Efficient Belief Space Planning in Highdimensional State Spaces by Exploiting Sparsity and Calculation Re-use

Dmitry Kopitkov

Under the supervision of Assistant Prof. Vadim Indelman

ANPL Autonomous Navigation and Perception Lab

Graduate Seminar, March 2017

Introduction

- Belief Space Planning fundamental problem in autonomous systems and artificial intelligence, where states are beliefs
- Examples
 - Active simultaneous localization and mapping (SLAM)
 - Informative planning, active sensing
 - Sensor selection, sensor deployment
 - Multi-agent informative planning and active SLAM
 - Graph sparsification for long-term autonomy
 - Autonomous navigation

Introduction

- Information-theoretic belief space planning
 - Objective: find action that minimizes an information-theoretic metric (e.g. entropy, information gain, mutual information)
- Decision making over <u>high-dimensional</u> state spaces is expensive!

$$X \in \mathbb{R}^n \qquad \Lambda \equiv \Sigma^{-1} \in \mathbb{R}^{n \times n}$$

- Evaluating action impact typically involves determinant calculation: $O(n^3)$
- Existing approaches typically calculate posterior information (covariance) matrix for each candidate action, and then its determinant

BSP Problem Types

- By objective's goal:
 - Unfocused reduce uncertainty of all variables
 - Focused reduce uncertainty of only specific variable subset
- By state dimensionality:
 - Not-Augmented state vector is unchanged by action
 - Augmented new state variables are introduced by action (e.g. new robot poses)

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	✓
Focused	✓	\checkmark

Motivating Example I – Belief Space Planning

Joint state vector

$$X_k \doteq \{x_0, \dots, x_k, L_k\}$$

Past & current Mapped robot states environment

■ **Joint** probability distribution function $p(X_k|\mathcal{Z}_k,\mathcal{U}_{k-1})$

$$p\left(X_{k}|\mathcal{Z}_{k},\mathcal{U}_{k-1}\right) = priors \cdot \prod_{i=1}^{k} p\left(x_{i}|x_{i-1},u_{i-1}\right) p\left(z_{i}|X_{i}^{o}\right)$$
General observation model $X_{i}^{o} \subseteq X_{i}$

Computationally-efficient maximum a posteriori inference e.g. [Kaess et al. 2012]

$$p\left(X_k|\mathcal{Z}_k,\mathcal{U}_{k-1}\right) \sim N\left(X_k^*,\Sigma_k\right)$$

Motivating Example I – Belief Space Planning

- How to autonomously determine future action(s)?
- Involves reasoning, for different candidate actions, about belief evolution
- Problem is to find trajectory with minimal posterior uncertainty:
 - Augmented BSP
 - Objective can be <u>Unfocused</u> / <u>Focused</u>

$$p\left(X_k|\mathcal{Z}_k,\mathcal{U}_{k-1}\right) \sim N\left(X_k^*,\Sigma_k\right)$$

Motivating Example II - Sensor Deployment

- Objective: deploy k sensors in an $N \times N$ area
 - provide localization
 - monitor spatial-temporal field (e.g. temperature)
 - Not-Augmented BSP

Prior uncertainty field:

Related Work

- Existing approaches often
 - Propagate posterior belief for each action
 - Compute determinants of huge matrices
 - Assume known environment (e.g. map)
 - Consider small state space

Contributions

- Computationally-efficient information-theoretic BSP approach
 - Without posterior propagation for each candidate action
 - Avoid calculating determinants of large matrices
 - Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution
- Approach addresses all cases of BSP problem:

BSP cases	Non-Augmented	Augmented
Unfocused	✓	✓
Focused	\checkmark	\checkmark

- ullet Consider state vector $X_k \in \mathbb{R}^n$ at time t_k
 - e.g. history of robot poses, landmarks, etc.
 - n can be huge (> 10000), for example...

- Consider its belief $b[X_k] = N(X_k^*, \Sigma_k)$
- ullet Consider candidate actions $\mathcal{A} \doteq \{a_1, a_2, \dots, a_N\}$
- Each candidate a_i provides different posterior belief $b[X_{k+L} \mid a_i]$
- The goal is to choose optimal action according to some objective:

$$a^* = \operatorname*{argmin} J(a)$$

- Example from mobile robotics domain:
 - Given action $a=u_{k:k+L-1}$ and new observations $Z_{k+1:k+L}$, future belief is:

(Image is taken from Indelman15ijrr)

- Consider state vector $X_k \in \mathbb{R}^n$ at time t_k
- ullet Posterior at time t_k can be represented in general form via factor terms $F_i = \{f_i^1, \dots, f_i^{n_i}\}$ for $0 \le t_i \le t_k$:

$$P(X_k | history) \propto \prod_{i=0}^k \prod_{j=1}^{n_i} f_i^j(X_i^j)$$

where each factor f_i^j :

- have form $f_i^j(X_i^j) \propto \exp(-\frac{1}{2} \|h_i^j(X_i^j) r_i^j\|_{\Sigma_i^j}^2)$
- with measurement model $r_i^j = h_i^j(X_i^j) + v_i^j$, $v_i^j \sim N(0, \Sigma_i^j)$
- and *involved* variables X_i^J

$$-\,\,$$
 and $\emph{involved}$ variables $X_i^{\scriptscriptstyle J}$

- State vector $X_k \in \mathbb{R}^n$ at time t_k
- Factors $F_i = \{f_i^1, ..., f_i^{n_i}\}$ for $0 \le t_i \le t_k$

$$P(X_k | history) \propto \prod_{i=0}^k \prod_{j=1}^{n_i} f_i^j(X_i^j)$$

Maximum A Posteriori (MAP) inference:

$$\underline{b[X_k]} = P(X_k \mid history) = N(X_k^*, \Sigma_k) = N^{-1}(\eta_k^*, \Lambda_k)$$
belief

Usually information form is used.

- Consider candidate actions $\mathcal{A} \doteq \{a_1, a_2, \dots, a_N\}$
- ullet For each \mathcal{Q}_i we can model
 - Planning horizon L
 - New factors $F_{k+l} = \{f_{k+l}^1, ..., f_{k+l}^{n_{k+l}}\}$ for $1 \le l \le L$

- New variables X_{new} (<u>empty in not-augmented scenarios</u>)
- Noise-weighted Jacobian A of new factors with respect to state variables (more details later)
- Posterior belief (considering a_i) is then: $b[X_{k+L}] \propto b[X_k] \prod_{l=k+1}^{k+L} \prod_{j=1}^{n_l} f_l^j(X_l^j)$
- General objective function: $J(a) = \mathop{\mathbb{E}}_{Z_{k+l:k+L}} \left\{ \sum_{l=0}^{L-1} c_l(b[X_{k+l}]) + c_L(b[X_{k+L}]) \right\}$

- This work information-theoretic objectives
 - (Differential) Entropy measures uncertainty of estimation

$$H(X) = -\int_{X} p(x) \cdot \log p(x) dx$$

- BSP Information term (Unfocused):
 - (Differential) Entropy:

$$J_{H}(a) = H(b[X_{k+L}])$$

$$a^{*} = \operatorname*{argmin}_{a \in A} J_{H}(a)$$

– Information Gain:

$$J_{IG}(a) = H(b[X_k]) - H(b[X_{k+L}])$$

$$a^* = \operatorname*{argmax}_{a \in A} J_{IG}(a)$$

- Mathematically <u>identical</u>
- Each can be computationally preferable in different scenarios

- Assuming Gaussian Distributions
- Objectives for Not-Augmented <u>Unfocused</u> BSP:

	NAug	Aug
U	✓	
F		

$$J_{\mathrm{H}}(a) = dim.const - \frac{1}{2} \ln \left| \Lambda_{k+L} \right|, \quad J_{IG}(a) = \frac{1}{2} \ln \frac{\left| \Lambda_{k+L} \right|}{\left| \Lambda_{k} \right|}$$

Objectives for Augmented <u>Unfocused</u> BSP:

	NAug	Aug
U		✓
F		

$$J_{\mathrm{H}}(a) = dim.const - \frac{1}{2} \ln \left| \Lambda_{k+L} \right| , \quad J_{IG}(a) = dim.const + \frac{1}{2} \ln \frac{\left| \Lambda_{k+L} \right|}{\left| \Lambda_{k} \right|}$$

 $O(N^3)$ complexity!!!

- Where
 - Λ_k is prior information matrix
 - Λ_{k+L} is posterior information matrix

- Focused setting:
 - Consider focused variables $X_{k+L}^F \subseteq X_{k+L}$
 - Its posterior marginal covariance:

$$(\sum_{k+L} = \Lambda_{k+L}^{-1})$$

Measure the posterior information (entropy, IG) for these variables:

	NAug	Aug
U		
F	✓	✓

$$J_{\mathrm{H}}^{F}(a) = \mathrm{H}(X_{k+L}^{F}) = dim.const + \frac{1}{2} \ln \left| \Sigma_{k+L}^{M,F} \right|$$

$$J_{IG}^{F}(a) = H(X_{k}^{F}) - H(X_{k+L}^{F}) = \frac{1}{2} \ln \frac{\left|\Sigma_{k}^{M,F}\right|}{\left|\Sigma_{k+L}^{M,F}\right|}$$

Standard Approaches

- Propagate posterior belief for each action
- Calculate determinants of large matrices
- Per-action complexity $O(N^3)$, where N is posterior state dimension
- More information later...

BSP cases	Non-Augmented	Augmented
Unfocused	$J_{H}(a) = dim.const - \frac{1}{2} \ln \left \Lambda_{k+L} \right $ $J_{IG}(a) = \frac{1}{2} \ln \left \frac{\Lambda_{k+L}}{ \Lambda_{k} } \right $	$J_{H}(a) = dim.const - \frac{1}{2} \ln \left \Lambda_{k+L} \right $ $J_{IG}(a) = dim.const + \frac{1}{2} \ln \frac{\left \Lambda_{k+L} \right }{\left \Lambda_{k} \right }$
Focused	$J_{\mathrm{H}}^{F}(a) = dim.const + \frac{1}{2} \ln \left \sum_{k+L}^{M,F} \right $ $J_{\mathrm{IG}}^{F}(a) = \frac{1}{2} \ln \left \frac{\sum_{k}^{M,F}}{\left \sum_{k+L}^{M,F} \right } \right $	

Our Approach *rAMDL* (Re-use with Augmented Matrix Determinant Lemma)

- Without posterior propagation for each candidate action
- Avoid calculating determinants of large matrices through AMDL
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Solve each of BSP problem types:

	NAug	Aug
U	✓	✓
F	✓	✓

Factor Graph Representation

Not-Augmented BSP:

Factor Graph Representation

 $p[X_{k+L}]$

• Augmented BSP:

Jacobian Structure Sparsity

- Matrix A is Jacobian of **new** factors, with dimension $m \times N$
- Its rows represent new factors (measurements)
- Its columns represent state variables (old and new)
- ullet Only variables *involved* in new factors will have non-zero columns in A
- Typically m and number of involved variables is very small

Not-Augmented BSP, <u>Unfocused</u> Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

Posterior Information Matrix

• Not-augmented case (no new variables were introduced by a_i):

Posterior belief:

$$b[X_{k+L}] \propto b[X_k] \prod_{l=k+1}^{K+L} \prod_{j=1}^{m_l} f_l^j(X_l^j)$$

Its information matrix:

Matrix Determinant Lemma (MDL)

We use MDL to reduce calculations:

$$\begin{split} \left| \Lambda_k + A^T \cdot A \right| &= \left| \Lambda_k \right| \cdot \left| I_m + A \cdot \Sigma_k \cdot A^T \right| \\ \text{where } \Sigma_k &\equiv \Lambda_k^{-1} \in \mathbb{R}^{n \times n} \text{ , } \quad A \in \mathbb{R}^{m \times n} \end{split}$$

Applying it to unfocused not-augmented BSP:

$$J_{IG}(a) = \frac{1}{2} \ln \frac{\left| \Lambda_{k+L} \right|}{\left| \Lambda_k \right|} = \frac{1}{2} \ln \frac{\left| \Lambda_k + A^T \cdot A \right|}{\left| \Lambda_k \right|}$$
$$= \frac{1}{2} \ln \left| I_m + A \cdot \Sigma_k \cdot A^T \right| = \frac{1}{2} \ln \left| I_m + I_A \cdot \Sigma_k^{M,I_X} \cdot (I_A)^T \right|$$

where:

- » ${}^{I}\!\!A$ is partition of A with all non-zero columns
- » $\sum_{l}^{M, I}X$ is prior marginal covariance of *involved* variables X

Not-Augmented BSP, <u>Unfocused</u> Setting

NAug Aug
U ✓
F

Objective:

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + {}^{I}\!A \cdot \Sigma_k^{M, {}^{I}\!X} \cdot ({}^{I}\!A)^T \right|$$

- ullet Calculation complexity depends on m and $dim({}^I\!X)$
- ullet Given $\Sigma_k^{M, {}^I\!\! X}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap
- For example, in measurement selection m=1, dim(X) < 10

Calculation Re-use

Key observations:

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + {}^{I}\!A \cdot \Sigma_k^{M, {}^{I}\!X} \cdot ({}^{I}\!A)^T \right|$$

- » We can avoid posterior propagation and determinants of large matrices
- » Calculation of action impact does not depend on N
- » Still, we need $\Sigma_k^{M,{}^{I}\!X}$
- » Different candidate actions often **share** many *involved* variables ${}^I\!X$

We propose re-use of calculation:

- » Combine variables involved in all candidate actions into set $X_{All} \subseteq X_k$
- » Perform one-time calculation of $\Sigma_k^{M,X_{All}}$ (depends on N)
- » Calculate $J_{IG}(a)$ for each action, using $\Sigma_k^{M,X_{All}}$

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

- Consider focused variables $X^F \subseteq X$ and unfocused $X^U = X / X^F$
- Partition $\Sigma_{k/k+L}$ and $\Lambda_{k/k+L}$ appropriately:

$$\Sigma = egin{bmatrix} \Sigma^U & \Sigma^{U \ F} \ (\Sigma^{U \ F})^T & \Sigma^F \end{bmatrix}, \qquad \Lambda = egin{bmatrix} \Lambda^U & \Lambda^{U,F} \ (\Lambda^{U,F})^T & \Lambda^F \end{bmatrix}$$

- $\begin{array}{l} \bullet \text{ We have } \Lambda_k \text{ and } \Lambda_{k+L} \text{, but for } \underline{\text{focused BSP we need }} \left| \Sigma_{k+L}^F \right| \text{ (for entropy)} \\ \text{or } \frac{\left| \Sigma_k^F \right|}{\left| \Sigma_{k+L}^F \right|} \text{ (for IG)} \\ \bullet \text{ How to calculate } \frac{\left| \Sigma_k^F \right|}{\left| \Sigma_{k+L}^F \right|} \text{ efficiently?} \end{array}$

- Consider focused variables $X^F \subseteq X$ and unfocused $X^U = X / X^F$
- ullet Partition $\Sigma_{k/k+L}$ and $\Lambda_{k/k+L}$ appropriately:

$$\Sigma = egin{bmatrix} \Sigma^U & \Sigma^{U \ F} \ (\Sigma^{U \ F})^T & \Sigma^F \end{bmatrix}, \qquad \Lambda = egin{bmatrix} \Lambda^U & \Lambda^{U,F} \ (\Lambda^{U,F})^T & \Lambda^F \end{bmatrix}$$

Connection through Schur complement:

$$(\Sigma_k^F)^{-1} = \Lambda_k^{M,F} = \Lambda_k^F - (\Lambda_k^{UF})^T \cdot (\Lambda_k^U)^{-1} \cdot \Lambda_k^{UF}, \qquad |\Lambda_k| = |\Lambda_k^{M,F}| \cdot |\Lambda_k^U|$$

Can be shown that:

$$\frac{\left|\Sigma_{k}^{F}\right|}{\left|\Sigma_{k+L}^{F}\right|} = \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} \cdot \frac{\left|\Lambda_{k}^{U}\right|}{\left|\Lambda_{k+L}^{U}\right|}$$

NAua Aug

Solving:

$$\frac{\left| \boldsymbol{\Sigma}_{k}^{M,F} \right|}{\left| \boldsymbol{\Sigma}_{k+L}^{M,F} \right|} = \frac{\left| \boldsymbol{\Lambda}_{k+L} \right|}{\left| \boldsymbol{\Lambda}_{k} \right|} \cdot \frac{\left| \boldsymbol{\Lambda}_{k}^{U} \right|}{\left| \boldsymbol{\Lambda}_{k+L}^{U} \right|}$$

- ullet Term $\left| \frac{\left| \Lambda_{k+L} \right|}{\left| \Lambda_{\iota} \right|} \right|$ through Determinant Lemma
- Note: $\Lambda_{k+I}^U = \Lambda_k^U + (A^U)^T \cdot A^U$ where A^U is partition of A

with columns belonging to <u>unfocused</u> variables X^U - also through Determinant Lemma

$$\left| egin{aligned} ight \Lambda_k^U \ \hline ight \Lambda_{k+L}^U \ \hline \end{array}
ight|$$

- Finally, IG of focused variables X^F can be calculated as:

$$J_{IG}^{F}(a) = \mathcal{H}(X_{k}^{F}) - \mathcal{H}(X_{k+L}^{F}) = \frac{1}{2} \ln \left| I_{m} + {}^{I}A \cdot \Sigma_{k}^{M,^{I}X} \cdot ({}^{I}A)^{T} \right| - \frac{1}{2} \ln \left| I_{m} + {}^{I}A^{U} \cdot \Sigma_{k}^{{}^{I}X^{U}|F} \cdot ({}^{I}A^{U})^{T} \right|$$

NAug Aug
U
F

Final solution:

- ullet Calculation complexity depends on ${\it m}$ and $dim({}^{I}\!\!X)$
- \blacksquare Given $\Sigma_k^{M,{}^I\!\!X}$ and $\Sigma_k^{{}^I\!\!X^U|F}$, does not depend on state dimension N
- For example, in measurement selection m = 1, dim(X) < 10

Augmented BSP, <u>Unfocused</u> Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

Posterior Information Matrix

	NAug	Aug
U		✓
F		✓

• Augmented case (new variables were introduced by Q_i):

$$\Lambda_{k+L} = \Lambda_{k+L}^{Aug} + A^T \cdot A$$

Usual Matrix Determinant Lemma cannot be used

Augmented Matrix Determinant Lemma (AMDL)

We developed Lemma:

$$\frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} = \frac{\left|\Lambda_{k+L}^{Aug} + A^{T} \cdot A\right|}{\left|\Lambda_{k}\right|} = \left|\Delta\right| \cdot \left|A_{new}^{T} \cdot \Delta^{-1} \cdot A_{new}\right|$$

$$\Delta \doteq I_{m} + A_{old} \cdot \Sigma_{k} \cdot A_{old}^{T}$$

Augmented BSP, Unfocused Setting

Objective:

$$J_{IG}(a) = dim.const + \frac{1}{2} \ln |C| + \frac{1}{2} \ln |A_{new}^T \cdot C^{-1} \cdot A_{new}|$$

$$C = I_m + {}^I A_{old} \cdot \Sigma_k^{M,^I X_{old}} \cdot ({}^I A_{old})^T$$

where

- lacktriangle Calculation complexity depends on $m{m}$, $dim({}^I\!\!X_{old})$ and $dim(X_{new})$
- ullet Given $\Sigma_k^{M,{}^{l}\!X_{old}}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

Augmented BSP, Focused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

Augmented BSP, Focused Setting

- Different cases:
 - 1. $X_{k+L}^F \subseteq X_{new}$, for example robot last pose
 - 2. $X_{k+L}^F \subseteq X_{old}$, for example mapped landmarks
 - 3. $X_{k+L}^F \subseteq \{X_{old} \cup X_{new}\}$, hard to find example
- We handle first 2 cases

Augmented BSP, Focused Setting $|X_{k+L}^F \subseteq X_{new}|$

	NAug	Aug
U		
F		✓

• Objective:
$$J_{\mathcal{H}}^F(a) = dim.const + \frac{1}{2} \ln \left| (A_{new}^U)^T \cdot C^{-1} \cdot A_{new}^U \right| - \frac{1}{2} \ln \left| A_{new}^T \cdot C^{-1} \cdot A_{new} \right|$$

$$C = I_m + {}^I A_{old} \cdot \Sigma_k^{M,{}^I X_{old}} \cdot ({}^I A_{old})^T$$

where

- Calculation complexity depends on m, $dim(X_{old})$ and $dim(X_{new})$
- Given $\Sigma_{k}^{M,{}^{I}\!X_{old}}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

Augmented BSP, Focused Setting $X_{k+L}^F \subseteq X_{old}$

$$\mathbf{X_{k+L}^F} \subseteq \mathbf{X_{old}}$$

	NAug	Aug
U		
F		✓

■ Objective:
$$J_{IG}^{F}(a) = \frac{1}{2} (\ln |C| + \ln |A_{new}^{T} \cdot C^{-1} \cdot A_{new}| - \ln |S| - \ln |A_{new}^{T} \cdot S^{-1} \cdot A_{new}|)$$

$$C = I_{m} + {}^{I}A_{old} \cdot \Sigma_{k}^{M,{}^{I}X_{old}} \cdot ({}^{I}A_{old})^{T}, \quad S \doteq I_{m} + {}^{I}A_{old}^{U} \cdot \Sigma_{k}^{{}^{I}X_{old}|F} \cdot ({}^{I}A_{old}^{U})^{T}$$

where

- Calculation complexity depends on m, $dim(X_{old})$ and $dim(X_{new})$
- Given $\Sigma_{\iota}^{M,I_{X_{old}}}$ and $\Sigma_{\iota}^{I_{X_{old}}}|F$, does not depend on state dimension N

rAMDL Method - Summary

We address all 4 BSP problem types:

BSP cases	Non-Augmented	Augmented
Unfocused	✓	✓
Focused	√	\checkmark

- No need for posterior belief propagation
- Avoid calculating determinants of large matrices
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution

Standard Approaches

- From-Scratch:
 - 1. For each candidate \mathcal{Q}_i :
 - 1.1. Propagate belief $\Lambda_{k+L} = \Lambda_k + A^T \cdot A$
 - 1.2. <u>Unfocused</u> case compute $|\Lambda_{k+L}|$
 - 1.3. Focused case compute Schur Complement of X_{k+L}^F and $\left|\Sigma_{k+L}^{M,F}\right|$
 - 2. Select action with minimal posterior entropy

- Per-action complexity - $O(N^3)$ for each candidate, N is posterior state dimension (can be **huge**)

Standard Approaches

- Incremental Smoothing And Mapping (iSAM):
 - Uses iSAM2 incremental inference solver [Kaess et al. 2012] to propagate belief
 - Belief is represented by square-root information matrix R_k
 - Uses incremental factorization techniques (Givens Rotations) for inference
 - Complexity hard to analyze, but faster than From-Scratch

Simulation Results

- Not-Augmented BSP
 - Sensor Deployment
 - Measurement Selection in SLAM
- Augmented BSP
 - Autonomous Navigation in Unknown Environment

Application to Sensor Deployment Problems

Significant time reduction in *Unfocused* case

Uncertainty field (dense prior information matrix)

Application to Sensor Deployment Problems

Significant time reduction in Focused case

Application to Measurement Selection (in SLAM Context)

Application to Autonomous Navigation in Unknown Environment

ullet Significant time reduction in Focused case — focus on robot's last pose x_{k+L}

Application to Autonomous Navigation in Unknown Environment

Significant time reduction in Focused case – focus on mapped

landmarks

Conclusions

rAMDL (Re-use with Augmented Matrix Determinant Lemma):

- Exact (identical to original objectives)
- General (any measurement model)
- Per-candidate complexity does not depend on state dimension
- <u>Unfocused</u> and <u>Focused</u> problem formulations
- Not-Augmented and Augmented cases
- Applicable to Sensor Deployment, Measurement Selection, Graph Sparsification, Active SLAM and many more..

Thanks For Listening

Questions?

Future Research

Tree of Actions

Consider tree of candidates

(Image is taken from "http://mrs.felk.cvut.cz/research/motion-planning")

- Some parts of actions are shared
- Can calculation be re-used?

Tree of Actions

- Yes, it can
- Propagate covariance of only required entries
- Calculate information objective through rAMDL

Preliminary results –very fast solution

