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Abstract

Belief space planning (BSP) is a fundamental problem in robotics and artificial intelligence, with
applications including autonomous navigation and active SLAM. The information-theoretic BSP
is its sub-problem where objective is to find action which will minimize the posterior uncertainty
of the state. In order to solve this problem, the state of the art approaches typically propagate
the belief state, for each candidate action, through calculation of the posterior information
(or covariance) matrix and subsequently compute its determinant (required for entropy). The
per-candidate time-complexity of such approaches is O(n) where n is the state dimension and
typically is very large, making such approaches to be very computationally expensive.

In this research we develop a computationally efficient approach for evaluating the infor-
mation theoretic term within belief space planning (BSP), where during belief propagation the
state vector can be constant or augmented. We consider both unfocused and focused problem
settings, whereas uncertainty reduction of the entire system or only of chosen variables is of
interest, respectively. Our approach reduces run-time complexity by avoiding posterior belief
propagation and determinant calculation of large matrices. We formulate the problem in terms
of factor graphs and show that belief propagation is not needed, requiring instead a one-time
calculation that depends on (the increasing with time) state dimensionality, and per-candidate
calculations that are independent of the latter. To that end, we develop an augmented version of
the matrix determinant lemma, and show computations can be re-used when evaluating impact
of different candidate actions. These two key ingredients and the factor graph representation of
the problem result in a computationally efficient (augmented) BSP approach that accounts for
different sources of uncertainty and can be used with various sensing modalities. We examine
the unfocused and focused instances of our approach, and compare it to the state of the art, in
simulation and using real-world data, considering problems such as autonomous navigation
in unknown environments, measurement selection and sensor deployment, carried out at the
Autonomous Navigation and Perception Lab at the Technion. We show that our approach

significantly reduces running time without any compromise in performance.
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Chapter 1

Introduction

Decision making under uncertainty and belief space planning are fundamental problems in
robotics and artificial intelligence, with applications including autonomous driving, surveillance,
sensor deployment, object manipulation and active SLAM. The goal is to autonomously de-
termine best actions according to a specified objective function, given the current belief about
random variables of interest that could represent, for example, robot poses, tracked target or
mapped environment, while accounting for different sources of uncertainty.

Since the true state of interest is typically unknown and only partially observable through
acquired measurements, it can be only represented through a probability distribution conditioned
on available data. Belief space planning (BSP) and decision making approaches reason how this
distribution (the belief) evolves as a result of candidate actions and future expected observations.
Such a problem is an instantiation of partially observable Markov decision process (POMDP),
while calculating an optimal solution of POMDP was proven to be computationally intractable
[22] for all but the smallest problems due to curse of history and curse of dimensionality. Recent
research has therefore focused on the development of sub-optimal approaches that trade-off
optimality and runtime complexity.

Decision making under uncertainty, also sometimes referred to as active inference, and BSP
can be formulated as selecting optimal action from a set of candidates, based on some cost
function. In information-based decision making the cost function typically contains terms that
evaluate the expected posterior uncertainty upon action execution, with commonly used costs
including (conditional) entropy and mutual information. Thus, for Gaussian distributions the
corresponding calculations typically involve calculating a determinant of a posteriori covariance
(information) matrices, and moreover, these calculations are to be performed for each candidate
action.

Decision making and BSP become an even more challenging problems when considering
high dimensional state spaces. Such a setup is common in robotics, for example in the context
of belief space planning in uncertain environments, active SLAM, sensor deployment, graph
reduction and graph sparsification. In particular, calculating a determinant of information
(covariance) matrix for an n-dimensional state is in general O(n?), and is smaller for sparse

matrices as in SLAM problems [3].



Moreover, state of the art approaches typically perform such time-consuming calculations
from scratch for each candidate action. In contrast, in this work we provide a novel way to
perform information-theoretic BSP, which is fast, simple and general; yet, it does not require
calculation of a posterior belief and does not need determinant computation of large matrices.
Additionally, we have succeeded to reuse calculations between different candidate actions,
eventually providing decision making solver which is significantly faster compared to standard

approaches.

1.1 Related Work

As mentioned above, the optimal solution to POMDP is computationally intractable and many
approximation approaches exist to solve it in sub-optimal way. These approaches can be
classified into those that discretize the action, state and measurement spaces, and those that
operate over continuous spaces.

Approaches from the former class include point-based value iteration methods [36], simula-
tion based [39] and sampling based approaches [1,38]. On the other hand, approaches that avoid
discretization are often termed direct trajectory optimization methods (e.g. [21,34,37,41,43]));
these approaches typically calculate from a given nominal solution a locally-optimal one.

To solve the BSP problem, standard methods usually perform expensive calculations for
each candidate action from scratch. For example, in the context of active SLAM, state of the art
BSP approaches first calculate the posterior belief within the planning horizon, and then use
that belief to evaluate the objective function, which typically includes an information-theoretic
term [15,21,26,40]. These approaches then determine the best action by performing the
mentioned calculations for each action from a given set of candidate actions, or by local search
using dynamic programming or gradient descent (for continuous setting).

Sensor deployment is another example of decision making in high dimensional state spaces.
The basic formulation of the problem is to determine locations to deploy the sensors such
that some metric can be measured most accurately through the entire area (e.g. temperature).
The problem can also be viewed as selecting optimal action from the set of candidate actions
(available locations) and the objective function usually contains a term of uncertainty, like the
entropy of a posterior system [27]. Also here, state of the art approaches evaluate a determinant
over large posterior covariance (information) matrices for each candidate action, and do so from
scratch [44,45].

A similar situation also arises in measurement selection [5,9] and graph pruning [4,14,31,42]
in the context of long-term autonomy in SLAM. In the former case, the main idea is to determine
the most informative measurements (e.g. image features) given measurements provided by robot
sensors, thereby discarding uninformative and redundant information. Such a process typically
involves reasoning about mutual information, see e.g. [7, 9], for each candidate selection.
Similarly, graph pruning and sparsification can be considered as instances of decision making in
high dimensional state spaces [4, 14], with decision corresponding to determining what nodes to

marginalize out [16,28], and avoiding the resulting fill-in in information matrix by resorting



to sparse approximations of the latter [4,14,31,42]. Also here, existing approaches typically
involve calculation of determinant of large matrices for each candidate action.

Although many particular domains can be specified as decision making and BSP problems,
they all can be classified into two main categories, one where state vector is fixed during
belief propagation and another where the state vector is augmented with new variables. Sensor
deployment is an example of the first case, while active SLAM, where future robot poses are
introduced into the state, is an example for the second case. Conceptually the first category is a
particular case of the second, but as we will see both will require different solutions. Therefore,
in order to differentiate between these two categories, in this research we will consider the first
category (fixed-state) as BSP problem, and the second category (augmented-state) as Augmented
BSP problem.

Moreover, we show the proposed concept is applicable also to active focused inference.
Unlike the unfocused case discussed thus far, active focused inference approaches aim to
reduce the uncertainty over only a predefined set of the variables. The two problems can
have significantly different optimal actions, with an optimal solution for the unfocused case
potentially performing badly for the focused setup, and vice versa (see e.g. [30]). While the
set of focused variables can be small, exact state of the art approaches calculate the marginal
posterior covariance (information) matrix, for each action, which involves a computationally
expensive Schur complement operation. For example, Mu et al. [32] calculate posterior covari-
ance matrix per each measurement and then use the selection matrix in order to get marginal
of focused set. Levine et al. [30] develop an approach that determines mutual information
between focused and unfocused variables through message passing algorithms on Gaussian
graphs but their approach is limited to only graphs with unique paths between the relevant
variables.

Finally, there is also a relation to the recently introduced concept of decision making in a
conservative sparse information space [19,20]. In particular, considering unary observation
models (involving only one variable) and greedy decision making, it was shown that appropri-
ately dropping all correlation terms and remaining only with a diagonal covariance (information)
matrix does not sacrifice performance while significantly reducing computational complexity.
While the approach presented herein confirms this concept for the case of unary observation
models, our approach addresses a general non-myopic decision making problem, with arbitrary

observation and motion models.

1.2 Contributions

In this thesis we develop a computationally efficient and exact approach for decision making
and BSP in high-dimensional state spaces that addresses the aforementioned challenges. The
key idea is to use the (augmented) general matrix determinant lemma to calculate action impact
with complexity independent of state dimensionality n, while re-using calculations between
evaluating impact for different candidate actions. Our approach supports general observation and

motion models, and non-myopic planning, and is thus applicable to a wide range of applications



such as those mentioned above, where fast decision making and BSP in high-dimensional state
spaces is required.

For focused BSP scenarios we present a new way to calculate posterior entropy of focused
variables, which is very computationally efficient, yet exact and does not require expensive
calculation of a Schur complement and a posterior covariance matrix. In combination with our
re-use algorithm, it provides focused decision making algorithm which is significantly faster
compared to state of the art approaches.

Calculating the posterior information matrix in Augmented BSP problems involves augment-
ing an appropriate prior information matrix with zero rows and columns, i.e. zero padding, and
then adding new information due to candidate action (see Figure 2.1). While the general matrix
determinant lemma is an essential part of our approach, unfortunately it is not applicable to
the mentioned augmented prior information matrix since the latter is singular (even though the
posterior information matrix is full rank). In this thesis, we develop a new variant of the matrix
determinant lemma, called the augmented matrix determinant lemma (AMDL), that addresses
general augmentation of future state vector. Based on AMDL, we then develop a augmented
belief space planning approach, considering both unfocused and focused cases.

To summarize, our main contributions in this research are as follows: (a) we formulate
(augmented) belief space planning in terms of factor graphs which allow to see the problem in
more intuitive and simple way; (b) we develop an augmented version of matrix determinant
lemma (AMDL), where the subject matrix first is augmented by zero rows/columns and only
then new information is introduced (c) we develop an approach for a nonmyopic focused and
unfocused (augmented) belief space planning in high-dimensional state spaces that uses the
(augmented) matrix determinant lemma to avoid calculating determinants of large matrices, with
per-candidate complexity independent of state dimension; (d) we show how calculations can be
re-used when evaluating impacts of different candidate actions; We integrate the calculations
re-use concept and AMDL into a general and highly efficient BSP solver, that does not involve
explicit calculation of posterior belief evolution for different candidate actions, naming this
approach rAMDL; (e) we introduce an even more efficient rAMDL variant specifically addressing

a sensor deployment problem.

1.3 Organization

This thesis is organized as follows.
1. Chapter 2 introduces the concepts of BSP, and gives a formal statement of the problem.
2. Chapter 3 describes our approach rAMDL for general formulation.

3. Chapter 4 tailors approach for specific domains, providing even more efficient solutions

to number of them.

4. In Chapter 5 standard approaches are discussed as the main state-of-the-art alternatives to
rAMDL .



. Chapter 6 presents experimental results, evaluating the proposed approach and comparing

it against mentioned state-of-the-art.
. Conclusions are drawn in Chapter 7.

. For purpose of simplicity, the proof of several lemmas is moved into Appendix 9.
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Chapter 2

Notations and Problem Formulation

In this thesis we are developing computationally efficient approaches for belief space planning.
As evaluating action impact involves inference over an appropriate posterior, we first formulate
the corresponding inference problem.

Consider a high-dimensional problem-specific state vector X; € R" at time #. In different
applications the state X; can represent robot configuration and poses (optionally for whole
history), environment-related variables or any other variables to be estimated. Additionally,
consider factors F; = { fl.l (Xl.l), - fl.”" (X;"')} that were added at time O < ¢; < 1, where each
factor fl.j (Xl.j ) represents a specific measurement model, motion model or prior, and as such
involves appropriate state variables Xl.j c X,

The joint pdf can be then written as

k i . .
POGHK) o | [ [ [ A, 2.1)

i=0 j=1

where Hy is history that contains all the information gathered till time #;, (measurements, controls,
etc.).
As common in many inference problems, we will assume that all factors have a Gaussian
form: |
o o =
FIX]) o exp(=5 11/ CxH = ]I . 22)

with appropriate model
rl=h&X)+vl, vl ~N©OZ)) (2.3)

where h{ is a known nonlinear function, v{ is zero-mean Gaussian noise and rl.j is the expected
value of h{ (rf = E[h{ (Xl.j )]). Such a factor representation is a general way to express information
about the state. In particular, it can represent a measurement model, in which case, hlj is the
observation model, and r{ and v{ are, respectively, the actual measurement z and measurement
noise. Similarly, it can also represent a motion model (see Section 4.2). A maximum a posteriori

(MAP) inference can be efficiently calculated (see e.g. [24]) such that
P(Xi[Hi) = N (X}, Zp), (2.4)
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where X, and % are the mean vector and covariance matrix, respectively.
We shall refer to the posterior P(X;|Hk) as the belief and write

b[Xi] = P(XxHy). 2.5)

In the context of BSP, we typically reason about the evolution of future beliefs b[Xy/]
at different look-ahead steps [ as a result of different candidate actions. Particular candidate
action can provide unique information (future observations and controls) and can be more and
less beneficial for specific tasks such as reducing future uncertainty. For example, in SLAM
application choosing trajectory that is close to the mapped landmarks will reduce uncertainty
because of loop-closures. Furthermore, conceptually each candidate action can introduce
different additional state variables into the future state vector, like in case of smoothing SLAM
formulation where state is augmented by (various) number of future robot poses.

Therefore, in order to reason about the belief b[X;;], first it needs to be carefully modeled.
More specifically, let us focus on a non-myopic candidate action a = {a;,...,a;} which is a
sequence of myopic actions with planning horizon L. Each action a; can be represented by new
factors Fyy; = { fle(X,i e LENX)) and, possibly, new state variables XMl <i<L)
that are acquired/added while applying a;. Similar to Eq. (2.1), the future belief b[ Xy, ] can be

explicitly written as
k+L n

blXeed o b [ | [ A/ XD, (2.6)

I=k+1 j=1

where Xiiz = {Xx UXAH UL U X5 L) contains old and new state variables. Similar expressions
can be also written for any other look ahead step /. Observe in the above belief that the future
factors depend on future observations, whose actual values are unknown.

It is important to note that, according to our definition from Chapter 1, new variables are
added only in the augmented setting of the BSP problem, e.g. in the active SLAM context. On
the other hand, in a non-augmented BSP setting, the states X, and Xj are identical, while
the beliefs b[ Xy, 1] and b[X,] are still conditioned on different data. For example, in sensor
deployment and measurement selection problems the candidate actions are all possible subsets
of sensor locations and of acquired observations, respectively. Here, when applying a candidate
action, new information about X}, is brought in, but the state vector itself is unaltered.

In contrast, in Augmented BSP problem new variables are always introduced. In particular,
in both smoothing and filtering formulation of SLAM, candidate actions (trajectories) will
introduce both new information (future measurements), and also new variables (future robot
poses). While in filtering formulation old pose variables are marginalized out, the smoothing
formulation instead keeps past and current robot poses and newly mapped landmarks in the
state vector which is beneficial for better estimation accuracy and sparsity. As such, smoothing
formulation is an excellent example for Augmented BSP problem, where as filtering formulation
can be considered as focused BSP scenario which described below.

As such the non-augmented BSP setting can be seen as a special case of Augmented BSP.

In order to use similar notations for both problems, however, in this thesis we will consider X**!

12
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Figure 2.1: Tllustrution of Aj4z’s construction for a given candidate action in Augmented BSP case. First, A'zﬁ is created by

adding n’ zero rows and columns. Then, the new information of belief is added through Ay, = Afﬁ +ATA.

to be an empty set for the former case and non-empty for Augmented BSP.
It is not difficult to show (see e.g. [21]) that in case of non-augmented BSP the posterior

information matrix of the belief b[ X1 ] is given by:

k+L n
Aep=Ae+ Y S HDT &) H] 2.7)

I=k+1 j=1

where Ay is prior information matrix and H' lj =V xh{ are the Jacobian matrices of h{ functions
(see Eq. (2.2)) for all the new factor terms in Eq. (2.6).

As was already mentioned, in case of Augmented BSP the joint state X;.; includes also new
variables (with respect to the current state Xj). Considering X; € R", first, new n’ variables are
introduced into future state vector Xz € RY with N = n + n’, and then new factors involving
appropriate variables from Xj,; are added to form a posterior belief b[X+r], as shown in
Eq. (2.6).

Consequently, in Augmented BSP scenario the posterior information matrix of belief
b[Xk+1], i.e. A+, can be constructed by first augmenting the current information matrix Ay
with n’ zero rows and columns to get A8 e RN*N and thereafter adding to it new information,

k+L
as illustrated in Figure 2.1 (see e.g. [21]):

k+L ny
) o
Awe =Nt + > > D& H 2.8)
I=k+1 j=1

where H; = v xh{ are augmented Jacobian matrices of all new factors in Eq. (2.6), linearized
about the current estimate of X and about initial values of newly introduced variables.
After stacking all new Jacobians in Eqs. (2.7) and (2.8) into a single matrix AV, and combining

all noise matrices into block-diagonal ¥, we get respectively

Aesr = A +AT W A=A +AT-A (2.9)
A = NS+ AT 97 A= A8 AT A (2.10)

where
A=W 2.4 @2.11)



is an m X N matrix that represents both Jacobians and noise covariances of all new factor terms
in Eq. (2.6). The above equations can be considered as a single iteration of Gauss-Newton
optimization and, similar to prior work [21,26,41], we take maximum-likelihood assumption by
assuming they sufficiently capture the impact of candidate action. Under this assumption, the
posterior information matrix Ay, is independent of (unknown) future observations [21]. One
can further incorporate reasoning if a future measurement will indeed be acquired [6,21,43];

however, this is outside the scope of this research.

Each block row of matrix A represents a single factor from new terms in Eq. (2.6) and has
a sparse structure. Only a limited number of its sub-blocks is non-zero, i.e. sub-blocks that

correspond to the involved variables le in the relevant factor flj (le ).

For notational convenience, we define the set of non-myopic candidate actions by A =
{ai,as, ...} with appropriate Jacobian matrices ®4 = {A}, A2, ...}. While the planning horizon is
not explicitly shown, each a € A can represent a future belief b[ Xy ] for different number of
look ahead steps L.

A general objective function in decision making/BSP can be written as [21]:

L-1
J@=_ B Y X ) + c@lXeiD), (2.12)

ZierkeL L
with L immediate cost functions ¢;, for each look-ahead step, and one cost function for terminal
future belief c;. Each such cost function can include a number of different terms related to
aspects such as information measure of future belief, distance to goal and energy spent on

control. Arguably, evaluating the information terms involves the heaviest calculations of J.

Thus, in this research we will focus only on the information-theoretic term of terminal belief
b[Xk+1], and consider differential entropy H (further referred to just as entropy) and information
gain (IG) as the cost functions. Both can measure amount of information of future belief b[ X1 ],
and will lead to the same optimal action. Yet, calculation of one is sometimes more efficient

than the other, as will be shown in Chapter 3. Therefore, we consider two objective functions:

Ju(a) = H (b Xis]) (2.13)

Jig(a) = H(IXk]) — H(O[ Xk, (2.14)

where the information matrix Ax.z, that corresponds to the belief b[Xy.1], is a function of
candidate a’s Jacobian matrix A, see Eq. (2.9) and Eq. (2.10). The optimal candidate a*,
which produces the most certain future belief, is then given by a* = arg min, z J¢(a), or by

a* = argmax . 4 Jig(a) with both being mathematically identical.

In particular, for Gaussian distributions, entropy is a function of the determinant of a posterior

information (covariance) matrix, i.e. H (b[X+r]) = H (Ai+r) and the objective functions can
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be expressed as

n- 1 1 Aksr
Jn@ =L - Sn|Ar], Jig@ =5 | 2.15)
2 2 2 | A |
k
for BSP, and
N - 1 n - 1 Ak+L
Jy(a) = Ty -3 ln’A]H.L . Jo@="24 S1n ‘ (2.16)
A

for Augmented BSP, where y = 1 + In(27), and A1 can be calculated according to Eq. (2.9)
and Eq. (2.10). Thus, evaluating J requires determinant calculation of an n X n (or N X N) matrix,
which is in general O(n?), per candidate action a € A. In many robotics applications state
dimensionality can be huge and even increasing with time (e.g. SLAM), and straight forward
calculation of the above equations makes real-time planning hardly possible.

So far, the exposition referred to unfocused BSP problems, where the action impact is
calculated by considering all the random variables in the system, i.e. the entire state vector.
However, as will be shown in the sequel, our approach is applicable also to focused BSP
problems.

Focused BSP, in both augmented and non-augmented cases, is another important problem,
where in contrast to the former case, only a subset of variables is of interest (see, e.g., [27, 30,
32]). For example one can look for action that reduces uncertainty of robot’s final pose. The
complexity of such a problem is much higher and proposed techniques succeeded to solve it in
O(kn?) [27,30] with k being size of candidate actions set, and in O(it*) [32] with 71 being size of
involved clique within Markov random field representing the system.

Considering posterior entropy over the focused variables X,f vz € Xkt We can write:
np-y 1 MF

+=1In

I@=HKL) = =57 + ]

+

) 2.17)

where np is the dimensionality of the state X,f L and E%f is the posterior marginal covariance
of X ]f ., (suffix M for marginal), calculated by simply retrieving appropriate parts of posterior
covariance matrix Zgp = AL, .

Solving the above problem in a straightforward manner involves O(N?) operations for
each candidate action, where N = n + n’ is dimension of posterior system. In the following
sections we develop a computationally more efficient approach that addresses both unfocused
and focused (augmented) BSP problems. As will be seen, this approach naturally supports
non-myopic actions and arbitrary factor models h{ , and it is in particular attractive to belief

space planning in high-dimensional state spaces.
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Chapter 3
Approach

Our approach, rAMDL , utilizes the well-known matrix determinant lemma [13] and re-use
of calculations to significantly reduce computation of candidate action’s impact, as defined in
Chapter 2, for both augmented and non-augmented cases of BSP problem. In Section 3.1 we
reformulate these problems in terms of factor graphs which will allow us to see another, more
simplified, picture of the BSP problem. In Section 3.2.1 we develop a novel way to calculate
the information-theoretic term for unfocused non-augmented BSP, and then extend it in
Section 3.2.2 to the focused case. Additionally, in order to significantly reduce computational
complexity of the Augmented BSP problem, as defined in Chapter 2, in Section 3.3.1 we extend
the matrix determinant lemma for the matrix augmentation case. We then discuss in Sections
3.3.2-3.3.3 how this extension can be used within unfocused and focused Augmented BSP.
Further, in Section 3.4 we discuss another key component of rAMDL - the re-use of calculations,
which exploits the fact that many calculations can be shared among different candidate actions.
Finally, in Section 3.5 we describe connection between our technique and mutual information

approach from [9, 23], and discuss an interesting conceptual meaning of IG metric.

3.1 BSP as Factor Graph

The inference problem can be naturally represented by a factor graph [29], which is a bipartite
graph G = (¥, 0, &) with two node types: variables nodes 6; € ® and factor nodes f; € ¥
(e.g. see Figures 3.1 and 3.2). Variable nodes represent state variables that need to be estimated,
while factor nodes express different constraints between different variables. Each factor node is
connected by edges ¢;; € & to variable nodes that are involved in the corresponding constraint.
Such a formulation is general and can be used to represent numerous inference problems
(e.g. SLAM), while exploiting sparsity. Furthermore, computationally efficient approaches,
based on such formulation and exploiting its natural sparsity, have been recently developed
[24,25].

Below we will show that inference within BSP can also be formulated in terms of a factor
graph.

The belief at time t;, b[Xy] can be represented by a factor graph Gy = (%, Xk, &), where
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Figure 3.1: Illustration of belief propagation in factor graph representation - not-augmented case. Two actions a; and a; are
considered, introducing into graph two new factor sets ¥ (a;) and ¥ (a;) respectively (colored in green).

with little abuse of notations, we use X; to denote the estimated variables, Fy is the set of all
factors acquired till time #;, and where &; encodes connectivity according to the variables Xl.j
involved in each factor fij , as defined in Eq. (2.2). The future belief b[Xy..] is constructed
by introducing new variables and by adding new factors to the belief b[X;], as was shown in
Chapter 2. Therefore, it can be represented by a factor graph which is an augmentation of the

factor graph Gy, as will be shown below.

More specifically, in case of non-augmented BSP, let ¥ (a) = {f!, ..., f} denote all the
new factors from Eq. (2.6) introduced by action a, with n, being the number of such factors.
This abstracts the explicit time notations of factors inside Eq. (2.6) which in their turn can be
seen as unimportant for solution of BSP problem. Then the factor graph of b[Xj. ] is the prior
factor graph G with newly introduced factor nodes ¥ (a) connected to appropriate variable

nodes (see Figure 3.1 for illustration). Thus, it can be denoted by Gy.(a):

Givr(a) = (FirLs XiwL, 1), 3.1

where Fry1 = {Fr, F (a)}, Xisr = Xi are unaltered state variables, and &, represents connec-

tivity between variables and factors according to definition of each factor (Eq. (2.2)).

For simplicity, we denote the augmentation of a factor graph G; with a set of new factors
through operator @. Thus, for the non-augmented BSP setting, we have Gi.r(a) = Gy @ F (a).
Additionally, with a slight abuse of annotations we will use the same augmentation operator @
to define combination of two factor graphs into one, which will be required in the context of

augmented BSP.

In augmented BSP scenario, we denote all new state variables introduced by action a as
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Figure 3.2: Illustration of belief propagation in factor graph representation - augmented case. Two actions a; and a; are considered,
introducing their own factor graphs G(a;) and G(a;) (colored in pink) that are connected to prior Gy through factor sets " (a;)
and 7" (a;) (colored in green) respectively.

Xew, and also separate all new factors 7 (a) from Eq. (2.6) into two groups:
F (@) ={F""(a), F " (a)}. (3.2)
Factors connecting only new variables X,,,, are denoted by ¥"¢"(a):
Fra) = {f',..., f"™}, (3.3)
while the rest of the factors are denoted by F<”"*(a):
Feomn(gy = (f1,..., frem), (3.4)

connecting between old and new variables.

Next, let us denote action’s factor graph as G(a) = (F""(a), Xuew> Snew) With E,e,, repre-
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senting connectivity according to involved variables in each factor in ¥""(a). Then the factor
graph that represents the future belief 5[ X, ] is a combination of two factor graphs, the prior

Gy and action’s G(a), connected by factors from F“”**(a) (see Figure 3.2 for illustration). Thus,

Gisr(a) =G ®G(a) @ ?dcmm(a) = (Firr> Xir 1, Ek+1)s (3.5)

where Frir = {Fr, F" (@), FO" (@)}, XL = { Xk, Xnew} 1S an augmented state vector, and
&+ Tepresents connectivity between variables and factors according to factors’ definition. The
separation of factors into two groups lets us to present future belief ’s factor graph as simple
graph augmentation, and will also be useful during derivation of our approach in Section 3.3.
Moreover, the reason for ¥ “°""(a) not to be defined as part of G(a) is due to the fact that factors

inside F““"(a) involve state variables outside of G(a).

Note that the new factors in Gz (a) are not fully defined, as some of them involve future
observations which are unknown at planning time. However, the taken maximum-likelihood
assumption expects that mean vector of b[ Xy, ] will coincide with current estimate of X; and
with initial values of new variables X,,,, [21,37,41]. Knowing the mean vector it is possible to
calculate Jacobians of old and new factors within G,z (a). Since information matrix A = ATA
is a product of Jacobian matrices, Ax., of future belief b[ Xy, 1] can also be calculated without
knowing the future observations. Thus, we can reason about information (and covariance) matrix

of Gyyr(a), as was shown in Chapter 2.

Now we can reformulate the information-theoretic objective of the BSP problem. In
order to evaluate information impact of action a in a non-augmented BSP setting (Eq. (2.15)),
we need to measure the amount of information added to a factor graph after augmenting it
with new factors Gy.p(a) = Gy ® 7 (a). In case of augmented BSP (Eq. (2.16)), in order to
evaluate information impact of action a we need to measure the amount of information added
to a factor graph after connecting it to another factor graph G(a) through factors in ¥ (a),
Gi+L(a) = Gy ® G(a) ® F"(a).

In equations (2.9) and (2.10) we expressed the posterior information matrix Agyy, of Giir(a)
through matrix A, which is the weighted Jacobian of new terms from Eq. (2.6). In non-augmented
BSP, each block-row of A represents a specific factor from ¥ (a), while in augmented BSP block-
rows in A represent factors from ¥ (a) = {F """ (a), ¥ “°""(a)}. Block-columns of A represent
all estimated variables within X;,;. As was mentioned, each factor’s block-row is sparse, with
only non-zero block entries under columns of variables connected to the factor within the factor
graph. For example, the Jacobian matrix’s block-row that corresponds to a motion model factor
P (X1 Xk+1-1, Uik+1—-1) Will involve only two non-zero block entries for the state variables xy.; and
Xr+1-1- Factors for many measurement models, such as projection and range model, will also
have only two non-zero blocks (see Figure 3.3).

We define two properties for any set of factors ¥ that will be used in the sequel to analyze
complexity of the proposed approach. Denote by M(7) the sum of dimensions of all factors
in 7, where dimension of each factor is the dimension of its expected value r'l.i from Eq. (2.3).

Additionally, let D(F) denote the total dimension of all variables involved in at least one factor
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Figure 3.3: Concept illustration of A’s structure. Each column represents some variable from state vector. Each row represents
some factor from Eq. (2.6). Here, A represents set of factors & = {fi(xi-1, x;), f2(x;,[;)} where factor f; of motion model that
involves two poses x; and x;_; will have non-zero values only at columns of x; and x;_;. Factor f, of observation model that
involves together variables x; and /; will have non-zero values only at columns of x; and /;.

Notation Description
X = Xkt state vector at times k and k + L
Ix subset of X;.; with variables involved in new terms in Eq. (2.6)
~Ix subset of X,y with variables not involved in new terms in Eq. (2.6)
X]f = X,f+L =Xr subset of X}, with focused variables
Xlg = XgL =xV subset of X;.,; with unfocused variables
Ixv subset of XU with variables involved in new terms in Eq. (2.6)
~Ixv subset of XV with variables not involved in new terms in Eq. (2.6)

Table 3.1: Different partitions of state variables in BSP

from F. It is not difficult to show that Jacobian matrix A € R™*" of F has height m = M(F),
and number of its columns that are not entirely equal to zero is D(5). The letter D is used here
because density of information matrix is affected directly by value of D(¥). It is important to
note that, for any candidate action a, the total dimension of new factors M(¥ (a)) and dimension
of involved variables D(F (a)) are independent of n, which is dimension the belief at planning
time b[Xy]. Instead, both properties are only functions of the planning horizon L.

In the following sections we describe our BSP approach, using the above notions of factor
graphs.

3.2 BSP via Matrix Determinant Lemma

3.2.1 Unfocused Case

Information theoretic BSP involves evaluating the costs from Eq. (2.15), operations that require
calculating the determinant of a large nxn matrix (posterior information matrix), with n being the
dimensionality of the state X, . State of the art approaches typically perform these calculations
from scratch for each candidate action.

In contrast, our approach contains a one-time calculation that depends on state dimension
and will be re-used afterwards to calculate impact of each candidate action (see Section 3.4). As
will be seen below, the latter depends only on M(¥ (a)) and D(F (a)), while being independent
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of state dimension.
Recalling notations from the previous section, we would like to measure the amount of
information gained after graph augmentation Gy.r(a) = G; ® ¥ (a). We can measure it through
the IG as the utility function. It is not difficult to show that IG from Eq. (2.15) can be written
A +ATA|

In —/—

1

as Jig(a) = 3 , where A € R™" is Jacobian of factors in ¥ (a) weighted by their

Ax
noise, with m = M(¥F (a)). Using the generalized matrix determinant lemma [13], this equation

can be written as |
Jio(a@) = 3 L, +A-5- AT, Se= A7 (3.6)

as previously suggested in [16,32] in the context of compact pose-SLAM and focused active
inference.

Eq. (3.6) provides an exact and general solution for information-based decision making,
where each action candidate can produce any number of new factors (non-myopic planning) and
where factors themselves can be of any motion or measurement model (unary, pairwise, etc.).

In many problem domains, such as SLAM, inference is typically performed in the infor-
mation space and as such, the joint covariance matrix X is not readily available and needs to
be calculated upon demand, which is expensive in general. While in first sight, it might seem
the entire joint covariance matrix needs to be recovered, in practice this is not the case due to
sparsity of the Jacobian matrix A, as was mentioned above.

Consequently, only specific entries from the covariance matrix X are really required, and
sparse matrix techniques exist to calculate them efficiently [11,23]. More formally, denote by
IX the set of all variables that are connected to factors in 7 (a) (see Table 3.1), i.e. these are the
variables that are involved in at least one factor among the new factors generated due to the
currently considered candidate action a, see Eq. (2.6). Clearly, the columns of A that correspond
to the rest of the variables, “X, are entirely filled with zeros (see Figure 3.3). Thus, Eq. (3.6)
can be re-written as

Jig(a) = %m L+ /A - SMX gy (3.7)

where /A is constructed from A by removing all zero columns, and EQNX is a prior joint marginal
covariance of variables in X, which should be calculated from the (square root) information
matrix Ag. Note that dimension of X is D(F (a)).

Intuitively, the posterior uncertainty reduction that corresponds to action a is a function
of only the prior marginal covariance over variables involved in ¥ (a) (i.e. ZQ/I’IX) and the
new information introduced by the ¥ (a)’s Jacobian A, with the latter also involving the same
variables ’X. Moreover, from the above equation it can be seen that uncertainty reduction in the
posterior will be significant for large entries in A and high prior uncertainty over the variables
Ix.

In particular, in case of myopic decision making with unary observation models (that involve
only a single state variable), calculation of /G(a) for different candidate actions only requires
recovering the diagonal entries of X, regardless of the actual correlations between the states,

as was recently shown in [19,20]. However, while in the mentioned papers the per-action
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calculation takes O(n), the IG(a) calculation is not dependent on » at all, as will be shown in
Section 3.4.

Given a prior marginal covariance ZkM’IX , whose dimension is D(F (a)) X D(F (a)), the
calculation in Eq. (3.7) is bounded by calculating determinant of an M(F (a)) X M(F (a)) matrix
which is in general O(M(F (a))?), where M(F (a)) is the number of constraints due to new
factors (for a given candidate action a). This calculation should be performed for each candidate
action in the set A. Furthermore, in many problems it is logical to assume that M(7 (a)) << n,
as M(¥ (a)) depends mostly on the planning horizon L, which is typically defined and constant,
while n (state dimensionality) can be huge and grow with time in real systems (e.g. SLAM).
Consequently, given the prior covariance our complexity for selecting best action is O(|A|),

1.e. independent of state dimensionality 7.

To conclude this section, we showed that calculation of action impact for a single candidate
action does not depend on n. While this result is interesting by itself in the context of active
inference, in Section 3.4 we go a step further and present an approach to calculate covariance

entries, required by all candidates, with one-time calculation which can be re-used afterwards.

3.2.2 Focused Case

In this section we present a novel approach to calculate change in entropy of a focused set of
variables after factor graph augmentation G,z (a) = Gy @ ¥ (a), combining it with the ideas
from the previous sections (generalized matrix determinant lemma and IG cost function) and

showing that impact of one candidate action can be calculated independently of state dimension

n.
First we recall definitions from Chapter 2 and introduce additional notations (see also Table
3.1): X,f = X,f ., € R denotes the set of focused variables (equal to X,f ., toremind us that

prior and posterior states are identical in non-augmented case), X,ﬁj = Xi /X,f € R" is a set of
the remaining, unfocused variables, with n = ng + ny. The ng X np prior marginal covariance
and information matrices of X ,f are denoted, respectively, by 2]’{” ¥ (suffix M for marginal) and

AQ/LF = (ZIICVI’F ). Furthermore, we partition the joint information matrix Ak as

ZQ/I’U ZM’UF

5 = (3.8)

WAVE

AV AP
k k
k k

where Af € R"™"r ig constructed by retrieving from Ay only the rows and the columns related
to X,f (it is actually conditional information matrix of X/, conditioned on rest of variables X ,gj ),
Ag € R">" is defined similarly for XY, and A][(J’F € R"*"F contains remaining blocks of A

as shown in Eq. (3.8).

The marginal information matrix of X7, i.e. AQ’I’F , can be calculated via Schur complement

AQ/]’F = A]f - (AgF v (Alg)‘1 . A]gF . However, one of Schur complement’s properties [33] is
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|Ak| = ’A;{VI’F | . |Ag , from which we can conclude that

w1 _IM
A2 = o = (3.9)
=] [ad
Therefore, the posterior entropy of X,f .1 (see Eq. (2.17)) is a function of the posterior A, and

U .

its partition A/,

) 1 | Ak+L
oy 1 M|

2 2 ’AI£]+L

JE(a) = HxE, ="

+

(3.10)

From Eq. (2.9) one can observe that A,?Jr L= Ag +(AYYT . AV where AY € R™" is constructed
from Jacobian A by taking only the columns that are related to variables in X ]? .

The next step is to use IG instead of entropy, with the same motivation and benefits as
in the unfocused case (Section 3.2.1). The optimal action a* = argmax,.4 JfG(a) will
maximize J};(a) = H(X} ) - H(X], ), and by combining Eq. (3.10) with the generalized matrix
determinant lemma we can write:

1 1
Tfg(@ = 310 [, +A-3AT| - §1n|1m + AU SUIF AUy |, 3.11)

where lecle € R™>" ig a prior covariance matrix of Xlg conditioned on X,f , and it is actually
the inverse of A]g.

Further, AV can be partitioned into /AY and ~/AY, representing unfocused variables that
are, respectively, involved (’XY) or not involved ("'XV) (see also Table 3.1). Note that ~/AY

contains only zeros, and it can be concluded that:
L+ AU S AUYT| = |1, + 4V - X7 davyT|, (3.12)

IXU|F . . . IvU .. F
where X° " is the prior covariance of ‘X" conditioned on X;.

Taking into account equations (3.7) and (3.12), JfG(a) can be calculated through
1 I 1 U
Jfg(@) = 5 In|l, + 1 S (7| - Sn |1+ 14V - X7 Ay (3.13)

We can see that the focused and unfocused information gains have a simple relation between
them |
Jig(@) = Jig(@) ~ 5 In 1, + 1AV X (v (3.14)

The second term in Eq. (3.14) is negative and plays a role of penalty, reducing the action’s

impact on posterior entropy of le In Section 3.5 we will discuss the intuition behind this

+L°

penalty term. Note that when all involved variables are focused , Ix c le L

XU is empty and second term’s matrix will be an identity matrix .. In such a case, the second

the variable set

term becomes zero and we have J fG(a) = Jig(a).

Also here, given prior covariances ZkM’IX and Z;fUlF, calculation of focused IG (Eq. (3.13))
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Figure 3.4: Partitions of Jacobians and state vector X, in Augmented BSP case, unfocused scenario. Note: the shown variable
ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note that all white
blocks consist of only zeros. Top: Jacobian A of factor set F (a) = {F " (a), ¥ " (a)}. Bottom: Jacobians B and D of factor sets
Fo"(a) and F" (a) respectively.

is independent of state dimensionality n, with complexity bounded by O(M(F (a))?). In the
Section 3.4 we will show how the required covariances can be efficiently retrieved.

3.3 Augmented BSP via AMDL

3.3.1 Augmented Matrix Determinant Lemma (AMDL)

In order to simplify calculation of IG within Augmented BSP (Eq. (2.16)) one could resort,
similar to previous sections, to the matrix determinant lemma. However, due to zero-padding,
the information matrix Affi is singular and thus the matrix determinant lemma cannot be
directly applied. In this section we develop a variant of the matrix determinant lemma for the
considered augmented case (further referred to as AMDL).

Specifically, we want to solve the following problem: Recalling A* = A4“¢ + AT . A (see
also Eq. (2.10)), and dropping the time indices to avoid clutter, our objective is to express the

determinant of A* in terms of A and ¥ = A~
Lemma 3.3.1. The ratio of determinants of A* and A can be calculated through:

A+

T
Anew

szh

AT Apen! s (3.15)
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withA =1, +Ayq-X- AZZ . Where the matrices Ayjq € R™" and Ay, € R™" are constructed

from A by retrieving columns of only old n variables (denoted as X,14) and only new n’ variables

(denoted as Xye,), respectively (see Figure 3.4 and Table 3.2).

The proof of Lemma 3.3.1 is given in Appendix (9.1).

Remark 1: Tt is not difficult to show that AMDL for the matrix update of the form A* =
A8 4 AT .1 A (see Eq. (2.10)) assumes the form

A* _
L

‘A’ AT AU A (3.16)

new

WithKi ‘P+A~01d -Z-AVZJM.
Additionally, we can extend the AMDL lemma for specific structure of matrix A. As was
explained in Section 3.1, in case of augmented BSP the new factors can be separated into two

sets F"(a) and F°"(a). It is not difficult to see that A’s structure in such case will be:

BO BHEW BO Bnew
Id ) _ ( Id ) 3.17)

A=A,y A :[
( ’ neW) Dald Dnew 0 Dnew

where B’s rows represent factors from 7" (a), and D’s rows - factors from 7 ""(a) (see also
Figure 3.4). Note that D,y = 0.

Lemma 3.3.2. The ratio of determinants of A* and A where A has structure from Eq. (3.17)
can be calculated through:
A

W:M'

Bgew ’ Al_l * Bpew + Dl - Dyew (3.18)

new

conn

with Ay =1, + Byg-X- BZI g and Meopn = M(F""(a)), where partitions of B and D are
defined above in Eq. (3.17) and also can be seen in Figure 3.4.

The proof of Lemma 3.3.2 is given in Appendix (9.2).

We note the above equations are general standalone solutions for any augmented positive
definite symmetric matrix.

To summarize, we developed two augmented determinant lemmas, Eq. (3.15) and Eq. (3.18),
with the latter exploiting additional knowledge about A’s structure. Dimension of matrix A from
Eq. (3.15) is M(F (a)) X M(F (a)), whereas dimension of A; from Eq. (3.18) is M(F " (a)) x
M(F " (a)). Thus, complexity of calculation in Eq. (3.18) is lower than in Eq. (3.15) since
MTF " (a)) < M(F (a)). In sections below we will use both of the lemmas in order to develop

efficient solution to Augmented BSP problem.
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Notation Description
Xy state vector at time k

Xi+L state vector at time k + L

X,f oL subset of X}, with focused variables

Xoid subset of X;.,; with old variables, i.e. X

Xoew subset of X;,; with new variables

X subset of X,;; with variables involved in new terms in Eq. (2.6)

X 14 subset of X,;; with variables not involved in new terms in Eq. (2.6)
Focused Augmented BSP (X,f L1 € Xnew), Section 3.3.3

X,’;W subset of X,,,,, with focused variables

X,f/ew subset of X,,,,, with unfocused variables
Focused Augmented BSP (X[, € X,), Section 3.3.3

x*, subset of ’X,;; with focused variables

X, subset of ’X,;; with unfocused variables

~Ixt subset of "/X,;; with focused variables

~Ix Z d subset of "/X,;; with unfocused variables

Table 3.2: Different partitions of state variables in Augmented BSP

3.3.2 Unfocused Augmented BSP through IG

Here we show how the augmented matrix determinant lemma from Section 3.3.1 can be used to
efficiently calculate the unfocused 1G as defined in Eq. (2.16), e.g. change in system’s entropy
after factor graph augmentation Gy.z(a) = G ® G(a) ® ¥ “°"(a) (see Figure 3.2).

First we introduce different partitions of the joint state X;,;, and the corresponding sub-
matrices in the Jacobian matrix A from Eq. (2.10) (see Table 3.2 and Figure 3.4). Recall
definitions of X,,.,, and X,;4 (see Section 3.3.1) and let ’X,;; and "/X,;; denote, respectively, the
old involved and the old uninvolved state variables in the new terms in Eq. (2.6). We represent
by ‘A4 and ™A, the columns of matrix A that correspond to the state variables X,;; and ™X,;4,
respectively (see Figure 3.4). Note, A = 0.

Next, using AMDL Lemma 3.3.1, the determinant ratio between posterior and prior infor-

mation matrices is:

|Ak+L

A4

~ld-

AZew : C_l : Anew s (319)

where C = I, + Agiq - Z - AL .
Consequently, the IG objective from Eq. (2.16) can be re-written as

’

3 AT . C7V Aol - (3.20)

new

Jic(a)=

+ %ln|C’+%ln
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Moreover, considering the above partitioning of A,y, we conclude A,y - Xy - A:l g = Ao -
2]1{"1,’X0;d - ("Api)T where EQ/I’IX”"’ is the marginal prior covariance of ’X,;;. Thus, matrix C can be
rewritten as

C = L+ A - E%0t . (p i) (3.21)

Observe that, given EQ/I’IX”’”’, all terms in Eq. (3.21) have relatively small dimensions and
M(F (a)) X M(F (a)) matrix C can be computed efficiently for each candidate action, with time
complexity not depending anymore on state dimension »n, similarly to the non-augmented BSP
approach in Section 3.2.1. Calculation of the inverse C~!, which is required in Eq. (3.20), is
O(M(F (a))®) and will also not depend on 7. The run-time of overall calculation in Eq. (3.20)
will have complexity O(M(F (a))® + n’*) and will depend only on number of new factors
M(F (a)) and number of new variables n’. Both are functions of the planning horizon L and can
be considered as being considerably smaller than state dimension n. Moreover, higher ratios

n/M(F (a)) lead to a bigger advantage of our approach vs the alternatives (see Chapter 6).

It is worthwhile to mention a specific case, where M(¥ (a)) = n’, which happens for example
in SLAM application when candidate action a introduces only motion (or odometry) factors
between the new variables. In such case it is not difficult to show that Eq. (3.20) will be reduced
to Jig(a) = ",77 +In ‘Anew‘. In other words, the information gain in such case depends only on
the partition A,,,, of A (see Figure 3.4), Jacobian entries related to new variables, , while the

prior Ay is not involved in the calculations at all.

Remark 2: 1t is possible that posterior state dimension N = n + n’ will be different for
different candidate actions (e.g. see Chapter 6). In such case, the entropy (or IG), being function
of posterior eigenvalues’ product, will be of different scale for each candidate and can not be
directly compared. Thus, dimension normalization of Eq. (3.20) may be required. Even though
the term % may already play a role of such a normalization, the detailed investigation of this

aspect is outside the scope of this thesis.

We can further enhance the presented above approach by considering structure of A from
Eq. (3.17) (see also Figure 3.4). This will allow us to slightly improve complexity of J;g(a)’s
calculation. By applying AMDL Lemma 3.3.2, we can show that information gained from
connecting Gy (with covariance matrix ;) and G(a) (with information matrix A, = D,{ew -Dyew)
through factors " (a) will be:

n -

y+%1n‘C1|+%ln

Jig(a)= Bl CT' Brew + Adl- (3.22)

Ct = I + Bota - Zk - BLy (3.23)

conn

where matrix B = (Bold Bnew) is Jacobian of factors in F“”"'(a).

Since B,y is sparse (see Figure 3.4), same as partition A,z in Eq. (3.19), C; also can be

calculated in efficient way:

Ct = Iy, + Bota - Z% - (By)T (3.24)

conn
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It is interesting to note that the terms of the above-presented solution for the unfocused
Augmented BSP problem (Eq. (3.22) and Eq. (3.24)) can be recognized as belonging to different

. . . . . ]
operands in augmentation Gy & G(a) ® F““"(a): Prior covariance matrix Zliw’ Xoid

represents
information coming from prior factor graph Gy, information matrix A, provides information
of action’s factor graph G(a), and various partitions of matrix B introduce information coming
from connecting factors " (a).

Although the above solution (Eq. (3.22) and Eq. (3.24)) look somewhat more complicated,
its matrix terms have slightly lower dimensions comparing with matrix terms in the general
solution presented in Eq. (3.20) and Eq. (3.21), with complexity O(M(F “°"(a))? + n’?), and
therefore can be calculated faster, as will be shown in our simulations below. Moreover, the
equations (3.22) and (3.24) have more independent terms which can be calculated in parallel,

further improving time performance.

3.3.3 Focused Augmented BSP

The focused scenario in Augmented BSP setting, with the factor graph augmentation Gy.r(a) =
G dG(a)®F ““"(a), can be separated to different cases. One such case is when the set of focused

. F
variables Xk L

Figure 3.5, i.e. X,f .1 S Xnew are the variables coming from factor graph G(a). Such a case

contains only new variables added during BSP augmentation, as illustrated in

happens, for example, when we are interested in reducing entropy of robot’s last pose within the
planning horizon. Another case is when the focused variables X ,f ., contain only old variables,
as shown in Figure 3.6, i.e. X,f 1 € Xoua = X are the variables coming from factor graph Gy.
This, for example, could correspond to a scenario where reducing entropy of already-mapped
landmarks is of interest (e.g. improve 3D reconstruction quality). The third option is for both
new and old variables to be inside X,f L
third case can be handled in a similar manner.

Below we develop a solution for the first two cases; the

Remark 3: In most cases, actual variable ordering will be more sporadic than the one
depicted in Figures 3.4, 3.5 and 3.6. For example, iSAM [24] determines variable ordering
using COLAMD [8] to enhance sparsity of the square root information matrix. We note that our
approach applies to any arbitrary variable ordering, with the equations derived herein remaining

unchanged.

Focused Augmented BSP (X,f +1 € Xnew) - focused variables belong to G(a)

First we define additional partitions of Jacobian A (see Figure 3.5). The sub-matrices Ayiq, Anews
A g and ~!A,;; were already introduced in the sections above. We now further partition A,,,,
into AL, and AY,

ew ew» that correspond, respectively, to columns of new variables that are focused

and unfocused. Denote the former set of variables as X! and the latter as XU

new new
3.2). Note, X}, = X{,,.

(see also Table

Lemma 3.3.3. The posterior entropy of XL, (Eq. (2.17)) is given by

: 1
nr : 4 —~n|AL, - C! - Apew (3.25)

2

1
+§ln (AU )T-C_l-AU

new new

Jh(a) =
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Xold = Xk ¥
(old variables) new

Partitioning of: (new variables)

not involved involved /U P
i -] I
state Xgir Xold Xold Xnew Xnew
) -] I U F
- matrix A Aold Aold Anew Anew
N
¢ Aold Anew

. 4 F
- matrix B IBold IBold Bgew Bnew
- matrix D Dr[z,]ew D gew
N
Dnew

Figure 3.5: Partitions of Jacobians and state vector Xy in Augmented BSP case, Focused (XkF v € Xnew) scenario. Note: the

shown variable ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note
that all white blocks consist of only zeros. Top: Jacobian A of factor set ¥ (a) = {F“"*(a), ¥ " (a)}. Bottom: Jacobians B and D
of factor sets ¥ “”"*(a) and F"°"(a) respectively.

where C is defined in Eq. (3.21).

The proof of Lemma 3.3.3 is given in Appendix (9.3).
M X1
k
complexity OCM(F (a))® + n’?), similarly to unfocused Augmented BSP in Section 3.3.2. In
M/X,
k

We got an exact solution for J;(a) that, given X , can be calculated efficiently with

Section 3.4 we will explain how the prior marginal covariance term (X, “?) can be efficiently
retrieved, providing a fast solution for focused Augmented BSP.
Additionally, it is interesting to note that there is efficient way to calculate the term

5InjAY, )T -1 AY

new new

AT .C7'. A,.| from Eq. (3.25). First, we calculate matrix

1
- z ln new
vV =Al .C7'.A,.. Note that each row/column of V represents one of the new variables X;,¢,,.
Next, we reorder rows and columns of V to obtain matrix VY where first go rows and columns

of XV

new?

followed by rows and columns of X%, . Now, we can perform Cholesky decomposition
of VUF = LT . L and retrieve L’s diagonal entries that belong to variables XZ, , denoted by rlFl
It is not difficult to show that:

AL, - C7V - Apey

new new

1 1
S In|@AL,)" -7 Af,| - 5 =- > logrf (3.26)

Further, like in Section 3.3.2, we will additionally exploit the special structure of A from
Eq. (3.17) (see also Figure 3.5). Similarly to unfocused Augmented BSP, this will allow us to
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improve complexity of J(Z(a)’s calculation.

Lemma 3.3.4. The posterior entropy of XL, (Eq. (2.17)), where A has structure from Eq. (3.17),

€

is given by

nr-y
Jh(a) =

new new Bgew ’ Cl_l “Bpew + Ag|,  (3.27)

| 1
+ 2 In|BY)T - Cy B +A3'F‘—§ln

where Cy is defined in Eq. (3.24), A, = DL, - Dy, is information matrix of action’s factor
graph G(a), and AglF =mY )T -DY

new U . is information matrix of variables X, , conditioned on

new

XxF  and calculated from distribution represented by G(a).

The proof of Lemma 3.3.4 is given in Appendix (9.4).
Also here, the matrix terms from the above solution of focused Augmented BSP prob-
lem (Eq. (3.27) have lower dimensions comparing with the matrix terms from the general

I
solution presented in Eq. (3.25). Given the prior marginal covariance Ef{”’ Kota

its complexity is
O(M(F " (a))? +n’?). We demonstrate a run-time superiority of this solution in our simulations
below.

It is important to mention that information-based planning problem for a system that
is propagated through the (Extended) Kalman filter [41,43], where the objective is to reduce
uncertainty of only marginal future state of the system, is an instance of the focused Augmented
BSP (X]f 1 € Xuew) problem. Thus, the solution provided in this section is applicable also for
Kalman filter planning.

Focused Augmented BSP (X'

i1 S Xoia) - focused variables belong to Gy

Similarly to the previous section, we first introduce additional partitions of Jacobian A for the
considered case (see Figure 3.6). From the top part of the figure we can see that “/A,; can further

L st SIAU Sy F : SNy
be partitioned into A, and A ;. In particular, A/,
that are both not involved and unfocused, and ﬂ’Afl , represents columns of old variables that are

represents columns of old variables

both not involved and focused. We denote the former group of variables by ﬁIXZ , and the latter

by ﬁIXOFl 4 (see Table 3.2). Likewise, 'A 14 can be partitioned into IAZ , and IAZ > representing

old involved variables that are, respectively, unfocused (IXZ 2) OF focused (X 51 ,)- Note that in

— YF — (~IyF IyF
=xF = {"xE ulx

this case, the set of focused variables is XF i old

H } and is contained in factor

graph Gy.

Lemma 3.3.5. The focused IG of X} is given by

1
JE (@) = 5(1n|c| #In|AT, - C - Ay| = In|S| = In|AT, 57 Ay, (3.28)
where C is defined in Eq. (3.21), and
. XU |F
S =1, +"AY, -2 (AU )T, (3.29)

XU IF . . . .
and where X, *'"" is the prior covariance of [XZ 4 conditioned on X]f .
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Xoig = Xy
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§ ok unfocused  focused ' ‘/unfocused focused Xnew
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- matrix A A A Az | Ao
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- matrix D Dnew

Figure 3.6: Partitions of Jacobians and state vector Xy, in Augmented BSP case, Focused (X,iF 1. S Xoua) scenario. Note: the
shown variable ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note
that all white blocks consist of only zeros. Top: Jacobian A of factor set ¥ (a) = {F“”"*(a), " (a)}. Bottom: Jacobians B and D

of factor sets ¥ “”"*(a) and F"°"(a) respectively.

The proof of Lemma 3.3.5 is given in Appendix (9.5).

.. . . . M X, Ilele
Similarly to the cases discussed above (Sections 3.3.2 and 3.3.3), given ™" and X,

calculation of J fG(a) per each action a can be performed efficiently with complexity OM(F (a))>+

bl

n’3), independently of state dimension .

It is interesting to note the specific case where M(F (a)) = n’. In other words, number of
new measurements is equal to number of new state variables. In such case, it is not difficult
to show that Eq. (3.28) will always return zero. We can conclude that for this specific case
(M(F (a)) = n’) there is no new information about the old focused variables X]f .

Additionally, similar to previous sections, we will use the special structure of A from

Eq. (3.17) (see also Figure 3.6) in order to improve complexity of JfG(a)’s calculation.

Lemma 3.3.6. The focused IG of XF', where A has structure from Eq. (3.17), is given by

Bl ' Buow + Mg BL,, -S7'- Byow + Ad)), (3.30)

|
JE () = E(1n|c1| +1n 1

—ln|S1|—ln

where C\ is defined in Eq. (3.24), Ay = DI, - Dy, is information matrix of action’s factor

graph G(a), and
U
St = Iy +'BYy - 2,0 (BY T (3.31)

conn old

XV IF . . . .
and where X, *'"" is the prior covariance of [XZ 4 conditioned on X]f .
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Problem Required covariance entries

Unfocused BSP, Z,’cw’lx (prior marginal covariance of variables
Section 3.2.1 involved in new terms in Eq. (2.6))
Focused BSP, EQ/I’IX and ZIICXUlF (prior covariance of
Section 3.2.2 unfocused and involved variables XY
conditioned on focused variables X
Unfocused Augmented BSP, ZQ’I’IX""’ (prior marginal covariance of old
Section 3.3.2 variables involved in new terms in Eq. (2.6))
Focused Augmented BSP (Xf;L C Xuew), Z,I:I’IX""’
Section 3.3.3
F M. X1 XGulF : :
Focused Augmented BSP (X, , € X)), X and X, (prior covariance of
Section 3.3.3 unfocused and involved old variables IXOL; J

conditioned on focused variables X7)

Table 3.3: Different problems and required entries of prior covariance. BSP - short for non-augmented belief space planning,
Augmented BSP - augmented belief space planning.

The proof of Lemma 3.3.6 is given in Appendix (9.6).
The matrix terms from the above solution (Eq. (3.30) and Eq. (3.31)) have lower dimensions
comparing with the matrix terms from the general solution presented in Eq. (3.28) and Eq. (3.29),

I
with complexity O(M(F " (a))® + n’®) given the prior marginal covariance matrices 22/[’ ot

IyU

XU |F

old
and Zk

prior covariance only once and re-use the result whenever required.

. The next section presents our approach to calculate the appropriate entries in the

3.4 Re-use Calculations Technique

As we have seen above, unfocused and focused (augmented) BSP problems require different
prior covariance entries, in order to use the developed expressions. The required entries for each
problem are summarized in Table 3.3. Note that ZQ/I’IX and E,’CW’IX"“ both represent exactly the same
thing, prior marginal covariance of old variables involved in new terms in Eq. (2.6)), and have
slightly different notations due to specifics of augmented and non-augmented settings of BSP.
The same goes for E;{XUlF and 2:(5’”, with both representing prior covariance of unfocused

and involved old variables ’XZ J conditioned on focused variables X' In this section we will

use notations of Augmented BSP (Ey’lx”"f and EZ{X”%"’W), considering the non-augmented BSP
setting its special case.

From Table 3.3 it is seen that all approaches require prior marginal covariance of the involved
old variables, i.e. ’X,;;. In terms of factor graphs, in non-augmented BSP the X 14 represents
variables connected to factors from set ¥ (a) and has dimension D(¥ (a)), whereas in augmented
BSP scenario the ’X,; represents variables from prior factor graph G; connected to factors
in set ¥ “”"(a) and has dimension D(F ““**(a)). Although each candidate action may induce

a different set of involved variables, in practice these sets will often have many variables in
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common as they are all related to the belief at the current time (e.g. about robot pose), in
one way or another. With this in mind, we perform a one-time calculation of prior marginal
covariance for all involved variables (due to at least one candidate action) and re-use it for
efficiently calculating IG and entropy of different candidate actions.

More specifically, denote by X4, C Xj the subset of variables that were involved in new

terms in Eq. (2.6) for at least one candidate action. We can now perform a one-time calculation

M. Xan

of the prior marginal covariance for this set, i.e. £,""*". The complexity of such calculation

may be different for different applications. For example, when using an information filter, the
system is represented by information matrix Ay, and in general the inverse of Schur compliment
of X4y variables should be calculated. However, there are techniques that exploit sparsity of the
underlying matrices in SLAM problems, in order to efficiently recover marginal covariances [23],

and more recently, to keep and update them incrementally [17]. In Chapter 6 we show that

M. Xan

calculation time of X, while exploiting sparsity [11,23] is relatively small comparing to

total decision making time of alternative approaches. Still, the more detailed discussion about
complexity of covariance retrieval can be found in publications [17,23].
For focused BSP (Section 3.2.2) and for focused Augmented BSP (X,f 1 S Xoia) (Section

IUI

3.3.3) cases, we also need the term X, o™ (see Eq. (3.13) and (3.29)). This term can be computed
in two different ways as described below.
First way: we will calculate it through additional marginal covariance entries. First we

1
will calculate the prior marginal covariance X, M ’ for the set of varlables {IXZ " XF }, and

I
then compute the Schur complement over the relevant partitions in X, M (sufﬁx M denotes

marginal):
XU IF M'xY M/XY,F

MFX
— old __
k - z'k 2k

) ST (3.32)

Consequently, we can use a one-time calculation also for the focused BSP and for focused

Augmented BSP (X,f .1 € Xoia) cases as follows. Let us extend the set X4 to contain also all
(I old’ )

focused variables. Once ZM a5 calculated, z, will be just its partition and can be

IxU |F . .
easily retrieved from it. As a result, the calculation of X, o per candidate action becomes

computationally cheap (through Eq. (3.32)). Furthermore, term (£, can be calculated only

once for all candidates.

: X5l : . . T
Second way: we will compute the X, o through information matrix partitioning. Note
. XY . . . . .
that matrix A, °“, an partition of information matrix A that belong to old unfocused variables

U
Xold ’

IyU U
X]f . Thus, the ZX"I"lF is just a partition of (AX""’ )~! that belong to old unfocused involved

is information matrix of distribution of X gl J variables conditioned on focused variables

nld ’

variables IXZ Therefore, we need to calculate specific entries of A, ”*’s inverse. In this case

our one-time calculation will be as following. We denote by Xj‘/” C X the subset of unfocused
variables that Were involved in new terms in Eq. (2.6) for at least one candldate actlon Next we
will calculate X, Xl the entries of A, Xt ’s inverse that belong to X U Now, the Z X is just
partition of X, X I and can be retrieved easily for each candidate action.

The first method is good option when dimension of X ,f is relatively small. In such cases
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the Eq. (3.32) can be calculated very fast. When this is not the case and number of focused

variables is large, the second technique will become much faster alternative.

Remark 4: As we will see in Section 4.2, there are cases where IXOL; J is identical between all

. . XU IF
candidate actions. In such cases X, " can be calculated only once and further reused by each

candidate action.

To summarize this section, the presented technique performs time-consuming calculations
in one computational effort; the results are then used for efficiently evaluating the impact of
each candidate action. This concept thus preserves expensive CPU resources of any given

autonomous system.

3.5 Connection to Mutual Information Approach and Theoretical
Meaning of IG

Mutual information I(alb) is one additional metric from information theory that is used a lot in
the field of information-based decision making. Basically it encodes the quantity of information
about set of variables a that we would get in case the value of variables in other set b would be
revealed to us. For example, this metric was used in [9, 23] to determine the most informative
measurements in a measurement selection problem, and more recently in [2] for information-
based active exploration, with both problems being very similar. Additionally, it was used in [4]

to create a sparse approximation of the true marginalization using Chow-Liu tree.

In this section we will explore the connection between our BSP approach that uses IG
(see Section 3.2) and mutual information approach that is applied in [9,23]; we will show that
objective functions of both are mathematically identical and calculate exactly the same metric,
even though calculations in our approach are made in a much more efficient way. Moreover, we
also will present theoretical meaning of IG that provides better intuition for equations (3.6) and
(3.11).

In MI approach we would like to select the most informative measurements from the avail-
able set {z1, 22, ...} and also to account for possible measurement correlation. Each candidate
measurement has specific measurement model z; = hi(X]i) +v; with v; ~ N(0, ¥;). The candidate
measurements are a priori unknown and can be viewed as random variables whose statistic prop-
erties are fully defined by a random state vector X and random noises v;, due to measurement

models. Combining candidate measurements with the state vector we have
W= Xez1,22,..)0, (3.33)
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and similarly to the mentioned papers, it can be shown that the covariance matrix of W is

S AL S Ay
— —~T

Al -3 E'Zk'ET+‘P1 Ay - Az

S = | oA T o
YA s AN AL A N-Ar +W,

. (3.34)

where Zfl is Jacobian of measurement model function hi(Xli) and where it wasn’t combined yet
with model noise ¥;, similarly to A defined in Eq. (2.9). The MI approach [9, 23] calculates

1(Xk|z;) for each candidate z; from Xy and selects candidates with highest mutual information.

Now we will show that objective I(X|z;) is mathematically identical to our J;5(z;) from
Section 3.2.1 (see also Eq. (3.6)). First, note that Z)V(Vklz" = (A + A-,'T . ‘I’i‘1 ‘A‘i)‘l (easy to check
by using Schur complement from left and Woodbury matrix identity from right). Further, MI for

Gaussian distributions can be calculated through covariance matrices as

MX;
1 ’ZW
I(Xilzi) = H(Xy) — H(Xklzi) = 3 In o
lzw '
M, X
—1In W k =
2 |Z%’Xk _ Z%,szi . (Z%,Zi)—l . Z%,Zixk
1 ’2k|
n (3.35)

51 ey e 1.7
-5 AT AT A YA E

Ac+ A WA
n
A
IG from Eq. (3.6) for case when candidate action a; = z; introduces single factor into the factor

and further can be reduced to I(Xy|z;) = % 1

which is exactly the unfocused

graph.

While both approaches are obviously calculating the same metric, the computation complex-
ity is not the same. In both [9] and [23], the objective is calculated through Eq. (3.35) and its
complexity depends on X;’s dimension. In contrast, our approach rAMDL does so independently
of state dimension through Eq. (3.7) as has been shown in sections above, making it more

efficient comparing to the MI technique.

Additionally, in [23] Kaess et al. presented the approach to sequentially select informative
measurements that accounts for measurements correlation and redundancy, but without the
need to update state estimation during each decision. In Section 4.1 we present our algorithm
Sequential rAMDL where we combine similar idea together with rAMDL technique in order to

eliminate the need in marginal covariance calculation at each decision.

Most importantly, from the above equations we can see conceptually a very interesting

meaning of the metric that is calculated (IG or MI). Without omitting noise matrix ¥ from our
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formulation, we can show that unfocused IG of future measurement z is

S o ¥+ A5 47|
16@) = 0l + A A ’—ElnT. (3.36)

Further, from Eq. (3.34) we see that X* =¥ + A- py AT is covariance matrix of the random z.

Thus, we can see that

2| - %m M = H(z) - Hw), (3.37)

1
Jic(2) = 3 In

where v is random noise from z’s measurement model, with v ~ N (0, V). From Eq. (3.37) we
see that information gain is exactly the difference between entropies of future measurement and
its noise. It can be explained in the following way - as was mentioned before, random variable z
is fully defined by random variables X} and v through measurement model. When z’s value is
revealed it obviously provides information about both state and noise. The information about
the state (the information gain) then will be the whole received information (the entropy of r.v.

z) minus the information about the noise v.

From the above we can see that in order for measurement z to be notably informative three
conditions should apply. First, its noise should have small entropy H (v) which also comes
from general knowledge about measurement estimation. Additionally, z should have big entropy
H(z) from which we can conclude second and third conditions - the involved variables X from
the measurement model should have high prior uncertainty (high prior entropy), as also their
171 (Jacobian of measurement model at linearization point of X should contain high absolute

values (the sign does not matter because of quadratic term of Ain Eq. (3.36)).

In same way we can review equation for focused 1G (Eq. (3.11)). The first term
% In |Im +A-Z- AT’ measures amount of information about whole state X, while the second
term
| |‘I’+;17] S (ATJ)T|
In

|
Sln |1,,, + AU .U (AU)T| =3 |T| = HEXD) - Hw)  (3.38)

measures the information given that X kF was provided, meaning information for only unfocused
variables. The difference between total information and information of only unfocused vari-

ables will provide the information about the focused set X]f .

Such interpretation of IG’s meaning through entropy of future measurement and of its noise
can be considered not only for measurement selection problem but also for the more general

formulation from Chapter 2, thus constituting a possible direction for future research.
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3.6 Mutual Information - Fast Calculation via Information Matrix

While deriving our approach rAMDL , through similar equations we come by to the way to
calculate mutual information from entries of only information matrix Ay, without necessity to
retrieve covariance matrix X;. We note that such calculation will be more efficient and beneficial
in cases when only information matrix available (f.e. iISAM2 [24]). Thus, we present below the

developed mathematical notations as additional contribution of this thesis.

Lemma 3.6.1. When current state vector contains only variable sets a and b, Xy = {a, b}, then
1(a|b) can be calculated through

Ay

I

I(alb) = %ln (3.39)

A4

where A and Ai are partitions of information matrix Ay with respect to variables from a and b

respectively.

Lemma 3.6.2. When current state vector contains additional variables r, X; = {a, b, r}, then

I(alb) can be calculated through

@n)| | A b
(alb) = %m |A”‘A‘ ’i" r (3.40)
k|- k

where A]((”’r) is a partition of information matrix Ay with respect to variables from both a and r.

The proof of Lemmas 3.6.1 and 3.6.2 is given respectively in Appendix (9.9).

Practically we see that I(alb) is function of determinants of information matrix and its
different partitions. Equations (3.39) and (3.40) allow quick calculation of mutual information
between different subsets of Xj using information matrix Ay as representative of the system, and
do not require calculation of covariance matrices first. And such formulation will be beneficial

for cases when Information-Kalman filter or ISAM?2 are used to estimate the system.
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Chapter 4

Application to Different Problem
Domains

In Chapter 3, we provided an efficient solution for a general BSP problem, considering both
non-augmented and augmented cases. In this section we discuss various problem domains of
(augmented) BSP and show how our approach can be applied for each case. More concretely,
we focus on Sensor Deployment (Section 4.1), active SLAM (Section 4.2) and Graph Reduction
(Section 4.3), as specific non-augmented and augmented BSP applications. For the former, we
develop a more computationally efficient variant of our approach. For each case, we first briefly

formulate the problem and then describe our solution.

4.1 Sensor Deployment

Sensor deployment is one of the most researched problems of decision making. The basic idea
is to measure a specific metric in domain space such as, e.g., temperature within building’s
space. The goal is to find the best locations for available sensors in order to estimate the metric
in entire domain in the most accurate way.

Typically discretization of domain space is made due to computation complexity consid-
erations. Thus, we have n available locations in the space, L = {/,...,[,}, where sensors can
be deployed. The metric’s values in these locations can be modeled as random variables and
combined into state vector: X = {xy, .., x,}.

Putting sensor at location /; will allow us to take measurement z; at that location, which will
provide information about the metric at place, x;. Assume that measurement model of sensor is
known and is:

zi = hi(x) +vi, v ~N(,Z,)). 4.1

Additionally, correlation between different locations may be known a priori. Such prior can be
presented as X’s joint distribution, Po(X). Assuming that it is Gaussian, it may be represented
as [20,27,44,45]

X ~ Po(X) = N, Zo) = N~ (. Ao). 4.2)
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Grtr(a;)

Figure 4.1: Illustration of belief propagation in factor graph representation - Sensor Deployment scenario. The space is discretized
through grid of locations L = {/i,..., lo}. Factor fy within prior factor graph Gy represents our prior belief about state vector,
Po(X). Factors fi — f3 represent measurements taken from sensors deployed at locations /1, [ and /4. Two actions a; = {3, 10} and
aj = {I", 18} are considered, introducing into graph two new factor sets ¥ (a;) and F (a ;) respectively (colored in green). In this
example value of ¢’ is 2.

Note that in practice in typical sensor deployment problems Ay is not actually available and
2o is used instead. Nevertheless, in further formulation we assume that Ay was calculated a

priori (as 251) and therefore is available to us.

Finding best sensor locations in order estimate the metric in most accurate way is another
instance of information-based not-augmented BSP and therefore can be viewed through a prism

of factor graphs (see Figure 4.1) as we show below.

Conceptually, the space of candidate actions in Sensor Deployment setting contains all
subsets of possible sensor locations S € L with the usual constraint on cardinality of subset
S, IS] < ¢, to represent that number of sensors is limited. But considering all subsets of size
c is usually unrealistic as the number of all possible subsets (2) is astronomical due to its

combinatorial nature. Therefore, typically the problem is solved in greedy way.

We propose a sub-optimal approach where a sequence of decisions must be made instead
of one decision. During each decision we are looking for subset S’ |S’| = ¢’, with ¢’ locations
chosen from locations that were not yet selected. The optimal S’ is the one that maximizes X’s
estimation accuracy. The algorithm ends when overall set of locations § = {S7,5/, ..} grows to
cardinality of ¢. Note that number of locations in each subset, ¢’, should be such that number
of §’ candidates, (C",), is small enough to be evaluated in a realistic time period. Thus, ¢’ is
scenario-dependent and should be selected manually.

More specifically, we assume that till time # the disjoint subsets {S,..., S} of locations

were selected, where each location subset S ; = {l}., el l;'} provided measurements Z; =
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. zjl }. Given these measurements, the joint pdf at time # is

k
PXIZ1a) o< PoX) | | [ [ PG, (4.3)

j=1 i=1

where observation model P(zil.lxi/.) is defined in Eq. (4.1)

MAP estimation of X according to information in Eq. (4.3) will provide current state belief
bi[X] = P(X|Z1.1) = N(X},Zy), and following Eq. (2.7) the information matrix of bi[X] is
Ap = Z;l = Ao+ ZIJ‘.ZI Zf;l(Hj.)T . (ZU,J-,,-)‘1 . Hj. where Hj. = Vxh; are the Jacobian matrices
of observation model (Eq. (4.1)) for all measurement terms in Eq. (4.3), linearized about the
current estimate X, . Note that the belief bi[X] can be naturally represented by a factor graph
Gy, as was explained in Section 3.1 (see also Figure 4.1).

The next decision requires to select next candidate action a - a location subset S, that
will minimize posterior uncertainty. Therefore, candidate space contains all subsets of form
S"CL\{S7VU...uS;}and |S’| = ¢’. Each such candidate subseta = S’ = (1N, ..., 1€} will
provide future measurements Z’ = ..., ZC,} and thus future belief by.1[X] and its information

matrix will be

¢ c

b [X] = P(X|Z14, Z) o< bl X1 | | PG, Awwr = A+ D (HY - )™ - HL. (44)

i=1 i=1
Thus, the candidate S’ introduces to Gy, the factor set # (@), which contains exactly ¢’ factors.
Each one of the factors is connected to one variable - the x; that represents location of factor’s

sensor (see Figure 4.1).

Similarly to the general formulation in Chapter 2, stacking all new Jacobians in the above
equation together into a single matrix and combining all noise matrices into block-diagonal one,
will lead to Eq. (2.9). Hence, the optimal candidate subset S’ will be the one that maximizes IG
from Eq. (2.15).

Note that the block-columns of Jacobian matrix A € R™" from Eq. (2.9) represent all
possible sensor locations and block-rows represent new ¢’ measurement factors from Eq. (4.4).
As was mentioned before, only involved variables will have non-zero values in their block-
columns. It is not difficult to show that in the Sensor Deployment problem, the involved variables
are x; that belong to locations in subset S’. Block-columns of all other variables in A will be

Z€ros.

The rest part of the problem definition (objective functions, unfocused and focused
settings) for the Sensor Deployment problem is exactly identical to the general formulation. In

particular, in unfocused setting the optimal S | will be found through

1
Stel = arg max Jic(S) = =In|l, + Ag/ - 2 ~A§, 4.5)
STCXVST.S LIS = 2

where Ag/ is Jacobian matrix of candidate S’.
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Solution - Sequential rAMDL

The above problem can be straightforwardly solved by rAMDL approach, through Eq. (3.7) and
(3.13). However, for each sequential decision the marginal covariance should be calculated for
set of variables involved in any of the candidate actions, and it is not difficult to show that this
set will contain all yet unoccupied locations. In scenarios with high number possible sensor
locations, this can negatively affect overall time performance.

Here we present an enhanced approach, Sequential rAMDL , that performs the same sub-
optimal sequence of decisions as described above, but uses only the prior covariance matrix
>0, without recalculating covariance entries after each decision. Such an approach gives an
approximated solution (compared to the sub-optimal sequence of decisions described above) but
without paying computation resources for expensive manipulation of high-dimensional matrices.

The first decision will be performed in exactly the same way - we will look for the best
subset S| of size ¢’ that maximizes IG (Eg. (4.5)), for unfocused case. However, upon finding
such a subset, the estimation solution of the system will not be updated due to measurements
from new sensors. Instead, in each next decision we will look for a subset S ,’{ o that maximizes

the following objective

As;
- 1 :
Ster = argmax  Jig(S) = s In|lz + Az -0 AL, Ag = (4.6)
STCEX\(ST,..S 11" |=¢ 2 § As;
As:

where § = (S 1»+ 57,8}, and Ag is a matrix with all appropriate Jacobians combined together.

Note that the sequential decision making through Eq. (4.6) will yield an exact solution,
compared to sequential decision making through Eq. (4.5), if Jacobian matrices H' (Eq. (4.4))
do not change after acquiring measurements from newly deployed sensors. This is the case, for
instance, when linearization point X, stayed the same or when measurement model (Eq. (4.1)) is
linear with respect to x; (i.e. z; = x; + v;). Otherwise, Eq. (4.6) will merely be the approximation
of the above approach.

After looking into Eq. (4.6) one can see that matrix inside is actually:

VS'I YSi’Sé YS,]’S,
T YS;,S; VS; ce YS,Z’S, T r
l+As XAy = ] ,Vsr = Ly+As 2o (As))", Ysg,s;. - AS;'ZO‘AS(
J
YS"S’I YS/’SQ . VS/

4.7)
where Vs and Ys;,s;. can be efficiently calculated (independently of state dimension) due to
the sparsity of Jacobians. Moreover, after X is calculated (or given) at the beginning of the
algorithm, all its required entries are freely accessible through all the run-time of algorithm.

It can be seen that all diagonal matrices Vs, were already calculated during the first decision

and can be kept and re-used. Also all the correlation matrices YS;,S; (except for Y. s7.57) were
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Figure 4.2: Illustration of belief propagation in factor graph representation - SLAM scenario. Nodes x; represent robot poses,
while nodes /; - landmarks. Factor f] is prior on robot’s initial position x;; factors between robot poses represent motion model
(Eq. (4.8)); factors between pose and landmark represent observation model (Eq. (4.9)). Two actions a; and a; are considered,
performing loop-closure to re-observe landmark /; and [, respectively. Both actions introduce their own factor graphs G(a;) and
G(aj) (colored in pink) that are connected to prior Gy through factor sets F""(a;) and F“°*"(a;) (colored in green) respectively.

calculated in previous decisions. The only required calculation in every decision for each

candidate S’ is the matrix Y s1.87 and determinant of the combined matrix.

Our unfocused Sequential rAMDL approach can be seen as providing a little increase in
the per-candidate calculation in order to escape the necessity of prior covariance calculation for
each decision, similarly to method of sequential informative measurements selection presented
in [23]. This approach can be a good alternative to rAMDL technique when one-time calculation
part of rAMDL (Section 3.4) is more time-consuming than the part of candidates evaluation, as
will be shown in our simulations. The focused Sequential rAMDL approach is also possible,
by following similar derivations. Moreover, the same idea is applicable to other sequential

domains like for example measurement selection problem.

4.2 Augmented BSP in Unknown Environments

In this section we discuss a specific case of the Augmented BSP problem from Chapter 2,
considering a SLAM setting. Such a specification provides the reader with an illustrated

example of the Augmented BSP problem for better intuition.

Let us refine the definition. In smoothing formulation of visual SLAM the state vector
X represents robot poses per each time step, {xo,..., X}, and landmarks mapped till now,

Ly ={l,...,1,}. Further, we model robot motion dynamics and sensor observations through:
Xiv1 = fOg,u) + 0, wp~ N(0,Z)) (4.8)
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zij=h(xi, ) +vi; , vij~N@OZ,; ;) 4.9

where u; is control at time #;, z; j represents observation of landmark /; by robot from position x;
at time #;, and where w; and v; ; are the motion and measurement noises, respectively. Note that
the motion model can be easily presented in the form of a general factor model r{ = hlj (Xij )+ v{

from Eq. (2.3) by moving the left side to the right:

0= fCxi,ui) = xip1 +wi = fxp, xip) +wi ,  wi~N(O,Z,)). (4.10)

The joint pdf for the SLAM problem at time #; (or current belief) is then

k n;
PIXu] = PO Zots o) & Bo) | [ {POsbrun [ [Pt} @an)
i=1 =1

where P(xp) is a prior on robot’s first pose, Z; = {z; 1, ..., Zi,,;} represents all observations at time ¢;
and n; being the number of such observations. The motion and observation models P(x;|x;—1, u;—1)
and P(z; jlx;, [;) are defined by Eq. (4.8) and Eq. (4.9). A factor graph representation, considering
for simplicity only a two landmarks /; and /5, is shown in Figure 4.2. Performing MAP inference
over the belief b[X}], one can write b[X;] = N(X}, %), with appropriate mean vector X,’: and
covariance matrix Xy.

The space of candidate actions in SLAM setting contains all control sequences ug1:k+1-1,
where L is the planning horizon and can vary between different candidates. Typically finite
set of candidates is pooled from this infinite space according to their relevance to robot’s
current destination or to loop-closure maneuver, for example through simulation [39] and
sampling [1,38]. Similar to Eq. (2.6), future belief b[Xii+1] = P(Xi+r|Zo:k+L, Uo:k+1~1) TOr

particular candidate action a = uy1-4+2—1 can be explicitly written as

k+L n
PXeend o bIX [ | PGl w0 [ ] Bausbn 1), (4.12)
I=k+1 j=1

where Xi,; is the state vector at the L-th look ahead step. It contains all variables from the
current state vector X; and is augmented by new robot poses X,y = {Xk+1,- - - » Xk+L}. Also note
that in Eq. (4.12) we consider only new observations of landmarks that were already mapped till
time #;. It is also possible to reason about observing not yet mapped landmarks [18] but it is
outside scope of this work.

Following the model from Section 3.1, the candidate’s factor graph G(a) = (F""(a), Xyew» Enew)
will contain all new robot poses connected by motion model factors "¢ (a) = { fk]‘f P fk]‘f -1
with appropriate motion models { f(x41, Xk42), - - -5
F(X1-1, Xeer)), whereas factors from F"(a), which connect old variables X; and new vari-
ables X,.,,, will contain one motion model factor f,i” ( with motion model f(xx, x¢+1)) and all of
observation model factors connecting new poses with observed landmarks (see Figure 4.2).

Following the general formulation, the posterior information matrix of belief b[Xj;r],
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i.e. Ag+r, can be constructed by first augmenting the current information matrix Ay = lel with L
zero block-rows and block-columns, each block having dimension n,, of robot pose variable, to
get Aﬁfﬁ eRVN withN=n+L-n p»» and thereafter adding to it new information, as illustrated
in Figure 2.1 (see e.g. [21]):

k+L
Aper = AP + Z {FT F1+ZHT Sl j} (4.13)
I=k+1

where F; = Vv, f and H; = V,h are augmented Jacobian matrices of all new factors in Eq. (4.12)
(motion and observation terms all together), linearized about the current estimate of X; and

about initial values of newly introduced robot poses.

Again, after stacking together all new Jacobians in the above equation and combining
all noise matrices into a block-diagonal matrix, we will get the same posterior information

expression as in Eq. (2.10).

Note that the block-columns of matrix A € R™¥" from Eq. (2.10) represent all old robot
poses, mapped till now landmarks and new robot poses from L-horizon future. A’s block-rows
represent new motion and observation factors from Eq. (4.12). As mentioned before, only
involved variables will have non-zero values in their block-columns. It is not difficult to see that
in SLAM the involved ones are: all new robot poses, current robot pose x; and all landmarks
that will be observed following current candidate’s actions. Block-columns of all other variables

in A will be zeros.

The rest of the problem definition (objective functions, unfocused and focused settings)

for the active SLAM problem is identical to the general formulation in Chapter 2.

Solution - rAMDL applied to SLAM

The Augmented BSP problem for SLAM case, described in previous section, can be naturally
solved by our general approach from Section 3.3. However we will make one step further and
provide solution tailored specifically to the SLAM domain, as example of applying rAMDL to a
real problem and in order to show the underlying structure of the SLAM solution.

First, let us model informative partitions of Jacobian matrices B and D from Eq. (3.17),
B4, Buew and Dy, (see also Figure 3.4), for one of the candidate actions, action a. As was
mentioned above, the factors from action’s factor graph G(a), ¥"¢"(a), contain all new motion

model factors from Eq. (4.12), except for factor ko . Therefore, D,,,, will have the following
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form:

(columns of xx41,...,Xker)

block-row for f(Xii1, Xi12)

Dnew = ) =
block-row for f(Xxsr—1, Xksr)

ke1) Oe2) (ka3) Okaa) o0 er—2)  Okez—1) (Xear)

Fr+1 -1 0 0 0 0 0
0 Fiin -1 0 0 0 0

1 0 0 Fri3 -1 0 0 0 1
Woow | 0 0 0 Frss 0 0 0 | =Yiw: Dnew
0 0 0 0 -1 0 0
0 0 0 0 | -1 0
0 0 0 0 0 Frir-1 -1
4.14)

where Fry = Vi f |x:Xk 1 is Jacobian of motion model function f from Eq. (4.8) with respect
to xg47, —1 is Jacobian of f from Eq. (4.10) with respect to second pose and is actually an
identity matrix with dimension equal to dimension of robot pose. Matrix ¥, is block-diagonal,

combining all noise matrices of ¥ "¢"(a) factors. Additionally, we denote by D,,,, the Jacobian

entries of Dy, not weighted by factors’ noise ¥,¢,,.

Assume that following a’s controls the set of landmarks L, C L; will be observed. Also,

define set of all new observation factors ¥ °**(a) as
FbS(a) = { factor fl-o with observation model hj(x,1) : x € Xpew, 1 € Ly, 1 <i<n,} (4.15)

where n,, is number of such factors. Thus, the connecting factors are ¥<”"*(a) = { f,f” SFOPs(a)):

and involved old variables will be X,y = {Lg, x1}, containing x; because of first factor’s motion
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model f(xg, x+1). Therefore, ‘B,z and By, will be:

(columns of L, X, Xix1s - -+ » XkaL)

block-row for f(xx, Xrs+1)
(IB()ld Bnew) = block-row for /;

block-row for h,,,

a Xk Xk+1 ce Xk+L
(L) (xk)  (Xkr1) (Xk+2)
1 0 F I - 0
WYeomn - [H* 0 H}' ... H}| (416)
Hye 0 HM ... HRt
0 F
Lo Hy
/ -1 |H 0 1 (0 K Lol
Bold = Tconn . : : = \Pconn . ]I—ILa 0 s H™ = : (417)
o H
Hy 0 o
-1 0
Xie+1 . Xk+L
By =wb | Mgt [ F
new conn . . conn ]I—Ixnew
H:;I;—l . Hi;l;—L
]I_Iflfkﬂ .. ]I_Iflfk+L
IFi(—I o), HXer = @ - (4.18)
]I_I;CII;H . ]I_Iifll:l+L

where IHI.L” = vy, h; is Jacobian of i-th observation factor 4; from Eq. (4.9) with respect to
variables L,, and thus only one of its block-columns, corresponding to observed landmark, is
being not-zero. IH;.C“/ = Vy,,,hi is Jacobian of h; with respect to x4, and therefore is being
non-zero only if factor’s observation was taken from pose xx.;. Matrix W ., is block-diagonal,
combining all noise matrices of F“""(a) factors.

As can be seen from the above, the Jacobian matrices ‘B,jz, Bpew and Dy, are sparse and
can be efficiently manipulated. More specifically, the information matrix of factor graph G(a),
A, = DI, - Dy, which is required in our approach, can be calculated fast as a product of
sparse matrices A, = DI .yl Enew due to the formulation in Eq. (4.14); additionally, it can

new new

be shown to be singular and block-tridiagonal.
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The matrix C; from Eq. (3.24) can also be reduced to following form:

_1
2
conn —

_% F; ZM’xk ]FT Fy - z]/:/lv{xk/lm} . (]HLa)T
Cl mwnn + \Ilconn N ]I_ILa 2 ALq/xr} ]FT I[—ILH . EM’La ) (I[_ILH)T .

conn —

F- =% FT - ptte/td (]HLH)T)] _1

1
-3 . 2 -
‘Pconn [q]conn + (]H La Z ALa/ X} ]FZ ]HL" ZkM La (]HL“)T

_1 _1
\choznn : C2 : choznnv (419)

F- =% FL Fy - g/t glat
Cr =Yeom (4.20)
2 e ]I_IL 2 ALa/xk} ]FIY{" ]I‘IL“ . ZIICVI La (]I‘IL“)T ]
where E lo/Lal ig the prior cross-covariance between variables x; and L,,.
Additionally, C;’s determinant and its inverse can be calculated through:
’C2| 1
’CI‘ =17 Cl_ = conn C2 L(mn (421)
\PCOI’H’E

Next, we can calculate term B!, - C 1‘1 - Byeyy from Eq. (3.22) as:

_1 1 1 _1 F
new C] : new = (]FT (]HX"eW)T) : lI,coznn : \Pgonn : Ci L. \Pgonn : lI,Coznﬂ ’ (]HX“W] =

- F -
(]FT (]HXngw)T).Czl '[]HX,W] =B . C - Buew (4.22)

where Enew = ( ] contains the Jacobian entries of B,,,, not weighted by factors’ noise ¥ ,p.

]I—IXnew
Then, the unfocused 1G objective from Eq. (2.16) in SLAM setting is given by

n/.y—lln

5 Gyt Bew + DT - P71

new new new Dyew| -

Jic(a)=

TC(J}’U’! (4'23)

ln’C2‘ —In|B

Above we have shown in detail how our rAMDL approach can be applied to information-
based SLAM planning problem types. The derived Eq. (4.23) is very similar to the general
solution from Eq. (3.22), having exactly the same runtime complexity. However, within both
Eq. (4.23) and Eq. (4.20) we can see a clear separation between noise of factor model and
the actual Jacobian entries. Such a separation can provide further theoretical insight about
how different terms of the SLAM problem affect the information impact of candidate action
a = upr+1—1. Moreover it can provide a good starting point for derivation of J;5(a)’s gradient
with respect to uy.4+r—1 which in turn can be used for gradient-descend algorithms that search
for locally optimal controls [21,41]. Note the variable ordering in the above equation serves

only for visualization; the derivation remains valid for an arbitrary variable ordering.
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Additionally, for the sake of completeness we also provide SLAM-specific solution for
focused cases, where we consider either reducing entropy of the last pose (X,f o1 = Xk+L) or of
all the mapped landmarks (X ,f = Ly). The corresponding derivation can be found in Appendix
(9.7 and 9.8).

4.3 Graph Reduction

It is a known fact that in long-term SLAM applications state dimension of smoothing techniques
can grow unboundedly. In such cases even most efficient state-of-the-art estimation algorithms
like iISAM2 [24] can become slow and will not support online operation. Approaches like
graph reduction and graph sparsification try to tackle the problem by reducing the number of
variables [16,28,35] and sparsifying entries of information matrix [4, 14,31,42], respectively.

Graph reduction requires first to select nodes to expel. In such cases, having a state vector X
with variables {x, .., x,}, it would be logical to remove the most uncertain node, say x;, without
which the rest of the variables X; = {X \ x;} would have the smallest entropy H (X;). In this
section we outline a new approach for such a selection which is closely related to our rAMDL
technique.

Similarly to the focused objective function from Eq. (2.17), the best choice for expelled
variable x; among state variables will minimize the following objective function:

— —n.)- 1 _
X = arg min Jor(x) = H(T) = LY 51n |AM»Xi|, (4.24)

xieX 2
where H(X,) is entropy of the state variables without x;, and ny is x;’s dimension.
Using Equation (3.9) from our approach, in order to calculate AMXi, we can reduce our

objective function to

(n—ny-y

A¥
2

(4.25)

Jer(xi) = %ln ’A‘ + %ln

where A is information matrix of whole X, and A% is its partition related to variable x;.
Given that all x; variables have the same dimension n,, eventually we can conclude that

optimal x7 will also minimize

A

x; = argmin Jggr(x;) = In (4.26)

x;€X

which practically implies calculating determinant of every partition A* and choosing the state
A%

from diagonal of the information matrix A. In case where x;’s dimension is 7n,, we will have to

variable x; with minimal determinant value. In case where all x; are scalars, is just a value

calculate determinants of n matrices, each one of dimension n, X n,. Taking into account that
n, is usually not big at all (e.g. 3D pose has dimension of 6), the overall calculation is very fast

and is just O(n).
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Chapter 5
Alternative Approaches

We compare the presented rAMDL approach with two alternatives, namely From-Scratch and
iSAM techniques.

In From-Scratch, the posterior information matrix Ay, is computed by adding new infor-
mation A7 - A, followed by calculation of its determinant. In focused scenario the marginal
information matrix of X ,f ., 1s retrieved through Schur Complement performed on Ay, and
its determinant is then computed. The complexity of both focused and unfocused scenarios is
governed by the term O(N?), with N being posterior state dimension.

The second alternative, uses the iSAM algorithm [24] to incrementally update the posterior.
Here the (linearized) system is represented by a square root information matrix Ry, which
is encoded, while exploiting sparsity, by the Bayes tree data structure. The posterior matrix

Ryy1 is acquired (e.g. via Givens rotations [24] or another incremental factorization update
N

method), and then the determinant is calculated |Ax.z| = [] ”1'2;" with r; being the ith entry on
i=1

the diagonal of triangular Ry, ;. For focused case, the marginal covariance matrix of X,f L 18
computed by recursive covariance per-entry equations [23] that exploit sparsity of matrix Ry, .
The time complexity of this approach grows with state dimension and is discussed in more detail
in [23,24].

While the iSAM technique outperforms batch From-Scratch, it still requires calculating Ry 1.
for each action, which can be expensive, particularly in loop closures, and requires copy/clone
of the original matrix Ry. In contrast, in rAMDL, the per candidate action calculation (e.g. in
Eq. (3.20)) has constant complexity in general, given the prior marginal covariance terms that

are calculated only once.
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Chapter 6

Results

In this section we evaluate the performance of the proposed approach and compare it to alter-
native approaches considering unfocused and focused instantiations of several fundamental
problems: sensor deployment, measurement selection, and autonomous navigation in unknown
environments.

In sensor deployment, each candidate action represents a set of possible locations for
deploying a sensor, with a single sensor deployment corresponding to a unary factor. We
consider a nonmyopic setting and let each candidate action represent 2 sensor locations. In the
measurement selection problem, we consider a greedy decision making paradigm in the context
of aerial visual SLAM with pairwise factors.

Further, we present simulation results of applying our approach to autonomous navigation
in unknown environments (both unfocused and focused cases) on synthetic and real-world
datasets. The robot has to visit a sequence of goals while minimizing an objective function
comprising two terms (to be defined in the sequel): distance to goal, and an uncertainty metric.
Candidate actions are nonmyopic and involve multiple new and old state variables.

In all cases, the presented simulations reflect the performance of different approaches
developed within this research, and alternative methods that are described in Chapter 5. In
Table 6.1 we summarize the considered approaches in each of the above problems, and refer to
appropriate equations for each case.

The code is implemented in Matlab; for measurement selection and autonomous navigation
we use the GTSAM library [10,24]. All scenarios were executed on a Linux machine with 17

2.40 GHz processor and 32 Gb of memory.

6.1 Sensor Deployment (focused and unfocused )

In this section we apply our approach rAMDL to the sensor deployment problem, considering
both focused and unfocused instantiations of this problem (see Section 4.1 for detailed
formulation). The prior of the sensor field is represented by information matrix A and it is dense
as usual in problem of sensor deployment.

We compare our rAMDL approach against the batch From-Scratch technique that is described
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Problem Approach Equations/Section
Sensor Deployment, rAMDL Unfocused Eq. (3.7)
Section 6.1 rAMDL Focused Eq. (3.13)
Sequential rAMDL Eq. (4.6), (4.7)
Partitions Givens Rotations
& Eq. (3.10)
From-Scratch, Unfocused & Focused Chapter 5
Measurement Selection, rAMDL Unfocused Eq. (3.7)
Section 6.2 iSAM Unfocused Chapter 5

rAMDL Unfocused

rAMDL-Extended Unfocused

rAMDL Focused New
rAMDL-Extended Focused New

rAMDL Focused 01d
rAMDL-Extended Focused 01d

From-Scratch, Unfocused & Focused

iSAM, Unfocused & Focused

Autonomous Navigation,
Section 6.3

Eq. (3.20), (3.21)
Eq. (3.22), (3.24)
Eq. (3.25), (3.21)
Eq. (3.27), (3.24)
Eq. (3.28), (3.29)
Eq. (3.30), (3.31)
Chapter 5
Chapter 5

Table 6.1: Considered approaches in different problems from Chapter 6, along with their appropriate equations.

in Chapter 5, as also against the Sequential rAMDL described in Section 4.1 which does not
require marginal covariance computation at each decision.

While decision making involves evaluating action impact for all candidate actions A, we
first analyze action impact calculation (J;(a)) for a single candidate a € A, comparing rAMDL
to the From-Scratch approach for the unfocused case. Figure 6.1 shows these timing results as
a function of state dimension » (Figure 6.1a) and as function of Jacobian A’s height m (Figure
6.1b). As expected, n effects running time of both the From-Scratch technique and calculation of
Y (inverse of Ay which is dense in case of sensor deployment), while m only effects calculation
of IG objective of rAMDL (red line).

One might think, based on Figures 6.1a-6.1b, that the proposed approach is slower than
From-Scratch alternative because of the time needed for inverse calculation to get X;. Yet, it
is exactly here that our calculation re-use paradigm comes into play (see Section 3.4): this
calculation is performed only once for all candidate actions A, while, given X, calculating IG
for each action is no longer a function of n.

The substantial reduction in running time of our approach, compared to the From-Scratch
approach, can be clearly seen in Figure 6.1c, which considers the entire decision making
problem, i.e. evaluation of all candidate actions A. The figure shows running time for sequential
decision making, where at each time instant we choose the best locations of 2 sensors, with
around |A| = 10° candidate actions. The number of all sensor locations is n = 625 in this
example. Overall, 15 sequential decisions were made. As seen, decision making using our
approach requires only about 5 seconds, while the the From-Scratch approach requires about
400 seconds.
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Figure 6.1: Unfocused sensor deployment scenario. Running time for calculating impact of a single action as a function of
state dimension # (a) and as a function of Jacobian A’s height m (b). In (a), m = 2, while in (b) n = 625. rAMDL Unfocused
Objective represents only calculation time of candidates’ impacts (IG objective for all actions), without one-time calculation of
prior covariance; Covariance Inverse represents the time it took to calculate covariance matrix X from dense information matrix
Ak, Zg = A;l. (c) Running time for sequential decision making, i.e. evaluating impact of all candidate actions, each representing
candidate locations of 2 sensors. (d) prior and final uncertainty of the field, with red dots marking selected locations. (¢) number
of action candidates per decision. (f) running time for sequential decision making, with number of candidates limited to 100.

Sequential rAMDL technique is not always faster than rAMDL , as can be seen in Figure
6.1c. As described in Section 4.1 this technique will be more superior in cases where covariance
calculation takes significant part of whole decision calculation. We can see that this is the case in
Figure 6.1f, where number of candidates is limited to 100, and where the covariance calculation

time is the biggest part in the decision making of rAMDL approach. There we can see that
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Figure 6.2: Focused sensor deployment scenario, (a) overall time it took to make decision with different approaches; rAMDL
Focused Objective represents only calculation of candidates’ impacts (IG objective for all actions) while rAMDL Focused
- both one-time calculation of prior covariance Z; and candidates’ evaluation. (b) Final uncertainty of the field, with red dots
marking selected locations. (c) Focused set of variables (green circles) and locations selected by algorithm (red dots). (d)
Overall system entropy (above) and entropy of focused set (bottom) after each decision, with blue line representing unfocused
algorithm, and red line - focused algorithm. Note - all unfocused methods make exactly the same decisions, with difference
only in their runtime complexity. Same is also true for all focused methods.

Sequential rAMDL provides better performance than all other alternatives.

We now consider the focused version of the sensor deployment problem (Eq. 2.17). In
other words, the goal is to find sensor locations that maximally reduce uncertainty about chosen
focused variables XF'. We have 54 such variables, which are shown in Figure 6.2c, while the
rest of the problem setup remains identical to the unfocused case.

In Figure 6.2 we show the corresponding results of rAMDL , compared to the From-Scratch.
The latter first calculates, for each candidate action, the posterior A* = A + AT A, followed by
calculation of Schur complement AM-F of the focused set X', and its determinant ’AM’F | in
order to get J;:{(a) (Eq. 2.17). We also compare to an additional approach, termed Partitions,
which uses Givens rotations to compute R* and instead of performing Schur complement,
calculates the posterior entropy of the focused set via Eq. (3.10). This equation is one of our
main contributions, being an essential step in the derivation of our approach, and we show here
that comparing to From-Scratch technique, the Partitions approach is considerably faster. Our
focused approach applies the matrix determinant lemma, transforming Eq. (3.10) to Eq. (3.13),
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Figure 6.3: Measurement selection scenario, (a) simulated trajectory of robot; black dots are the landmarks, blue marks and
surrounding ellipses are the estimated trajectory along with the uncertainty covariance for each time instant, red mark is robot’s
initial pose; (b) number of measurement candidates per decision; (c) state’s dimension n per decision; (d) overall time it took
to evaluate impacts of pose’s all measurements, with different approaches; rAMDL Unfocused Objective represents only
calculation of candidates’ impacts (IG objective for all actions) while rAMDL Unfocused - both one-time calculation of marginal

. MX, . .
covariance X Al and candidates’ evaluation.

which, together with the re-use concept (Section 3.4), makes it possible to drastically reduce
running time as shown in Figure 6.2a (10 seconds versus about 1000 in Partitions and 1300 in

From-Scratch).

6.2 Measurement Selection in SLAM

In this section we consider a measurement selection problem (see Section 3.5) within a vi-
sual aerial SLAM framework, where one has to choose the most informative image feature
observations from the numerous image features typically calculated for each incoming new
image.

We demonstrate application of our approach in this problem, which, in contrast to the sensor
selection problem, involves pairwise factors of the type p(z; jlx;,[;), relating between an image

observation z; j, camera pose x; and landmark /;.
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A top view of the considered aerial scenario is shown in Figure 6.3a: an aerial vehicle
performs visual SLAM, mapping the environment and at the same time localizing itself. The
figure shows the landmarks and the estimated trajectory, along with the uncertainty covariance
for each time instant. One can clearly see the impact of loop closure observations on the latter.
In the considered scenario there are about 25000 landmarks and roughly 500 image features in
each view.

The number of image features that correspond to previously seen landmarks is relatively
small (around 30-50, see Figure 6.3b), which corresponds to a much smaller set of actions A
compared to the sensor deployment problem (Section 6.1) where the cardinality of A was huge
(10°). Such a dataset was chosen on purpose in order to show the behavior of the proposed
algorithm in domains with small number of candidates. Also, in this scenario the actions are
myopic since the measurements are greedily selected.

Additionally, as opposed to the sensor deployment problem, in the current problem, state
dimensionality n grows with time as more poses and landmarks are added into inference (see
Figure 6.3c) and the information matrix is sparse.

Figure 6.3d shows the timing results for choosing 10 most informative image observations
comparing the proposed rAMDL to the iSAM approach (computing posterior square root infor-
mation matrix using iSAM, and then calculating determinant, see Chapter 5). This BSP problem
is solved sequentially, each time a new image is acquired. As seen, our approach rAMDL is
substantially faster than the iSAM, while providing identical results (the same decisions). In
particular, running time of the iSAM approach for the last time index with n = 10000 state
dimensionality, is around 7 seconds. In contrast, rAMDL takes about 0.05 seconds: calcula-
tion time of action impacts via calculation re-use is negligible (red line), while the one-time
calculation of marginal covariance Z,’(W’XA” (yellow line) is efficiently performed, in the current

implementation, via sparse factorization techniques using GTSAM [10,24].

6.3 Autonomous Navigation in Unknown Environment

In this section we present simulation results of applying our approach to autonomous navigation
in unknown environments (both unfocused and focused cases) on synthetic and real-world
datasets.

In the synthetic scenario (Figure 6.4c), the robot’s task is to visit a predefined set of
goals G = {Gy, .., G14} in unknown environment while reducing an uncertainty metric. More
specifically, the state vector X; contains all robot poses and landmarks mapped till time #; (see
Section 4.2). At each point of time, the robot autonomously selects an optimal non-myopic
action a = uy.x+1-1, performs its first control u; and subsequently observes landmarks in radius
of 900 meters from its new position. The landmarks can be either old (seen before) or new (met
first time). Next, a SLAM solution is calculated given these new observations and a motion
model. To that end, the factor graph from the previous inference time is updated with new
observation and motion model factors, and new variable nodes, representing current robot pose

and new landmarks, are added (see Section 4.2). Afterwards, next action is chosen and executed,
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Figure 6.4: Focused BSP scenario with focused robot’s last pose. (a) Dimensions of the BSP problem (state dimension,
average number of new factor terms, average number of new variables, average number of old involved variables) at each time;
(b) Number of action candidates at each time; (c) Final robot trajectory. Blue dots are mapped landmarks, red line with small
ellipses is estimated trajectory with pose covariances, blue line is the real trajectory, red pluses with numbers beside them are
robot’s goals. Green mark is robot’s start position; (d) Zoom-in of robot’s trajectory near goal 12.

and so on.

The set of candidate actions A contains one action that navigates the robot from its current
pose x; to the current goal G; from a predefined set G (see Figure 6.4c); it also contains a set of
’loop-closure” actions which are generated in the following way. We start by taking all mapped
landmarks in radius of 1000 meters from the robot’s current pose. We cluster these landmarks,
similarly to [26], and obtain a set of landmark clusters. Each cluster’s center g.; represents a
’loop-closure” goal and contributes a ”loop-closure” action a.; = ug.x+7-1 that navigates robot
the from x; to g;.

Each action in A, taking the robot from x; to location g, is constructed by first discretizing
the map into grid and thereafter searching for optimal trajectory from current position to g
using an A* search algorithm, similarly to [21,26]. The optimal candidate action is chosen by
evaluating an objective which has the following two terms: distance to current goal G;, and a
term of uncertainty:

J@ = d(xerr, Gi) + iy 16(@). (6.1)

In scenarios from Figures 6.4, 6.5, 6.6 and 6.8 we consider as term of uncertainty the entropy

J;{(a) of the last pose x4+, in planning segment (Section 3.3.3), while in scenario from Figure
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Figure 6.5: Focused BSP scenario with focused robot’s last pose. (a) Running time of planning, i.e. evaluating impact of all
candidate actions, each representing possible trajectory; Results are shown both for focused and unfocused cases; (b) Zoom of
fastest approaches from (a); (c) Focused approaches from (b). Note that iSAM Focused is not depicted because as seen in (a) it

is much slower comparing to other focused techniques; (d) Unfocused approaches from (b). The lowest line, labeled Marginal

Cov, represents time it took to calculate prior marginal covariance ZkM’X"” in rAMDL approach (see Section 3.4). As can be seen,

while rAMDL technique (Unfocused and Focused ) is faster than From-Scratch and iSAM, the rAMDL-Extended gives even
better performance. Further, it is interesting to note that performance of Unfocused and Focused rAMDL is almost the same, as
also performance of Unfocused and Focused rAMDL-Extended .

6.7 we use instead the IG of mapped till now landmarks ]fG(a) (Section 3.3.3). Note that the
running time presented in the figures refers only to the uncertainty term, since it is the focus of
this research and because calculation complexity of the first term (euclidean distance d(xxr, G;))
is relatively insignificant. As can be seen from above, we consider a non-myopic setting and let
each candidate action represent trajectory of various length. Limiting the clustering process to a

specific radius is done in order to bound the horizon lag of candidate actions.

In parallel, in scenarios from Figures 6.5 and 6.6, an unfocused uncertainty objective

JiG(a) is calculated (Section 3.3.2), mainly for the purpose of performance comparison between
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Figure 6.6: Focused BSP scenario with focused robot’s last pose. Running times from Figure 6.5 normalized by number of
candidates.

focused and unfocused cases. The robot’s motion is controlled only by focused objective
function.

Four techniques were applied to solve the planning problem - more common techniques
From-Scratch and iSAM (Chapter 5), and the proposed techniques - our general approach rAMDL
, and its extension rAMDL-Extended that exploits the Jacobian inner structure from Eq. (3.17)
(see Table 6.1, and Sections 3.3.2 and 3.3.3). The calculated values of the objective function
were numerically compared to validate that all four approaches are calculating exactly the same

metric, thus yielding the same decisions and only differ in running time.

In Figures 6.5-6.6 it can be clearly seen that while iSAM is faster than From-Scratch, the
running time of both techniques is growing with state dimensionality, as was mentioned before.
On the other hand, the running time of rAMDL approach is shown to be bounded, due to horizon
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Figure 6.7: Focused BSP scenario with focused landmarks. (a) Number of action candidates at each time; (b) Final robot
trajectory; (c) Running time of planning, i.e. evaluating impact of all candidate actions, each representing possible trajectory;
(d) Running time from (c) normalized by number of candidates; (e) Zoom of fastest approaches from (c); (f) Zoom of fastest

approaches from (d). The lowest line, labeled Marginal Cov, represents time it took to calculate prior marginal covariance Z,’{”’XA”
in rAMDL approach (see Section 3.4).

lag of all candidate actions being limited (see Figure 6.4a). The number of candidate actions in
our scenario is around 20 at each planning phase (Figure 6.4b). Even with such relatively small
candidate set rAMDL approach is faster by order than its alternatives iSAM and From-Scratch,
while rAMDL-Extended approach is the fastest between all of them. This trend appears to be
correct for both focused and unfocused objective functions, though for the later, iSAM comes
very close to rAMDL technique.

While comparing running time of both From-Scratch and iSAM in focused and unfocused

objective functions, it is easy to see that unfocused case is evaluated much faster. The reason
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Figure 6.8: Focused BSP scenario with focused robot’s last pose, using Victoria Park dataset. (a) Number of action candi-
dates at each time; (b) Final robot trajectory; (c) Running time of planning, i.e. evaluating impact of all candidate actions, each
representing possible trajectory; (d) Running time from (c) normalized by number of candidates; (e) Zoom of fastest approaches
from (c); (f) Zoom of fastest approaches from (d). The lowest line, labeled Marginal Cov, represents time it took to calculate prior

marginal covariance ZkM’X"” in rAMDL approach (see Section 3.4).

for this is that focused calculations contain computation of marginal covariance of focused
variable (last pose xi;r) for each candidate action, which requires marginalization over the
posterior information matrix Ag,r. Whereas this can be performed efficiently by exploiting the
sparsity of matrix Az [23], the time complexity is significantly affected by variable elimination
ordering of iISAM algorithm [24]. While in our simulation we did not modify the default
ordering of iSAM (COLAMD heuristic), different strategies of ordering can be a point for future
investigation.

In contrast, for rAMDL approach both unfocused and focused objective functions
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(Eq. (3.20) and (3.25)) have a similar complexity, which is supported by the shown times.
The same is correct for rAMDL-Extended approach (Eq. (3.22) and (3.27)).
Next, we repeated our autonomous navigation scenario but this time, X ]f ., contained only

landmarks seen by time k (see Figure 6.7). The 1G of such focused set X ,f can be used as

+L
objective function for example in case when we want to improve 3D reconstruction quality. As
can be seen in Figure 6.7, this focused set causes both From-Scratch and iSAM techniques to
be much slower compared to their performance in the first scenario, where X ]f ., contained only
Xi+L. The reason for this is that X,f ., s dimension is much higher here, representing dimensions
of all landmarks, and computation of its marginal covariance is significantly more expensive. In
contrast, performance of rAMDL has been barely changed thanks to re-use of calculations (see
Section 3.4). Moreover, rAMDL-Extended performs even better than rAMDL , with candidate
action impact evaluation being insignificant compared with the one-time calculation of marginal
covariance, as can be seen in Figures 6.7e-6.71.

We also performed a hybrid simulation where part of the real-world Victoria Park dataset [12]
was used for offline planning (see Figure 6.8). At each timestep we collected candidate actions
by clustering landmarks seen till that time, just as it was done in the first simulation. Further,
we considered a focused objective function for each candidate with X ]f

+L
After evaluating all candidates, the robot was moved to the next pose according to the dataset.

containing only x4 .

Recalling that our main contribution is to reduce time complexity, such an evaluation allowed
us to compare time performance of all the considered techniques, despite not actually using
the calculated actions in the hybrid simulation. As can be seen, also here rAMDL and rAMDL-
Extended outperform both of their alternatives, From-Scratch and iSAM, keeping the same trends

that were observed in previous simulations.
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Chapter 7

Conclusions and Future Work

We developed a computationally efficient and exact approach for non-myopic focused and
unfocused belief space planning (BSP) in both augmented and non-augmented settings, in
high dimensional state spaces. As a key contribution we developed an augmented version of
the well-known general matrix determinant lemma and use both of them to efficiently evaluate
the impact of each candidate action on posterior entropy, without explicitly calculating the
posterior information (or covariance) matrices. The second ingredient of our approach is the
re-use of calculations, that exploits the fact that many calculations are shared among different
candidate actions. Our approach drastically reduces running time compared to the state of the
art, especially when the set of candidate actions is large, with running time being independent
of state dimensionality that increases over time in many of BSP domains. The approach was
examined in three problems, sensor deployment, measurement selection in visual SLAM and
autonomous navigation in unknown environments, using both simulated and real-world datasets,
and exhibiting in each superior performance compared to the state of the art, and reducing

running time by several orders of magnitude (e.g. 5 versus 400 seconds in sensor deployment).

7.1 Future Work

In this work we have developed an novel approach to solve the information-theoretic BSP
problem in computationally efficient way. Still, number of extensions and improvements may
be done in order to further reduce the calculation requirements and in order avoid the maximal
likelihood assumption that was taken through our approach. Below we will list some directions

for the future research.

1. In many BSP scenarios different candidate actions will share some of their newly in-
troduced factor terms. For example, in mobile robotics scenario where there are two
trajectory candidates with some part of their trajectory being the same, both candidates
will have same factors representing the shared trajectory part. For such scenario, it can be
easily shown that the Jacobian matrices of both candidates will share some of their rows.
It is possible to exploit this fact in order to provide additional re-use of calculation and

reduce the rAMDL time-consumption even more.
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2. In this thesis we have taken the maximal likelihood assumption while propagating the
posterior belief. This assumption ignores the fact that obtaining measurements (e.g.
capturing in camera frame the specific landmark while passing near it) is itself probabilistic
process and its uncertainty should be accounted for. There are different ways to model and
consider such uncertainty within the BSP solution, and it is another possible extension of
rAMDL method.

3. The developed rAMDL technique is a general approach. As such, it could be also
applicable to a multi-robot setting, at least in its centralized formulation. Still, it may
be interesting to investigate if additional reduction of calculations can be achieved for
the multi-robot case, and if a decentralized multi-robot formulation can be handled in a

similar manner.
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Chapter 8
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Chapter 9

Appendix - Proof of Lemmas

9.1 Proof of Lemma 3.3.1

Problem definition: Given a positive definite and symmetric matrix A € R™" (e.g. a prior
information matrix) and its inverse X (prior covariance matrix), first A is augmented by k zero
rows and columns and the result is stored in A%“¢. Then we have matrix A € R”*"*% and
calculate A* = A4“¢ + AT . A (see Figure 2.1). We would like to express the determinant of A*
in terms of A and X.

We start by modeling the matrix A4“8 through X. By introducing k new variables, before
adding any new constraints involving these variables, we can say that new variables are uncor-
related with old variables, and their uncertainty is infinite (nothing yet is known about them).
Then the appropriate covariance matrix after augmentation, 4“8, can just be created by adding
k zero rows and columns to X, and setting new diagonal entries with parameter 6, noting that

6 — oo:

T 0
Aug — ) Al
> [o 9-1] (Ab

Next, note that inverse of X4“2 is given by the following expression:

(A2)

(ZAug)—l — [A 0 l

0 e-1
where € = é. Taking limit € — 0 into account, we can see that the above equation converges to
A28 as it was defined above. Then in the limit we will have that (A448)~! = 3448 Also note
that € — 0, even that it never becomes zero, € # 0, thus if needed we can divide by € without
WOITY.

Taking into account the limit of €, expressing A**¢ through Eq. (A2) will not change the
problem definition. But such a model allows to inverse A4“S:

(it =g = | } (A3)

0 6-1
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and therefore to use the generalized matrix determinant lemma [13]:

A+

— |AAug

i+ A 2A AT] = A €Ly Aa 2 AT 40 A - AL (A%

where matrices Ay € R™" and Ay, € R"™ are constructed from A by retrieving columns of

only old n variables and of only new k variables, respectively (see Figure 3.4).

Using the matrix determinant lemma once more, we get:

A+

- |A| S |A| : |1k +0-AL A A (AS)

new

where A = I, + Agy - X - Al .

Moving € inside the last determinant term, we have:

A|=|Al-[a] e neve0-AL, AT A (A6)
Recalling that e - O and € - 8 = 1, we will get to:
[a+| = [a]-[a]-]AL, - A7 A (A7)
And the augmented determinant ratio will be:
A+
e [+ Aota - AL | AT - (Gt Aty -2 AT )™ Ay = |A]- AL, - A7 Ay
(A8)
]
9.2 Proof of Lemma 3.3.2
For A’s structure given in Eq. (3.17), the A from Eq. (3.15) will be:
: Bou T (A O
A_Im+(0].2.(Bold o)_(0 . (A9)
where Al = Imconn + B()ld -2 BZld’ Meonn = M(Tconn(a)) and Mpew = M(yrneW(a))‘
Then we can conclude that:
|a] = |a] (A10)
and that:
(a7t 0
AT = (A11)
0 Imnew
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Now, by exploiting structure of A,,,, we will get:

B AT 0 B, B
Ar{ew A : 'A"ew = (Br{ew Dr{eW) [ (1) I ][D ew) ) B’{ew .Al | .B”ew +D£€W ‘Dnew (A12)
new

Myeyw

Then we can conclude that the augmented determinant lemma will be:

M:M.

‘ B!, A7' - Buew + DL, - Dyew (A13)
A

new

9.3 Proof of Lemma 3.3.3

Consider the scenario of focused Augmented BSP where the focused set X,f ., contains only
newly added variables as defined in Section 3.3.3, with appropriate illustration shown in Figure
3.5.

First let us overview the various partitions of Jacobian A which are relevant to our current
problem (Figure 3.5). Aya, Anew, ‘Agis and ™4, were already introduced in previous sections.
F - columns of new variables that are focused X!, =

new new

Considering the figure, the

Further, we can partition A,,,, into A

F
Xk+L

set of all unfocused variables in X, will be X115+ 1 = {Xo1aV X,ll/ew

e R and AY - columns of new unfocused variables XY

new new:*

} € R™ such that N = ng + ng,

providing another A’s partition Ag = [Ayq, AY

new]‘

Next, we partition the posterior information matrix Ay, respectively to the defined above

sets X;;L and X,ﬁL as
AR ARF
Ak+L=[ Rk;LT ’;jfL}. (B14)
(M) Mir
As was shown in Eq. (3.9), determinant of the marginal covariance of X,f ., can be calculated
through:
g
+L
s | = = (B15)
’Ak+L

Now let us focus on Af ., term from the right side.

From Eq. (2.10) we can see that partition of posterior information matrix Af+ ,, can be

calculated as:
AR = N+ AR AR (B16)

where A?"g’R can be constructed by augmenting A with zero rows and columns in number of
XY s dimension (see Figure 3.5). The above equation has augmented determinant form as

defined in Section 3.3.1, and so the augmented determinant lemma can be applied on it. Using
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Eq. (3.15) we have:

|A§+L
=|c| g, c 1AL, (B17)
A4
where C is defined in Eq. (3.21).
Next, dividing Eq. (B17) by Eq. (3.19), we get
R R U T . =1, AU
’ZM’F B ’Ak+L ' |Ak| B |Ak+L _ |(Anew C Anew (BIS)
k+L| - - ’
A (A (A AL e A
and posterior entropy of X ,f L 18 given by
ng - 1 1
@ = L Simf@l, )"t Ay, |- S InfAL, 7 A (B19)
|

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.4 Proof of Lemma 3.3.4

For A’s structure given in Eq. (3.17), term A;ew -C71- Ay from Eq. (B19), similarly to Eq. (A12),
will be:

Agew : C_l “Apew = BrTz;w ' Cl_l * Byew + DT Dyew, (Bzo)

new

where C is defined in Eq. (3.24).

In the same way we can conclude (see Figure 3.5) that:

Ay )r-ct-AY, =Bl -c;t-BY, + DY) - DY

new new new new:*

(B21)

Therefore, posterior entropy of X]f ., from Eq. (B19) is given by

ng-vy T
B
2

new

Jh(a) =

1 1
+ 310 |(BY)T - Crt B+ A | = S In|BL, - €71 By + Al (B22)

new new 2

where A, = D! - D,,, is information matrix of action’s factor graph G(a), and where Af,] F

new
(DY, YT-DY is information matrix of variables XV

new new new and calculated

.. F _ F
conditioned on X, = X,

from distribution represented by G(a).
|

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.
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9.5 Proof of Lemma 3.3.5

Consider the scenario of focused Augmented BSP where the focused set XkF ., contains only
old variables, with appropriate illustration shown in Figure 3.6 and with various partitions of
Jacobian A defined in Section 3.3.3.

First, let us look again over relevant partitions of Jacobian A (Figure 3.6). The A4, Anew,
A 14 and ™A ;4 were already introduced in previous sections. From the figure we can see that
~IA 14 can further be separated into ﬁ’A(L)]l q- columns of old variables that are both not involved and
unfocused (MXY ), and A - columns of old variables that are both not involved and focused
(x 51 ,)- Additionally, A 14 can be partitioned into ’Agl g columns of old variables that are both
involved and unfocused (’XY ), and ‘A7, | - columns of old variables that are both involved and

focused (IXDFM) (see Table 3.2). The set of focused variables is then X]f+L = {ﬁ’XoFld U IXDFM} e R"F,

containing both involved and not involved variables. We will denote X¥' , = X ,f to remind us

k+L
that focused set of variables is part of both Xj,; and X;.

Likewise, the set of all remained, unfocused variables is le+ L= {ﬂ’XOL; ne IXgl d UXew} € RR,

containing all new variables and some of old ones (which can be involved or not involved),
U 14U

old’ Aold’
of coming equations we’ll denote set of old variables inside X115+ . by XR

old®
SIyU ([ IyU : . : " R = [-IqU 14U
{MX 4 Y X,z with appropriate Jacobian partition A, , = [ A Ay d].

Next, noticing that X; = {le U Xﬁ d} we can partition the prior information matrix Ay

and providing A’s partition Az = [7A Apew]. Moreover, for purpose of simplification

having that Xfld =

respectively

F F.Rylq
Ak Ak

oy Ji R()
( A ld) A ) ld

Ac=

Similarly, due to X;.; = {X]f UXfI Y Xnew} and X,’:Jr L= {Xfl Y Xnew} the posterior information

matrix Agyp can be respectively partitioned in next two forms:

F F.Roid F.Xnew
Ak+L Ak+L Ak+L AF AR
— FRou\T Roa Roia Xnew | — k+L k+L
Arsr = | (A Ay A = (C24)
k+L k+L k+L F.R\T R
(AFaXnew)T (ARold7Xnew)T AXnew (Ak+L) Ak+L
k+L k+L k+L
with
Roia Rotd s Xnew
R L= Ak+L Ak+L (C25)
0l ow )
k+ (AR ld»Xnew)T AXnew
k+L k+L

We can see from above partitions (C23)-(C25) that posterior information partition Af g Of

X,’; ; 1s simply the augmentation of prior information partition Af"’d and can be calculated as:

A= Aﬁug’R"M + AR AR (C26)

where Af”g’R”’”’ can be constructed by first taking partition of prior information matrix Ay related

R
to ond’

just number of newly introduced variables. The above equation has augmented determinant

Af”"’, and augmenting it with n’ zero rows and columns (see Figure 3.6), where n’ is
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form as defined in Section 3.3.1, and so the augmented determinant lemma can be applied also

here. Using Eq. (3.15) we have:

AR
k+L
A =[s|- AL, - 57 Aven (C27)
A old
|af
S =1n+ AR, - (A} Roy=1 . (AR T (C28)

Then by combining the Eq. (B15), Eq. (3.19) and the above equations, we can see that:

‘EIIK—IL: ‘Ak+L ‘Ak’ ’S‘ ' new ST ! Anew
T = (C29)
|Ek ’ | |Ak+L |Ak0h[ |C| : new .c! “Apew
where C is defined in Eq. (3.21).
And apparently the IG of X,f ., can be calculated as:
F mr| 1
Jo(@) = HXD) — HXE, ) = |z |- 5y
5(1n | +1n |, - C - Ay~ 1n |s| [AT S A (C30)

Next, S term can be further reduced. It is clear that (Ag”"’ )yl = Ef‘”" I, or namely the prior
conditional covariance matrix of Xfl , conditioned on X ,f . Moreover, due to sparsity of Afl g (its
sub-block ﬂIAgl , contains only zeros) we will actually need only entries of matrix Ef""’ ¥ that

belong to variables involved in new terms of Eq. (2.6) (see Figure 3.6) and can conclude that:
S = I+ AR SRl (AR T = 1, +AY, 5, Xl (AU )T (C31)

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.6 Proof of Lemma 3.3.6

For A’s structure given in Eq. (3.17), term S from Eq. (C31) will be:

S=1I, AR . ozd\F AR T — Bfld ] Z RoulF T B S 0 C32
= Im + Aol Ay = I+ 0 ((Bold) O) 1o (C32)
Mpew

- R
where Sy = Iy, + B,,; - X

"’"'F - (BR DT, meonn = M(F"(a)) and mpe,, = M(F" (a)).
Then we can conclude that:
|S| - ‘S1| (C33)
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and that:

0 1

Mpew

o)
ST = , (C34)

and similarly to Eq. (C31) (see also Figure 3.6) we have that:

RoalF XU \F
S1 = I, + Bfld ) Zk & '(Bfld)T =1In+ IBgld ) Ek " '(IB(IJJM)T (C35)

Next, term AL, - S~!- A,,, from Eq. (C30), similarly to Eq. (A12), will be:

AL .SV Apew = BT

new new

) Sl_l “ Brew + Dz;ew * Dpew, (C36)
with S defined in Eq. (C35).

,the IG of XF  c Xold

Then, by applying equations (B20), (C33), (C36) and notion |c‘ - |01 Foc

from Eq. (C30) can be calculated as:

T -1 T
Bnew ) Cl . Bnew + Dnew : Dnew

JE (@) = %(ln|C1| +1In

ln’S1|—ln

T -1 T
Bnew : S] * Brew + Dnew * Dyew

):

BT

new

%(m |c1| +1n

: Cl_l “Buew + Mg

“In |Sl| —In|BL,, - ST' Buw + A (C37)

where C is defined in Eq. (3.24), and where A, = D,few - Dy, 1s information matrix of action’s

factor graph G(a).

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.7 SLAM Solution - focus on last pose X; , = x.1

For le .1 = X+ the focused entropy objective in SLAM setting is given by Eq. (3.27). Here,
we will exploit the inner structure of Jacobian partitions in SLAM scenario (see Eq. (4.14)-
(4.18)) in order to provide solution tailored specifically to SLAM domain. It will provide an
illustrated example of applying rAMDL to real problem.
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From Eq. (4.18) we can see that BY,,, has next form:

() 0 (rL-1)
; B . ... 0 B v
Bey, = Yeomn - ]H)f"+ L ]H)IC“L’I =Y. .2, ot
Xnew
]I_ka+l . ]I_ka+L—1
o o
Xk+ Xk L—
I[—IIk Lo HlkL 1
]FU :(_I e 0)’ ]I—Ignew -~ (C38)
]I_ka+l . ]I_ka+L—l
Ny ny

where Hf"” = V., hi 1s Jacobian of A; with respect to x4, and therefore is being non-zero only

if factor’s observation was taken from pose xi4;. Note that in SLAM case the X,Z,W (all new and
unfocused variables) iS {Xg41, ..., Xpel-1]-

Similarly to Eq. (4.22), the term (B,lfeW)T -C 1‘1 -BY  from Eq. (3.27) can be calculated as:

new

1 1

B _1 1 o 1 FY
(B;lzjew)T : C1 t Br[;]ew = ((]FU)T (Hgnew)T) : \Pcoznn ’ lpcz'onn ’ C21 ’ ‘Pcz‘()nn “Weonn - (]HU
X,

conn

FY - -
()7 <H§?,,M>T)-Cz‘l'(Hu ]”Bﬁ’ew)T-cgl-B,’{ew (C39)

Xnew
where E,l,]ew:
(xk+1) ce (xk+L—1)
-1 0 U
o woa | 2| F C40
hew = | H .. H =g (C40)
. . . Xnew
]Hﬁf;“ e IHﬁ’;*L"

contains the Jacobian entries of BY, not weighted by factors’ noise W o

new

Additionally, from Eq. (4.14) we can derive structure of DY, which is also used in Eq. (3.27):
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(k1) kg2) Okg3) Ookrd) -0 (Kker—2)  (krr-1)

]Fk+1 -1 0 0 0 0
0 Fri2 -1 0 0 0
1 0 0 Fri3 -1 0 0 1
Dy =¥aew | 0 0 0 Fru 0 0 | =¥uow Drew
0 0 0 0 -1 0
0 0 0 0 coo Frer— -1
0 0 0 0 e 0 Frir-1
(C41)
that due to its sparsity will allow fast calculation of A,ll/ I,
Azllle = (D;lfz]ew)T ’ Drll]ew = (Brll]ew)T ’ \Pt;elw ’ BtliéW' (C42)

Finally, placing all derived notations into Eq. (3.27), we will get to the SLAM-specific

solution for entropy of robot’s last pose:

F np-y 1o~ s ~ 4 =
Ip(@) = ===+ SIn|(B, )" - €31 Brpyy + (D) - Wiy - Dy| =
1 -, — — —
3 In|BL,, - C3' - Buew + DL,y - Wigy - Drew|» (C43)
where C, is defined in Eq. (4.20). [ |

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.8 SLAM Solution - focus on mapped landmarks le o = Lk

The focused IG of le = Ly in SLAM setting is given by Eq. (3.30). Here, we will exploit
the inner structure of Jacobian partitions in SLAM scenario (see Eq. (4.14)-(4.18)) in order to
provide solution tailored specifically to SLAM domain. It will provide an illustrated example of

applying rAMDL to real problem.

First, note that all old involved and unfocused variables ’X{’)Jl 4 contain only the current

robot’s pose xi. Thus, from Eq. (4.17) we can see that relevant partition of Jacobian B, the IBgl J
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used in Eq. (3.31), has the following inner structure:

Iy

1 0
BY ) = Yoim - ) (C44)

Using the above identity, the matrix S| from Eq. (3.31) can also be reduced to next form:

IyU
_ Ipu Xl U \T _
Sl - ]mconn + Bold : z:k ’ : (Bold) -

1 (B =M |T o)
Ilncunn + \Pcoznn : ( kO k 0 : choznn =
1 Fy - Y% )T 1
\Pcoznn . [\Pcunn + ( kO k 0 : \Pcoznn =

1 1

‘Pgoinn : SZ : \P;gnny (C45)

(C46)

M, T M, T
Szilllconn'i'(]l:k'zk o F O)=(Zw’k+]F"'Zk SR 0 ]

0 0 0 \Pobs

where is X, x is noise matrix from motion model (Eq. (4.8)), and matrix ¥, is block-diagonal,

combining all noise matrices of 7°%*(a) factors:

Yok O
Yeomn = ’ . C47
conn ( 0 \Pobs] ( )
Further, let us define matrix S 3:
S3 =T+ Fe- Ty (C48)
Now we can see that S 1’s determinant and inverse can be calculated through:
|52| |S3|' Wobs |S3|
51| = = =, (C49)
\Pconn |‘Pconn |2w,k|
~ 1 I 1 szt 0 1
S 11 = \Pczonn : Szl : lI,czonn = ‘Pczonn : ( (3) -l ] : \Pgonn' (C50)
obs
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Similarly to Eq. (4.22), the term Bnew ST 1. By from Eq. (3.30) can be calculated as:

Bl ST Buw =

new

(]FT (]HXMW)T) X \P_% X \P% . S—l . lP% . lIJ_% ( F ] =
conn conn " O ) conn conn e

-1
e wenfs L)

ob K

F7 -3 F + (HY ) ]

obs

. HXnew (C51)

where IF and H¥"» are defined in Eq. (4.18) as

HTIHI .. ]I_I)lfk+L
F = (_1 e 0) , HYee=| oo (C52)
Hﬁ(k)ﬂ . Hﬁiﬂ

Thus we can see that F' - S5 - F from Eq. (C51) is L - n, X L - n, matrix (n), is the robot

pose’s dimension and L is the horizon length) which has non-zero entries only at its n,, X n,, top

left corner:
s3t0 -0
—— 0 0 --- 0
F.S3 - F=| | L - (C53)
0 0 --- 0

Finally, placing all derived notations into Eq. (3.30), we will get to the SLAM-specific
solution for IG of already mapped landmarks Ly:

JE (@) = (ln [Co| = 10 [Fegna| + 10 [BL,,, - €5 Boew + Dy - ¥5 - D] -
—1“|S3|+1n|2wk|—ln E 51 F (5 W DL i B -
= 5nfcs[ +1n new-C? Buew + Dl - Vi - D] -
~In ’S3’_IH‘FT'S 31 B (He)T ) HY e 4+ DLW - Dyey| = In[Wops) (C54)

where C; is defined in Eq. (4.20). Note that matrix S3 will be the same for all candidates.
Therefore, the terms S3, In ’S 3| and FT - S <! F can be calculated only one time and shared

new C BneW’ lP_

new new

between the candldates thereafter. Additionally, the terms Cz,
and (HXwe)T . P
we know the exact inner structure of all involved matrix operands. The overall complexity of
above SLAM solution is the same as in Eq. (3.30), OOM(F " (a))> + n’3). [

Note that the variables inside information matrices do not have to be ordered in any particular

ObA - HX»» can be calculated efficiently through sparse matrix operators since
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way, and that the provided above proof is correct for any ordering whatsoever.

9.9 Proof of Lemmas 3.6.1 and 3.6.2

Proof of Lemma 3.6.1

The basic definition of mutual information /(a|b) is:
I(alb) = H(a) — H(alb) (C55)

Using definition of entropy for Gaussian distribution from Eq. (2.15) we get to:

I(alb) = 1 In |22M (C56)
2

Ma - . . . b . .. . .
where X/ 4 is marginal covariance matrix of set a, and Ezl is conditional covariance matrix of
set a, conditioned on set b.

Now, if current state vector contains only a and b, or in other words X; = {a, b}, then

Zzlb = ﬁ, with A} being partition of information matrix Ay with respect to variables from a.
A

k
Then by using Eq. (3.9) we will get:

A

i

I(alb) = %ln (C57)

A4

Proof of Lemma 3.6.2

Consider case when X; contains additional variables except for subsets a and b. Let’s join all
other variables in subset r, with X; = {a, b, r} and where r is not empty. By applying Eq. (3.9)
we can see that:

’ZM’“ = |E"M’(a’b)| d theref salb| = ’Z’Z‘W ’(a’b)| C58
k = Ez|h . an ererore k = |2£4,b| ’ ( )
as also
g .
SN
(a,r))
=] = |A’Zk| (C60)



r

A

[mped] = (C61)
A
Then, after combining (C58), (C60) and (C61), another conclusion will be:
A
A (C62)
a,r
]

And after combining (C56), (C59) and (C62), we get the final expression for information gain:

(@nr)| .| A b.r)
(alb) = %m ’A'|‘A’ |i" r (C63)
k| ® k
]
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Lemma, MDL) NVIPNIVTN VOYNI DYNNYHN DMIXR N DIPHNI .INY YITY IR N9 19
DPON NYTY P2A0N NN HY MPNNMOPN NADIN 2N 9’avaY NI (Matrix Determinant
matrix) °IPI9NN DINIMPN NNIOVNN DPPNID DIDN)Y NNYS DV Jacobian NYIVN DY DMWY
DYPNIDN DIDVNN NN IYND 17 ,NPNT NN DINIMPN NNIVM NIPNA .(a priori covariance
SV MYHTTN 2N DOYNIN VNN (MDY YNV NYIVN IN) PNNNIPND NPI0N NN NOY
PNNNOPRA NODIN NN OAVNN PAINNY ,(7) 28NN TN NONY NPIPIIND DINIMPN MIDN
NIPNY 1OV NVWN MY TNNY  .nma MDD XY YDV AN NP0 Oy N9ws Yo DY
DIDD SY NVIPNIVT WND YIN PVNNNY VYN DNNN NDNIN DT 28D NOVPY TN 1Y
NI Q0N (Augmented Matrix Determinant Lemma, AMDL) N¥0010 T2 NOTHN DY MXIVN
AMDL-N .70 MONYaN NNN 90 DY NNIMOPND 21WN 1At 2N GNYd IVONRY
YN DV 09T N 0y 2va DY NVWN DY DPIPYN D000 DN DAWNN NIV
N2 1POYD NN ION DY DNV DIPHRNTNN YO NN NIMAY 1OV DYV DMNONDN ON

DNV NPVDVDY MNTN XN MNPNI NAVNNNY NP2

DTN WP ANND NP T DY T DPIVIND DIPNN D3 1Y NVWN NN OIMI NNIN
JININRD DIV MI902 MOIPHN MOYIWD NMN DNYM t21919” 5m "t1n” XY 5N oy
STPRND O9YNN MINDA 0N NPONXIVI NS0 D) DYNNYN NDNIN NN NIVNND Dava
JURIND T NPRY N2202 OMINOIN DIPY DY NPYDIYAND YDONTNIPN NON NPy DM
NYNT NOY NOWNY DIXIND DA .DPDONNAPN MTTH NPN DIYIN DY NP NDMI9
SV NY NDMS YA OWUND  PNIdNN MODNA ONYOD DY NID NN I NS IMYNYN
IMN MYIYY MINK MO NMYD MY 5 7in 1" XD NIoN nysan »nHv Nown DIv»n
DYV DYV YR INT NPRY N0 MINVIN VIV NPYIAL qONa N 400 TN PION
AUND "1 PIDNN DX YNAD 5w nv 1075 MPIpt NPVLITIVON MO PINPDN HY

JNN 7V0D MNS TIN Y2 NMN IX NIM DHY NVWN

ii



PNPN

VIPIN NPPOIAT ,TPMONIN N2 DY OINNA TID? NPYA 19N MINXTI ONX NNN MOONN NYAPY PIdON
MTTN 99)2 ,MNTIZ T PR NOIYNN AN NN INMNHN DMNOYIN NOP IR NPYIT IDINOVIND
VI DY DM SYND 90NN ,DMOYIN NV ION DMIPNI  .NNOVIN KD YN NPLYIVD
ANNN AN ATHIMN (distribution) N2 T DY N¥»S Y1) [ (landmarks) DDIyYa DOPPAIN D
space planning, BSP) >M72N0N 2NI02 NYNINN ION N»yA (belief) NN DV D) WIT 129N
S¥ PIND AWONND AT DTN DMV DNPIYAR MW NIY MYAPNND MNY MMINN P (belief
YDVPN 2INT 12 PN NP PDVNNAPN PNION ,0NIY»N DY NN DI DYND 110D MmNV Nrya

UNID I RN D220 MNIMOVIN VI | (Active SLAM)

DN DY N2 NINDD N NIVNNY 190 BSP YW 7Pya NN XN NMINN 2NN 220NMOPN 110N
215010 NINND 522 HYNS NMN YNV 9127 N IONN .INNINRND DY NIONN NPII0DI0 MNXT
DT 00N NN URIND O XON NONN NN TIYYIY MU MNS vON MTTN 0y Navnd
JP2IN AP TIND 1P NNN DY (entropy) MPOIVIN 2N DO AT TID N dYA PINS
555 NIPIVDID NNHNX DAYNN YDVPNOPN PNION PNINSD MNINKRND DIV DIHNNININ ,0I92
D2VNM) |, (covariance) DININPN NXIVN IN PSNNIPNA NIVHN POTY NIYA NINAY NNV
NVIPNIVT DY NI 2N DY NPIIDD 7 PAIVIND YN NYITI TUN 1T NNIVN OV NVIPNIVT
TIND 9T 990N ANNN Y95 TAT2) DPNIIYN DNOYI NOPY YW TN NI n-Nv NN ,0(n) NN
YON Y oy 19 O(n®) NN D930 DPYAINORN YV NYmon Nt Mapya (> 10000)

STPNRR IO DY NPSPIDAND YVNNOPN NONI VIDPWN DY NYPNY NN ,TIND

O05 NYPNY NMNINN 2NN YDONNAPN 1IN SV NINAY NYTN NOXW NN VNN N IPNN2
DIPNTINN DY 99017 YDOVNMAPNRD PIONN NN PONY IWANRY DX NN .1PIVN NDIYN
12V NIPN P TIOND AYON ANNN NOPY DT 28D 9D DT LD NIPNTNN 930 NINS DNNAM
Y DVTN DMIPII 1ID) VTN DNYYI 1AW NP NIV M MINN NNt IRY DNHYIN NP
TPVVNY DPN VNN DIAPNN NIVYY IR PNIN .NYNINND NOYINY MINN NVPID DOONNN (VI
MO O 71210” RO NON DX JND DM DNIN QDN .0NN TNNX Y30 DY NI NN 0NV
,2ANNN NOPY TIND NOYIN DO DY MINTN OX POPNY NI NDNIN PYNIN DDA IWNRD o1 n”

D72 DY) NND DY MINTN N P - v

NPIPT N 0N NYIYIVDIO NINNN DY 2N NYNT NPNX 1OV DDA, MINK MOWN INva
DRV NNIN NN IO XMYNYN NV NPYN T MIAPYD ,NPPIY MNIVN DY MOLINIVTO
DOV INY N2IN N PYAN D NIV DRI DN DOTIVN NIRYA INONN NYYI NN
MIPIVDIS NN DYNY NN DMIN Q0N .ADIIN 7PNHINTNND DNNa MDOINIVIN)
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