitkov and Indelman (2016),
to solve the non-augmented BSP problem. Moreover, we
develop a more efficient variant of our approach, specifi-
cally addressing the sensor deployment problem (Section
4.1), and show in detail how our augmented BSP method
can be applied particularly to autonomous navigation in
unknown environments and active SLAM (Section 4.2).
This paper also includes an extensive experimental eval-
uation using synthetic and real-world data (Section 7),
with the aim of comparing the time performance of all
the approaches proposed herein in a variety of challeng-
ing scenarios, and benchmarking against the state of the
art. Finally, here we attempt to give the reader some more
insights on the problem, discussing theoretical interpreta-
tion of information gain (IG) metric, relation to MI (Davi-
son, 2005; Kaess and Dellaert, 2009) (Section 3.5), and
practical remarks regarding the proposed approach.

This paper is organized as follows. Section 2 introduces
the concepts of BSP, and gives a formal statement of the
problem. Section 3 describes our approach rAMDL for gen-
eral formulation. Section 4 tailors the approach for spe-
cific domains, providing even more efficient solutions to a
number of them. In Section 5 standard approaches are dis-
cussed as the main state-of-the-art alternatives to rAMDL.
Further, in Section 6 we analyze the runtime complexity
of approaches presented herein and their alternatives. Sec-
tion 7 presents experimental results, evaluating the pro-
posed approach and comparing it against the mentioned
state of the art. Conclusions are drawn in Section 8. To
improve readability, proofs of several lemmas are given in
the Appendix.
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Fig. 1. Illustration of the construction of �k+L for a given candi-

date action in the augmented BSP case. First, �
Aug
k+L is created by

adding n′ zero rows and columns. Then, the new information of

belief is added through �k+L = �
Aug
k+L + AT A.

2. Notation and problem definition

In this paper, we develop computationally efficient
approaches for BSP. As evaluating action impact involves
inference over an appropriate posterior, we first formulate
the corresponding inference problem.

Consider a high-dimensional problem-specific state vec-
tor Xk ∈ R

n at time tk . In different applications the state
Xk can represent the robot configuration and poses (option-
ally for whole history), environment-related variables, or
any other variables to be estimated. In addition, consider
factors Fi = {f 1

i (X 1
i ) , . . . , f ni

i (X ni
i ) } that were added at time

0 ≤ ti ≤ tk , where each factor f j
i (X j

i ) represents a specific
measurement model, motion model or prior, and as such
involves appropriate state variables X j

i ⊆ Xi.
The joint probability distribution function (pdf) can then

be written as

P( Xk|Hk)∝
k∏

i=0

ni∏
j=1

f j
i (X j

i ) , (1)

where Hk is history that contains all the information gath-
ered until time tk (measurements, controls, etc.).

The inference problem can be naturally represented by a
factor graph (Kschischang et al., 2001), which is a bipartite
graph G =(F , �, E) with two node types: variables nodes
θi ∈ � and factor nodes fi ∈ F (see e.g. Figures 2 and
3). Variable nodes represent state variables that need to be
estimated, while factor nodes express different constraints
between different variables. Each factor node is connected
by edges eij ∈ E to variable nodes that are involved in
the corresponding constraint. Such a formulation is general
and can be used to represent numerous inference problems
(e.g. SLAM), while exploiting sparsity. Furthermore, com-
putationally efficient approaches, based on such formula-
tion and exploiting its natural sparsity, have been developed
recently (Kaess et al., 2012, 2008).

As is common in many inference problems, we will
assume that all factors have a Gaussian form:

f j
i (X j

i )∝ exp(−1

2
‖hj

i(X
j
i )−rj

i‖2

�
j
i
) , (2)

with appropriate model

rj
i = hj

i(X
j
i )+υ

j
i , υ

j
i ∼ N (0, �j

i ) , (3)

where hj
i is a known nonlinear function, υ

j
i is zero-mean

Gaussian noise, and rj
i is the expected value of hj

i (rj
i =

E[hj
i(X

j
i ) ]). Such a factor representation is a general way

to express information about the state. In particular, it can
represent a measurement model, in which case hj

i is the
observation model and rj

i and υ
j
i are the actual measurement

z and measurement noise, respectively. Similarly, it can also
represent a motion model (see Section 4.2). A maximum
a posteriori (MAP) inference can be calculated efficiently
(see e.g. Kaess et al., 2012) such that

P( Xk|Hk)= N (X ∗k , �k) , (4)

where X ∗k and �k are the mean vector and covariance
matrix, respectively.

We shall refer to the posterior P( Xk|Hk) as the belief and
write

b[Xk]
.= P( Xk|Hk) . (5)

In the context of BSP, we typically reason about the
evolution of future beliefs b[Xk+l] at different look-ahead
steps l as a result of different candidate actions. A particu-
lar candidate action can provide unique information (future
observations and controls) in a form of newly introduced
factors (see Figures 2 and 3) and can be more and less ben-
eficial for specific tasks such as reducing future uncertainty.
For example, in a SLAM application, choosing a trajectory
that is close to the mapped landmarks (see Figure 3) will
reduce uncertainty because of loop closures. Furthermore,
conceptually each candidate action can introduce different
additional state variables into the future state vector, as in
the case of the smoothing SLAM formulation in Figure
3 where the state is augmented by a (various) number of
future robot poses.

Therefore, in order to reason about the belief b[Xk+l], first
it needs to be carefully modeled. More specifically, let us
focus on a non-myopic candidate action a

.= {ā1, . . . , āL}
that is a sequence of myopic actions with planning hori-
zon L. Each action āl can be represented by new factors
Fk+l = {f 1

k+l(X
1
k+l) , . . . , f

nk+l
k+l (X

nk+l
k+l ) } and, possibly, new

state variables X k+l
new (1 ≤ l ≤ L) that are acquired/added

while applying āl. Similar to (1), the future belief b[Xk+L]
can be explicitly written as

b[Xk+L] ∝ b[Xk]
k+L∏

l=k+1

nl∏
j=1

f j
l (X j

l ) , (6)

where Xk+L
.= {Xk ∪ X k+1

new ∪ · · · ∪ X k+L
new } contains old

and new state variables. For example, in Figure 3 at each
future time step k + l, a new robot pose xk+l is added
to the state; new motion model factors {f7, f8, f9} and a
new observation model factor are also introduced. Simi-
lar expressions can be also written for any other lookahead
step l. Observe in the above belief (6) that the future fac-
tors depend on future observations, whose actual values
are unknown.



Dmitry Kopitkov et al. 5

Fig. 2. Illustration of belief propagation in non-augmented BSP SLAM scenario. Prior belief b[Xk] and posterior belief b[Xk+L] are
represented through factor graphs, with state vector being Xk = Xk+L = {x1, x2, l1, l2, l3} where xi and li denote robot poses and
landmarks, respectively. Factor f0 is prior on the robot’s initial pose x1; factors {f2, f3, f4} are priors on landmark positions; factors
between robot poses represent motion models; factors between pose and landmark represent observation models. Candidate action a
introduces new measurements that are represented by new factors {f5, f6, f7}.

Fig. 3. Illustration of belief propagation in the augmented BSP SLAM scenario. Prior belief b[Xk] and posterior belief b[Xk+L] are
represented through factor graphs, with appropriate state vectors being Xk = {x1, x2, x3, l1, l2} and Xk+L = {x1, x2, x3, l1, l2, x4, x5, x6},
where xi and li represent robot poses and landmarks, respectively. Factor f0 is prior on robot’s initial pose x1; factors {f2, f3, f4} are priors
on landmark positions; factors between robot poses represent motion models; factors between pose and landmark represent observation
models. Candidate action a makes the robot re-observe landmark l1; in order to do so it introduces new robot poses {x4, x5, x6} and new
factors {f7, f8, f9, f10}.

It is important to note that, according to our definition
from Section 1, new variables are added only in the aug-
mented setting of the BSP problem, e.g. in the active SLAM
context in Figure 3 where new robot poses are introduced by
a candidate action. On the other hand, in a non-augmented
BSP setting, the states Xk+L and Xk are identical, while the
beliefs b[Xk+L] and b[Xk] are still conditioned on different
data. For example, in sensor deployment and measurement
selection (see Figure 2) problems, the candidate actions
are all possible subsets of sensor locations and of acquired
observations, respectively. Here, when applying a candidate
action, new information about Xk is brought in, but the state
vector itself is unaltered.

In contrast, in the augmented BSP problem new variables
are always introduced. In particular, in both smoothing and
filtering formulations of SLAM, candidate actions (trajecto-
ries) will introduce both new information (future measure-
ments) and also new variables (future robot poses). While
in filtering formulation old pose variables are marginalized
out, the smoothing formulation instead keeps past and cur-
rent robot poses and newly mapped landmarks in the state
vector (see Figure 3), which is beneficial for better estima-
tion accuracy and sparsity. As such, the smoothing formu-
lation is an excellent example for augmented BSP problem,

whereas the filtering formulation can be considered as a
focused BSP scenario as described below.

As such the non-augmented BSP setting can be seen as
a special case of augmented BSP. In order to use similar
notation for both problems, however, in this paper we will
consider X k+l

new to be an empty set for the former case and
non-empty for augmented BSP.

It is not difficult to show (see e.g. Indelman et al., 2015)
that in the case of non-augmented BSP the posterior infor-
mation matrix of the belief b[Xk+L], which is the inverse of
belief ’s covariance matrix, is given by

�k+L = �k +
k+L∑

l=k+1

nl∑
j=1

(Hj
l )

T ·(�j
l )
−1 ·Hj

l , (7)

where �k is the prior information matrix and Hj
l

.= �xhj
l

are the Jacobian matrices of hj
l functions (see (2)) for all the

new factor terms in (6).
As was already mentioned, in the case of augmented BSP,

the joint state Xk+L includes also new variables (with respect
to the current state Xk). Considering Xk ∈ R

n, first, new n′

variables are introduced into future state vector Xk+L ∈ R
N
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with N
.= n + n′, and then new factors involving appropri-

ate variables from Xk+L are added to form a posterior belief
b[Xk+L], as shown in (6).

Consequently, in the augmented BSP scenario the pos-
terior information matrix of belief b[Xk+L], i.e. �k+L, can
be constructed by first augmenting the current informa-
tion matrix �k with n′ zero rows and columns to obtain
�

Aug
k+L ∈ R

N×N , and thereafter adding new information to
it, as illustrated in Figure 1 (see e.g. Indelman et al., 2015):

�k+L = �
Aug
k+L +

k+L∑
l=k+1

nl∑
j=1

(Hj
l )

T ·(�j
l )
−1 ·Hj

l (8)

where Hl
.= �xhj

l are augmented Jacobian matrices of all
new factors in (6), linearized about the current estimate of
Xk and about initial values of newly introduced variables.

After stacking all new Jacobians in (7) and (8) into a
single matrix Ã, and combining all noise matrices into
block-diagonal �, we respectively obtain

�k+L = �k + ÃT ·�−1 · Ã = �k + AT · A (9)

�k+L = �
Aug
k+L + ÃT ·�−1 · Ã = �

Aug
k+L + AT · A, (10)

where
A

.= �−
1
2 · Ã (11)

is an m × N matrix that represents both Jacobians and
noise covariances of all new factor terms in (6). The above
equations can be considered as a single iteration of Gauss–
Newton optimization and, similar to prior work (Indelman
et al., 2015; Kim and Eustice, 2014; Van Den Berg et
al., 2012), we take a maximum-likelihood assumption by
assuming they sufficiently capture the impact of candidate
action. Under this assumption, the posterior information
matrix �k+L is independent of (unknown) future observa-
tions (Indelman et al., 2015). One can further incorporate
reasoning if a future measurement will indeed be acquired
(Chaves et al., 2015; Indelman et al., 2015; Walls et al.,
2015); however, this is outside the scope of this paper.

Each block row of matrix A represents a single factor
from new terms in (6) and has a sparse structure. Only a
limited number of its sub-blocks is non-zero, i.e. sub-blocks
that correspond to the involved variables X j

l in the relevant

factor f j
l (X j

l ).
For notational convenience, we define the set of non-

myopic candidate actions by A = {a1, a2, . . .} with appro-
priate Jacobian matrices �A = {A1, A2, . . .}. Although the
planning horizon is not explicitly shown, each a ∈ A can
represent a future belief b[Xk+L] for different number of
lookahead steps L.

A general objective function in decision making/BSP can
be written as (Indelman et al., 2015)

J (a)
.= E

Zk+1:k+L

{ L−1∑
l=0

cl(b[Xk+l], uk+l)+cL(b[Xk+L])

}
,

(12)

with L immediate cost functions cl, for each look-ahead
step, and one cost function for terminal future belief cL.
Each such cost function can include a number of differ-
ent terms related to aspects such as information measure
of future belief, distance to goal, and energy spent on con-
trol. Arguably, evaluating the information terms involves
the heaviest calculations of J .

Thus, in this paper, we focus only on the information-
theoretic term of terminal belief b[Xk+L], and consider dif-
ferential entropy H (further referred to just as entropy) and
IG as the cost functions. Both can measure the amount of
information of future belief b[Xk+L], and will lead to the
same optimal action. Yet, calculation of one is sometimes
more efficient than the other, as will be shown in Section 3.
Therefore, we consider two objective functions:

JH(a)
.= H (b[Xk+L]) , (13)

JIG(a)
.= H(b[Xk])−H( b[Xk+L]) , (14)

where the information matrix �k+L, that corresponds to
the belief b[Xk+L], is a function of candidate a’s Jacobian
matrix A, see (9) and (10). The optimal candidate a∗, which
produces the most certain future belief, is then given by
a∗ = arg mina∈A JH(a), or by a∗ = arg maxa∈A JIG(a) with
both being mathematically identical.

In particular, for Gaussian distributions, entropy is a
function of the determinant of a posterior information
(covariance) matrix, i.e. H (b[Xk+L]) ≡ H (�k+L), and the
objective functions can be expressed as

JH(a)= n · γ
2
− 1

2
ln
∣∣�k+L

∣∣ , JIG(a)= 1

2
ln

∣∣�k+L

∣∣∣∣�k

∣∣
(15)

for BSP, and

JH(a)= N · γ
2
− 1

2
ln
∣∣�k+L

∣∣ , JIG(a)= n′ · γ
2
+ 1

2
ln

∣∣�k+L

∣∣∣∣�k

∣∣
(16)

for augmented BSP, where γ
.= 1 + ln(2π ), and �k+L can

be calculated according to (9) and (10). Thus, evaluating J
requires determinant calculation of an n × n (or N × N)
matrix, which is in general O(n3), per candidate action a ∈
A. In many robotics applications, state dimensionality can
be huge and even increasing with time (e.g. SLAM), and
straightforward calculation of the above equations makes
real-time planning hardly possible.

So far, the exposition has referred to unfocused BSP
problems, where the action impact is calculated by consid-
ering all the random variables in the system, i.e. the entire
state vector. However, as will be shown in the following, our
approach is applicable also to focused BSP problems.
Focused BSP, in both augmented and non-augmented

cases, is another important problem, where in contrast to
the former case, only a subset of variables is of interest (see
e.g. Krause et al., 2008; Levine and How, 2013; Mu et al.,
2015). For example, one can look for an action that reduces
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the uncertainty of the robot’s final pose. The complexity of
such a problem is much higher and proposed techniques
succeeded to solve it in O(kn3) (Krause et al., 2008; Levine
and How, 2013) with k being the size of candidate actions
set, and in O(ñ4) (Mu et al., 2015) with ñ being the size of
involved clique within a Markov random field representing
the system.

Considering posterior entropy over the focused vari-
ables X F

k+L ⊆ Xk+L we can write

JF
H(a)= H( X F

k+L)= nF · γ
2
+ 1

2
ln
∣∣�M ,F

k+L

∣∣ , (17)

where nF is the dimensionality of the state X F
k+L, and �

M ,F
k+L

is the posterior marginal covariance of X F
k+L (suffix M for

marginal), calculated by simply retrieving appropriate parts
of posterior covariance matrix �k+L = �−1

k+L.
Solving the above problem in a straightforward manner

involves O( N3) operations for each candidate action, where
N = n + n′ is the dimension of the posterior system. In
the following sections we develop a computationally more
efficient approach that addresses both unfocused and
focused (augmented) BSP problems. As will be seen,
this approach naturally supports non-myopic actions and
arbitrary factor models hj

i, and it is, in particular, attractive
to BSP in high-dimensional state spaces.

In both the developed approach and the alternative meth-
ods described in Section 5, we are making two assump-
tions. First, we assume that factors have statistical model
with Gaussian white noise (see (3)). Second, we take the
maximum-likelihood assumption (Platt et al., 2010) and
consider a single Gauss–Newton iteration (see (9) and (10))
is sufficient to capture information impact of a candidate
action.

3. Approach

Our approach, rAMDL, utilizes the well-known matrix
determinant lemma (Harville, 1998) and re-use of calcula-
tions to significantly reduce the computation of the impact
of a candidate action, as defined in Section 2, for both aug-
mented and non-augmented cases of the BSP problem. In
Section 3.1 we reformulate these problems in terms of fac-
tor graphs that will allow us to see another, more simplified,
picture of the BSP problem. In Section 3.2.1 we develop a
novel way to calculate the information-theoretic term for
unfocused non-augmented BSP, and then extend it in
Section 3.2.2 to the focused case. In addition, in order
to significantly reduce computational complexity of the
augmented BSP problem, as defined in Section 2, in Sec-
tion 3.3.1 we extend the matrix determinant lemma for
the matrix augmentation case. We then discuss in Sec-
tions 3.3.2–3.3.3.2 how this extension can be used within
unfocused and focused augmented BSP. The con-
clusion from Sections 3.2–3.3 will be that in all investi-
gated types of BSP problem, the information impact of
candidate action can be calculated efficiently given specific

prior covariance entries. Further, in Section 3.4 we discuss
another key component of rAMDL: the re-use of covariance
calculations, which exploits the fact that many calculations
can be shared among different candidate actions. Finally, in
Section 3.5 we describe the connection between our tech-
nique and the MI approach from Davison (2005) and Kaess
and Dellaert (2009), and discuss an interesting conceptual
meaning of the IG metric.

3.1. BSP as a factor graph

In the following we show that, similarly to the inference
problem, the BSP problem can also be formulated in terms
of factor graphs. The belief at time tk , b[Xk] can be repre-
sented by a factor graph Gk =(Fk , Xk , Ek), where with little
abuse of notation, we use Xk to denote the estimated vari-
ables, Fk is the set of all factors acquired until time tk , and
where Ek encodes connectivity according to the variables
X j

i involved in each factor f j
i , as defined in (2). The future

belief b[Xk+L] is constructed by introducing new variables
and by adding new factors to the belief b[Xk], as was shown
in Section 2. Therefore, it can be represented by a factor
graph which is an augmentation of the factor graph Gk , as
will be shown below.

More specifically, in the case of non-augmented BSP, let
F(a)= {f 1, . . . , f na} denote all the new factors from (6)
introduced by action a, with na being the number of such
factors. This abstracts the explicit time notations of factors
inside (6), which in turn can be seen as unimportant for
the solution of the BSP problem. Then the factor graph of
b[Xk+L] is the prior factor graph Gk with newly introduced
factor nodes F(a) connected to appropriate variable nodes
(see Figure 4 for illustration). Thus, it can be denoted by
Gk+L(a):

Gk+L(a)=(Fk+L, Xk+L, Ek+L) , (18)

where Fk+L = {Fk ,F(a) }, Xk+L ≡ Xk are unaltered
state variables, and Ek+L represents connectivity between
variables and factors according to the definition of each
factor (2).

For instance, consider the running example in Fig-
ure 2 where action a introduces new measurements in
context of active SLAM. The state vector Xk+L ≡ Xk

contains robot poses and landmarks {x1, x2, l1, l2, l3}. Old
factors within Fk are priors {f0, f2, f3, f4} and motion
model f1. Candidate action introduces new observation
factors F(a)= {f5, f6, f7}. Thus, factors of the posterior
factor graph Gk+L(a)=(Fk+L, Xk+L, Ek+L) are Fk+L =
{f0, f1, f2, f3, f4, f5, f6, f7}, while Ek+L contains edges between
nodes in Xk+L and nodes in Fk+L as depicted in the figure.

For simplicity, we denote the augmentation of a fac-
tor graph Gk with a set of new factors through opera-
tor ⊕. Thus, for the non-augmented BSP setting, we have
Gk+L(a)

.= Gk ⊕ F(a). In addition, with a slight abuse of
notation we will use the same augmentation operator ⊕ to
define a combination of two factor graphs into one, which
will be required in the context of augmented BSP.
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Fig. 4. Illustration of belief propagation in a factor graph representation in the non-augmented case. Two actions ai and aj are
considered, introducing two new factor sets F (ai) and F (aj), respectively, into the graph (colored in green).

Fig. 5. Illustration of belief propagation in a factor graph representation in the augmented case. Two actions ai and aj are considered,
introducing their own factor graphs G(ai) and G(aj) (colored in pink) that are connected to prior Gk through factor sets Fconn(ai) and
Fconn(aj) (colored in green), respectively.
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In the augmented BSP scenario, we denote all new state
variables introduced by action a as Xnew, and also separate
all new factors F(a) from (6) into two groups:

F(a)= {Fnew(a) ,F conn(a) }. (19)

Factors connecting only new variables Xnew are denoted by
Fnew(a),

Fnew(a)= {f 1, . . . , f nnew}, (20)

while the rest of the factors are denoted by F conn(a),

F conn(a)= {f 1, . . . , f nconn}, (21)

connecting between old and new variables.
Next, let us denote an action’s factor graph as G(a)=

(Fnew(a) , Xnew, Enew) with Enew representing connectivity
according to involved variables in each factor in Fnew(a).
Then the factor graph that represents the future belief
b[Xk+L] is a combination of two factor graphs, the prior Gk

and action’s G(a), connected by factors from F conn(a) (see
Figure 5 for illustration). Thus,

Gk+L(a)= Gk ⊕ G(a)⊕F conn(a)=(Fk+L, Xk+L, Ek+L) ,
(22)

where Fk+L = {Fk ,Fnew(a) ,F conn(a) }, Xk+L ≡ {Xk , Xnew}
is an augmented state vector, and Ek+L represents connectiv-
ity between variables and factors according to factors’ def-
inition. The separation of factors into two groups allows us
to present future belief ’s factor graph as a simple graph aug-
mentation, and will also be useful during derivation of our
approach in Section 3.3. Moreover, the reason for F conn(a)
not to be defined as part of G(a) is due to the fact that factors
inside F conn(a) involve state variables outside of G(a).

For instance, consider the running example in Figure
3 where action a represents a candidate trajectory to
perform loop-closure in a SLAM application. Here the
prior state vector Xk contains old and current robot poses
{x1, x2, x3} and mapped until now landmarks {l1, l2}. The
newly introduced state variables Xnew are the future robot
poses {x4, x5, x6} that represent the candidate trajectory. Old
factors within Fk are prior f0 on the initial robot pose,
motion models {f3, f6}, and observation factors {f1, f2, f4, f5}.
Here Fnew(a) consists of factors {f8, f9} (colored purple)
that are connected only to variables from Xnew, while
F conn(a) contains factors {f7, f10} (colored green) that con-
nect between variables in Xk and variables in Xnew. Thus,
state variables of the posterior factor graph Gk+L(a) are
Xk+L = {x1, x2, x3, x4, x5, x6, l1, l2}, and factors of Gk+L(a)
are Fk+L = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}.

Note that the new factors in Gk+L(a) are not fully defined,
as some of them involve future observations that are
unknown at planning time. However, the taken maximum-
likelihood assumption assumes that the mean vector of
b[Xk+L] will coincide with current estimate of Xk and with
initial values of new variables Xnew (Indelman et al., 2015;
Platt et al., 2010; Van Den Berg et al., 2012). Knowing
the mean vector, it is possible to calculate Jacobians of old

and new factors within Gk+L(a). Since information matrix
� = AT A is a product of Jacobian matrices, �k+L of future
belief b[Xk+L] can also be calculated without knowing the
future observations. Thus, we can reason about the infor-
mation (and covariance) matrix of Gk+L(a), as was shown
in Section 2.

Now we can reformulate the information-theoretic objec-
tive of the BSP problem. In order to evaluate information
impact of action a in a non-augmented BSP setting (15), we
need to measure the amount of information added to a fac-
tor graph after augmenting it with new factors Gk+L(a)=
Gk ⊕ F(a). In the case of augmented BSP (16), in order to
evaluate the information impact of action a we need to mea-
sure the amount of information added to a factor graph after
connecting it to another factor graph G(a) through factors
in F conn(a), Gk+L(a)= Gk ⊕ G(a)⊕F conn(a).

In (9) and (10) we expressed the posterior informa-
tion matrix �k+L of Gk+L(a) through matrix A, which is
the weighted Jacobian of new terms from (6). In non-
augmented BSP, each block-row of A represents a specific
factor from F(a), while in augmented BSP block-rows in A
represent factors from F(a)= {Fnew(a) ,F conn(a) }. Block-
columns of A represent all estimated variables within Xk+L.
As was mentioned, each factor’s block-row is sparse, with
only non-zero block entries under columns of variables
connected to the factor within the factor graph. For exam-
ple, the Jacobian matrix’s block-row that corresponds to a
motion model factor p(xk+l|xk+l−1, uk+l−1) will involve only
two non-zero block entries for the state variables xk+l and
xk+l−1. Factors for many measurement models, such as pro-
jection and range models, will also have only two non-zero
blocks (see Figure 6).

We define two properties for any set of factors F that will
be used in the following to analyze the complexity of the
proposed approach. Denote by M(F) the sum of dimen-
sions of all factors in F , where the dimension of each factor
is the dimension of its expected value rj

i from (3). In addi-
tion, let D(F) denote the total dimension of all variables
involved in at least one factor from F . It is not difficult to
show that the Jacobian matrix A ∈ R

m×n of F has height
m =M(F), and number of its columns that are not entirely
equal to zero is D(F). The letter D is used here because the
density of the information matrix is affected directly by the
value of D(F). It is important to note that, for any candidate
action a, the total dimension of new factors M(F(a)) and
the dimension of involved variables D(F(a)) are indepen-
dent of n, which is the dimension of the belief at planning
time b[Xk]. Instead, both properties are only functions of the
planning horizon L.

In the following sections we describe our BSP approach,
using the above notions of factor graphs.

3.2. BSP via the matrix determinant lemma

3.2.1. Unfocused case Information-theoretic BSP
involves evaluating the costs from (15), operations that
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Fig. 6. Concept illustration of A’s structure. Each column rep-
resents some variable from the state vector. Each row repre-
sents some factor from (6). Here, A represents a set of factors
F = {f1(xi−1, xi) , f2(xi, lj) }, where factor f1 of motion model
that involves two poses xi and xi−1 will have non-zero values only
at columns of xi and xi−1. Factor f2 of observation model that
involves together variables xi and lj will have non-zero values only
at columns of xi and lj.

require calculating the determinant of a large n × n matrix
(posterior information matrix), with n being the dimension-
ality of the state Xk+L. State-of-the-art approaches typically
perform these calculations from scratch for each candidate
action.

In contrast, our approach contains a one-time calculation
that depends on the state dimension and will be re-used
afterwards to calculate the impact of each candidate action
(see Section 3.4). As we show below, the latter depends only
on M(F(a)) and D(F(a)), while being independent of the
state dimension.

Recalling notation from the previous section, we would
like to measure the amount of information gained after
graph augmentation Gk+L(a)= Gk ⊕ F(a). We can mea-
sure it through the IG as the utility function. It is not dif-
ficult to show that IG from (15) can be written as JIG(a)=
1
2 ln

∣∣∣�k + AT A
∣∣∣∣∣∣�k

∣∣∣ , where A ∈ R
m×n is the Jacobian of fac-

tors in F(a) weighted by their noise, with m =M(F(a)).
Using the generalized matrix determinant lemma (Harville,
1998), this equation can be written as

JIG(a)= 1

2
ln
∣∣Im + A ·�k · AT

∣∣ , �k ≡ �−1
k (23)

as previously suggested in Ila et al. (2010) and Mu
et al. (2015) in the context of compact pose-SLAM and
focused active inference.

Equation (23) provides an exact and general solution
for information-based decision making, where each action
candidate can produce any number of new factors (non-
myopic planning) and where factors themselves can be of
any motion or measurement model (unary, pairwise, etc.).

In many problem domains, such as SLAM, inference is
typically performed in the information space and, as such,
the joint covariance matrix �k is not readily available and
needs to be calculated upon demand, which is expensive in
general. While, at first sight, it might seem the entire joint
covariance matrix needs to be recovered, in practice this is
not the case due to sparsity of the Jacobian matrix A, as was
mentioned above.

Table 1. Different partitions of state variables in BSP

Notation Description

Xk = Xk+L state vector at times k and k + L
IX subset of Xk+L with variables involved in

new terms in (6)
¬IX subset of Xk+L with variables not involved

in new terms in (6)
X F

k = X F
k+L = X F subset of Xk+L with focused variables

X U
k = X U

k+L = X U subset of Xk+L with unfocused variables
IX U subset of X U with variables involved

in new terms in (6)
¬IX U subset of X U with variables not involved

in new terms in (6)

Consequently, only specific entries from the covariance
matrix �k are really required, and sparse matrix techniques
exist to calculate them efficiently (Golub and Plemmons,
1980; Kaess and Dellaert, 2009). More formally, denote
by IX the set of all variables that are connected to factors
in F(a) (see Table 1), i.e. these are the variables that are
involved in at least one factor among the new factors gen-
erated due to the currently considered candidate action a,
see (6). Clearly, the columns of A that correspond to the
rest of the variables, ¬IX , are entirely filled with zeros (see
Figure 6). Thus, equation (23) can be re-written as

JIG(a)= 1

2
ln
∣∣∣Im + IA ·�M ,IX

k ·( IA)T
∣∣∣ , (24)

where IA is constructed from A by removing all zero

columns, and �
M ,IX
k is a prior joint marginal covariance of

variables in IX , which should be calculated from the (square
root) information matrix �k . Note that dimension of IX is
D(F(a)).

Intuitively, the posterior uncertainty reduction that corre-
sponds to action a is a function of only the prior marginal

covariance over variables involved in F(a) (i.e. �
M ,IX
k ) and

the new information introduced by the F(a)’s Jacobian A,
with the latter also involving the same variables IX . More-
over, from the above equation it can be seen that uncertainty
reduction in the posterior will be significant for large entries
in A and high prior uncertainty over the variables IX .

In particular, in the case of myopic decision making
with unary observation models (that involve only a single
state variable), calculation of IG(a) for different candidate
actions only requires recovering the diagonal entries of �k ,
regardless of the actual correlations between the states, as
was recently shown in Indelman (2015b, 2016). However,
while in the mentioned papers the per-action calculation
takes O(n), the IG(a) calculation is not dependent on n at
all, as will be shown in Section 3.4.

Given a prior marginal covariance �
M ,IX
k , whose

dimension is D(F(a))×D(F(a)), the calculation in
(24) is bounded by calculating the determinant of
an M(F(a))×M(F(a)) matrix, which is, in general,
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O(M(F(a))3 ), where M(F(a)) is the number of con-
straints due to new factors (for a given candidate action
a). This calculation should be performed for each candi-
date action in the set A. Furthermore, in many problems it is
logical to assume that M(F(a))� n, as M(F(a)) depends
mostly on the planning horizon L, which is typically defined
and constant, while n (state dimensionality) can be huge and
grow with time in real systems (e.g. SLAM). Consequently,
given the prior covariance our complexity for selecting best
action is O( |A|), i.e. independent of state dimensionality n.

To conclude this section, we showed that calculation of
the impact of an action for a single candidate action does not
depend on n. While this result is interesting by itself in the
context of active inference, in Section 3.4 we go a step fur-
ther and present an approach to calculate covariance entries,
required by all candidates, with one-time calculation that
can be re-used afterwards.

3.2.2. Focused case In this section, we present a novel
approach to calculate the change in entropy of a focused
set of variables after factor graph augmentation Gk+L(a)=
Gk ⊕ F(a), combining it with the ideas from the previ-
ous sections (the generalized matrix determinant lemma
and IG cost function) and showing that the impact of one
candidate action can be calculated independently of state
dimension n.

First we recall definitions from Section 2 and introduce
additional notation (see also Table 1): X F

k ≡ X F
k+L ∈ R

nF

denotes the set of focused variables (equal to X F
k+L to

remind us that prior and posterior states are identical in the
non-augmented case), X U

k
.= Xk/X F

k ∈ R
nU is a set of the

remaining unfocused variables with n = nF + nU . The
nF × nF prior marginal covariance and information matri-
ces of X F

k are denoted, respectively, by �
M ,F
k (suffix M for

marginal) and �
M ,F
k ≡(�M ,F

k )−1. Furthermore, we partition
the joint information matrix �k as

�k =
[

�
M ,U
k �

M ,UF
k

(�M ,UF
k )T �

M ,F
k

]
, �k =

[
�U

k �
U ,F
k

( �
U ,F
k )T �F

k

]
,

(25)
where �F

k ∈ R
nF×nF is constructed by retrieving from �k

only the rows and the columns related to X F
k (it is actually

conditional information matrix of X F
k , conditioned on the

rest of the variables X U
k ), �U

k ∈ R
nU×nU is defined similarly

for X U
k , and �

U ,F
k ∈ R

nU×nF contains the remaining blocks
of �k as shown in (25).

The marginal information matrix of X F
k , i.e. �

M ,F
k ,

can be calculated via the Schur complement �
M ,F
k =

�F
k−( �UF

k )T ·( �U
k )−1 ·�UF

k . However, one of the Schur
complement’s properties (Ouellette, 1981) is

∣∣�k

∣∣ =∣∣�M ,F
k

∣∣ · ∣∣�U
k

∣∣, from which we can conclude that

∣∣�M ,F
k

∣∣ = 1∣∣�M ,F
k

∣∣ =
∣∣�k

∣∣∣∣�U
k

∣∣ . (26)

Therefore, the posterior entropy of X F
k+L (see (17)) is a

function of the posterior �k+L and its partition �U
k+L:

JF
H(a)= H( X F

k+L)= nF · γ
2
− 1

2
ln

∣∣�k+L

∣∣∣∣�U
k+L

∣∣ . (27)

From (9) one can observe that �U
k+L = �U

k +( AU )T ·AU ,
where AU ∈ R

m×nU is constructed from Jacobian A by
taking only the columns that are related to variables in X U

k .
The next step is to use IG instead of entropy, with the

same motivation and benefits as in the unfocused case
(Section 3.2.1). The optimal action a∗ = arg maxa∈A JF

IG(a)
will maximize JF

IG(a)= H( X F
k )−H( X F

k+L), and by combin-
ing (27) with the generalized matrix determinant lemma we
can write

JF
IG(a) = 1

2
ln
∣∣Im + A ·�k · AT

∣∣
−1

2
ln
∣∣Im + AU ·�U |F

k ·( AU )T
∣∣ , (28)

where �
U |F
k ∈ R

nU×nU is a prior covariance matrix of X U
k

conditioned on X F
k , and it is actually the inverse of �U

k .
Further, AU can be partitioned into IAU and ¬IAU , rep-

resenting unfocused variables that are, respectively,
involved (IX U ) or not involved (¬IX U ) (see also Table 1).
Note that ¬IAU contains only zeros, and it can be concluded
that∣∣Im + AU ·�U |F

k ·( AU )T
∣∣ = ∣∣∣Im + IAU ·�IX U |F

k ·( IAU )T
∣∣∣ ,
(29)

where �
IX U |F
k is the prior covariance of IX U conditioned on

X F
k .
Taking into account (24) and (29), JF

IG(a) can be calcu-
lated through

JF
IG(a) = 1

2
ln
∣∣∣Im + IA ·�M ,IX

k ·( IA)T
∣∣∣

−1

2
ln
∣∣∣Im + IAU ·�IX U |F

k ·( IAU )T
∣∣∣ . (30)

We can see that the focused and unfocused IGs have
a simple relation between them

JF
IG(a)= JIG(a)−1

2
ln
∣∣∣Im + IAU ·�IX U |F

k ·( IAU )T
∣∣∣ . (31)

The second term in (31) is negative and plays the role
of a penalty, reducing the action’s impact on the posterior
entropy of X F

k+L. In Section 3.5 we discuss the intuition
behind this penalty term. Note that when all involved vari-
ables are focused, IX ⊆ X F

k+L, the variable set IX U is
empty and second term’s matrix will be an identity matrix
Im. In such a case, the second term becomes zero and we
have JF

IG(a)= JIG(a).

Also here, given prior covariances �
M ,IX
k and �

IX U |F
k ,

calculation of focused IG (30) is independent of
state dimensionality n, with complexity bounded by
O(M(F(a))3 ). In Section 3.4 we show how the required
covariances can be efficiently retrieved.
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Fig. 7. Partitions of Jacobians and the state vector Xk+L in the

augmented BSP case, in the unfocused scenario. Note that the

shown variable ordering is only for illustration, while the devel-

oped approach supports any arbitrary variable ordering. Also note

that all white blocks consist of only zeros. Top: Jacobian A of fac-

tor set F (a)= {Fconn(a) ,Fnew(a) }. Bottom: Jacobians B and D

of factor sets Fconn(a) and Fnew(a), respectively.

3.3. Augmented BSP via AMDL

3.3.1. AMDL In order to simplify calculation of IG within

augmented BSP (16) one could resort, similar to previous

sections, to the matrix determinant lemma. However, due to

zero-padding, the information matrix 3
Aug

k+L is singular and,

thus, the matrix determinant lemma cannot be applied. In

this section we develop a variant of the matrix determinant

lemma for the considered augmented case (further referred

to as AMDL).

Specifically, we want to solve the following problem:

recalling 3+ = 3Aug +AT ·A (see also (10)), and dropping

the time indices to avoid clutter, our objective is to express

the determinant of 3+ in terms of 3 and 6 = 3−1.

Lemma 1. The ratio of determinants of 3+ and 3 can be

calculated through∣∣3+∣∣∣∣3∣∣ = ∣∣1∣∣ · ∣∣AT
new ·1

−1 · Anew

∣∣ , (32)

with 1
.
= Im+Aold ·6 ·A

T
old , where the matrices Aold ∈ R

m×n

and Anew ∈ R
m×n′ are constructed from A by retrieving

columns of only old n variables (denoted as Xold) and only

new n′ variables (denoted as Xnew), respectively (see Figure

7 and Table 2).

The proof of Lemma 1 is given in Appendix A.1.

Remark 1. It is not difficult to show that AMDL for the

matrix update of the form 3+ = 3Aug + ÃT · 9−1 · Ã (see

(10)) assumes the form∣∣3+∣∣∣∣3∣∣ = ∣∣9−1
∣∣ · ∣∣1̃∣∣ · ∣∣̃AT

new · 1̃
−1 · Ãnew

∣∣ (33)

with 1̃
.
= 9 + Ãold ·6 · Ã

T
old .

Table 2. Different partitions of state variables in augmented BSP

Notation Description

Xk state vector at time k

Xk+L state vector at time k + L

X F
k+L

subset of Xk+L with focused variables

Xold subset of Xk+L with old variables, i.e. Xk

Xnew subset of Xk+L with new variables

IXold subset of Xold with variables involved

in new terms in (6)
¬IXold subset of Xold with variables not involved

in new terms in (6)

Focused augmented BSP (X F
k+L
⊆ Xnew), Section 3.3.3.1

X F
new subset of Xnew with focused variables

X U
new subset of Xnew with unfocused variables

Focused augmented BSP (X F
k+L
⊆ Xold), Section 3.3.3.2

IX F
old

subset of IXold with focused variables

IX U
old

subset of IXold with unfocused variables

¬IX F
old

subset of ¬IXold with focused variables

¬IX U
old

subset of ¬IXold with unfocused variables

In addition, we can extend the AMDL lemma for a spe-

cific structure of matrix A. As was explained in Section 3.1,

in the case of augmented BSP, the new factors can be sep-

arated into two sets Fnew(a) and F conn(a). It is not difficult

to see that A’s structure in such a case will be

A =
(
Aold Anew

)
=

(
Bold Bnew

Dold Dnew

)
=

(
Bold Bnew

0 Dnew

)
(34)

where B’s rows represent factors from F conn(a), and D’s

rows represent factors from Fnew(a) (see also Figure 7).

Note that Dold ≡ 0.

Lemma 2. The ratio of determinants of 3+ and 3 where A

has structure from (34) can be calculated through∣∣3+∣∣∣∣3∣∣ = ∣∣11

∣∣ · ∣∣BT
new ·1

−1
1 · Bnew + DT

new · Dnew

∣∣ (35)

with 11
.
= Imconn+Bold ·6 ·B

T
old and mconn =M(F conn(a)),

where partitions of B and D are defined above in (34) and

can also be seen in Figure 7.

The proof of Lemma 2 is given in Appendix A.2.

We note the above equations are general standalone

solutions for any augmented positive-definite symmetric

matrix.

To summarize, we developed two augmented

determinant lemmas (32) and (35), with the latter

exploiting additional knowledge about A’s struc-

ture. The dimension of matrix 1 from (32) is

M(F(a))×M(F(a)), whereas the dimension of 11
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from (35) is M(F conn(a))×M(F conn(a)). Thus, the
complexity of calculation in (35) is lower than in (32) since
M(F conn(a))≤ M(F(a)). In the following sections we
use both of the lemmas in order to develop an efficient
solution to the augmented BSP problem.

3.3.2. Unfocused augmented BSP through IG Here we
show how the AMDL from Section 3.3.1 can be used to effi-
ciently calculate the unfocused IG as defined in (16), e.g.
change in system’s entropy after factor graph augmentation
Gk+L(a)= Gk ⊕ G(a)⊕F conn(a) (see Figure 5).

First we introduce different partitions of the joint state
Xk+L, and the corresponding sub-matrices in the Jacobian
matrix A from (10) (see Table 2 and Figure 7). Recall def-
initions of Xnew and Xold (see Section 3.3.1) and let IXold

and ¬IXold denote, respectively, the old involved and the old
uninvolved state variables in the new terms in (6). We rep-
resent by IAold and ¬IAold the columns of matrix A that cor-
respond to the state variables IXold and ¬IXold , respectively
(see Figure 7). Note, ¬IAold ≡ 0.

Next, using the AMDL (Lemma 1), the determinant ratio
between posterior and prior information matrices is∣∣�k+L

∣∣∣∣�k

∣∣ = ∣∣C∣∣ · ∣∣AT
new · C−1 · Anew

∣∣ , (36)

where C
.= Im + Aold ·�k · AT

old .
Consequently, the IG objective from (16) can be re-

written as

JIG(a)= n′ · γ
2
+ 1

2
ln
∣∣C∣∣+ 1

2
ln
∣∣AT

new · C−1 · Anew

∣∣ . (37)

Moreover, considering the above partitioning of Aold , we

conclude that Aold · �k · AT
old = IAold · �M ,IXold

k ·( IAold)T ,

where �
M ,IXold
k is the marginal prior covariance of IXold .

Thus, matrix C can be rewritten as

C = Im + IAold ·�M ,IXold
k ·( IAold)T . (38)

Observe that, given �
M ,IXold
k , all terms in (38) have relatively

small dimensions and M(F(a))×M(F(a)) matrix C can
be computed efficiently for each candidate action, with time
complexity no longer depending on state dimension n, sim-
ilarly to the non-augmented BSP approach in Section 3.2.1.
Calculation of the inverse C−1, which is required in (37),
is O(M(F(a))3 ) and will also not depend on n. The run-
time of overall calculation in (37) will have complexity
O(M(F(a))3+n′3) and will depend only on the number
of new factors M(F(a)) and number of new variables
n′. Both are functions of the planning horizon L and can
be considered as being considerably smaller than the state
dimension n. Moreover, higher ratios n/M(F(a)) lead to
a bigger advantage of our approach versus the alternatives
(see Section 7).

It is worthwhile to mention a specific case, where
M(F(a))= n′, which happens for example in SLAM

application when candidate action a introduces only motion
(or odometry) factors between the new variables. In such a
case, it is not difficult to show that (37) will be reduced to
JIG(a)= n′·γ

2 + ln
∣∣Anew

∣∣. In other words, the IG in such a
case depends only on the partition Anew of A (see Figure 7),
Jacobian entries related to new variables, while the prior �k

is not involved in the calculations at all.

Remark 2. It is possible that posterior state dimension N =
n + n′ will be different for different candidate actions (see
e.g. Section 7). In such a case, the entropy (or IG), being
a function of the posterior eigenvalues’ product, will be
of different scale for each candidate and cannot be com-
pared directly. Thus, dimension normalization of (37) may
be required. Even though the term n′·γ

2 may already play the
role of such a normalization, the detailed investigation of
this aspect is outside the scope of this paper.

We can further enhance the presented above approach by
considering the structure of A from (34) (see also Figure
7). This will allow us to slightly improve the complexity of
JIG(a)’s calculation. By applying the AMDL (Lemma 2), we
can show that information gained from connecting Gk (with
covariance matrix �k) and G(a) (with information matrix
�a = DT

new · Dnew) through factors F conn(a) will be

JIG(a)= n′ · γ
2
+ 1

2
ln
∣∣C1

∣∣+ 1

2
ln
∣∣BT

new · C−1
1 · Bnew +�a

∣∣ ,
(39)

C1 = Imconn + Bold ·�k · BT
old , (40)

where matrix B = (Bold Bnew
)

is the Jacobian of factors in
F conn(a).

Since Bold is sparse (see Figure 7), the same as partition
Aold in (36), C1 also can be calculated efficiently:

C1 = Imconn + IBold ·�M ,IXold
k ·( IBold)T . (41)

It is interesting to note that the terms of the above-presented
solution for the unfocused augmented BSP problem
(39) and (41) can be recognized as belonging to differ-
ent operands in augmentation Gk ⊕ G(a)⊕F conn(a): prior

covariance matrix �
M ,IXold
k represents information coming

from prior factor graph Gk , information matrix �a provides
information of an action’s factor graph G(a), and various
partitions of matrix B introduce information coming from
connecting factors F conn(a).

Although the above solution (39) and (41) look some-
what more complicated, its matrix terms have slightly
lower dimensions compared with matrix terms in the gen-
eral solution presented in (37) and (38), with complex-
ity O(M(F conn(a))3+n′3), and therefore can be calculated
more quickly, as will be shown in our simulations below.
Moreover, equations (39) and (41) have more independent
terms that can be calculated in parallel, further improving
time performance.
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Fig. 8. Partitions of Jacobians and state vector Xk+L in the aug-
mented BSP case, focused (X F

k+L ⊆ Xnew) scenario. Note
that the shown variable ordering is only for illustration, while the
developed approach supports any arbitrary variable ordering. Also
note that all white blocks consist of only zeros. Top: Jacobian A of
factor set F (a)= {Fconn(a) ,Fnew(a) }. Bottom: Jacobians B and
D of factor sets Fconn(a) and Fnew(a), respectively.

3.3.3. Focused augmented BSP The focused scenario
in the augmented BSP setting, with the factor graph aug-
mentation Gk+L(a)= Gk ⊕ G(a)⊕F conn(a), can be sep-
arated into different cases. One such case is when the
set of focused variables X F

k+L contains only new variables
added during BSP augmentation, as illustrated in Figure 8,
i.e. X F

k+L ⊆ Xnew are the variables coming from factor graph
G(a). Such a case happens, for example, when we are inter-
ested in reducing the entropy of a robot’s last pose within the
planning horizon. Another case is when the focused vari-
ables X F

k+L contain only old variables, as shown in Figure 9,
i.e. X F

k+L ⊆ Xold ≡ Xk are the variables coming from factor
graph Gk . This, for example, could correspond to a scenario
where reducing entropy of already-mapped landmarks is of
interest (e.g. improve 3D reconstruction quality). The third
option is for both new and old variables to be inside X F

k+L. In
the following we develop a solution for the first two cases;
the third case can be handled in a similar manner.

Remark 3. In most cases, actual variable ordering will be
more sporadic than that depicted in Figures 7, 8, and 9. For
example, iSAM (Kaess et al., 2012) determines variable
ordering using COLAMD (Davis et al., 2004) to enhance
the sparsity of the square root information matrix. We note
that our approach applies to any arbitrary variable ordering,
with the equations derived herein remaining unchanged.

3.3.3.1 Focused augmented BSP (X F
k+L ⊆ Xnew): focused

variables belong to G(a) First we define additional parti-
tions of Jacobian A (see Figure 8). The sub-matrices Aold ,
Anew, IAold , and ¬IAold were already introduced in the sec-
tions above. We now further partition Anew into AF

new and

AU
new, that correspond, respectively, to columns of new vari-

ables that are focused and unfocused. Denote the former set
of variables as X F

new and the latter as X U
new (see also Table 2).

Note, X F
new ≡ X F

k+L.

Lemma 3. The posterior entropy of X F
new (equation (17)) is

given by

JF
H(a) = nF · γ

2
+ 1

2
ln
∣∣(AU

new)T ·C−1 · AU
new

∣∣
−1

2
ln
∣∣AT

new · C−1 · Anew

∣∣ , (42)

where C is defined in (38).

The proof of Lemma 3 is given in Appendix A.3.
We obtained an exact solution for JF

H(a) that, given

�
M ,IXold
k , can be calculated efficiently with complexity

O(M(F(a))3+n′3), similarly to unfocused augmented
BSP in Section 3.3.2. In Section 3.4, we explain how

the prior marginal covariance term (�M ,IXold
k ) can be effi-

ciently retrieved, providing a fast solution for focused
augmented BSP.

In addition, it is interesting to note that there is an effi-
cient way to calculate the term 1

2 ln
∣∣(AU

new)T ·C−1 · AU
new

∣∣ −
1
2 ln

∣∣AT
new · C−1 · Anew

∣∣ from (42). First, we calculate the
matrix V

.= AT
new · C−1 · Anew. Note that each row/column

of V represents one of the new variables in Xnew. Next, we
reorder rows and columns of V to obtain matrix V UF where
first go rows and columns of X U

new, followed by rows and
columns of X F

new. Now, we can perform Cholesky decompo-
sition of V UF = LT · L and retrieve L’s diagonal entries that
belong to variables X F

new, denoted by rF
i,i. It is not difficult to

show that

1

2
ln
∣∣(AU

new)T ·C−1 · AU
new

∣∣− 1

2
ln
∣∣AT

new · C−1 · Anew

∣∣
= −

∑
i

log rF
ii . (43)

Further, as in Section 3.3.2, we additionally exploit the spe-
cial structure of A from (34) (see also Figure 8). Similarly to
unfocused augmented BSP, this will allow us to improve
the complexity of JF

H(a)’s calculation.

Lemma 4. The posterior entropy of X F
new (equation (17)),

where A has the structure from (34), is given by

JF
H(a) = nF · γ

2
+ 1

2
ln
∣∣( BU

new)T ·C−1
1 · BU

new +�U |F
a

∣∣
−1

2
ln |BT

new · C−1
1 · Bnew +�a|, (44)

where C1 is defined in (41), �a = DT
new · Dnew is the

information matrix of the action’s factor graph G(a), and
�U |F

a =( DU
new)T ·DU

new is the information matrix of variables
X U

new conditioned on X F
new and calculated from distribution

represented by G(a).
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Fig. 9. Partitions of Jacobians and state vector Xk+L in the aug-
mented BSP case, focused (X F

k+L ⊆ Xold) scenario. Note that
the shown variable ordering is only for illustration, while the
developed approach supports any arbitrary variable ordering. Also
note that all white blocks consist of only zeros. Top: Jacobian A of
factor set F (a)= {Fconn(a) ,Fnew(a) }. Bottom: Jacobians B and
D of factor sets Fconn(a) and Fnew(a), respectively.

The proof of Lemma 4 is given in Appendix A.4.
Also here, the matrix terms from the above solution of the

focused augmented BSP problem (44) have lower dimen-
sions compared with the matrix terms from the general
solution presented in (42). Given the prior marginal covari-

ance �
M ,IXold
k its complexity is O(M(F conn(a))3+n′3). We

demonstrate a runtime superiority of this solution in our
simulations below.

It is important to mention that the information-based
planning problem for a system that is propagated through
the (extended) Kalman filter (Van Den Berg et al., 2012;
Walls et al., 2015), where the objective is to reduce the
uncertainty of only marginal future state of the system, is
an instance of the focused augmented BSP (X F

k+L ⊆
Xnew) problem. Thus, the solution provided in this section
is applicable also for Kalman filter planning.

3.3.3.2 Focused augmented BSP (X F
k+L ⊆ Xold): focused

variables belong to Gk Similarly to the previous section,
we first introduce additional partitions of Jacobian A for the
considered case (see Figure 9). From the top part of the fig-
ure we can see that ¬IAold can be further partitioned into
¬IAU

old and ¬IAF
old . In particular, ¬IAU

old represents columns
of old variables that are both not involved and unfocused,
and ¬IAF

old represents columns of old variables that are both
not involved and focused. We denote the former group of
variables by ¬IX U

old and the latter by ¬IX F
old (see Table 2).

Likewise, IAold can be partitioned into IAU
old and IAF

old , rep-
resenting old involved variables that are, respectively, unfo-
cused (IX U

old) or focused (IX F
old). Note that in this case, the set

of focused variables is X F
k+L = X F

k = {¬IX F
old ∪ IX F

old} and is
contained in factor graph Gk .

Lemma 5. The focused IG of X F
k is given by

JF
IG(a) = 1

2
( ln
∣∣C∣∣+ ln

∣∣AT
new · C−1 · Anew

∣∣− ln
∣∣S∣∣

− ln
∣∣AT

new · S−1 · Anew

∣∣ ) , (45)

where C is defined in (38), and

S
.= Im + IAU

old ·�
IX U

old |F
k ·( IAU

old)T , (46)

and where �
IX U

old |F
k is the prior covariance of IX U

old condi-
tioned on X F

k .

The proof of Lemma 5 is given in Appendix A.5.
Similarly to the cases discussed above (Sections 3.3.2

and 3.3.3.1), given �
M ,IXold
k and �

IX U
old |F

k , calculation of
JF

IG(a) per each action a can be performed efficiently with
complexity O(M(F(a))3+n′3), independently of state
dimension n.

It is interesting to note the specific case where
M(F(a))= n′. In other words, the number of new mea-
surements is equal to the number of new state variables,
which can happen for example when only new robot poses
and new motion model factors are added. In such a case,
it is not difficult to show that (45) will always return zero.
We can conclude that for this specific case (M(F(a))= n′)
there is no new information about the old focused variables
X F

k .
In addition, similar to previous sections, we use the spe-

cial structure of A from (34) (see also Figure 9) in order to
improve the complexity of JF

IG(a)’s calculation.

Lemma 6. The focused IG of X F
k , where A has the

structure from (34), is given by

JF
IG(a) = 1

2
( ln
∣∣C1

∣∣+ ln
∣∣BT

new · C−1
1 · Bnew +�a

∣∣− ln
∣∣S1

∣∣
− ln

∣∣BT
new · S−1

1 · Bnew +�a

∣∣) , (47)

where C1 is defined in (41), �a = DT
new · Dnew is the

information matrix of an action’s factor graph G(a), and

S1 = Imconn + IBU
old ·�

IX U
old |F

k ·( IBU
old)T , (48)

and where �
IX U

old |F
k is the prior covariance of IX U

old condi-
tioned on X F

k .

The proof of Lemma 6 is given in Appendix A.6.
The matrix terms from the above solution (47) and

(48) have lower dimensions compared with the matrix
terms from the general solution presented in (45) and (46),
with complexity O(M(F conn(a))3+n′3) given the prior

marginal covariance matrices �
M ,IXold
k and �

IX U
old |F

k . The next
section presents our approach to calculate the appropriate
entries in the prior covariance only once and re-use the
result whenever required.
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3.4. Re-use calculations technique

As we have seen above, unfocused and focused (aug-
mented) BSP problems require different prior covariance
entries, in order to use the developed expressions. The
required entries for each problem are summarized in Table

3. Note that �
M ,IX
k and �

M ,IXold
k both represent exactly

the same thing, prior marginal covariance of old variables
involved in new terms in (6), and have slightly differ-
ent notation due to the specifics of augmented and non-

augmented settings of BSP. The same goes for �
IX U |F
k

and �
IX U

old |F
k , with both representing prior covariance of

unfocused and involved old variables IX U
old conditioned

on focused variables X F . In this section we use the nota-

tion of augmented BSP (�M ,IXold
k and �

IX U
old |F

k ), considering
the non-augmented BSP setting as its special case.

From Table 3 it is seen that all approaches require prior
marginal covariance of the involved old variables, i.e. IXold .
In terms of factor graphs, in non-augmented BSP the IXold

represents variables connected to factors from set F(a) and
has dimension D(F(a)), whereas in the augmented BSP
scenario the IXold represents variables from prior factor
graph Gk connected to factors in the set F conn(a) and has
dimension D(F conn(a)). Although each candidate action
may induce a different set of involved variables, in prac-
tice these sets will often have many variables in common
as they are all related to the belief at the current time (e.g.
about the robot pose), in one way or another. With this in
mind, we perform a one-time calculation of prior marginal
covariance for all involved variables (due to at least one
candidate action) and re-use it for efficiently calculating IG
and entropy of different candidate actions.

More specifically, denote by XAll ⊆ Xk the subset of vari-
ables that were involved in new terms in (6) for at least one
candidate action. We can now perform a one-time calcula-
tion of the prior marginal covariance for this set, i.e. �M ,XAll

k .
The complexity of such calculation may be different for
different applications. For example, when using an informa-
tion filter, the system is represented by information matrix
�k , and in general the inverse of the Schur compliment of
XAll variables should be calculated. However, there are tech-
niques that exploit the sparsity of the underlying matrices
in SLAM problems, in order to efficiently recover marginal
covariances (Kaess and Dellaert, 2009), and more recently,
to keep and update them incrementally (Ila et al., 2015). In
Section 7 we show that the calculation time of �

M ,XAll
k while

exploiting sparsity (Golub and Plemmons, 1980; Kaess and
Dellaert, 2009) is relatively small compared with the total
decision-making time of alternative approaches. Still, the
more detailed discussion about complexity of covariance
retrieval can be found in Kaess and Dellaert (2009) and
Ila et al. (2015). The pseudo-code for BSP problems that

require only marginal prior covariances �
M ,IXold
k (see Table

3) can be found in Algorithm 1.
For focused BSP (Section 3.2.2) and for focused

augmented BSP (X F
k+L ⊆ Xold) (Section 3.3.3.2) cases, we

also need the term �
IX U

old |F
k (see (30) and (46)). This term

can be computed using two different methods as described
below.

First method: calculate it through additional marginal
covariance entries. First we calculate the prior marginal

covariance �
M ,(IX U

old ,F)
k for the set of variables {IX U

old , X F
k },

and then compute the Schur complement over the relevant

partitions in �
M ,(IX U

old ,F)
k (where suffix M denotes marginal):

�
IX U

old |F
k = �

M ,IX U
old

k −�
M ,IX U

oldF

k ·(�M ,F
k )−1 ·�M ,FIX U

old
k . (49)

Consequently, we can use a one-time calculation also for
the focused BSP and for focused augmented BSP
(X F

k+L ⊆ Xold) cases as follows. Let us extend the set

XAll to contain also all focused variables. Once �
M ,XAll
k

is calculated, �
M ,(IX U

old ,F)
k will be just its partition and can

be easily retrieved from it. As a result, the calculation

of �
IX U

old |F
k per candidate action becomes computationally

cheap (through (49)). Furthermore, the term (�M ,F
k )−1 can

be calculated only once for all candidates. The pseudo-code
of this approach can be found in Algorithm 2.

Second method: compute �
IX U

old |F
k through information

matrix partitioning. Recall Xk = {X F
k , X U

old} and consider
the following partitioning of a prior information matrix:

�k =
[

�F
k �

F,U
k

( �
F,U
k )T �

X U
old

k

]
, (50)

where first go rows/columns of focused variables X F
k ,

and then rows/columns of old unfocused variables X U
old .

Note that a partition of information matrix �k that belongs

to X U
old , �

X U
old

k , is an information matrix of the conditional
distribution

P( X U
old|X F

k )= N−1(×, �
X U

old
k )= N (×, �

X U
old |F

k ) , (51)

where × is the information or mean vector of this distribu-

tion. Since �
X U

old |F
k =( �

X U
old

k )−1 and recalling IX U
old ⊆ X U

old , it

follows that �
IX U

old |F
k is just a partition of �

X U
old |F

k that belongs
to old unfocused involved variables IX U

old . Therefore, we

need to calculate specific entries of the inverse of �
X U

old
k .

To do so, our one-time calculation will be as follows. We
denote by X U

All ⊆ Xk the subset of unfocused variables
that were involved in new terms in (6) for at least one can-

didate action. Next, we calculate �
X U

All |F
k , the entries of the

inverse of �
X U

old
k that belong to X U

All (e.g. via the method

from Kaess and Dellaert (2009)). Now, the required �
IX U

old |F
k

is just a partition of �
X U

All |F
k and can be retrieved easily for

each candidate action. The pseudo-code of this approach is
summarized in Algorithm 3.
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Table 3. Different problems and required entries of prior covariance: BSP denotes non-augmented belief space planning; Augmented
BSP denotes augmented belief space planning

Problem Required covariance entries

Unfocused BSP, �
M ,IX
k (prior marginal covariance of variables

Section 3.2.1 involved in new terms in (6))

Focused BSP, �
M ,IX
k and �

IX U |F
k (prior covariance of unfocused and

Section 3.2.2 involved variables IX U conditioned on focused variables X F )

Unfocused Augmented BSP, �
M ,IXold
k (prior marginal covariance of old variables

Section 3.3.2 involved in new terms in (6))

Focused Augmented BSP (X F
k+L ⊆ Xnew), �

M ,IXold
k

Section 3.3.3.1

Focused Augmented BSP (X F
k+L ⊆ Xold), �

M ,IXold
k and �

IX U
old |F

k (prior covariance of unfocused and

Section 3.3.3.2 involved old variables IX U
old conditioned on focused variables X F )

1 Inputs:
2 A: candidate actions {a1, a2, . . .}
3 Outputs:
4 a∗: optimal action

5 begin:
6 Xall ← union of old involved variables IXold from each candidate action ai

Calculate prior marginal covariances �
M ,XAll
k of variables in Xall (e.g. via the method from Kaess and Dellaert

(2009))
for ai ∈ A do

7 Calculate information impact (IG or posterior entropy), using required prior marginal covariances from

�
M ,XAll
k

8 end
9 Select candidate a∗ with maximal IG or minimal posterior entropy

10 end

Algorithm 1: Pseudo-code for BSP problems requiring only prior marginal covariance entries.

The first method is a good option when the dimension of
X F

k is relatively small. In such a case, equation (49) can be
calculated very quickly. When this is not the case, i.e. the
number of focused variables is large, the second technique
becomes much faster and, thus, is preferable over the first
technique.

Remark 4. As we show in Section 4.2, there are cases where
IX U

old is identical between all candidate actions. In such cases

�
IX U

old |F
k can be calculated only once and further reused by

each candidate action.

To summarize this section, the presented technique per-
forms time-consuming calculations in one computational
effort; the results are then used for efficiently evaluating
the impact of each candidate action. This concept thus pre-
serves expensive CPU resources of any given autonomous
system.

3.5. Connection to the MI approach and theoret-
ical meaning of IG

Mutual information I(a|b) is one additional metric from
information theory that is used frequently in the field of
information-based decision making. Basically it encodes
the quantity of information about set of variables a that
we would obtain in the case that the value of variables in
the other set b would be revealed to us. For example, this
metric was used in Davison (2005) and Kaess and Dellaert
(2009) to determine the most informative measurements in
a measurement selection problem, and more recently in Bai
et al. (2016) for information-based active exploration, with
both problems being very similar. In addition, it was used
in Carlevaris-Bianco et al. (2014) to create a sparse approx-
imation of the true marginalization using a Chow–Liu tree.

In this section we explore the connection between our
BSP approach that uses IG (see Section 3.2) and the MI
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1 Inputs:
2 A: candidate actions {a1, a2, . . .}
3 X F : focused old variables
4 Outputs:
5 a∗: optimal action

6 begin:
7 Xall ← union of old involved variables IXold from each candidate action ai

8 Xall = Xall ∪ X F

9 Calculate prior marginal covariances �
M ,XAll
k of variables in Xall (e.g. via the method from Kaess and Dellaert

(2009))
10 Calculate (�M ,F

k )−1 explicitly, by retrieving �
M ,F
k from �

M ,XAll
k and inverting it

11 for ai ∈ A do

12 Calculate �
IX U

old |F
k via (49), by retrieving appropriate �

M ,IX U
old

k and �
M ,IX U

oldF

k from �
M ,XAll
k

13 Calculate IG of X F using �
IX U

old |F
k and required prior marginal covariances from �

M ,XAll
k

14 end
15 Select candidate a∗ with maximal IG
16 end

Algorithm 2: Pseudo-code for BSP problems requiring both prior marginal and conditional covariance entries: first
method.

1 Inputs:
2 A: candidate actions {a1, a2, . . .}
3 X F : focused old variables
4 Outputs:
5 a∗: optimal action

6 begin:
7 Xall ← union of old involved variables IXold from each candidate action ai

8 Calculate prior marginal covariances �
M ,XAll
k of variables in Xall (e.g. via the method from Kaess and Dellaert

(2009))

9 X U
all ← union of old involved unfocused variables IX U

old from each candidate action ai

10 �
X U

old
k ← partition of prior information matrix �k that belongs to old unfocused variables X U

old = Xk � X F

11 �
X U

All |F
k ← entries of the inverse of �

X U
old

k that belong to X U
All (e.g. via the method from Kaess and Dellaert (2009))

12 for ai ∈ A do

13 Calculate IG of X F , by retrieving �
M ,IX U

old
k from �

M ,XAll
k and �

IX U
old |F

k from �
X U

All |F
k

14 end
15 Select candidate a∗ with maximal IG
16 end

Algorithm 3: Pseudo-code for BSP problems requiring both prior marginal and conditional covariance entries: second
method.

approach that is applied in Davison (2005) and Kaess and
Dellaert (2009); we show that objective functions of both
are mathematically identical and calculate exactly the same
metric, even though calculations in our approach are made
in a much more efficient way. Moreover, we also present the
theoretical meaning of IG that provides better intuition for
equations (23) and (28).

In a MI approach we would like to select the most infor-
mative measurements from the available set {z1, z2, . . .} and
also to account for possible measurement correlation. Each

candidate measurement has a specific measurement model
zi = hi(X i

k)+υi with υi ∼ N (0, �i). The candidate mea-
surements are a priori unknown and can be viewed as ran-
dom variables whose statistic properties are fully defined
by a random state vector Xk and random noises υi, due to
measurement models. Combining candidate measurements
with the state vector, we have

W =(Xk , z1, z2, . . . )T , (52)
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and similarly to the mentioned papers, it can be shown that

the covariance matrix of W is

6W =


6k 6k · Ã1

T
6k · Ã2

T
· · ·

Ã1 ·6k Ã1 ·6k · Ã1
T
+91 Ã1 ·6k · Ã2

T
· · ·

Ã2 ·6k Ã2 ·6k · Ã1
T

Ã2 ·6k · Ã2
T
+92 · · ·

.

.

.
.
.
.

.

.

.
. . .

 ,

(53)

where Ãi is the Jacobian of the measurement model

function hi(X
i
k) and where it was not yet combined with

model noise 9i, similarly to Ã defined in (9). The MI

approach (Davison, 2005; Kaess and Dellaert, 2009) cal-

culates I(Xk|zi) for each candidate zi from 6W and selects

candidates with the highest MI.

Now we will show that objective I(Xk|zi) is mathe-

matically identical to our JIG( zi) from Section 3.2.1 (see

also (23)). First, note that 6
Xk |zi
W =( 3k + Ãi

T
· 9−1

i · Ãi)
−1

(easy to check by using Schur complement from left and

Woodbury matrix identity from right). Further, MI for

Gaussian distributions can be calculated through covariance

matrices as

I(Xk |zi) = H(Xk)−H(Xk |zi)=
1

2
ln

∣∣∣6M ,Xk
W

∣∣∣∣∣∣6Xk |zi

W

∣∣∣
=

1

2
ln

∣∣∣6M ,Xk
W

∣∣∣∣∣∣6M ,Xk
W −6

M ,Xkzi

W ·(6
M ,zi
W )−1 ·6

M ,ziXk
W

∣∣∣
=

1

2
ln

∣∣6k

∣∣∣∣∣6k −6k · Ãi
T
·( Ãi ·6k · Ãi

T
+9i)

−1 ·Ãi ·6k

∣∣∣
(54)

and further can be reduced to I(Xk|zi)=

1
2

ln

∣∣∣∣3k + Ãi
T
·9−1

i · Ãi

∣∣∣∣∣∣∣3k

∣∣∣ which is exactly the

unfocused IG from (23) for the case when the

candidate action ai ≡ zi introduces a single factor into the

factor graph.

While both approaches are obviously calculating the

same metric, the computation complexity is not the same.

In both Davison (2005) and Kaess and Dellaert (2009), the

objective was calculated through (54) and its complexity

was dependent on the dimension of Xk . In contrast, our

approach rAMDL does so independently of state dimen-

sion through (24) as has been shown above, making it more

efficient compared with the MI technique.

In addition, Kaess and Dellaert (2009) presented the

approach to sequentially select informative measurements

that accounts for measurements correlation and redundancy,

but without the need to update state estimation during each

decision. In Section 4.1 we present our algorithm Sequen-

tial rAMDL where we combine a similar idea together with

the rAMDL technique in order to eliminate the need for a

marginal covariance calculation at each decision.

Most importantly, from the above equations we can see

conceptually a very interesting meaning of the metric that

is calculated (IG or MI). Without omitting the noise matrix

9 from our formulation, we can show that the unfocused
IG of future measurement z is

JIG( z)=
1

2
ln
∣∣Im + A ·6k · A

T
∣∣ = 1

2
ln

∣∣9 + Ã ·6k · Ã
T
∣∣∣∣9∣∣ .

(55)

Further, from (53) we see that 6z .
= 9 + Ã · 6k · Ã

T is the

covariance matrix of the random z. Thus, we can see that

JIG( z)=
1

2
ln
∣∣6z

∣∣− 1

2
ln
∣∣9∣∣ = H( z)−H( υ) , (56)

where υ is random noise from z’s measurement model, with

υ ∼ N (0, 9). From (56) we see that IG is exactly the differ-

ence between entropies of future measurement and its noise.

It can be explained in the following way: as was mentioned

previously, random variable z is fully defined by random

variables Xk and υ through measurement model. When z’s

value is revealed it obviously provides information about

both state and noise. The information about the state (the

IG) will then be the whole received information (the entropy

of random variable z) minus the information about the noise

υ.

From the above we can see that in order for measurement

z to be notably informative, three conditions should apply.

First, its noise should have small entropy H( υ), which also

comes from general knowledge about measurement estima-

tion. In addition, z should have large entropy H( z) from

which we can conclude the second and third conditions: the

involved variables IX from the measurement model should

have high prior uncertainty (high prior entropy), as also

their ĨA (the Jacobian of measurement model at the lin-

earization point of IX ) should contain high absolute values

(the sign does not matter because of the quadratic term of Ã

in (55)).

In the same way we can review the equation for

focused IG (28). The first term 1
2

ln
∣∣Im + A ·6k · A

T
∣∣

measures the amount of information about whole state Xk ,

while the second term

1

2
ln
∣∣Im + AU ·6

U |F
k ·( AU )T

∣∣
=

1

2
ln

∣∣9 + ÃU ·6
U |F
k ·( ÃU )T

∣∣∣∣9∣∣ = H( z|X F
k )−H( υ)

(57)

measures the information given that X F
k was provided,

meaning information for only unfocused variables. The

difference between total information and information of

only unfocused variables will provide the information

about the focused set X F
k .

Such interpretation of IG’s meaning through the entropy

of future measurement and of its noise can be consid-

ered not only for the measurement selection problem, but

also for the more general formulation from Section 2, thus

constituting a possible direction for future research.
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4. Application to different problem domains

In Section 3, we provided an efficient solution for a general

BSP problem, considering both non-augmented and aug-

mented cases. In this section, we discuss various problem

domains of (augmented) BSP and show how our approach

can be applied for each case. More concretely, we focus

on sensor deployment (Section 4.1), active SLAM (Sec-

tion 4.2), and graph reduction (Section 4.3), as specific

non-augmented and augmented BSP applications. For the

former, we develop a more computationally efficient variant

of our approach. For each case, we first briefly formulate the

problem and then describe our solution.

4.1. Sensor deployment

Sensor deployment is one of the most frequently researched

problems of decision making. The basic idea is to measure

a specific metric in domain space such as, e.g., temperature

within a building space. The goal is to find the best locations

for available sensors in order to estimate the metric in the

entire domain in the most accurate way.

Typically discretization of the domain space is made due

to computation complexity considerations. Thus, we have n

available locations in the space, L
.
= {l1, . . . , ln}, where sen-

sors can be deployed. The metric’s values in these locations

can be modeled as random variables and combined into a

state vector: X = {x1, . . . , xn}.

Putting a sensor at location li will allow us to take mea-

surement zi at that location, which will provide information

about the metric at place xi. Assume that the measurement

model of a sensor is known and is

zi = hi(xi)+υi, υi ∼ N (0, 6υ,i) . (58)

In addition, correlation between different locations may

be known a priori. Such prior can be presented as X ’s joint

distribution, P0( X ). Assuming that it is Gaussian, it may be

represented as (Indelman, 2016; Krause et al., 2008; Zhu

and Stein, 2006; Zimmerman, 2006)

X ∼ P0( X )= N ( µ, 60)= N−1( η, 30) . (59)

Note that, in practice, in typical sensor deployment prob-

lems 30 is not actually available and 60 is used instead.

Nevertheless, in further formulation we assume that 30 was

calculated a priori (as 6−1
0 ) and therefore is available to us.

Finding the best sensor locations in order to estimate

the metric in the most accurate way is another instance of

information-based non-augmented BSP and therefore can

be viewed through a prism of factor graphs (see Figure 10)

as we show below.

Conceptually, the space of candidate actions in a sensor

deployment setting contains all subsets of possible sensor

locations S ⊆ L with the usual constraint on cardinality

of subset S, |S| ≤ c, to represent that the number of sen-

sors is limited. However, considering all subsets of size c is

usually unrealistic as the number of all possible subsets
(

n

c

)

is astronomical due to its combinatorial nature. Therefore,

typically the problem is solved in a greedy way.

We propose a sub-optimal approach where a sequence

of decisions must be made instead of one decision. Dur-

ing each decision we are looking for subset S′, |S′|
.
= c′,

with c′ locations chosen from locations that were not yet

selected. The optimal S′ is the one that maximizes X ’s esti-

mation accuracy. The algorithm ends when the overall set

of locations S = {S′1, S′2, . . .} grows to cardinality of c.

Note that the number of locations in each subset, c′, should

be such that the number of S′ candidates,
(

n

c′

)
, is small

enough to be evaluated in a realistic time period. Thus, c′

is scenario-dependent and should be selected manually.

More specifically, we assume that until time tk the dis-

joint subsets {S′1, . . . , S′k} of locations were selected, where

each location subset S′j = {l
1
j , . . . , lc′

j } provided measure-

ments Zj = {z
1
j , . . . , zc′

j }. Given these measurements, the

joint pdf at time tk is

P(X |Z1:k)∝ P0( X )

k∏
j=1

c′∏
i=1

P( zi
j|x

i
j) , (60)

where observation model P( zi
j|x

i
j) is defined in (58).

MAP estimation of X according to information in (60)

will provide current state belief bk[X ]
.
= P( X |Z1:k)=

N (X ∗k , 6k), and following (7) the information matrix of

bk[X ] is 3k = 6−1
k = 30+

∑k
j=1

∑c′

i=1(H i
j )

T ·(6υ,j,i)
−1 ·H i

j

where H i
j

.
= 5xhi

j are the Jacobian matrices of observation

model (58) for all measurement terms in (60), linearized

about the current estimate X ∗k . Note that the belief bk[X ]

can be naturally represented by a factor graph Gk as was

explained in Section 3.1 (see also Figure 10).

The next decision requires us to select next candidate

action a: a location subset S′k+1 that will minimize pos-

terior uncertainty. Therefore, candidate space contains all

subsets of the form S′ ⊆ L \ {S′1 ∪ · · · ∪ S′k} and |S′| = c′.

Each such candidate subset a ≡ S′ = {l1, . . . , lc′} will pro-

vide future measurements Z′ = {z1, . . . , zc′} and thus future

belief bk+1[X ] and its information matrix will be

bk+1[X ] = P( X |Z1:k , Z′)∝ bk[X ]

c′∏
i=1

P( zi|xi) ,

3k+1 = 3k +

c′∑
i=1

(H i)T ·(6υ,i)
−1 ·H i. (61)

Thus, the candidate S′ introduces to Gk the factor set F(a),

which contains exactly c′ factors. Each of the factors is con-

nected to one variable: the xi that represents location of

factor’s sensor (see Figure 10).

Similarly to the general formulation in Section 2, stack-

ing all new Jacobians in the above equation together into

a single matrix and combining all noise matrices into

a block-diagonal one will lead to (9). Hence, the opti-

mal candidate subset S′ will be the one that maximizes

IG from (15).
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Fig. 10. Illustration of belief propagation in factor graph representation: sensor deployment scenario. The space is discretized through

a grid of locations L
.
= {l1, . . . , l9}. Factor f0 within prior factor graph Gk represents our prior belief about state vector, P0( X ). Factors

f1–f3 represent measurements taken from sensors deployed at locations l1, l2, and l4. Two actions ai = {l
3, l6} and aj = {l

7, l8} are

considered, introducing into graph two new factor sets F (ai) and F (aj), respectively (colored in green). In this example value of c′ is 2.

Note that the block-columns of Jacobian matrix A ∈

R
m×n from (9) represent all possible sensor locations

and block-rows represent new c′ measurement factors

from (61). As was mentioned before, only involved vari-

ables will have non-zero values in their block-columns. It

is not difficult to show that in the sensor deployment prob-

lem, the involved variables are xi that belong to locations in

subset S′. Block-columns of all other variables in A will be

zeros.

The rest of the problem definition (objective func-

tions, unfocused and focused settings) for the sensor

deployment problem is identical to the general formulation.

In particular, in the unfocused setting the optimal S′k+1

will be found through

S′k+1= arg max
S′⊆X\{S′1,...,S′

k
},|S′|=c′

JIG( S′)=
1

2
ln
∣∣Im + AS′ ·6k · A

T
S′

∣∣ ,

(62)

where AS′ is the Jacobian matrix of candidate S′.

Solution: Sequential rAMDL The above problem can

be straightforwardly solved using the rAMDL approach,

through (24) and (30). However, for each sequential deci-

sion the marginal covariance should be calculated for a set

of variables involved in any of the candidate actions, and

it is not difficult to show that this set will contain all as-

yet unoccupied locations. In scenarios with a high number

of possible sensor locations, this can negatively affect the

overall time performance.

Here we present an enhanced approach, Sequential

rAMDL, that performs the same sub-optimal sequence of

decisions as described above, but uses only the prior covari-

ance matrix 60, without recalculating covariance entries

after each decision. Such an approach gives an approxi-

mated solution (compared with the sub-optimal sequence of

decisions described above), but without paying computation

resources for expensive manipulation of high-dimensional

matrices.

The first decision will be performed in exactly the same

way: we will look for the best subset S′1 of size c′ that max-

imizes IG (62), for the unfocused case. However, upon

finding such a subset, the estimation solution of the system

will not be updated due to measurements from new sensors.

Instead, in each next decision we will look for a subset S′k+1

that maximizes the following objective

S′k+1 = arg max
S′⊆X\{S′1,...,S′

k
},|S′|=c′

JIG( S̃)=
1

2
ln
∣∣Im̃ + AS̃ ·60 · A

T

S̃

∣∣ ,

AS̃ =


AS′1

:

AS′
k

AS′

 (63)

where S̃
.
= {S′1, . . . , S′k , S′}, and AS̃ is a matrix with all

appropriate Jacobians combined together.

Note that the sequential decision making through (63)

will yield an exact solution, compared with sequential deci-

sion making through (62), if Jacobian matrices H i (equa-

tion (61)) do not change after acquiring measurements from

newly deployed sensors. This is the case, for instance, when

linearization point X ∗k remains the same or when measure-

ment model (58) is linear with respect to xi (i.e. zi = xi+νi).

Otherwise, equation (63) will merely be the approximation

of the above approach.
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After looking into (63) one can see that matrix inside is

actually

Im̃ + AS̃ ·60 · A
T

S̃
=


VS′1

YS′1,S′2
· · · YS′1,S′

YS′2,S′1
VS′2
· · · YS′2,S′

...
...

. . .
...

YS′,S′1
YS′,S′2

· · · VS′

 ,

VS′
.
= Im + AS′ ·60·(AS′ )

T , YS′i ,S
′
j

.
= AS′i

·60 · A
T
S′j

,

(64)

where VS′ and YS′i ,S
′
j

can be efficiently calculated (indepen-

dently of state dimension) due to the sparsity of Jacobians.

Moreover, after 60 is calculated (or given) at the beginning

of the algorithm, all its required entries are freely accessible

through the entire runtime of the algorithm.

It can be seen that all diagonal matrices VS′ were already

calculated during the first decision and can be kept and re-

used. In addition, all the correlation matrices YS′i ,S
′
j

(except

for YS′
k
,S′) were calculated in previous decisions. The only

required calculation in every decision for each candidate S′

is the matrix YS′
k
,S′ and determinant of the combined matrix.

Our unfocused Sequential rAMDL approach can be

seen as providing a little increase in the per-candidate cal-

culation in order to escape the necessity of prior covariance

calculation for each decision, similarly to the method of

sequential informative measurements selection presented in

Kaess and Dellaert (2009). This approach can be a good

alternative to the rAMDL technique when one-time calcula-

tion part of rAMDL (Section 3.4) is more time-consuming

than the part of candidates evaluation, as will be shown

in our simulations. The focused Sequential rAMDL

approach is also possible, by following similar derivations.

Moreover, the same idea is applicable to other sequential

domains such as the measurement selection problem.

4.2. Augmented BSP in unknown environments

In this section, we discuss a specific case of the augmented

BSP problem from Section 2, considering a SLAM setting.

Such a specification provides the reader with an illustrative

example of the augmented BSP problem for better intuition.

Let us refine the definition. In the smoothing formulation

of visual SLAM the state vector Xk represents robot poses

per each time step, {x0, . . . , xk}, and landmarks mapped

until now, Lk
.
= {l1, . . . , lnk

}. Further, we model robot

motion dynamics and sensor observations through

xi+1 = f (xi, ui)+ωi, ωi ∼ N (0, 6ω,i) (65)

zi,j = h(xi, lj)+υi,j, υi,j ∼ N (0, 6υ,i,j) , (66)

where ui is control at time ti, zi,j represents observation of

landmark lj by a robot from position xi at time ti, and where

ωi and υi,j are the motion and measurement noises, respec-

tively. Note that the motion model can be easily presented

in the form of a general factor model r
j
i = h

j
i(X

j
i )+υ

j
i from

(3) by moving the left side to the right:

0= f (xi, ui)−xi+1+ωi= f̄ (xi, xi+1)+ωi , ωi ∼ N (0, 6ω,i) .

(67)

The joint pdf for the SLAM problem at time tk (or current

belief ) is then

b[Xk] = P( Xk|Z0:k , u0:k−1)∝ P( x0)

k∏
i=1{

P( xi|xi−1, ui−1)

ni∏
j=1

P( zi,j|xi, lj)

}
, (68)

where P( x0) is a prior on the robot’s first pose, Zi =

{zi,1, . . . , zi,ni
} represents all observations at time ti, with

ni being the number of such observations. The motion

and observation models P( xi|xi−1, ui−1) and P( zi,j|xi, lj) are

defined by (65) and (66). A factor graph representation,

considering for simplicity only two landmarks l1 and l2,

is shown in Figure 11. Performing MAP inference over

the belief b[Xk], one can write b[Xk] = N (X ∗k , 6k), with

appropriate mean vector X ∗k and covariance matrix 6k .

The space of candidate actions in SLAM setting contains

all control sequences uk+1:k+L−1, where L is the planning

horizon and can vary between different candidates. Typi-

cally a finite set of candidates is pooled from this infinite

space according to their relevance to robot’s current desti-

nation or to loop-closure maneuver, for example through

simulation (Stachniss et al., 2005) and sampling (Agha-

Mohammadi et al., 2014; Prentice and Roy, 2009). Similar

to (6), future belief b[Xk+L]
.
= P( Xk+L|Z0:k+L, u0:k+L−1) for

particular candidate action a = uk+1:k+L−1 can be explicitly

written as

b[Xk+L] ∝ b[Xk]

k+L∏
l=k+1

{
P( xl|xl−1, ul−1)

nl∏
j=1

P( zl,j|xl, lj)

}
,

(69)

where Xk+L is the state vector at the Lth lookahead step. It

contains all variables from the current state vector Xk and

is augmented by new robot poses Xnew = {xk+1, . . . , xk+L}.

Also note that in (69) we consider only new observations

of landmarks that were already mapped until time tk . It is

also possible to reason about observing not as-yet mapped

landmarks (Indelman, 2015a), but it is outside the scope of

this paper.

Following the model from Section 3.1, the candi-

date’s factor graph G(a)=(Fnew(a) , Xnew, Enew) will con-

tain all new robot poses connected by motion model fac-

tors Fnew(a)= {f M
k+1, . . . , f M

k+L−1} with appropriate motion

models {f̄ (xk+1, xk+2) , . . . , f̄ (xk+L−1, xk+L) }, whereas fac-

tors from F conn(a), which connect old variables Xk and

new variables Xnew, will contain one motion model fac-

tor f M
k (with motion model f̄ (xk , xk+1)) and all of obser-

vation model factors connecting new poses with observed

landmarks (see Figure 11).
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Fig. 11. Illustration of belief propagation in factor graph representation: SLAM scenario. Nodes xi represent robot poses, while nodes

li represent landmarks. Factor f0 is prior on robot’s initial position x1; factors between robot poses represent the motion model (65);

factors between pose and landmark represent the observation model (66). Two actions ai and aj are considered, performing loop-closure

to re-observe landmarks l1 and l2, respectively. Both actions introduce their own factor graphs G(ai) and G(aj) (colored in pink) that

are connected to prior Gk through factor sets Fconn(ai) and Fconn(aj) (colored in green), respectively.

Following the general formulation, the posterior infor-

mation matrix of belief b[Xk+L], i.e. 3k+L, can be con-

structed by first augmenting the current information matrix

3k ≡ 6−1
k with L zero block-rows and block-columns, each

block having dimension np of robot pose variable, to obtain

3
Aug

k+L ∈ R
N×N with N = n + L · np, and thereafter adding

to it new information, as illustrated in Figure 1 (see e.g.

Indelman et al., 2015):

3k+L = 3
Aug

k+L+

k+L∑
l=k+1

{
FT

l ·6
−1
ω,l ·Fl +

nl∑
j=1

HT
j ·6

−1
υ,l,j ·Hj

}
,

(70)

where Fl
.
= 5xf and Hj

.
= 5xh are augmented Jacobian

matrices of all new factors in (69) (motion and observation

terms all together), linearized about the current estimate of

Xk and about initial values of newly introduced robot poses.

Again, after stacking together all new Jacobians in the

above equation and combining all noise matrices into a

block-diagonal matrix, we obtain the same posterior infor-

mation expression as in (10).

Note that the block-columns of matrix A ∈ R
m×N

from (10) represent all old robot poses, mapped until now

landmarks, and new robot poses from L-horizon future.

Here A’s block-rows represent new motion and observa-

tion factors from (69). As mentioned before, only involved

variables will have non-zero values in their block-columns.

It is not difficult to see that in SLAM the involved ones

are: all new robot poses, current robot pose xk , and all

landmarks that will be observed following the current can-

didate’s actions. Block-columns of all other variables in A

will be zeros.

The rest of the problem definition (objective functions,

unfocused and focused settings) for the active SLAM

problem is identical to the general formulation in Section 2.

Solution: rAMDL applied to SLAM The augmented BSP

problem for the SLAM case, described in the previous sec-

tion, can be naturally solved by our general approach from

Section 3.3. However, we go one step further and provide

a solution tailored specifically to the SLAM domain, as an

example of applying rAMDL to a real problem and in order

to show the underlying structure of the SLAM solution.

First, let us model informative partitions of Jacobian

matrices B and D from (34), IBold , Bnew, and Dnew (see

also Figure 7), for one of the candidate actions, action a.

As was mentioned above, the factors from action’s factor

graph G(a), Fnew(a), contain all new motion model factors

from (69), except for factor f M
k . Therefore, Dnew will have

the following form:

Dnew =

( columns of xk+1, . . . , xk+L)

 block-row for f̄ (xk+1, xk+2)
...

block-row for f̄ (xk+L−1, xk+L)

=

9
− 1

2
new ·

( xk+1) ( xk+2) ( xk+3) ( xk+4)





Fk+1 −I 0 0

0 Fk+2 −I 0

0 0 Fk+3 −I

0 0 0 Fk+4

...
...

...
...

0 0 0 0

0 0 0 0

0 0 0 0
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· · · ( xk+L−2) ( xk+L−1) ( xk+L)





· · · 0 0 0

· · · 0 0 0

· · · 0 0 0

· · · 0 0 0
. . .

...
...

...

· · · −I 0 0

· · · Fk+L−2 −I 0

· · · 0 Fk+L−1 −I

.
= 9

− 1
2

new · D̃new (71)

where Fk+l
.
= 5xf

∣∣
x=xk+l

is the Jacobian of motion model

function f from (65) with respect to xk+l, −I is Jacobian

of f̄ from (67) with respect to second pose and is actually

an identity matrix with dimension equal to the dimension

of the robot pose. Matrix 9new is block-diagonal, combin-

ing all noise matrices of Fnew(a) factors. In addition, we

denote by D̃new the Jacobian entries of Dnew not weighted

by factors’ noise 9new.

Assume that following a’s controls the set of landmarks

La ⊆ Lk will be observed. In addition, define the set of all

new observation factors Fobs(a) as

Fobs(a) = { factor f O
i with observation model hi( x, l) :

x ∈ Xnew, l ∈ La, 1 ≤ i ≤ no}, (72)

where no is the number of such factors. Thus, the connect-

ing factors are F conn(a)= {f M
k ,Fobs(a) }; and involved old

variables will be IXold = {La, xk}, containing xk because of

first factor’s motion model f̄ (xk , xk+1). Therefore, IBold and

Bnew will be

(
IBold Bnew

)
=

( columns of La, xk , xk+1, . . . , xk+L)




block-row for f̄ (xk , xk+1)

block-row for h1

...

block-row for hno

= 9
− 1

2
conn ·

( La) ( xk) ( xk+1) · · · ( xk+L)




0 Fk −I · · · 0

H
La
1 0 H

xk+1

1 · · · H
xk+L

1
...

...
...

. . .
...

H
La
no

0 H
xk+1
no · · · H

xk+L
no

(73)

IBold = 9
− 1

2
conn ·


0 Fk

H
La
1 0
...

...

H
La
no

0

 = 9
− 1

2
conn ·

(
0 Fk

H
La 0

)
,

H
La .
=

H
La
1
...

H
La
no

 (74)

Bnew = 9
− 1

2
conn ·


−I · · · 0

H
xk+1

1 · · · H
xk+L

1
...

. . .
...

H
xk+1
no · · · H

xk+L
no

 = 9
− 1

2
conn ·

(
F

H
Xnew

)
,

F
.
=
(
−I · · · 0

)
, H

Xnew .
=

H
xk+1

1 · · · H
xk+L

1
...

. . .
...

H
xk+1
no · · · H

xk+L
no

 ,(75)

where H
La
i

.
= 5La hi is the Jacobian of the ith observa-

tion factor hi from (66) with respect to variables La, and

thus only one of its block-columns, corresponding to an

observed landmark, is non-zero. Here H
xk+l

i

.
= 5xk+l

hi is

the Jacobian of hi with respect to xk+l, and therefore is

non-zero only if a factor’s observation was taken from pose

xk+l. Matrix 9conn is block-diagonal, combining all noise

matrices of F conn(a) factors.

As can be seen from the above, the Jacobian matrices
IBold , Bnew, and Dnew are sparse and can be efficiently manip-

ulated. More specifically, the information matrix of factor

graph G(a), 3a = DT
new · Dnew, which is required in our

approach, can be calculated quickly as a product of sparse

matrices 3a = D̃T
new · 9

−1
new · D̃new due to the formulation

in (71); in addition, it can be shown to be singular and

block-tridiagonal.
The matrix C1 from (41) can also be reduced to the

following form:

C1 = Imconn +9
− 1

2
conn ·(

Fk ·6
M ,xk
k · FT

k Fk ·6
M ,{xk/La}

k ·( HLa )T

HLa ·6
M ,{La/xk }

k · FT
k HLa ·6

M ,La
k ·( HLa )T

)

·9
− 1

2
conn

= 9
− 1

2
conn ·[
9conn +

(
Fk ·6

M ,xk
k · FT

k Fk ·6
M ,{xk/La}

k ·( HLa )T

HLa ·6
M ,{La/xk }

k · FT
k HLa ·6

M ,La
k ·( HLa )T

)]

·9
− 1

2
conn

.
= 9

− 1
2

conn · C2 ·9
− 1

2
conn, (76)

C2
.
= 9conn +

(
Fk ·6

M ,xk
k · FT

k Fk ·6
M ,{xk/La}

k ·( HLa )T

HLa ·6
M ,{La/xk }

k · FT
k HLa ·6

M ,La
k ·( HLa )T

)
(77)

where 6
M ,{xk/La}

k is the prior cross-covariance between

variables xk and La.
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In addition, C1’s determinant and its inverse can be

calculated through∣∣C1

∣∣ = ∣∣C2

∣∣∣∣9conn

∣∣ , C−1
1 = 9

1
2

conn · C
−1
2 ·9

1
2

conn. (78)

Next, we can calculate term BT
new · C

−1
1 · Bnew from (39) as

BT
new · C

−1
1 · Bnew =

(
F

T ( H
Xnew )T

)
·

9
− 1

2
conn ·9

1
2

conn · C
−1
2 ·9

1
2

conn ·9
− 1

2
conn ·

(
F

H
Xnew

)
=
(
F

T ( H
Xnew )T

)
· C−1

2 ·

(
F

H
Xnew

)
= B̃T

new · C
−1
2 · B̃new,

(79)

where B̃new
.
=

(
F

H
Xnew

)
contains the Jacobian entries

of Bnew not weighted by factors’ noise 9conn. Then, the

unfocused IG objective from (16) in the SLAM setting

is given by

JIG(a) =
n′ · γ

2
−

1

2
ln
∣∣9conn

∣∣+ 1

2
ln
∣∣C2

∣∣+ 1

2
ln|̃BT

new ·

C−1
2 · B̃new + D̃T

new ·9
−1
new · D̃new|. (80)

Above we have shown in detail how our rAMDL approach

can be applied to information-based SLAM planning prob-

lem types. The derived equation (80) is very similar to the

general solution from (39), having exactly the same run-

time complexity. However, within both (80) and (77) we

can see a clear separation between noise of factor model

and the actual Jacobian entries. Such a separation can pro-

vide further theoretical insight about how different terms of

the SLAM problem affect the information impact of candi-

date action a = uk:k+L−1. Moreover, it can provide a good

starting point for the derivation of JIG(a)’s gradient with

respect to uk:k+L−1, which, in turn, can be used for gradient-

descent algorithms that search for locally optimal controls

(Indelman et al., 2015; Van Den Berg et al., 2012). Note

the variable ordering in the above equation serves only for

visualization; the derivation remains valid for an arbitrary

variable ordering.

In addition, for the sake of completeness we also pro-

vide a SLAM-specific solution for focused cases, where

we consider either reducing the entropy of the last pose

(X F
k+L ≡ xk+L) or of all the mapped landmarks (X F

k ≡ Lk).

The corresponding derivation can be found in Appendices

A.7 and A.8.

4.3. Graph reduction

It is a known fact that in long-term SLAM applications,

the state dimension of smoothing techniques can grow

unboundedly. In such cases, even the most efficient state-of-

the-art estimation algorithms such as iSAM2 (Kaess et al.,

2012) can become slow and will not support online opera-

tion. Approaches such as graph reduction and graph sparsi-

fication try to tackle the problem by reducing the number of

variables (Ila et al., 2010; Kretzschmar and Stachniss, 2012;

Paull et al., 2016) and sparsifying entries of the information

matrix (Carlevaris-Bianco et al., 2014; Huang et al., 2012;

Mazuran et al., 2014; Vial et al., 2011), respectively.

Graph reduction requires us to first select nodes to expel.

In such cases, having a state vector X with variables

{x1, . . . , xn}, it would be logical to remove the most uncer-

tain node, say xi, without which the rest of the variables

Xi
.
= {X \ xi} would have the smallest entropy H( Xi). In

this section we outline a new approach for such a selection

which is closely related to our rAMDL technique.

Similarly to the focused objective function from (17),

the best choice for expelled variable x∗i among state vari-

ables will minimize the following objective function:

x∗i = arg min
xi∈X

JGR(xi)

= H( Xi)=
(n− nx) ·γ

2
−

1

2
ln
∣∣∣3M ,Xi

∣∣∣ , (81)

where H( Xi) is entropy of the state variables without xi, and

nx is xi’s dimension.

Using Equation (26) from our approach, in order to

calculate 3M ,Xi , we can reduce our objective function to

JGR(xi)=
(n− nx) ·γ

2
−

1

2
ln
∣∣3∣∣+ 1

2
ln
∣∣3xi

∣∣ , (82)

where 3 is the information matrix of the whole X , and 3xi

is its partition related to variable xi.

Given that all xi variables have the same dimension

nx, eventually we can conclude that optimal x∗i will also

minimize

x∗i = arg min
xi∈X

JGR(xi)= ln
∣∣3xi

∣∣ (83)

which practically implies calculating the determinant of

every partition 3xi and choosing the state variable xi with

minimal determinant value. In cases where all xi are scalars,∣∣3xi
∣∣ is just a value from the diagonal of the information

matrix 3. In cases where xi’s dimension is nx, we will have

to calculate the determinants of n matrices, each one of

dimension nx × nx. Taking into account that nx is usually

not big at all (e.g. a 3D pose has six dimensions), the overall

calculation is very fast and is just O(n).

5. Alternative approaches

We compare the presented rAMDL approach with two alter-

natives, namely the From-Scratch and iSAM techniques.

In From-Scratch, the posterior information matrix 3k+L

is computed by adding new information AT · A, followed

by the calculation of its determinant. In the focused sce-

nario, the marginal information matrix of X F
k+L is retrieved

through the Schur complement performed on 3k+L, and its

determinant is then computed.

The second alternative, uses the iSAM algorithm (Kaess

et al., 2012) to incrementally update the posterior. Here the
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(linearized) system is represented by a square root informa-

tion matrix Rk , which is encoded, while exploiting sparsity,

by the Bayes tree data structure. The posterior matrix Rk+L

is acquired (e.g. via Givens rotations (Kaess et al., 2012)

or another incremental factorization update method), and

then the determinant is calculated |3k+L| =
N∏

i=1

r2
ii, with

rii being the ith entry on the diagonal of triangular Rk+L.

For the focused case, the marginal covariance matrix of

X F
k+L is computed by recursive covariance per-entry equa-

tions (Kaess and Dellaert, 2009) that exploit the sparsity of

matrix Rk+L.

While the iSAM technique outperforms batch From-

Scratch, it still requires calculating Rk+L for each action,

which can be expensive, particularly in loop closures,

and requires a copy/clone of the original matrix Rk . In

contrast, in rAMDL, the per-candidate action calculation

(e.g. in (37)) has constant complexity in general, given

the prior marginal covariance terms that are calculated

only once.

6. Computational complexity analysis

In this section, we analyze the computational complex-

ity of the developed-herein family of rAMDL algorithms,

and of alternative approaches from Section 5. We sum-

marize the runtime complexity of different approaches in

Table 4.

The computational complexity of rAMDL algorithms

consists of two parts. First, there is a one-time computation

of prior covariance entries 6
M ,IXold
k (and sometimes 6

IX U
old
|F

k ,

see Section 3.4). Second, there is a per-candidate compu-

tation of an approach-specific objective function. There-

fore, overall computational complexity is equal to O(one-

time complexity )+O(per-action complexity × number of

candidate actions).

The prior covariance 6
M ,IXold
k is calculated from the

square root information matrix Rk using a recursive method

as described in Golub and Plemmons (1980) and Kaess and

Dellaert (2009). Its complexity is bounded by O(n2
nz · n),

where n is the state dimension and nnz is the number of

non-zero entries in the Rk . However, typically its complex-

ity depends on variable ordering within Rk and is much

lower. For more detailed complexity analysis of this covari-

ance recovery method, see Kaess and Dellaert (2009) and

Ila et al. (2015). For cases where 6
IX U

old
|F

k is also required,

we consider the method described in Algorithm 2 that

calculates the prior conditional covariance entries through

the Schur complement. Its complexity is bounded by the

inverse calculation (6
M ,F
k )−1, which is O( |X F |3) with |X F |

being the dimension of focused variables.

The per-action complexity of rAMDL algorithms was

analyzed in Sections 3.2–3.3, next to the equation definition

of each approach, and is summarized in Table 4.

The complexity of both focused and unfocused
From-Scratch approaches is governed by the term O( N3),

with N being the posterior state dimension. In the

unfocused case, the From-Scratch method calculates a

determinant of dimension N for each candidate action. In

the focused case, the From-Scratch method calculates a

Schur complement per each candidate, which is typically

more computationally expensive than the computation of a

matrix determinant.

The iSAM technique propagates posterior belief per each

candidate action and then evaluates the appropriate pos-

terior entropy (unfocused or focused). This belief

propagation is done efficiently through a Bayes tree, yet

its runtime complexity is difficult to analyze. It is declared

in Kaess et al. (2012) that typically belief propagation

takes O( N1.5). In the unfocused case, |3k+L| is calcu-

lated in O( N) through diagonal entries of Rk+L, providing

a final per-candidate complexity of O( N1.5) for the iSAM

Unfocused approach. In the focused case the marginal

covariance matrix of focused variables X F
k+L is computed

via the method from Kaess and Dellaert (2009), which

is O( N2
nz · N) where N is the posterior state dimension

and Nnz is the number of non-zero entries in the posterior

square root information matrix Rk+L. Further, the determi-

nant of the marginal covariance matrix is computed, which

takes O( |X F |3). In total the iSAM Focused approach will

have per-candidate complexity of O( N1.5+N2
nz ·N+|X

F |3).

From Table 4 we can see that the per-candidate

complexity of rAMDL does not depend on the state

dimension while the complexity of both iSAM and From-

Scratch does. For example, in the unfocused case,

rAMDL requires O(M(F(a))3 ), while iSAM and From-

Scratch need O( N1.5) and O( N3), respectively. Since

M(F(a)) represents the total dimension of newly intro-

duced factors by candidate action a, it is typically con-

siderably smaller than the posterior state dimension N ,

i.e. M(F(a))� N . This difference makes the rAMDL

technique significantly faster, as will be shown further in

Section 7.

Note that we do not analyze the BSP complexity in terms

of the horizon lag of a candidate action. Instead, we use

dimensions of different components of prior and posterior

factor graphs since these give a better insight on the real

complexity of the factor-graph-based algorithms presented

herein.

7. Results

In this section, we evaluate the performance of the pro-

posed approach and compare it with alternative approaches

considering unfocused and focused instantiations of

several fundamental problems: sensor deployment, mea-

surement selection, and autonomous navigation in unknown

environments.

In sensor deployment, each candidate action represents

a set of possible locations for deploying a sensor, with a
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Table 4. The presented approaches and their alternatives, along with the corresponding runtime complexity. Used symbols are: n is the

dimension of prior state vector Xk ; nnz is the number of non-zero entries in a prior square root information matrix Rk ; n′ is the dimension

of newly introduced variables Xnew by candidate action a; N = n+n′ is the dimension of posterior state vector Xk+L; Nnz is the number

of non-zero entries in a posterior square root information matrix Rk+L; F (a) represents newly introduced factors by candidate action a;

M(F (a)) is the total dimension of newly introduced factors F (a); Fconn(a) represents a subset of factors from F (a) that involves at

least one old variable from Xk ; M(Fconn(a)) is the total dimension of factors in Fconn(a). Further details can be found in Section 6.

Approach Per-action complexity One-time complexity

Non-augmented BSP rAMDL approaches

rAMDL Unfocused, equation (24) O(M(F (a))3 ) O(n2
nz · n)

rAMDL Focused, equation (30) O(M(F (a))3 ) O(n2
nz · n+ |X

F |3)

Augmented BSP rAMDL approaches

rAMDL Unfocused, equations (37), (38) O(M(F (a))3 ) O(n2
nz · n)

rAMDL-Extended Unfocused, equations (39), (41) O(M(Fconn(a))3+n′3) O(n2
nz · n)

rAMDL Focused New , equations (42), (38) O(M(F (a))3+n′3) O(n2
nz · n)

rAMDL-Extended Focused New , equations (44), (41) O(M(Fconn(a))3+n′3) O(n2
nz · n)

rAMDL Focused Old, equations (45), (46) O(M(F (a))3+n′3) O(n2
nz · n+ |X

F |3)

rAMDL-Extended Focused Old, equations (47), (48) O(M(Fconn(a))3+n′3) O(n2
nz · n+ |X

F |3)

Alternative approaches

From-Scratch Unfocused & Focused, Section 5 O( N3) -

iSAM Unfocused, Section 5 O( N1.5) -

iSAM Focused, Section 5 O( N1.5 + N2
nz · N + |X

F |3) -

single sensor deployment corresponding to a unary factor.

We consider a non-myopic setting and let each candidate

action represent two sensor locations. In the measurement

selection problem, we consider a greedy decision-making

paradigm in the context of aerial visual SLAM with pair-

wise factors.

Further, we present simulation results of applying our

approach to autonomous navigation in unknown environ-

ments (both unfocused and focused cases) on syn-

thetic and real-world datasets. The robot has to visit a

sequence of goals while minimizing an objective function

comprising two terms (to be defined in the sequel): dis-

tance to goal, and an uncertainty metric. Candidate actions

are non-myopic and involve multiple new and old state

variables.

In all cases, the presented simulations reflect the com-

putational performance of different approaches developed

within this paper, and alternative methods that are described

in Section 5. In Table 5 we summarize the considered

approaches in each of the above problems, and refer to

appropriate equations for each case. Moreover, we empha-

size that all techniques presented herein, rAMDL and their

alternatives, are mathematically identical in the sense that

they determine identical optimal actions given a set of

candidate actions.

The code is implemented in Matlab; for measurement

selection and autonomous navigation we use the GTSAM

library (Dellaert, 2012; Kaess et al., 2012). All scenarios

were executed on a Linux machine with an i7 2.40 GHz

processor and 32 GB of memory.

7.1. Sensor deployment (focused and

unfocused)

In this section, we apply our approach rAMDL to the sen-

sor deployment problem, considering both focused and

unfocused instantiations of this problem (see Section 4.1

for a detailed formulation). The prior of the sensor field is

represented by the information matrix 3 and it is dense as

usual in the problem of sensor deployment.

We compare our rAMDL approach against the batch

From-Scratch technique that is described in Section 5, and

also against the Sequential rAMDL described in Section 4.1,

which does not require marginal covariance computation at

each decision.

While decision making involves evaluating the impact of

an action for all candidate actions A, we first analyze action

impact calculation (JIG(a)) for a single candidate a ∈ A,

comparing rAMDL with the From-Scratch approach for the

unfocused case. Figure 12 shows these timing results as

a function of state dimension n (Figure 12a) and as function

of Jacobian A’s height m (Figure 12b). As expected, n effects

the running time of both the From-Scratch technique and

calculation of 6k (inverse of 3k , which is dense in the case

of sensor deployment), while m only effects the calculation

of the IG objective of rAMDL (red line).

One might think, based on Figure 12a and (b), that the

proposed approach is slower than the From-Scratch alterna-

tive because of the time needed for inverse calculation to

obtain 6k . Yet, it is exactly here that our calculation re-use

paradigm comes into play (see Section 3.4): this calcula-

tion is performed only once for all candidate actions A,
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Table 5. Considered approaches in different problems from Section 7, along with their appropriate equations

Problem Approach Equations/Section

Sensor Deployment, rAMDL Unfocused Equation (24)

Section 7.1 rAMDL Focused Equation (30)

Sequential rAMDL Equations (63), (64)

Partitions Givens rotations & Equation (27)

From-Scratch, Unfocused & Focused Section 5

Measurement selection, rAMDL Unfocused Equation (24)

Section 7.2 iSAM Unfocused Section 5

Autonomous Navigation, rAMDL Unfocused Equations (37), (38)

Section 7.3 rAMDL-Extended Unfocused Equations (39), (41)

rAMDL Focused New Equations (42), (38)

rAMDL-Extended Focused New Equations (44), (41)

rAMDL Focused Old Equations (45), (46)

rAMDL-Extended Focused Old Equations (47), (48)

From-Scratch, Unfocused & Focused Section 5

iSAM, Unfocused & Focused Section 5

while, given 6k , calculating IG for each action is no longer

a function of n.

The substantial reduction in running time of our

approach, compared with the From-Scratch approach, can

be clearly seen in Figure 12c, which considers the entire

decision-making problem, i.e. evaluation of all candidate

actions A. The figure shows the running time for sequen-

tial decision making, where at each time instant we choose

the best locations of two sensors, with around |A| = 105

candidate actions. The number of all sensor locations is

n = 625 in this example. Overall, 15 sequential decisions

were made. As seen, decision making using our approach

requires only about 5 seconds, while the From-Scratch

approach requires about 400 seconds.

The Sequential rAMDL technique is not always faster

than rAMDL, as can be seen in Figure 12c. As described in

Section 4.1 this technique will be superior in cases where

the covariance calculation makes up a significant part of

the whole decision calculation. We can see that this is the

case in Figure 12f, where the number of candidates is lim-

ited to 100, and where the covariance calculation time is the

biggest part in the decision making of the rAMDL approach.

There we can see that Sequential rAMDL provides better

performance than all other alternatives.

We now consider the focused version of the sensor

deployment problem (17). In other words, the goal is to find

sensor locations that maximally reduce uncertainty about

chosen focused variables X F . We have 54 such variables,

which are shown in Figure 13c, while the rest of the problem

setup remains identical to the unfocused case.

In Figure 13 we show the corresponding results of

rAMDL, compared with the From-Scratch. The latter first

calculates, for each candidate action, the posterior 3+ =

3 + AT A, followed by calculation of the Schur comple-

ment 3M ,F of the focused set X F , and its determinant∣∣3M ,F
∣∣ in order to obtain JF

H
(a) (17). We also compare it

with an additional approach, termed Partitions, which uses

Givens rotations to compute R+ and instead of performing

the Schur complement, calculates the posterior entropy of

the focused set via (27). This equation is one of our main

contributions, being an essential step in the derivation of our

approach, and we show here that compared with the From-

Scratch technique, the Partitions approach is considerably

faster. Our focused approach applies the matrix determi-

nant lemma, transforming (27) into (30), which, together

with the re-use concept (Section 3.4), makes it possible to

drastically reduce the running time as shown in Figure 13a

(10 seconds versus about 1000 seconds in Partitions and

1300 seconds in From-Scratch).

7.2. Measurement selection in SLAM

In this section, we consider a measurement selection prob-

lem (see Section 3.5) within a visual aerial SLAM frame-

work, where one has to choose the most informative image

feature observations from the numerous image features

typically calculated for each incoming new image.

We demonstrate application of our approach in this prob-

lem, which, in contrast to the sensor selection problem,

involves pairwise factors of the type p( zi,j|xi, lj), relating

between an image observation zi,j, camera pose xi, and

landmark lj.

A top view of the considered aerial scenario is shown

in Figure 14a: an aerial vehicle performs visual SLAM,

mapping the environment and at the same time localizing

itself. The figure shows the landmarks and the estimated

trajectory, along with the uncertainty covariance for each

time instant. One can clearly see the impact of loop-closure

observations on the latter. In the considered scenario there

are about 25,000 landmarks and roughly 500 image features

in each view.

The number of image features that correspond to previ-

ously seen landmarks is relatively small (around 30–50, see

Figure 14b), which corresponds to a much smaller set of
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Fig. 12. Unfocused sensor deployment scenario. Running time, for simplicity termed as “Time” within graphs, for calculating the

impact of a single action as a function of state dimension n (a) and as a function of Jacobian A’s height m (b). In (a) m = 2 and in (b)

n = 625. rAMDL Unfocused Objective represents only the calculation time of candidates’ impacts (IG objective for all actions),

without one-time calculation of prior covariance; Covariance Inverse represents the time it took to calculate covariance matrix 6k from

dense information matrix 3k , 6k = 3−1
k

. (c) Running time for sequential decision making, i.e. evaluating the impact of all candidate

actions, each representing candidate locations of two sensors. (d) Prior and final uncertainty of the field, with red dots marking selected

locations; note locations with negligible uncertainty are the observed locations where sensors were deployed. (e) Number of action

candidates per decision. (f) Running time for sequential decision making, with the number of candidates limited to 100.

actions A compared with the sensor deployment problem

(Section 7.1) where the cardinality of A was huge (105).

Such a dataset was chosen on purpose in order to show

the behavior of the proposed algorithm in domains with a

small number of candidates. In addition, in this scenario

the actions are myopic since the measurements are greedily

selected.

In addition, as opposed to the sensor deployment prob-

lem, in the current problem, state dimensionality n grows

with time as more poses and landmarks are added into

inference (see Figure 14c) and the information matrix is

sparse.

Figure 14d shows the timing results for choosing 10 most

informative image observations comparing the proposed
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Fig. 13. Focused sensor deployment scenario. (a) Overall time it took to make a decision with different approaches; rAMDL

Focused Objective represents only the calculation of candidates’ impacts (IG objective for all actions) while rAMDL Focused

represents both one-time calculation of prior covariance 6k and candidates’ evaluation. (b) Final uncertainty of the field, with red

dots marking selected locations; note locations with negligible uncertainty are the observed locations where sensors were deployed. (c)

Focused set of variables (green circles) and locations selected by algorithm (red dots). (d) Overall system entropy (above) and entropy

of focused set (bottom) after each decision, with the blue line representing the unfocused algorithm and the red line representing

the focused algorithm. Note that all unfocused methods make exactly the same decisions, with difference only in their runtime

complexity. The same is also true for all focused methods.

rAMDL with the iSAM approach (computing the poste-

rior square root information matrix using iSAM, and then

calculating the determinant; see Section 5). This BSP prob-

lem is solved sequentially, each time a new image is

acquired. As seen, our approach rAMDL is substantially

faster than the iSAM, while providing identical results (the

same decisions). In particular, the running time of the iSAM

approach for the last time index with n = 10,000 state

dimensionality, is around 7 seconds. In contrast, rAMDL

takes about 0.05 seconds: calculation time of action impacts

via calculation re-use is negligible (red line), while the

one-time calculation of marginal covariance 6
M ,XAll
k (yel-

low line) is performed efficiently, in the current implemen-

tation, via sparse factorization techniques using GTSAM

(Dellaert, 2012; Kaess et al., 2012).

7.3. Autonomous navigation in an unknown

environment

In this section we present simulation results of apply-

ing our approach to autonomous navigation in unknown

environments (both unfocused and focused cases) on

synthetic and real-world datasets.

In the synthetic scenario (Figure 15c), the robot’s task is

to visit a predefined set of goals G = {G1, . . . , G14} in an

unknown environment while reducing an uncertainty met-

ric. More specifically, the state vector Xk contains all robot

poses and landmarks mapped until time tk (see Section

4.2). At each point of time, the robot autonomously selects

an optimal non-myopic action a = uk:k+L−1, performs

its first control uk , and subsequently observes landmarks

within a radius of 900 meters from its new position. The
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Fig. 14. Measurement selection scenario. (a) Simulated trajectory of a robot; black dots are the landmarks, blue marks and surrounding

ellipses are the estimated trajectory along with the uncertainty covariance for each time instant, red mark is the robot’s initial pose. (b)

Number of measurement candidates per decision. (c) State’s dimension n per decision. (d) Overall time it took to evaluate the impacts of

all poses’ measurements, with different approaches; rAMDL Unfocused Objective represents only the calculation of candidates’

impacts (IG objective for all actions) while rAMDL Unfocused represents both one-time calculation of marginal covariance 6
M ,XAll

k
and candidates’ evaluation.

landmarks can be either old (seen before) or new (seen

for the first time). Next, a SLAM solution is calculated

given these new observations and a motion model. To that

end, the factor graph from the previous inference time

is updated with the new observation and motion model

factors, and new variable nodes, representing the current

robot pose and new landmarks, are added (see Section

4.2). Afterwards, the next action is chosen and executed,

and so on.

The set of candidate actions A contains one action that

navigates the robot from its current pose xk to the current

goal Gi from a predefined set G (see Figure 15c); it also

contains a set of “loop-closure” actions that are generated in

the following way. We start by taking all mapped landmarks

within a radius of 1000 meters from the robot’s current pose.

We cluster these landmarks, similarly to Kim and Eustice

(2014), and obtain a set of landmark clusters. Each cluster’s

center gcl represents a “loop-closure” goal and contributes

a “loop-closure” action acl = uk:k+L−1 that navigates the

robot from xk to gcl.

Each action in A, taking the robot from xk to location g,

is constructed by first discretizing the map into a grid and

thereafter searching for an optimal trajectory from the cur-

rent position to g using an A∗ search algorithm, similarly

to Kim and Eustice (2014) and Indelman et al. (2015). The

optimal candidate action is chosen by evaluating an objec-

tive that has the following two terms: distance to the current

goal Gi and a term of uncertainty

J (a)= d(xk+L, Gi)+JF
H/IG(a) . (84)

In the scenarios from Figures 15, 16, 17, and 19 we con-

sider as the term of uncertainty the entropy JF
H

(a) of the

last pose xk+L in the planning segment (Section 3.3.3.1),

while in the scenario from Figure 18 we instead use the

IG of mapped until now landmarks JF
IG(a) (Section 3.3.3.2).

Note that the running time presented in the figures refers
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Fig. 15. Focused BSP scenario with focused robot’s last pose. (a) Dimensions of the BSP problem (state dimension n, average

number of new factor terms m, average number of new variables n′, average number of old involved variables l) at each time. (b)

Number of action candidates at each time. (c) Final robot trajectory. Blue dots are mapped landmarks, the red line with small ellipses is

the estimated trajectory with pose covariances, the blue line is the real trajectory, the red pluses with numbers beside them are robot’s

goals. The green mark is the robot’s start position. (d) Enlarged view of the robot’s trajectory near goal 12.

only to the uncertainty term, since it is the focus of this

paper and because the calculation complexity of the first

term (Euclidean distance d(xk+L, Gi)) is relatively insignifi-

cant. As can be seen from above, we consider a non-myopic

setting and let each candidate action represent trajectories

of various length. Limiting the clustering process to a spe-

cific radius is done in order to bound the horizon laIn the

scenarios fromg of candidate actions.

In parallel, in scenarios from Figures 16 and 17, an

unfocused uncertainty objective JIG(a) is calculated

(Section 3.3.2), mainly for the purpose of performance

comparison between focused and unfocused cases.

The robot’s motion is controlled only by the focused
objective function.

Four techniques were applied to solve the planning prob-

lem: more common techniques From-Scratch and iSAM

(Section 5) and the proposed techniques, our general

approach rAMDL and its extension rAMDL-Extended that

exploits the Jacobian inner structure from (34) (see Table 5,

and Sections 3.3.2 and 3.3.3.1). The calculated values of the

objective function were numerically compared to validate

that all four approaches are calculating exactly the same

metric, thus yielding the same decisions and only differ in

running time.

In Figures 16 and 17 it can be clearly seen that while

iSAM is faster than From-Scratch, the running time of

both techniques is increasing with state dimensionality, as

was mentioned previously. On the other hand, the running

time of the rAMDL approach is shown to be bounded,

due to horizon lag of all candidate actions being lim-

ited (see Figure 15a). The number of candidate actions in

our scenario is around 20 at each planning phase (Figure

15b). Even with such a relatively small candidate set, the

rAMDL approach is faster than its alternatives iSAM and

From-Scratch, while the rAMDL-Extended approach is the

fastest of all. This trend appears to be correct for both

focused and unfocused objective functions, though

for the later, iSAM comes very close to the rAMDL

technique.

While comparing the running time of both From-Scratch

and iSAM in focused and unfocused objective func-

tions, it is easy to see that the unfocused case is evalu-

ated much faster. The reason for this is that the focused
calculations contain computation of marginal covariance of
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Fig. 16. Focused BSP scenario with focused robot’s last pose. (a) Running time of planning, i.e. evaluating the impact of all

candidate actions, each representing a possible trajectory. Results are shown both for focused and unfocused cases. (b) Enlarged

view of the fastest approaches from (a). (c) Focused approaches from (b). Note that iSAM Focused is not depicted because, as seen

in (a), it is much slower compared with other focused techniques. (d) Unfocused approaches from (b). The lowest line, labeled

Marginal Cov, represents the time it took to calculate prior marginal covariance 6
M ,XAll

k
in rAMDL approach (see Section 3.4). As

can be seen, while the rAMDL technique (Unfocused and Focused) is faster than From-Scratch and iSAM, the rAMDL-Extended

technique gives even better performance. Further, it is interesting to note that the performance of Unfocused and Focused rAMDL

is almost the same, as so is the performance of Unfocused and Focused rAMDL-Extended.

the focused variable (last pose xk+L) for each candidate

action, which requires marginalization over the posterior

information matrix 3k+L. Although this can be performed

efficiently by exploiting the sparsity of matrix 3k+L (Kaess

and Dellaert, 2009), the time complexity is significantly

affected by variable elimination ordering of the iSAM algo-

rithm (Kaess et al., 2012). While in our simulation we

did not modify the default ordering of iSAM (COLAMD

heuristic), different strategies of ordering can be a point for

future investigation.

In contrast, for the rAMDL approach both unfocused
and focused objective functions (equations (37)

and (42)) have a similar complexity, which is sup-

ported by the shown times. The same is correct for the

rAMDL-Extended approach (equations (39) and (44)).

Next, we repeated our autonomous navigation scenario,

but this time X F
k+L contained only landmarks seen by time

k (see Figure 18). The IG of such a focused set X F
k+L

can be used as an objective function for example in the

case when we want to improve 3D reconstruction quality.

As can be seen in Figure 18, this focused set causes both

From-Scratch and iSAM techniques to be much slower com-

pared with their performance in the first scenario, where

X F
k+L contained only xk+L. The reason for this is that X F

k+L’s
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Fig. 17. Focused BSP scenario with focused robot’s last pose. Running times from Figure 16 normalized by the number of

candidates.

dimension is much higher here, representing the dimen-

sions of all landmarks, and computation of its marginal

covariance is significantly more expensive. In contrast, the

performance of rAMDL has barely changed thanks to the

re-use of calculations (see Section 3.4). Moreover, rAMDL-

Extended performs even better than rAMDL, with candidate

action impact evaluation being insignificant compared with

the one-time calculation of marginal covariance, as can be

seen in Figures 18e and (f).

We also performed a hybrid simulation where part of the

real-world Victoria Park dataset (Guivant et al., 2012) was

used for offline planning (see Figure 19). At each timestep

we collected candidate actions by clustering landmarks seen

until that time, just as was done in the first simulation. Fur-

ther, we considered a focused objective function for each

candidate with X F
k+L containing only xk+L. After evaluat-

ing all candidates, the robot was moved to the next pose

according to the dataset. Recalling that our main contri-

bution is to reduce time complexity, such an evaluation

allowed us to compare the time performance of all of the

considered techniques, despite not actually using the cal-

culated actions in the hybrid simulation. As can be seen,

here rAMDL and rAMDL-Extended also outperform both of

the alternatives, From-Scratch and iSAM, keeping the same

trends that were observed in previous simulations.

8. Conclusions

We have developed a computationally efficient and exact

approach for non-myopic focused and unfocused
BSP in both augmented and non-augmented settings, in

high-dimensional state spaces. As a key contribution, we

have developed an augmented version of the well-known

general matrix determinant lemma and used both of them
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Fig. 18. Focused BSP scenario with focused landmarks. (a) Number of action candidates at each time. (b) Final robot trajectory.

(c) Running time of planning, i.e. evaluating the impact of all candidate actions, each representing a possible trajectory. (d) Running

time from (c) normalized by number of candidates. (e) Enlarged view of the fastest approaches from (c). (f) Enlarged view of the

fastest approaches from (d). The lowest line, labeled Marginal Cov, represents the time it took to calculate the prior marginal covariance

6
M ,XAll

k
in the rAMDL approach (see Section 3.4).

to efficiently evaluate the impact of each candidate action

on posterior entropy, without explicitly calculating the pos-

terior information (or covariance) matrices. The second

ingredient of our approach is the re-use of calculations,

that exploits the fact that many calculations are shared

among different candidate actions. Our approach drastically

reduces running time compared with the state of the art,

especially when the set of candidate actions is large, with

running time being independent of state dimensionality that

increases over time in many of BSP domains. The approach



36 The International Journal of Robotics Research 00(0)

Fig. 19. Focused BSP scenario with focused robot’s last pose, using the Victoria Park dataset. (a) Number of action candidates at

each time. (b) Final robot trajectory. (c) Running time of planning, i.e. evaluating the impact of all candidate actions, each representing

a possible trajectory. (d) Running time from (c) normalized by the number of candidates. (e) Enlarged view of the fastest approaches

from (c). (f) Enlarged view of the fastest approaches from (d). The lowest line, labeled Marginal Cov, represents time it took to calculate

the prior marginal covariance 6
M ,XAll

k
in the rAMDL approach (see Section 3.4).

has been examined in three problems, sensor deployment,

measurement selection in visual SLAM, and autonomous

navigation in unknown environments, using both simulated

and real-world datasets, and exhibiting in each superior per-

formance compared with the state of the art, and reducing

running time by several orders of magnitude (e.g. 5 versus

400 seconds in sensor deployment).
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Appendix

A.1. Proof of Lemma 1

Problem definition: given a positive-definite and symmetric

matrix 3 ∈ R
n×n (e.g. a prior information matrix) and its

inverse 6 (prior covariance matrix), first 3 is augmented

by k zero rows and columns and the result is stored in 3Aug.

Then we have matrix A ∈ R
m×(n+k) and calculate 3+ =

3Aug + AT · A (see Figure 1). We would like to express the

determinant of 3+ in terms of 3 and 6.

We start by modeling the matrix 3Aug through 6. By

introducing k new variables, before adding any new con-

straints involving these variables, we can say that new vari-

ables are uncorrelated with old variables, and their uncer-

tainty is infinite (nothing yet is known about them). Then

the appropriate covariance matrix after augmentation, 6Aug,

can just be created by adding k zero rows and columns to 6,

and setting new diagonal entries with parameter θ , noting

that θ →∞:

6Aug =

[
6 0

0 θ · I

]
. (85)

Next, note that the inverse of 6Aug is given by the

following expression:

(6Aug)−1=

[
3 0

0 ε · I

]
, (86)

where ε
.
= 1

θ
. Taking the limit ε → 0 into account, we

can see that the above equation converges to 3Aug as was

defined above. Then, in the limit, we have that ( 3Aug)−1=

6Aug. In addition, note that ε → 0, even that it never

becomes zero, ε 6= 0, thus if needed we can divide by ε

without worry.

Taking into account the limit of ε, expressing 3Aug

through (86) will not change the problem definition. How-

ever, such a model allows us to take the inverse of 3Aug:

( 3Aug)−1= 6Aug =

[
6 0

0 θ · I

]
, (87)

and therefore to use the generalized matrix determinant

lemma (Harville, 1998):∣∣3+∣∣ = ∣∣3Aug
∣∣ · ∣∣Im + A ·6Aug · AT

∣∣ = ∣∣3∣∣ · εk

·
∣∣Im + Aold ·6 · A

T
old + θ · Anew · A

T
new

∣∣ (88)

where matrices Aold ∈ R
m×n and Anew ∈ R

m×k are

constructed from A by retrieving columns of only old n

variables and of only new k variables, respectively (see

Figure 7).

Using the matrix determinant lemma once more, we

obtain∣∣3+∣∣ = ∣∣3∣∣ · εk ·
∣∣1∣∣ · ∣∣Ik + θ · AT

new ·1
−1 · Anew

∣∣ (89)

where 1
.
= Im + Aold ·6 · A

T
old .

Moving ε inside the last determinant term, we have∣∣3+∣∣ = ∣∣3∣∣ · ∣∣1∣∣ · ∣∣ε · Ik + ε · θ · AT
new ·1

−1 · Anew

∣∣ (90)

Recalling that ε → 0 and ε · θ = 1, we arrive at∣∣3+∣∣ = ∣∣3∣∣ · ∣∣1∣∣ · ∣∣AT
new ·1

−1 · Anew

∣∣ . (91)

The augmented determinant ratio will be∣∣3+∣∣∣∣3∣∣ = ∣∣Im+Aold ·6 · A
T
old

∣∣ · ∣∣AT
new·( Im+Aold ·6 · A

T
old)−1 ·

Anew

∣∣ = ∣∣1∣∣ · ∣∣AT
new ·1

−1 · Anew

∣∣ . (92)

�
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A.2. Proof of Lemma 2

For A’s structure given in (34), 1 from (32) will be

1 = Im +

(
Bold

0

)
·6 ·

(
BT

old 0
)
=

(
11 0

0 Imnew

)
, (93)

where 11 = Imconn + Bold ·6 · B
T
old , mconn =M(F conn(a)),

and mnew =M(Fnew(a)).

Then we can conclude that∣∣1∣∣ = ∣∣11

∣∣ (94)

and that

1−1 =

(
1−1

1 0

0 Imnew

)
. (95)

Now, by exploiting the structure of Anew we obtain

AT
new ·1

−1 · Anew =
(
BT

new DT
new

)
·

(
1−1

1 0

0 Imnew

)
·

(
Bnew

Dnew

)
= BT

new ·1
−1
1 · Bnew + DT

new · Dnew. (96)

Then we can conclude that the augmented determinant

lemma will be:∣∣3+∣∣∣∣3∣∣ = ∣∣11

∣∣ · ∣∣BT
new ·1

−1
1 · Bnew + DT

new · Dnew

∣∣ . (97)

�

A.3. Proof of Lemma 3

Consider the scenario of focused augmented BSP where

the focused set X F
k+L contains only newly added variables as

defined in Section 3.3.3.1, with an appropriate illustration

shown in Figure 8.

First, let us given an overview of the various partitions

of Jacobian A that are relevant to our current problem

(Figure 8). Here Aold , Anew, IAold , and ¬IAold have been

introduced in previous sections. Further, we can partition

Anew into AF
new columns of new variables that are focused

X F
new ≡ X F

k+L ∈ R
nF and AU

new columns of new unfocused

variables X U
new. Considering the figure, the set of all unfo-

cused variables in Xk+L will be X R
k+L

.
= {Xold∪X U

new} ∈ R
nR ,

such that N = nF + nR, providing another A partition

AR = [Aold , AU
new].

Next, we partition the posterior information matrix 3k+L

respectively to the sets X F
k+L and X R

k+L defined above as

3k+L =

[
3R

k+L 3
R,F
k+L

( 3
R,F
k+L)T 3F

k+L

]
. (98)

As was shown in (26), determinant of the marginal covari-

ance of X F
k+L can be calculated through

∣∣6M ,F
k+L

∣∣ = ∣∣3R
k+L

∣∣∣∣3k+L

∣∣ . (99)

Now let us focus on the 3R
k+L term from the right-hand side.

From (10) we can see that the partition of the posterior

information matrix 3R
k+L can be calculated as

3R
k+L = 3

Aug,R
k + AT

RAR, (100)

where 3
Aug,R
k can be constructed by augmenting 3k with

zero rows and columns in the number of X U
new’s dimension

(see Figure 8). The above equation has an augmented deter-

minant form as defined in Section 3.3.1, and so the aug-

mented determinant lemma can be applied on it. Using (32)

we have ∣∣3R
k+L

∣∣∣∣3k

∣∣ = ∣∣C∣∣ · ∣∣(AU
new)T ·C−1 · AU

new

∣∣ , (101)

where C is defined in (38).

Next, dividing (101) by (36), we obtain

∣∣6M ,F
k+L

∣∣= ∣∣3R
k+L

∣∣∣∣3k

∣∣ ·
∣∣3k

∣∣∣∣3k+L

∣∣ =
∣∣3R

k+L

∣∣∣∣3k+L

∣∣
=

∣∣(AU
new)T ·C−1 · AU

new

∣∣∣∣AT
new · C

−1 · Anew

∣∣ , (102)

and posterior entropy of X F
k+L is given by

JF
H(a) =

nF · γ

2
+

1

2
ln
∣∣(AU

new)T ·C−1 · AU
new

∣∣
−

1

2
ln
∣∣AT

new · C
−1 · Anew

∣∣ . (103)

�

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.

A.4. Proof of Lemma 4

For A’s structure given in (34), the term AT
new · C

−1 · Anew

from (103), similarly to (96), will be

AT
new · C

−1 · Anew = BT
new · C

−1
1 · Bnew +DT

new ·Dnew, (104)

where C1 is defined in (41).

In the same way, we can conclude (see Figure 8) that

(AU
new)T ·C−1 · AU

new =( BU
new)T ·C−1

1 · B
U
new+( DU

new)T ·DU
new.

(105)

Therefore, the posterior entropy of X F
k+L from (103) is

given by

JF
H(a) =

nF · γ

2
+

1

2
ln
∣∣( BU

new)T ·C−1
1 · B

U
new +3U |F

a

∣∣
−

1

2
ln
∣∣BT

new · C
−1
1 · Bnew +3a

∣∣ , (106)

where 3a = DT
new · Dnew is the information matrix of an

action’s factor graph G(a), and where 3U |F
a =( DU

new)T ·DU
new

is the information matrix of variables X U
new conditioned
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on X F
new ≡ X F

k+L and calculated from the distribution

represented by G(a).

�

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.

A.5. Proof of Lemma 5

Consider the scenario of focused augmented BSP where

the focused set X F
k+L contains only old variables, with

appropriate illustration shown in Figure 9 and with various

partitions of Jacobian A defined in Section 3.3.3.2.

First, let us look again over relevant partitions of Jaco-

bian A (Figure 9). The Aold , Anew, IAold , and ¬IAold were

already introduced in previous sections. From the figure

we can see that ¬IAold can further be separated into ¬IAU
old

columns of old variables that are both not involved and

unfocused (¬IX U
old) and ¬IAF

old columns of old variables that

are both not involved and focused (¬IX F
old). In addition, IAold

can be partitioned into IAU
old columns of old variables that

are both involved and unfocused (IX U
old), and IAF

old columns

of old variables that are both involved and focused (IX F
old)

(see Table 2). The set of focused variables is then X F
k+L =

{¬IX F
old ∪

IX F
old} ∈ R

nF , containing both involved and not

involved variables. We use the notation X F
k+L

.
= X F

k to

remind us that the focused set of variables is part of both

Xk+L and Xk .

Likewise, the set of all remained, unfocused variables

is X R
k+L

.
= {¬IX U

old ∪
IX U

old ∪ Xnew} ∈ R
nR , containing all

new variables and some of the old ones (which can be

involved or not involved), and providing A’s partition AR =

[¬IAU
old , IAU

old , Anew]. Moreover, for the purpose of simplifica-

tion of coming equations we will denote the set of old vari-

ables inside X R
k+L by X R

old , having that X R
old

.
= {¬IX U

old∪
IX U

old},

with appropriate Jacobian partition AR
old

.
=
[
¬IAU

old , IAU
old

]
.

Next, noting that Xk = {X
F
k ∪ X R

old} we can partition the

prior information matrix 3k , respectively,

3k =

[
3F

k 3
F,Rold
k

( 3
F,Rold
k )T 3

Rold
k

]
. (107)

Similarly, due to Xk+L = {X
F
k ∪ X R

old ∪ Xnew} and X R
k+L

.
=

{X R
old ∪Xnew}, the posterior information matrix 3k+L can be

respectively partitioned into the next two forms:

3k+L =

 3F
k+L 3

F,Rold
k+L 3

F,Xnew
k+L

( 3
F,Rold
k+L )T 3

Rold
k+L 3

Rold ,Xnew

k+L

( 3
F,Xnew
k+L )T ( 3

Rold ,Xnew

k+L )T 3
Xnew
k+L


=

[
3F

k+L 3
F,R
k+L

( 3
F,R
k+L)T 3R

k+L

]
(108)

with

3R
k+L =

[
3

Rold
k+L 3

Rold ,Xnew

k+L

( 3
Rold ,Xnew

k+L )T 3
Xnew
k+L

]
. (109)

We can see from the above partitions (107)–(109) that the

posterior information partition 3R
k+L of X R

k+L is simply the

augmentation of prior information partition 3
Rold
k and can

be calculated as

3R
k+L = 3

Aug,Rold
k + AT

RAR, (110)

where 3
Aug,Rold
k can be constructed by first taking the par-

tition of the prior information matrix 3k related to X R
old ,

3
Rold
k , and augmenting it with n′ zero rows and columns (see

Figure 9), where n′ is just the number of newly introduced

variables. The above equation has an augmented determi-

nant form as defined in Section 3.3.1, and so the augmented

determinant lemma can be applied also here. Using (32) we

have ∣∣3R
k+L

∣∣∣∣∣3Rold
k

∣∣∣ =
∣∣S∣∣ · ∣∣AT

new · S
−1 · Anew

∣∣ , (111)

S = Im + AR
old·( 3

Rold
k )−1 ·(AR

old)T . (112)

Then by combining (99), (36), and the above equations,

we can see that∣∣6M ,F
k+L

∣∣∣∣6M ,F
k

∣∣ =
∣∣3R

k+L

∣∣∣∣3k+L

∣∣ ·
∣∣3k

∣∣∣∣∣3Rold
k

∣∣∣ =
∣∣S∣∣ · ∣∣AT

new · S
−1 · Anew

∣∣∣∣C∣∣ · ∣∣AT
new · C

−1 · Anew

∣∣ ,
(113)

where C is defined in (38).

Apparently the IG of X F
k+L can be calculated as

JF
IG(a) = H( X F

k )−H( X F
k+L)=

1

2
ln
∣∣6M ,F

k

∣∣− 1

2
ln
∣∣6M ,F

k+L

∣∣
=

1

2
( ln

∣∣C∣∣+ ln
∣∣AT

new · C
−1 · Anew

∣∣− ln
∣∣S∣∣

− ln
∣∣AT

new · S
−1 · Anew

∣∣ ) , (114)

Next, the S term can be further reduced. It is clear that

( 3
Rold
k )−1= 6

Rold |F

k , or namely the prior conditional covari-

ance matrix of X R
old conditioned on X F

k . Moreover, due to the

sparsity of AR
old (its sub-block ¬IAU

old contains only zeros) we

will actually need only entries of matrix 6
Rold |F

k that belong

to variables involved in new terms of (6) (see Figure 9) and

can conclude that

S = Im+AR
old ·6

Rold |F

k ·(AR
old)T = Im+

IAU
old ·6

IX U
old
|F

k ·( IAU
old)T .

(115)

�

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.

A.6. Proof of Lemma 6

For A’s structure given in (34), the term S from (115) will

be

S = Im + AR
old ·6

Rold |F

k ·(AR
old)T = Im +

(
BR

old

0

)
·6

Rold |F

k

·
(
( BR

old)T 0
)
=

(
S1 0

0 Imnew

)
, (116)
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where S1 = Imconn + BR
old · 6

Rold |F

k ·( BR
old)T , mconn =

M(F conn(a)) and mnew =M(Fnew(a)).

Then we can conclude that

∣∣S∣∣ = ∣∣S1

∣∣ (117)

and that

S−1 =

(
S−1

1 0

0 Imnew

)
, (118)

and similarly to (115) (see also Figure 9) we have that

S1 = Imconn + BR
old ·6

Rold |F

k ·( BR
old)T

= Im +
IBU

old ·6
IX U

old
|F

k ·( IBU
old)T . (119)

Next, the term AT
new · S−1 · Anew from (114), similarly

to (96), will be

AT
new · S

−1 · Anew = BT
new · S

−1
1 · Bnew + DT

new · Dnew, (120)

with S1 defined in (119).

Then, by applying equations (104), (117), (120), and

notion
∣∣C∣∣ = ∣∣C1

∣∣, the IG of X F
k+L ⊆ Xold from (114) can be

calculated as

JF
IG(a) =

1

2
( ln

∣∣C1

∣∣+ ln
∣∣BT

new · C
−1
1 · Bnew + DT

new · Dnew

∣∣
− ln

∣∣S1

∣∣− ln
∣∣BT

new · S
−1
1 · Bnew + DT

new · Dnew

∣∣ )

=
1

2
( ln

∣∣C1

∣∣+ ln
∣∣BT

new · C
−1
1 · Bnew +3a

∣∣
− ln

∣∣S1

∣∣− ln
∣∣BT

new · S
−1
1 · Bnew +3a

∣∣ ) , (121)

where C1 is defined in (41), and where 3a = DT
new · Dnew is

the information matrix of an action’s factor graph G(a).

�

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.

A.7. SLAM solution: focus on the last pose

X F
k+L ≡ xk+L

For X F
k+L ≡ xk+L the focused entropy objective in

the SLAM setting is given by (44). Here, we exploit the

inner structure of Jacobian partitions in the SLAM scenario

(see (71)–(75)) in order to provide a solution tailored specif-

ically to the SLAM domain. It will provide an illustrated

example of applying rAMDL to a real problem.

From (75) we can see that BU
new has the following form:

BU
new = 9

− 1
2

conn ·

( xk+1) · · · ( xk+L−1)




−I · · · 0

H
xk+1

1 · · · H
xk+L−1

1
...

. . .
...

H
xk+1
no · · · H

xk+L−1
no

= 9
− 1

2
conn ·

(
F

U

H
U
Xnew

)
,

F
U .
=
(
−I · · · 0

)
,

H
U
Xnew

.
=

H
xk+1

1 · · · H
xk+L−1

1
...

. . .
...

H
xk+1
no · · · H

xk+L−1
no

 , (122)

where H
xk+l

i

.
= 5xk+l

hi is the Jacobian of hi with respect

to xk+l, and therefore is non-zero only if the factor’s obser-

vation was taken from pose xk+l. Note that in the SLAM

case the X U
new (all new and unfocused variables) is

{xk+1, . . . , xk+L−1}.

Similarly to (79), the term ( BU
new)T ·C−1

1 · B
U
new from (44)

can be calculated as

( BU
new)T ·C−1

1 · B
U
new =

(
( F

U )T ( H
U
Xnew

)T
)
·9
− 1

2
conn

·9
1
2

conn · C
−1
2 ·9

1
2

conn ·9
− 1

2
conn ·

(
F

U

H
U
Xnew

)
=
(
( F

U )T ( H
U
Xnew

)T
)
· C−1

2 ·

(
F

U

H
U
Xnew

)
=( B̃U

new)T ·C−1
2 · B̃

U
new (123)

where

B̃U
new

.
=

( xk+1) · · · ( xk+L−1)




−I · · · 0

H
xk+1

1 · · · H
xk+L−1

1
...

. . .
...

H
xk+1
no · · · H

xk+L−1
no

=

(
F

U

H
U
Xnew

)
(124)

contains the Jacobian entries of BU
new not weighted by the

factors’ noise 9conn.
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In addition, from (71) we can derive the structure of DU
new

which is also used in (44):

DU
new = 9

− 1
2

new ·

( xk+1) ( xk+2) ( xk+3) ( xk+4) · · · ( xk+L−2) ( xk+L−1)





Fk+1 −I 0 0 · · · 0 0

0 Fk+2 −I 0 · · · 0 0

0 0 Fk+3 −I · · · 0 0

0 0 0 Fk+4 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 0 0 · · · −I 0

0 0 0 0 · · · Fk+L−2 −I

0 0 0 0 · · · 0 Fk+L−1

.
= 9
− 1

2
new · D̃

U
new (125)

that due to its sparsity will allow fast calculation of 3U |F
a ,

3U |F
a =( DU

new)T ·DU
new =( D̃U

new)T ·9−1
new · D̃

U
new. (126)

Finally, placing all derived notation into (44), we obtain

to the SLAM-specific solution for the entropy of the robot’s

last pose:

JF
H(a) =

nF · γ

2
+

1

2
ln
∣∣( B̃U

new)T ·C−1
2 · B̃

U
new+( D̃U

new)T

·9−1
new · D̃

U
new

∣∣− 1

2
ln
∣∣̃BT

new · C
−1
2 · B̃new

+D̃T
new ·9

−1
new · D̃new

∣∣, (127)

where C2 is defined in (77). �

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.

A.8. SLAM solution: focus on mapped landmarks

X F
k+L ≡ Lk

The focused IG of X F
k ≡ Lk in the SLAM setting is

given by (47). Here, we will exploit the inner structure of

Jacobian partitions in the SLAM scenario (see (71)–(75)) in

order to provide a solution tailored specifically to the SLAM

domain. It will provide an illustrated example of applying

rAMDL to areal problem.

First, note that all old involved and unfocused vari-

ables IX U
old contain only the current robot’s pose xk . Thus,

from (74) we can see that the relevant partition of Jacobian

B, the IBU
old used in (48), has the following inner structure:

IBU
old = 9

− 1
2

conn ·


Fk

0
...

0

 . (128)

Using the above identity, the matrix S1 from (48) can also

be reduced to the following form:

S1 = Imconn +
IBU

old ·6
IX U

old
|F

k ·( IBU
old)T = Imconn +9

− 1
2

conn

·

(
Fk ·6

M ,xk
k · FT

k 0

0 0

)
·9
− 1

2
conn

= 9
− 1

2
conn ·

[
9conn +

(
Fk ·6

M ,xk
k · FT

k 0

0 0

)]

·9
− 1

2
conn

.
= 9

− 1
2

conn · S2 ·9
− 1

2
conn, (129)

S2
.
= 9conn +

(
Fk ·6

M ,xk
k · FT

k 0

0 0

)
=

(
6ω,k + Fk ·6

M ,xk
k · FT

k 0

0 9obs

)
, (130)

where 6ω,k is the noise matrix from the motion model

(65), and matrix 9obs is block-diagonal, combining all noise

matrices of Fobs(a) factors:

9conn =

(
6ω,k 0

0 9obs

)
. (131)

Further, let us define matrix S3:

S3
.
= 6ω,k + Fk ·6

M ,xk
k · FT

k . (132)

Now we can see that S1’s determinant and inverse can be

calculated through∣∣S1

∣∣ = ∣∣S2

∣∣∣∣9conn

∣∣ =
∣∣S3

∣∣ · ∣∣9obs

∣∣∣∣9conn

∣∣ =

∣∣S3

∣∣∣∣6ω,k

∣∣ , (133)

S−1
1 = 9

1
2

conn · S
−1
2 ·9

1
2

conn = 9
1
2

conn ·

(
S−1

3 0

0 9−1
obs

)
·9

1
2

conn.

(134)

Similarly to (79), the term BT
new ·S

−1
1 ·Bnew from (47) can be

calculated as

BT
new · S

−1
1 · Bnew =

(
F

T ( H
Xnew )T

)
·9
− 1

2
conn ·9

1
2

conn · S
−1
2

·9
1
2

conn ·9
− 1

2
conn ·

(
F

H
Xnew

)
=
(
F

T ( H
Xnew )T

)
· S−1

2 ·

(
F

H
Xnew

)
=
(
F

T ( H
Xnew )T

)
·

(
S−1

3 0

0 9−1
obs

)
·(

F

H
Xnew

)
= F

T · S−1
3 · F+( H

Xnew )T ·9−1
obs ·H

Xnew ,

(135)

where F and H
Xnew are defined in (75) as

F
.
=
(
−I · · · 0

)
, H

Xnew .
=

H
xk+1

1 · · · H
xk+L

1
...

. . .
...

H
xk+1
no · · · H

xk+L
no

 .

(136)
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Thus, we can see that F
T ·S−1

3 ·F from (135) is an L ·np×

L · np matrix (np is the robot pose’s dimension and L is the

horizon length) that has non-zero entries only at its np × np

top left corner:

F
T · S−1

3 · F =


S−1

3 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (137)

Finally, placing all derived notation into (47), we arrive

at the SLAM-specific solution for IG of already mapped

landmarks Lk :

JF
IG(a) =

1

2
( ln

∣∣C2

∣∣− ln
∣∣9conn

∣∣+ ln
∣∣̃BT

new · C
−1
2 · B̃new

+D̃T
new ·9

−1
new · D̃new

∣∣− ln
∣∣S3

∣∣
+ ln

∣∣6ω,k

∣∣− ln
∣∣+ F

T · S−1
3 · F+( H

Xnew )T ·

9−1
obs ·H

Xnew + D̃T
new ·9

−1
new · D̃new

∣∣)
=

1

2

(
ln
∣∣C2

∣∣+ ln
∣∣̃BT

new · C
−1
2 · B̃new + D̃T

new ·9
−1
new

·D̃new

∣∣
− ln

∣∣S3

∣∣− ln
∣∣FT · S−1

3 · F+( H
Xnew )T ·9−1

obs ·

H
Xnew + D̃T

new ·9
−1
new · D̃new

∣∣− ln
∣∣9obs

∣∣), (138)

where C2 is defined in (77). Note that matrix S3 will

be the same for all candidates. Therefore, the terms S3,

ln
∣∣S3

∣∣, and F
T · S−1

3 · F can be calculated only one time

and shared between the candidates thereafter. In addition,

the terms C2, B̃T
new · C−1

2 · B̃new, D̃T
new · 9

−1
new · D̃new, and

( H
Xnew )T ·9−1

obs ·H
Xnew can be calculated efficiently through

sparse matrix operators since we know the exact inner struc-

ture of all involved matrix operands. The overall complex-

ity of the above SLAM solution is the same as in (47),

O(M(F conn(a))3+n′3). �

Note that the variables inside information matrices do not

have to be ordered in any particular way, and that the proof

provided above is correct for any ordering whatsoever.
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