
Efficient Belief Space Planning in
High-dimensional State Spaces by

Exploiting Sparsity and Calculation
Re-use

Dmitry Kopitkov





Efficient Belief Space Planning in
High-dimensional State Spaces by

Exploiting Sparsity and Calculation
Re-use

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Technion Autonomous

Systems Program (TASP)

Dmitry Kopitkov

Submitted to the Senate

of the Technion — Israel Institute of Technology

Adar 5777 Haifa March 2017





This research was carried out under the supervision of Assistant Prof. Vadim Indelman, in the

Faculty of Aerospace.

Acknowledgements

I would like to hugely thank my advisor Prof. Vadim Indelman for all his guidance, help,

support and patience through the years of my Master’s studies. My research skills got elevated

significantly all thanks to his excellent schooling and high-standard demands.

I would also like to thank the people from Technion Autonomous Systems Program, espe-

cially so Sigalit Preger, for helping me getting over the bureaucracy of the university and for

being supportive through sometimes very uneasy moments during the last years.

Finally, I thank all my friends for having my back and being there for me this entire time.

Your help allowed me to keep standing on my legs and to continue and accomplish this research.

The generous financial help of the Technion is gratefully acknowledged.





Contents

List of Figures

List of Tables

Abstract 1

Abbreviations and Notations 3

1 Introduction 5
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Notations and Problem Formulation 11

3 Approach 17
3.1 BSP as Factor Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 BSP via Matrix Determinant Lemma . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Unfocused Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Focused Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Augmented BSP via AMDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Augmented Matrix Determinant Lemma (AMDL) . . . . . . . . . . . 25

3.3.2 Unfocused Augmented BSP through IG . . . . . . . . . . . . . . . . . 27

3.3.3 Focused Augmented BSP . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Re-use Calculations Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Connection to Mutual Information Approach and Theoretical Meaning of IG . . 35

3.6 Mutual Information - Fast Calculation via Information Matrix . . . . . . . . . 38

4 Application to Different Problem Domains 39
4.1 Sensor Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Augmented BSP in Unknown Environments . . . . . . . . . . . . . . . . . . . 43

4.3 Graph Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Alternative Approaches 51



6 Results 53
6.1 Sensor Deployment (focused and unfocused ) . . . . . . . . . . . . . . . . 53

6.2 Measurement Selection in SLAM . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Autonomous Navigation in Unknown Environment . . . . . . . . . . . . . . . 58

7 Conclusions and Future Work 65
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Appendix - Related Publications 67

9 Appendix - Proof of Lemmas 69
9.1 Proof of Lemma 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.2 Proof of Lemma 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.3 Proof of Lemma 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.4 Proof of Lemma 3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.5 Proof of Lemma 3.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.6 Proof of Lemma 3.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.7 SLAM Solution - focus on last pose XF
k+L ≡ xk+L . . . . . . . . . . . . . . . . 75

9.8 SLAM Solution - focus on mapped landmarks XF
k+L ≡ Lk . . . . . . . . . . . . 77

9.9 Proof of Lemmas 3.6.1 and 3.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 80

Hebrew Abstract i



List of Figures

2.1 Illustrution of Λk+L’s construction for a given candidate action in Augmented

BSP case. First, Λ
Aug
k+L is created by adding n′ zero rows and columns. Then, the

new information of belief is added through Λk+L = Λ
Aug
k+L + AT A. . . . . . . . . 13

3.1 Illustration of belief propagation in factor graph representation - not-augmented

case. Two actions ai and a j are considered, introducing into graph two new

factor sets F (ai) and F (a j) respectively (colored in green). . . . . . . . . . . . 18

3.2 Illustration of belief propagation in factor graph representation - augmented

case. Two actions ai and a j are considered, introducing their own factor graphs

G(ai) and G(a j) (colored in pink) that are connected to prior Gk through factor

sets F conn(ai) and F conn(a j) (colored in green) respectively. . . . . . . . . . . . 19

3.3 Concept illustration of A’s structure. Each column represents some variable

from state vector. Each row represents some factor from Eq. (2.6). Here, A

represents set of factors F = { f1(xi−1, xi), f2(xi, l j)} where factor f1 of motion

model that involves two poses xi and xi−1 will have non-zero values only at

columns of xi and xi−1. Factor f2 of observation model that involves together

variables xi and l j will have non-zero values only at columns of xi and l j. . . . . 21

3.4 Partitions of Jacobians and state vector Xk+L in Augmented BSP case, unfocused

scenario. Note: the shown variable ordering is only for illustration, while

the developed approach supports any arbitrary variable ordering. Also note

that all white blocks consist of only zeros. Top: Jacobian A of factor set

F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D of factor sets F conn(a)

and F new(a) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Partitions of Jacobians and state vector Xk+L in Augmented BSP case, Focused

(XF
k+L ⊆ Xnew) scenario. Note: the shown variable ordering is only for illus-

tration, while the developed approach supports any arbitrary variable ordering.

Also note that all white blocks consist of only zeros. Top: Jacobian A of factor

set F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D of factor sets

F conn(a) and F new(a) respectively. . . . . . . . . . . . . . . . . . . . . . . . 30



3.6 Partitions of Jacobians and state vector Xk+L in Augmented BSP case, Focused

(XF
k+L ⊆ Xold) scenario. Note: the shown variable ordering is only for illustration,

while the developed approach supports any arbitrary variable ordering. Also

note that all white blocks consist of only zeros. Top: Jacobian A of factor set

F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D of factor sets F conn(a)

and F new(a) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Illustration of belief propagation in factor graph representation - Sensor Deploy-

ment scenario. The space is discretized through grid of locations L � {l1, . . . , l9}.

Factor f0 within prior factor graph Gk represents our prior belief about state vec-

tor, P0(X). Factors f1 − f3 represent measurements taken from sensors deployed

at locations l1, l2 and l4. Two actions ai = {l3, l6} and a j = {l7, l8} are consid-

ered, introducing into graph two new factor sets F (ai) and F (a j) respectively

(colored in green). In this example value of c′ is 2. . . . . . . . . . . . . . . . 40

4.2 Illustration of belief propagation in factor graph representation - SLAM scenario.

Nodes xi represent robot poses, while nodes li - landmarks. Factor f1 is prior on

robot’s initial position x1; factors between robot poses represent motion model

(Eq. (4.8)); factors between pose and landmark represent observation model

(Eq. (4.9)). Two actions ai and a j are considered, performing loop-closure to

re-observe landmark l1 and l2 respectively. Both actions introduce their own

factor graphs G(ai) and G(a j) (colored in pink) that are connected to prior Gk

through factor sets F conn(ai) and F conn(a j) (colored in green) respectively. . . . 43

6.1 Unfocused sensor deployment scenario. Running time for calculating impact

of a single action as a function of state dimension n (a) and as a function

of Jacobian A’s height m (b). In (a), m = 2, while in (b) n = 625. rAMDL

Unfocused Objective represents only calculation time of candidates’ impacts

(IG objective for all actions), without one-time calculation of prior covariance;

Covariance Inverse represents the time it took to calculate covariance matrix Σk

from dense information matrix Λk, Σk = Λ−1
k . (c) Running time for sequential

decision making, i.e. evaluating impact of all candidate actions, each repre-

senting candidate locations of 2 sensors. (d) prior and final uncertainty of the

field, with red dots marking selected locations. (e) number of action candidates

per decision. (f) running time for sequential decision making, with number of

candidates limited to 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



6.2 Focused sensor deployment scenario, (a) overall time it took to make deci-

sion with different approaches; rAMDL Focused Objective represents only

calculation of candidates’ impacts (IG objective for all actions) while rAMDL

Focused - both one-time calculation of prior covariance Σk and candidates’ eval-

uation. (b) Final uncertainty of the field, with red dots marking selected locations.

(c) Focused set of variables (green circles) and locations selected by algorithm

(red dots). (d) Overall system entropy (above) and entropy of focused set

(bottom) after each decision, with blue line representing unfocused algorithm,

and red line - focused algorithm. Note - all unfocused methods make exactly

the same decisions, with difference only in their runtime complexity. Same is

also true for all focused methods. . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Measurement selection scenario, (a) simulated trajectory of robot; black dots are

the landmarks, blue marks and surrounding ellipses are the estimated trajectory

along with the uncertainty covariance for each time instant, red mark is robot’s

initial pose; (b) number of measurement candidates per decision; (c) state’s

dimension n per decision; (d) overall time it took to evaluate impacts of pose’s

all measurements, with different approaches; rAMDL Unfocused Objective

represents only calculation of candidates’ impacts (IG objective for all actions)

while rAMDL Unfocused - both one-time calculation of marginal covariance

Σ
M,XAll
k and candidates’ evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Focused BSP scenario with focused robot’s last pose. (a) Dimensions of the

BSP problem (state dimension, average number of new factor terms, average

number of new variables, average number of old involved variables) at each time;

(b) Number of action candidates at each time; (c) Final robot trajectory. Blue

dots are mapped landmarks, red line with small ellipses is estimated trajectory

with pose covariances, blue line is the real trajectory, red pluses with numbers

beside them are robot’s goals. Green mark is robot’s start position; (d) Zoom-in

of robot’s trajectory near goal 12. . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Focused BSP scenario with focused robot’s last pose. (a) Running time

of planning, i.e. evaluating impact of all candidate actions, each representing

possible trajectory; Results are shown both for focused and unfocused cases;

(b) Zoom of fastest approaches from (a); (c) Focused approaches from (b).

Note that iSAM Focused is not depicted because as seen in (a) it is much slower

comparing to other focused techniques; (d) Unfocused approaches from (b).

The lowest line, labeled Marginal Cov, represents time it took to calculate

prior marginal covariance Σ
M,XAll
k in rAMDL approach (see Section 3.4). As can

be seen, while rAMDL technique (Unfocused and Focused ) is faster than

From-Scratch and iSAM, the rAMDL-Extended gives even better performance.

Further, it is interesting to note that performance of Unfocused and Focused

rAMDL is almost the same, as also performance of Unfocused and Focused

rAMDL-Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



6.6 Focused BSP scenario with focused robot’s last pose. Running times from

Figure 6.5 normalized by number of candidates. . . . . . . . . . . . . . . . . 61

6.7 Focused BSP scenario with focused landmarks. (a) Number of action can-

didates at each time; (b) Final robot trajectory; (c) Running time of planning,

i.e. evaluating impact of all candidate actions, each representing possible tra-

jectory; (d) Running time from (c) normalized by number of candidates; (e)

Zoom of fastest approaches from (c); (f) Zoom of fastest approaches from (d).

The lowest line, labeled Marginal Cov, represents time it took to calculate prior

marginal covariance Σ
M,XAll
k in rAMDL approach (see Section 3.4). . . . . . . . 62

6.8 Focused BSP scenario with focused robot’s last pose, using Victoria Park

dataset. (a) Number of action candidates at each time; (b) Final robot trajectory;

(c) Running time of planning, i.e. evaluating impact of all candidate actions,

each representing possible trajectory; (d) Running time from (c) normalized by

number of candidates; (e) Zoom of fastest approaches from (c); (f) Zoom of

fastest approaches from (d). The lowest line, labeled Marginal Cov, represents

time it took to calculate prior marginal covariance Σ
M,XAll
k in rAMDL approach

(see Section 3.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Tables

3.1 Different partitions of state variables in BSP . . . . . . . . . . . . . . . . . . . 21

3.2 Different partitions of state variables in Augmented BSP . . . . . . . . . . . . 27

3.3 Different problems and required entries of prior covariance. BSP - short for

non-augmented belief space planning, Augmented BSP - augmented belief

space planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Considered approaches in different problems from Chapter 6, along with their

appropriate equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54





Abstract

Belief space planning (BSP) is a fundamental problem in robotics and artificial intelligence, with

applications including autonomous navigation and active SLAM. The information-theoretic BSP

is its sub-problem where objective is to find action which will minimize the posterior uncertainty

of the state. In order to solve this problem, the state of the art approaches typically propagate

the belief state, for each candidate action, through calculation of the posterior information

(or covariance) matrix and subsequently compute its determinant (required for entropy). The

per-candidate time-complexity of such approaches is O(n3) where n is the state dimension and

typically is very large, making such approaches to be very computationally expensive.

In this research we develop a computationally efficient approach for evaluating the infor-

mation theoretic term within belief space planning (BSP), where during belief propagation the

state vector can be constant or augmented. We consider both unfocused and focused problem

settings, whereas uncertainty reduction of the entire system or only of chosen variables is of

interest, respectively. Our approach reduces run-time complexity by avoiding posterior belief

propagation and determinant calculation of large matrices. We formulate the problem in terms

of factor graphs and show that belief propagation is not needed, requiring instead a one-time

calculation that depends on (the increasing with time) state dimensionality, and per-candidate

calculations that are independent of the latter. To that end, we develop an augmented version of

the matrix determinant lemma, and show computations can be re-used when evaluating impact

of different candidate actions. These two key ingredients and the factor graph representation of

the problem result in a computationally efficient (augmented) BSP approach that accounts for

different sources of uncertainty and can be used with various sensing modalities. We examine

the unfocused and focused instances of our approach, and compare it to the state of the art, in

simulation and using real-world data, considering problems such as autonomous navigation

in unknown environments, measurement selection and sensor deployment, carried out at the

Autonomous Navigation and Perception Lab at the Technion. We show that our approach

significantly reduces running time without any compromise in performance.
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Abbreviations and Notations

BSP : Belief Space Planning

POMDP : Partially Observable Markov Decision Process

SLAM : Simultaneous Localisation and Mapping

IG : Information Gain

MAP : Maximum A Posteriori (estimation)

AMDL : Augmented Matrix Determinant Lemma

rAMDL : Re-use of calculations and Augmented Matrix Determinant Lemma

iSAM : Incremental Smoothing and Mapping

GT-SAM : Georgia Tech-Smoothing and Mapping

Xk : state vector at time k

Xk+L : state vector at future time k + L
IX : subset of Xk+L with variables involved in new terms in Eq. (2.6)
¬IX : subset of Xk+L with variables not involved in new terms in Eq. (2.6)

XF : subset of Xk+L with focused variables

XU : subset of Xk+L with unfocused variables
IXU : subset of XU with variables involved in new terms in Eq. (2.6)
¬IXU : subset of XU with variables not involved in new terms in Eq. (2.6)

b[X] : belief of state vector X, its probability density function

Σk : covariance matrix of state vector Xk

Λk : information matrix of state vector Xk, which is inverse of matrix Σk

Ã : Jacobian matrix of new factors, introduced by candidate action

A : noise-weighted Jacobian matrix of new factors, introduced by candidate action

H (·) : differential entropy
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Chapter 1

Introduction

Decision making under uncertainty and belief space planning are fundamental problems in

robotics and artificial intelligence, with applications including autonomous driving, surveillance,

sensor deployment, object manipulation and active SLAM. The goal is to autonomously de-

termine best actions according to a specified objective function, given the current belief about

random variables of interest that could represent, for example, robot poses, tracked target or

mapped environment, while accounting for different sources of uncertainty.

Since the true state of interest is typically unknown and only partially observable through

acquired measurements, it can be only represented through a probability distribution conditioned

on available data. Belief space planning (BSP) and decision making approaches reason how this

distribution (the belief ) evolves as a result of candidate actions and future expected observations.

Such a problem is an instantiation of partially observable Markov decision process (POMDP),

while calculating an optimal solution of POMDP was proven to be computationally intractable

[22] for all but the smallest problems due to curse of history and curse of dimensionality. Recent

research has therefore focused on the development of sub-optimal approaches that trade-off

optimality and runtime complexity.

Decision making under uncertainty, also sometimes referred to as active inference, and BSP

can be formulated as selecting optimal action from a set of candidates, based on some cost

function. In information-based decision making the cost function typically contains terms that

evaluate the expected posterior uncertainty upon action execution, with commonly used costs

including (conditional) entropy and mutual information. Thus, for Gaussian distributions the

corresponding calculations typically involve calculating a determinant of a posteriori covariance

(information) matrices, and moreover, these calculations are to be performed for each candidate

action.

Decision making and BSP become an even more challenging problems when considering

high dimensional state spaces. Such a setup is common in robotics, for example in the context

of belief space planning in uncertain environments, active SLAM, sensor deployment, graph

reduction and graph sparsification. In particular, calculating a determinant of information

(covariance) matrix for an n-dimensional state is in general O(n3), and is smaller for sparse

matrices as in SLAM problems [3].
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Moreover, state of the art approaches typically perform such time-consuming calculations

from scratch for each candidate action. In contrast, in this work we provide a novel way to

perform information-theoretic BSP, which is fast, simple and general; yet, it does not require

calculation of a posterior belief and does not need determinant computation of large matrices.

Additionally, we have succeeded to reuse calculations between different candidate actions,

eventually providing decision making solver which is significantly faster compared to standard

approaches.

1.1 Related Work

As mentioned above, the optimal solution to POMDP is computationally intractable and many

approximation approaches exist to solve it in sub-optimal way. These approaches can be

classified into those that discretize the action, state and measurement spaces, and those that

operate over continuous spaces.

Approaches from the former class include point-based value iteration methods [36], simula-

tion based [39] and sampling based approaches [1,38]. On the other hand, approaches that avoid

discretization are often termed direct trajectory optimization methods (e.g. [21, 34, 37, 41, 43]);

these approaches typically calculate from a given nominal solution a locally-optimal one.

To solve the BSP problem, standard methods usually perform expensive calculations for

each candidate action from scratch. For example, in the context of active SLAM, state of the art

BSP approaches first calculate the posterior belief within the planning horizon, and then use

that belief to evaluate the objective function, which typically includes an information-theoretic

term [15, 21, 26, 40]. These approaches then determine the best action by performing the

mentioned calculations for each action from a given set of candidate actions, or by local search

using dynamic programming or gradient descent (for continuous setting).

Sensor deployment is another example of decision making in high dimensional state spaces.

The basic formulation of the problem is to determine locations to deploy the sensors such

that some metric can be measured most accurately through the entire area (e.g. temperature).

The problem can also be viewed as selecting optimal action from the set of candidate actions

(available locations) and the objective function usually contains a term of uncertainty, like the

entropy of a posterior system [27]. Also here, state of the art approaches evaluate a determinant

over large posterior covariance (information) matrices for each candidate action, and do so from

scratch [44, 45].

A similar situation also arises in measurement selection [5,9] and graph pruning [4,14,31,42]

in the context of long-term autonomy in SLAM. In the former case, the main idea is to determine

the most informative measurements (e.g. image features) given measurements provided by robot

sensors, thereby discarding uninformative and redundant information. Such a process typically

involves reasoning about mutual information, see e.g. [7, 9], for each candidate selection.

Similarly, graph pruning and sparsification can be considered as instances of decision making in

high dimensional state spaces [4, 14], with decision corresponding to determining what nodes to

marginalize out [16, 28], and avoiding the resulting fill-in in information matrix by resorting
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to sparse approximations of the latter [4, 14, 31, 42]. Also here, existing approaches typically

involve calculation of determinant of large matrices for each candidate action.

Although many particular domains can be specified as decision making and BSP problems,

they all can be classified into two main categories, one where state vector is fixed during

belief propagation and another where the state vector is augmented with new variables. Sensor

deployment is an example of the first case, while active SLAM, where future robot poses are

introduced into the state, is an example for the second case. Conceptually the first category is a

particular case of the second, but as we will see both will require different solutions. Therefore,

in order to differentiate between these two categories, in this research we will consider the first

category (fixed-state) as BSP problem, and the second category (augmented-state) as Augmented

BSP problem.

Moreover, we show the proposed concept is applicable also to active focused inference.

Unlike the unfocused case discussed thus far, active focused inference approaches aim to

reduce the uncertainty over only a predefined set of the variables. The two problems can

have significantly different optimal actions, with an optimal solution for the unfocused case

potentially performing badly for the focused setup, and vice versa (see e.g. [30]). While the

set of focused variables can be small, exact state of the art approaches calculate the marginal

posterior covariance (information) matrix, for each action, which involves a computationally

expensive Schur complement operation. For example, Mu et al. [32] calculate posterior covari-

ance matrix per each measurement and then use the selection matrix in order to get marginal

of focused set. Levine et al. [30] develop an approach that determines mutual information

between focused and unfocused variables through message passing algorithms on Gaussian

graphs but their approach is limited to only graphs with unique paths between the relevant

variables.

Finally, there is also a relation to the recently introduced concept of decision making in a

conservative sparse information space [19, 20]. In particular, considering unary observation

models (involving only one variable) and greedy decision making, it was shown that appropri-

ately dropping all correlation terms and remaining only with a diagonal covariance (information)

matrix does not sacrifice performance while significantly reducing computational complexity.

While the approach presented herein confirms this concept for the case of unary observation

models, our approach addresses a general non-myopic decision making problem, with arbitrary

observation and motion models.

1.2 Contributions

In this thesis we develop a computationally efficient and exact approach for decision making

and BSP in high-dimensional state spaces that addresses the aforementioned challenges. The

key idea is to use the (augmented) general matrix determinant lemma to calculate action impact

with complexity independent of state dimensionality n, while re-using calculations between

evaluating impact for different candidate actions. Our approach supports general observation and

motion models, and non-myopic planning, and is thus applicable to a wide range of applications
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such as those mentioned above, where fast decision making and BSP in high-dimensional state

spaces is required.

For focused BSP scenarios we present a new way to calculate posterior entropy of focused

variables, which is very computationally efficient, yet exact and does not require expensive

calculation of a Schur complement and a posterior covariance matrix. In combination with our

re-use algorithm, it provides focused decision making algorithm which is significantly faster

compared to state of the art approaches.

Calculating the posterior information matrix in Augmented BSP problems involves augment-

ing an appropriate prior information matrix with zero rows and columns, i.e. zero padding, and

then adding new information due to candidate action (see Figure 2.1). While the general matrix

determinant lemma is an essential part of our approach, unfortunately it is not applicable to

the mentioned augmented prior information matrix since the latter is singular (even though the

posterior information matrix is full rank). In this thesis, we develop a new variant of the matrix

determinant lemma, called the augmented matrix determinant lemma (AMDL), that addresses

general augmentation of future state vector. Based on AMDL, we then develop a augmented

belief space planning approach, considering both unfocused and focused cases.

To summarize, our main contributions in this research are as follows: (a) we formulate

(augmented) belief space planning in terms of factor graphs which allow to see the problem in

more intuitive and simple way; (b) we develop an augmented version of matrix determinant

lemma (AMDL), where the subject matrix first is augmented by zero rows/columns and only

then new information is introduced (c) we develop an approach for a nonmyopic focused and

unfocused (augmented) belief space planning in high-dimensional state spaces that uses the

(augmented) matrix determinant lemma to avoid calculating determinants of large matrices, with

per-candidate complexity independent of state dimension; (d) we show how calculations can be

re-used when evaluating impacts of different candidate actions; We integrate the calculations

re-use concept and AMDL into a general and highly efficient BSP solver, that does not involve

explicit calculation of posterior belief evolution for different candidate actions, naming this

approach rAMDL; (e) we introduce an even more efficient rAMDL variant specifically addressing

a sensor deployment problem.

1.3 Organization

This thesis is organized as follows.

1. Chapter 2 introduces the concepts of BSP, and gives a formal statement of the problem.

2. Chapter 3 describes our approach rAMDL for general formulation.

3. Chapter 4 tailors approach for specific domains, providing even more efficient solutions

to number of them.

4. In Chapter 5 standard approaches are discussed as the main state-of-the-art alternatives to

rAMDL .
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5. Chapter 6 presents experimental results, evaluating the proposed approach and comparing

it against mentioned state-of-the-art.

6. Conclusions are drawn in Chapter 7.

7. For purpose of simplicity, the proof of several lemmas is moved into Appendix 9.
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Chapter 2

Notations and Problem Formulation

In this thesis we are developing computationally efficient approaches for belief space planning.

As evaluating action impact involves inference over an appropriate posterior, we first formulate

the corresponding inference problem.

Consider a high-dimensional problem-specific state vector Xk ∈ R
n at time tk. In different

applications the state Xk can represent robot configuration and poses (optionally for whole

history), environment-related variables or any other variables to be estimated. Additionally,

consider factors Fi = { f 1
i (X1

i ), . . . , f ni
i (Xni

i )} that were added at time 0 ≤ ti ≤ tk, where each

factor f j
i (X j

i ) represents a specific measurement model, motion model or prior, and as such

involves appropriate state variables X j
i ⊆ Xi.

The joint pdf can be then written as

P(Xk|Hk) ∝
k∏

i=0

ni∏
j=1

f j
i (X j

i ), (2.1)

where Hk is history that contains all the information gathered till time tk (measurements, controls,

etc.).

As common in many inference problems, we will assume that all factors have a Gaussian

form:

f j
i (X j

i ) ∝ exp(−
1
2
‖h j

i (X j
i ) − r j

i ‖
2
Σ

j
i
), (2.2)

with appropriate model

r j
i = h j

i (X j
i ) + υ

j
i , υ

j
i ∼ N(0,Σ j

i ) (2.3)

where h j
i is a known nonlinear function, υ j

i is zero-mean Gaussian noise and r j
i is the expected

value of h j
i (r j

i = E[h j
i (X j

i )]). Such a factor representation is a general way to express information

about the state. In particular, it can represent a measurement model, in which case, h j
i is the

observation model, and r j
i and υ j

i are, respectively, the actual measurement z and measurement

noise. Similarly, it can also represent a motion model (see Section 4.2). A maximum a posteriori

(MAP) inference can be efficiently calculated (see e.g. [24]) such that

P(Xk|Hk) = N(X∗k ,Σk), (2.4)
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where X∗k and Σk are the mean vector and covariance matrix, respectively.

We shall refer to the posterior P(Xk|Hk) as the belief and write

b[Xk] � P(Xk|Hk). (2.5)

In the context of BSP, we typically reason about the evolution of future beliefs b[Xk+l]

at different look-ahead steps l as a result of different candidate actions. Particular candidate

action can provide unique information (future observations and controls) and can be more and

less beneficial for specific tasks such as reducing future uncertainty. For example, in SLAM

application choosing trajectory that is close to the mapped landmarks will reduce uncertainty

because of loop-closures. Furthermore, conceptually each candidate action can introduce

different additional state variables into the future state vector, like in case of smoothing SLAM

formulation where state is augmented by (various) number of future robot poses.

Therefore, in order to reason about the belief b[Xk+l], first it needs to be carefully modeled.

More specifically, let us focus on a non-myopic candidate action a � {ā1, . . . , āL} which is a

sequence of myopic actions with planning horizon L. Each action āl can be represented by new

factors Fk+l = { f 1
k+l(X

1
k+l), . . . , f nk+l

k+l (Xnk+l
k+l )} and, possibly, new state variables Xk+l

new (1 ≤ l ≤ L)

that are acquired/added while applying āl. Similar to Eq. (2.1), the future belief b[Xk+L] can be

explicitly written as

b[Xk+L] ∝ b[Xk]
k+L∏

l=k+1

nl∏
j=1

f j
l (X j

l ), (2.6)

where Xk+L � {Xk ∪Xk+1
new ∪ . . .∪Xk+L

new } contains old and new state variables. Similar expressions

can be also written for any other look ahead step l. Observe in the above belief that the future

factors depend on future observations, whose actual values are unknown.

It is important to note that, according to our definition from Chapter 1, new variables are

added only in the augmented setting of the BSP problem, e.g. in the active SLAM context. On

the other hand, in a non-augmented BSP setting, the states Xk+L and Xk are identical, while

the beliefs b[Xk+L] and b[Xk] are still conditioned on different data. For example, in sensor

deployment and measurement selection problems the candidate actions are all possible subsets

of sensor locations and of acquired observations, respectively. Here, when applying a candidate

action, new information about Xk is brought in, but the state vector itself is unaltered.

In contrast, in Augmented BSP problem new variables are always introduced. In particular,

in both smoothing and filtering formulation of SLAM, candidate actions (trajectories) will

introduce both new information (future measurements), and also new variables (future robot

poses). While in filtering formulation old pose variables are marginalized out, the smoothing

formulation instead keeps past and current robot poses and newly mapped landmarks in the

state vector which is beneficial for better estimation accuracy and sparsity. As such, smoothing

formulation is an excellent example for Augmented BSP problem, where as filtering formulation

can be considered as focused BSP scenario which described below.

As such the non-augmented BSP setting can be seen as a special case of Augmented BSP.

In order to use similar notations for both problems, however, in this thesis we will consider Xk+l
new

12



Figure 2.1: Illustrution of Λk+L’s construction for a given candidate action in Augmented BSP case. First, Λ
Aug
k+L is created by

adding n′ zero rows and columns. Then, the new information of belief is added through Λk+L = Λ
Aug
k+L + AT A.

to be an empty set for the former case and non-empty for Augmented BSP.

It is not difficult to show (see e.g. [21]) that in case of non-augmented BSP the posterior

information matrix of the belief b[Xk+L] is given by:

Λk+L = Λk +

k+L∑
l=k+1

nl∑
j=1

(H j
l )T · (Σ j

l )−1 · H j
l (2.7)

where Λk is prior information matrix and H j
l � 5xh j

l are the Jacobian matrices of h j
l functions

(see Eq. (2.2)) for all the new factor terms in Eq. (2.6).

As was already mentioned, in case of Augmented BSP the joint state Xk+L includes also new

variables (with respect to the current state Xk). Considering Xk ∈ R
n, first, new n′ variables are

introduced into future state vector Xk+L ∈ R
N with N � n + n′, and then new factors involving

appropriate variables from Xk+L are added to form a posterior belief b[Xk+L], as shown in

Eq. (2.6).

Consequently, in Augmented BSP scenario the posterior information matrix of belief

b[Xk+L], i.e. Λk+L, can be constructed by first augmenting the current information matrix Λk

with n′ zero rows and columns to get Λ
Aug
k+L ∈ R

N×N , and thereafter adding to it new information,

as illustrated in Figure 2.1 (see e.g. [21]):

Λk+L = Λ
Aug
k+L +

k+L∑
l=k+1

nl∑
j=1

(H j
l )T · (Σ j

l )−1 · H j
l (2.8)

where Hl � 5xh j
l are augmented Jacobian matrices of all new factors in Eq. (2.6), linearized

about the current estimate of Xk and about initial values of newly introduced variables.

After stacking all new Jacobians in Eqs. (2.7) and (2.8) into a single matrix Ã, and combining

all noise matrices into block-diagonal Ψ, we get respectively

Λk+L = Λk + ÃT · Ψ−1 · Ã = Λk + AT · A (2.9)

Λk+L = Λ
Aug
k+L + ÃT · Ψ−1 · Ã = Λ

Aug
k+L + AT · A (2.10)

where

A � Ψ−
1
2 · Ã (2.11)
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is an m × N matrix that represents both Jacobians and noise covariances of all new factor terms

in Eq. (2.6). The above equations can be considered as a single iteration of Gauss-Newton

optimization and, similar to prior work [21,26,41], we take maximum-likelihood assumption by

assuming they sufficiently capture the impact of candidate action. Under this assumption, the

posterior information matrix Λk+L is independent of (unknown) future observations [21]. One

can further incorporate reasoning if a future measurement will indeed be acquired [6, 21, 43];

however, this is outside the scope of this research.

Each block row of matrix A represents a single factor from new terms in Eq. (2.6) and has

a sparse structure. Only a limited number of its sub-blocks is non-zero, i.e. sub-blocks that

correspond to the involved variables X j
l in the relevant factor f j

l (X j
l ).

For notational convenience, we define the set of non-myopic candidate actions by A =

{a1, a2, ...} with appropriate Jacobian matrices ΦA = {A1, A2, ...}. While the planning horizon is

not explicitly shown, each a ∈ A can represent a future belief b[Xk+L] for different number of

look ahead steps L.

A general objective function in decision making/BSP can be written as [21]:

J(a) � E
Zk+1:k+L

{ L−1∑
l=0

cl(b[Xk+l], uk+l) + cL(b[Xk+L])
}
, (2.12)

with L immediate cost functions cl, for each look-ahead step, and one cost function for terminal

future belief cL. Each such cost function can include a number of different terms related to

aspects such as information measure of future belief, distance to goal and energy spent on

control. Arguably, evaluating the information terms involves the heaviest calculations of J.

Thus, in this research we will focus only on the information-theoretic term of terminal belief

b[Xk+L], and consider differential entropyH (further referred to just as entropy) and information

gain (IG) as the cost functions. Both can measure amount of information of future belief b[Xk+L],

and will lead to the same optimal action. Yet, calculation of one is sometimes more efficient

than the other, as will be shown in Chapter 3. Therefore, we consider two objective functions:

JH (a) � H (b[Xk+L]) (2.13)

JIG(a) � H(b[Xk]) −H(b[Xk+L]), (2.14)

where the information matrix Λk+L, that corresponds to the belief b[Xk+L], is a function of

candidate a’s Jacobian matrix A, see Eq. (2.9) and Eq. (2.10). The optimal candidate a∗,

which produces the most certain future belief, is then given by a∗ = arg mina∈A JH (a), or by

a∗ = arg maxa∈A JIG(a) with both being mathematically identical.

In particular, for Gaussian distributions, entropy is a function of the determinant of a posterior

information (covariance) matrix, i.e.H (b[Xk+L]) ≡ H (Λk+L) and the objective functions can
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be expressed as

JH (a) =
n · γ

2
−

1
2

ln
∣∣∣∣Λk+L

∣∣∣∣ , JIG(a) =
1
2

ln

∣∣∣∣Λk+L

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (2.15)

for BSP, and

JH (a) =
N · γ

2
−

1
2

ln
∣∣∣∣Λk+L

∣∣∣∣ , JIG(a) =
n′ · γ

2
+

1
2

ln

∣∣∣∣Λk+L

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (2.16)

for Augmented BSP, where γ � 1 + ln(2π), and Λk+L can be calculated according to Eq. (2.9)

and Eq. (2.10). Thus, evaluating J requires determinant calculation of an n×n (or N×N) matrix,

which is in general O(n3), per candidate action a ∈ A. In many robotics applications state

dimensionality can be huge and even increasing with time (e.g. SLAM), and straight forward

calculation of the above equations makes real-time planning hardly possible.

So far, the exposition referred to unfocused BSP problems, where the action impact is

calculated by considering all the random variables in the system, i.e. the entire state vector.

However, as will be shown in the sequel, our approach is applicable also to focused BSP

problems.

Focused BSP, in both augmented and non-augmented cases, is another important problem,

where in contrast to the former case, only a subset of variables is of interest (see, e.g., [27, 30,

32]). For example one can look for action that reduces uncertainty of robot’s final pose. The

complexity of such a problem is much higher and proposed techniques succeeded to solve it in

O(kn3) [27, 30] with k being size of candidate actions set, and in O(ñ4) [32] with ñ being size of

involved clique within Markov random field representing the system.

Considering posterior entropy over the focused variables XF
k+L ⊆ Xk+L we can write:

JF
H

(a)=H(XF
k+L) =

nF · γ

2
+

1
2

ln
∣∣∣∣ΣM,F

k+L

∣∣∣∣ , (2.17)

where nF is the dimensionality of the state XF
k+L, and Σ

M,F
k+L is the posterior marginal covariance

of XF
k+L (suffix M for marginal), calculated by simply retrieving appropriate parts of posterior

covariance matrix Σk+L = Λ−1
k+L.

Solving the above problem in a straightforward manner involves O(N3) operations for

each candidate action, where N = n + n′ is dimension of posterior system. In the following

sections we develop a computationally more efficient approach that addresses both unfocused

and focused (augmented) BSP problems. As will be seen, this approach naturally supports

non-myopic actions and arbitrary factor models h j
i , and it is in particular attractive to belief

space planning in high-dimensional state spaces.
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Chapter 3

Approach

Our approach, rAMDL , utilizes the well-known matrix determinant lemma [13] and re-use

of calculations to significantly reduce computation of candidate action’s impact, as defined in

Chapter 2, for both augmented and non-augmented cases of BSP problem. In Section 3.1 we

reformulate these problems in terms of factor graphs which will allow us to see another, more

simplified, picture of the BSP problem. In Section 3.2.1 we develop a novel way to calculate

the information-theoretic term for unfocused non-augmented BSP, and then extend it in

Section 3.2.2 to the focused case. Additionally, in order to significantly reduce computational

complexity of the Augmented BSP problem, as defined in Chapter 2, in Section 3.3.1 we extend

the matrix determinant lemma for the matrix augmentation case. We then discuss in Sections

3.3.2-3.3.3 how this extension can be used within unfocused and focused Augmented BSP.

Further, in Section 3.4 we discuss another key component of rAMDL - the re-use of calculations,

which exploits the fact that many calculations can be shared among different candidate actions.

Finally, in Section 3.5 we describe connection between our technique and mutual information

approach from [9, 23], and discuss an interesting conceptual meaning of IG metric.

3.1 BSP as Factor Graph

The inference problem can be naturally represented by a factor graph [29], which is a bipartite

graph G = (F ,Θ,E) with two node types: variables nodes θi ∈ Θ and factor nodes fi ∈ F

(e.g. see Figures 3.1 and 3.2). Variable nodes represent state variables that need to be estimated,

while factor nodes express different constraints between different variables. Each factor node is

connected by edges ei j ∈ E to variable nodes that are involved in the corresponding constraint.

Such a formulation is general and can be used to represent numerous inference problems

(e.g. SLAM), while exploiting sparsity. Furthermore, computationally efficient approaches,

based on such formulation and exploiting its natural sparsity, have been recently developed

[24, 25].

Below we will show that inference within BSP can also be formulated in terms of a factor

graph.

The belief at time tk, b[Xk] can be represented by a factor graph Gk = (Fk, Xk,Ek), where
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Figure 3.1: Illustration of belief propagation in factor graph representation - not-augmented case. Two actions ai and a j are
considered, introducing into graph two new factor sets F (ai) and F (a j) respectively (colored in green).

with little abuse of notations, we use Xk to denote the estimated variables, Fk is the set of all

factors acquired till time tk, and where Ek encodes connectivity according to the variables X j
i

involved in each factor f j
i , as defined in Eq. (2.2). The future belief b[Xk+L] is constructed

by introducing new variables and by adding new factors to the belief b[Xk], as was shown in

Chapter 2. Therefore, it can be represented by a factor graph which is an augmentation of the

factor graph Gk, as will be shown below.

More specifically, in case of non-augmented BSP, let F (a) = { f 1, . . . , f na} denote all the

new factors from Eq. (2.6) introduced by action a, with na being the number of such factors.

This abstracts the explicit time notations of factors inside Eq. (2.6) which in their turn can be

seen as unimportant for solution of BSP problem. Then the factor graph of b[Xk+L] is the prior

factor graph Gk with newly introduced factor nodes F (a) connected to appropriate variable

nodes (see Figure 3.1 for illustration). Thus, it can be denoted by Gk+L(a):

Gk+L(a) = (Fk+L, Xk+L,Ek+L), (3.1)

where Fk+L = {Fk,F (a)}, Xk+L ≡ Xk are unaltered state variables, and Ek+L represents connec-

tivity between variables and factors according to definition of each factor (Eq. (2.2)).

For simplicity, we denote the augmentation of a factor graph Gk with a set of new factors

through operator ⊕. Thus, for the non-augmented BSP setting, we have Gk+L(a) � Gk ⊕ F (a).

Additionally, with a slight abuse of annotations we will use the same augmentation operator ⊕

to define combination of two factor graphs into one, which will be required in the context of

augmented BSP.

In augmented BSP scenario, we denote all new state variables introduced by action a as
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Figure 3.2: Illustration of belief propagation in factor graph representation - augmented case. Two actions ai and a j are considered,
introducing their own factor graphs G(ai) and G(a j) (colored in pink) that are connected to prior Gk through factor sets F conn(ai)
and F conn(a j) (colored in green) respectively.

Xnew, and also separate all new factors F (a) from Eq. (2.6) into two groups:

F (a) = {F new(a),F conn(a)}. (3.2)

Factors connecting only new variables Xnew are denoted by F new(a):

F new(a) = { f 1, . . . , f nnew}, (3.3)

while the rest of the factors are denoted by F conn(a):

F conn(a) = { f 1, . . . , f nconn}, (3.4)

connecting between old and new variables.

Next, let us denote action’s factor graph as G(a) = (F new(a), Xnew,Enew) with Enew repre-
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senting connectivity according to involved variables in each factor in F new(a). Then the factor

graph that represents the future belief b[Xk+L] is a combination of two factor graphs, the prior

Gk and action’s G(a), connected by factors from F conn(a) (see Figure 3.2 for illustration). Thus,

Gk+L(a) = Gk ⊕G(a) ⊕ F conn(a) = (Fk+L, Xk+L,Ek+L), (3.5)

where Fk+L = {Fk,F
new(a),F conn(a)}, Xk+L ≡ {Xk, Xnew} is an augmented state vector, and

Ek+L represents connectivity between variables and factors according to factors’ definition. The

separation of factors into two groups lets us to present future belief ’s factor graph as simple

graph augmentation, and will also be useful during derivation of our approach in Section 3.3.

Moreover, the reason for F conn(a) not to be defined as part of G(a) is due to the fact that factors

inside F conn(a) involve state variables outside of G(a).

Note that the new factors in Gk+L(a) are not fully defined, as some of them involve future

observations which are unknown at planning time. However, the taken maximum-likelihood

assumption expects that mean vector of b[Xk+L] will coincide with current estimate of Xk and

with initial values of new variables Xnew [21, 37, 41]. Knowing the mean vector it is possible to

calculate Jacobians of old and new factors within Gk+L(a). Since information matrix Λ = AT A

is a product of Jacobian matrices, Λk+L of future belief b[Xk+L] can also be calculated without

knowing the future observations. Thus, we can reason about information (and covariance) matrix

of Gk+L(a), as was shown in Chapter 2.

Now we can reformulate the information-theoretic objective of the BSP problem. In

order to evaluate information impact of action a in a non-augmented BSP setting (Eq. (2.15)),

we need to measure the amount of information added to a factor graph after augmenting it

with new factors Gk+L(a) = Gk ⊕ F (a). In case of augmented BSP (Eq. (2.16)), in order to

evaluate information impact of action a we need to measure the amount of information added

to a factor graph after connecting it to another factor graph G(a) through factors in F conn(a),

Gk+L(a) = Gk ⊕G(a) ⊕ F conn(a).

In equations (2.9) and (2.10) we expressed the posterior information matrix Λk+L of Gk+L(a)

through matrix A, which is the weighted Jacobian of new terms from Eq. (2.6). In non-augmented

BSP, each block-row of A represents a specific factor from F (a), while in augmented BSP block-

rows in A represent factors from F (a) = {F new(a),F conn(a)}. Block-columns of A represent

all estimated variables within Xk+L. As was mentioned, each factor’s block-row is sparse, with

only non-zero block entries under columns of variables connected to the factor within the factor

graph. For example, the Jacobian matrix’s block-row that corresponds to a motion model factor

p(xk+l|xk+l−1, uk+l−1) will involve only two non-zero block entries for the state variables xk+l and

xk+l−1. Factors for many measurement models, such as projection and range model, will also

have only two non-zero blocks (see Figure 3.3).

We define two properties for any set of factors F that will be used in the sequel to analyze

complexity of the proposed approach. Denote byM(F ) the sum of dimensions of all factors

in F , where dimension of each factor is the dimension of its expected value r j
i from Eq. (2.3).

Additionally, letD(F ) denote the total dimension of all variables involved in at least one factor
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Figure 3.3: Concept illustration of A’s structure. Each column represents some variable from state vector. Each row represents
some factor from Eq. (2.6). Here, A represents set of factors F = { f1(xi−1, xi), f2(xi, l j)} where factor f1 of motion model that
involves two poses xi and xi−1 will have non-zero values only at columns of xi and xi−1. Factor f2 of observation model that
involves together variables xi and l j will have non-zero values only at columns of xi and l j.

Notation Description

Xk = Xk+L state vector at times k and k + L
IX subset of Xk+L with variables involved in new terms in Eq. (2.6)
¬IX subset of Xk+L with variables not involved in new terms in Eq. (2.6)

XF
k = XF

k+L = XF subset of Xk+L with focused variables

XU
k = XU

k+L = XU subset of Xk+L with unfocused variables
IXU subset of XU with variables involved in new terms in Eq. (2.6)
¬IXU subset of XU with variables not involved in new terms in Eq. (2.6)

Table 3.1: Different partitions of state variables in BSP

from F . It is not difficult to show that Jacobian matrix A ∈ Rm×n of F has height m =M(F ),

and number of its columns that are not entirely equal to zero isD(F ). The letterD is used here

because density of information matrix is affected directly by value ofD(F ). It is important to

note that, for any candidate action a, the total dimension of new factorsM(F (a)) and dimension

of involved variablesD(F (a)) are independent of n, which is dimension the belief at planning

time b[Xk]. Instead, both properties are only functions of the planning horizon L.

In the following sections we describe our BSP approach, using the above notions of factor

graphs.

3.2 BSP via Matrix Determinant Lemma

3.2.1 Unfocused Case

Information theoretic BSP involves evaluating the costs from Eq. (2.15), operations that require

calculating the determinant of a large n×n matrix (posterior information matrix), with n being the

dimensionality of the state Xk+L. State of the art approaches typically perform these calculations

from scratch for each candidate action.

In contrast, our approach contains a one-time calculation that depends on state dimension

and will be re-used afterwards to calculate impact of each candidate action (see Section 3.4). As

will be seen below, the latter depends only onM(F (a)) andD(F (a)), while being independent
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of state dimension.

Recalling notations from the previous section, we would like to measure the amount of

information gained after graph augmentation Gk+L(a) = Gk ⊕ F (a). We can measure it through

the IG as the utility function. It is not difficult to show that IG from Eq. (2.15) can be written

as JIG(a) = 1
2 ln

∣∣∣∣∣Λk + AT A
∣∣∣∣∣∣∣∣∣∣Λk

∣∣∣∣∣ , where A ∈ Rm×n is Jacobian of factors in F (a) weighted by their

noise, with m =M(F (a)). Using the generalized matrix determinant lemma [13], this equation

can be written as

JIG(a) =
1
2

ln
∣∣∣∣Im + A · Σk · AT

∣∣∣∣ , Σk ≡ Λ−1
k (3.6)

as previously suggested in [16, 32] in the context of compact pose-SLAM and focused active

inference.

Eq. (3.6) provides an exact and general solution for information-based decision making,

where each action candidate can produce any number of new factors (non-myopic planning) and

where factors themselves can be of any motion or measurement model (unary, pairwise, etc.).

In many problem domains, such as SLAM, inference is typically performed in the infor-

mation space and as such, the joint covariance matrix Σk is not readily available and needs to

be calculated upon demand, which is expensive in general. While in first sight, it might seem

the entire joint covariance matrix needs to be recovered, in practice this is not the case due to

sparsity of the Jacobian matrix A, as was mentioned above.

Consequently, only specific entries from the covariance matrix Σk are really required, and

sparse matrix techniques exist to calculate them efficiently [11, 23]. More formally, denote by
IX the set of all variables that are connected to factors in F (a) (see Table 3.1), i.e. these are the

variables that are involved in at least one factor among the new factors generated due to the

currently considered candidate action a, see Eq. (2.6). Clearly, the columns of A that correspond

to the rest of the variables, ¬IX, are entirely filled with zeros (see Figure 3.3). Thus, Eq. (3.6)

can be re-written as

JIG(a) =
1
2

ln
∣∣∣∣Im + IA · ΣM,IX

k · (IA)T
∣∣∣∣ (3.7)

where IA is constructed from A by removing all zero columns, and Σ
M,IX
k is a prior joint marginal

covariance of variables in IX, which should be calculated from the (square root) information

matrix Λk. Note that dimension of IX isD(F (a)).

Intuitively, the posterior uncertainty reduction that corresponds to action a is a function

of only the prior marginal covariance over variables involved in F (a) (i.e. Σ
M,IX
k ) and the

new information introduced by the F (a)’s Jacobian A, with the latter also involving the same

variables IX. Moreover, from the above equation it can be seen that uncertainty reduction in the

posterior will be significant for large entries in A and high prior uncertainty over the variables
IX.

In particular, in case of myopic decision making with unary observation models (that involve

only a single state variable), calculation of IG(a) for different candidate actions only requires

recovering the diagonal entries of Σk, regardless of the actual correlations between the states,

as was recently shown in [19, 20]. However, while in the mentioned papers the per-action
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calculation takes O(n), the IG(a) calculation is not dependent on n at all, as will be shown in

Section 3.4.

Given a prior marginal covariance Σ
M,IX
k , whose dimension is D(F (a)) × D(F (a)), the

calculation in Eq. (3.7) is bounded by calculating determinant of anM(F (a))×M(F (a)) matrix

which is in general O(M(F (a))3), where M(F (a)) is the number of constraints due to new

factors (for a given candidate action a). This calculation should be performed for each candidate

action in the setA. Furthermore, in many problems it is logical to assume thatM(F (a)) << n,

asM(F (a)) depends mostly on the planning horizon L, which is typically defined and constant,

while n (state dimensionality) can be huge and grow with time in real systems (e.g. SLAM).

Consequently, given the prior covariance our complexity for selecting best action is O(|A|),

i.e. independent of state dimensionality n.

To conclude this section, we showed that calculation of action impact for a single candidate

action does not depend on n. While this result is interesting by itself in the context of active

inference, in Section 3.4 we go a step further and present an approach to calculate covariance

entries, required by all candidates, with one-time calculation which can be re-used afterwards.

3.2.2 Focused Case

In this section we present a novel approach to calculate change in entropy of a focused set of

variables after factor graph augmentation Gk+L(a) = Gk ⊕ F (a), combining it with the ideas

from the previous sections (generalized matrix determinant lemma and IG cost function) and

showing that impact of one candidate action can be calculated independently of state dimension

n.

First we recall definitions from Chapter 2 and introduce additional notations (see also Table

3.1): XF
k ≡ XF

k+L ∈ R
nF denotes the set of focused variables (equal to XF

k+L to remind us that

prior and posterior states are identical in non-augmented case), XU
k � Xk/XF

k ∈ R
nU is a set of

the remaining, unfocused variables, with n = nF + nU . The nF × nF prior marginal covariance

and information matrices of XF
k are denoted, respectively, by Σ

M,F
k (suffix M for marginal) and

Λ
M,F
k ≡ (ΣM,F

k )−1. Furthermore, we partition the joint information matrix Λk as

Σk =

 Σ
M,U
k Σ

M,UF
k

(ΣM,UF
k )T Σ

M,F
k

 , Λk =

 ΛU
k Λ

U,F
k

(ΛU,F
k )T ΛF

k

, (3.8)

where ΛF
k ∈ R

nF×nF is constructed by retrieving from Λk only the rows and the columns related

to XF
k (it is actually conditional information matrix of XF

k , conditioned on rest of variables XU
k ),

ΛU
k ∈ R

nU×nU is defined similarly for XU
k , and Λ

U,F
k ∈ RnU×nF contains remaining blocks of Λk

as shown in Eq. (3.8).

The marginal information matrix of XF
k , i.e. Λ

M,F
k , can be calculated via Schur complement

Λ
M,F
k = ΛF

k − (ΛUF
k )T · (ΛU

k )−1 · ΛUF
k . However, one of Schur complement’s properties [33] is

23



∣∣∣∣Λk

∣∣∣∣ =
∣∣∣∣ΛM,F

k

∣∣∣∣ · ∣∣∣∣ΛU
k

∣∣∣∣, from which we can conclude that

∣∣∣∣ΛM,F
k

∣∣∣∣ =
1∣∣∣∣ΣM,F
k

∣∣∣∣ =

∣∣∣∣Λk

∣∣∣∣∣∣∣∣ΛU
k

∣∣∣∣ . (3.9)

Therefore, the posterior entropy of XF
k+L (see Eq. (2.17)) is a function of the posterior Λk+L and

its partition ΛU
k+L:

JF
H

(a) = H(XF
k+L)=

nF · γ

2
−

1
2

ln

∣∣∣∣Λk+L

∣∣∣∣∣∣∣∣ΛU
k+L

∣∣∣∣ . (3.10)

From Eq. (2.9) one can observe that ΛU
k+L = ΛU

k + (AU)T · AU , where AU ∈ Rm×nU is constructed

from Jacobian A by taking only the columns that are related to variables in XU
k .

The next step is to use IG instead of entropy, with the same motivation and benefits as

in the unfocused case (Section 3.2.1). The optimal action a∗ = arg maxa∈A JF
IG(a) will

maximize JF
IG(a) = H(XF

k )−H(XF
k+L), and by combining Eq. (3.10) with the generalized matrix

determinant lemma we can write:

JF
IG(a) =

1
2

ln
∣∣∣∣Im + A · Σk · AT

∣∣∣∣ − 1
2

ln
∣∣∣∣Im + AU · Σ

U |F
k · (AU)T

∣∣∣∣ , (3.11)

where Σ
U |F
k ∈ RnU×nU is a prior covariance matrix of XU

k conditioned on XF
k , and it is actually

the inverse of ΛU
k .

Further, AU can be partitioned into IAU and ¬IAU , representing unfocused variables that

are, respectively, involved (IXU) or not involved (¬IXU) (see also Table 3.1). Note that ¬IAU

contains only zeros, and it can be concluded that:∣∣∣∣Im + AU · Σ
U |F
k · (AU)T

∣∣∣∣ =
∣∣∣∣Im + IAU · Σ

IXU |F
k · (IAU)T

∣∣∣∣ , (3.12)

where Σ
IXU |F
k is the prior covariance of IXU conditioned on XF

k .

Taking into account equations (3.7) and (3.12), JF
IG(a) can be calculated through

JF
IG(a) =

1
2

ln
∣∣∣∣Im + IA · ΣM,IX

k · (IA)T
∣∣∣∣ − 1

2
ln

∣∣∣∣Im + IAU · Σ
IXU |F
k · (IAU)T

∣∣∣∣ . (3.13)

We can see that the focused and unfocused information gains have a simple relation between

them

JF
IG(a) = JIG(a) −

1
2

ln
∣∣∣∣Im + IAU · Σ

IXU |F
k · (IAU)T

∣∣∣∣ . (3.14)

The second term in Eq. (3.14) is negative and plays a role of penalty, reducing the action’s

impact on posterior entropy of XF
k+L. In Section 3.5 we will discuss the intuition behind this

penalty term. Note that when all involved variables are focused , IX ⊆ XF
k+L, the variable set

IXU is empty and second term’s matrix will be an identity matrix Im. In such a case, the second

term becomes zero and we have JF
IG(a) = JIG(a).

Also here, given prior covariances Σ
M,IX
k and Σ

IXU |F
k , calculation of focused IG (Eq. (3.13))
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Figure 3.4: Partitions of Jacobians and state vector Xk+L in Augmented BSP case, unfocused scenario. Note: the shown variable
ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note that all white
blocks consist of only zeros. Top: Jacobian A of factor set F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D of factor sets
F conn(a) and F new(a) respectively.

is independent of state dimensionality n, with complexity bounded by O(M(F (a))3). In the

Section 3.4 we will show how the required covariances can be efficiently retrieved.

3.3 Augmented BSP via AMDL

3.3.1 Augmented Matrix Determinant Lemma (AMDL)

In order to simplify calculation of IG within Augmented BSP (Eq. (2.16)) one could resort,

similar to previous sections, to the matrix determinant lemma. However, due to zero-padding,

the information matrix Λ
Aug
k+L is singular and thus the matrix determinant lemma cannot be

directly applied. In this section we develop a variant of the matrix determinant lemma for the

considered augmented case (further referred to as AMDL).

Specifically, we want to solve the following problem: Recalling Λ+ = ΛAug + AT · A (see

also Eq. (2.10)), and dropping the time indices to avoid clutter, our objective is to express the

determinant of Λ+ in terms of Λ and Σ = Λ−1.

Lemma 3.3.1. The ratio of determinants of Λ+ and Λ can be calculated through:∣∣∣∣Λ+
∣∣∣∣∣∣∣∣Λ∣∣∣∣ =

∣∣∣∣∆∣∣∣∣ · ∣∣∣∣AT
new · ∆

−1 · Anew

∣∣∣∣ , (3.15)
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with ∆ � Im + Aold · Σ · AT
old, where the matrices Aold ∈ R

m×n and Anew ∈ R
m×n′ are constructed

from A by retrieving columns of only old n variables (denoted as Xold) and only new n′ variables

(denoted as Xnew), respectively (see Figure 3.4 and Table 3.2).

The proof of Lemma 3.3.1 is given in Appendix (9.1).

Remark 1: It is not difficult to show that AMDL for the matrix update of the form Λ+ =

ΛAug + ÃT · Ψ−1 · Ã (see Eq. (2.10)) assumes the form∣∣∣∣Λ+
∣∣∣∣∣∣∣∣Λ∣∣∣∣ =

∣∣∣∣Ψ−1
∣∣∣∣ · ∣∣∣∣∆̃∣∣∣∣ · ∣∣∣∣ÃT

new · ∆̃
−1 · Ãnew

∣∣∣∣ (3.16)

with ∆̃ � Ψ + Ãold · Σ · ÃT
old.

Additionally, we can extend the AMDL lemma for specific structure of matrix A. As was

explained in Section 3.1, in case of augmented BSP the new factors can be separated into two

sets F new(a) and F conn(a). It is not difficult to see that A’s structure in such case will be:

A =
(
Aold Anew

)
=

Bold Bnew

Dold Dnew

 =

Bold Bnew

0 Dnew

 (3.17)

where B’s rows represent factors from F conn(a), and D’s rows - factors from F new(a) (see also

Figure 3.4). Note that Dold ≡ 0.

Lemma 3.3.2. The ratio of determinants of Λ+ and Λ where A has structure from Eq. (3.17)

can be calculated through:∣∣∣∣Λ+
∣∣∣∣∣∣∣∣Λ∣∣∣∣ =

∣∣∣∣∆1

∣∣∣∣ · ∣∣∣∣BT
new · ∆

−1
1 · Bnew + DT

new · Dnew

∣∣∣∣ (3.18)

with ∆1 � Imconn + Bold · Σ · BT
old and mconn = M(F conn(a)), where partitions of B and D are

defined above in Eq. (3.17) and also can be seen in Figure 3.4.

The proof of Lemma 3.3.2 is given in Appendix (9.2).

We note the above equations are general standalone solutions for any augmented positive

definite symmetric matrix.

To summarize, we developed two augmented determinant lemmas, Eq. (3.15) and Eq. (3.18),

with the latter exploiting additional knowledge about A’s structure. Dimension of matrix ∆ from

Eq. (3.15) isM(F (a)) ×M(F (a)), whereas dimension of ∆1 from Eq. (3.18) isM(F conn(a)) ×

M(F conn(a)). Thus, complexity of calculation in Eq. (3.18) is lower than in Eq. (3.15) since

M(F conn(a)) ≤ M(F (a)). In sections below we will use both of the lemmas in order to develop

efficient solution to Augmented BSP problem.
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Notation Description
Xk state vector at time k

Xk+L state vector at time k + L

XF
k+L subset of Xk+L with focused variables

Xold subset of Xk+L with old variables, i.e. Xk

Xnew subset of Xk+L with new variables
IXold subset of Xold with variables involved in new terms in Eq. (2.6)
¬IXold subset of Xold with variables not involved in new terms in Eq. (2.6)

Focused Augmented BSP (XF
k+L ⊆ Xnew), Section 3.3.3

XF
new subset of Xnew with focused variables

XU
new subset of Xnew with unfocused variables

Focused Augmented BSP (XF
k+L ⊆ Xold), Section 3.3.3

IXF
old subset of IXold with focused variables

IXU
old subset of IXold with unfocused variables

¬IXF
old subset of ¬IXold with focused variables

¬IXU
old subset of ¬IXold with unfocused variables

Table 3.2: Different partitions of state variables in Augmented BSP

3.3.2 Unfocused Augmented BSP through IG

Here we show how the augmented matrix determinant lemma from Section 3.3.1 can be used to

efficiently calculate the unfocused IG as defined in Eq. (2.16), e.g. change in system’s entropy

after factor graph augmentation Gk+L(a) = Gk ⊕G(a) ⊕ F conn(a) (see Figure 3.2).

First we introduce different partitions of the joint state Xk+L, and the corresponding sub-

matrices in the Jacobian matrix A from Eq. (2.10) (see Table 3.2 and Figure 3.4). Recall

definitions of Xnew and Xold (see Section 3.3.1) and let IXold and ¬IXold denote, respectively, the

old involved and the old uninvolved state variables in the new terms in Eq. (2.6). We represent

by IAold and ¬IAold the columns of matrix A that correspond to the state variables IXold and ¬IXold,

respectively (see Figure 3.4). Note, ¬IAold ≡ 0.

Next, using AMDL Lemma 3.3.1, the determinant ratio between posterior and prior infor-

mation matrices is: ∣∣∣∣Λk+L

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ =
∣∣∣∣C∣∣∣∣ · ∣∣∣∣AT

new ·C
−1 · Anew

∣∣∣∣ , (3.19)

where C � Im + Aold · Σk · AT
old.

Consequently, the IG objective from Eq. (2.16) can be re-written as

JIG(a)=
n′ · γ

2
+

1
2

ln
∣∣∣∣C∣∣∣∣ +

1
2

ln
∣∣∣∣AT

new ·C
−1 · Anew

∣∣∣∣ . (3.20)
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Moreover, considering the above partitioning of Aold, we conclude Aold · Σk · AT
old = IAold ·

Σ
M,IXold
k · (IAold)T where Σ

M,IXold
k is the marginal prior covariance of IXold. Thus, matrix C can be

rewritten as

C = Im + IAold · Σ
M,IXold
k · (IAold)T . (3.21)

Observe that, given Σ
M,IXold
k , all terms in Eq. (3.21) have relatively small dimensions and

M(F (a)) ×M(F (a)) matrix C can be computed efficiently for each candidate action, with time

complexity not depending anymore on state dimension n, similarly to the non-augmented BSP

approach in Section 3.2.1. Calculation of the inverse C−1, which is required in Eq. (3.20), is

O(M(F (a))3) and will also not depend on n. The run-time of overall calculation in Eq. (3.20)

will have complexity O(M(F (a))3 + n′3) and will depend only on number of new factors

M(F (a)) and number of new variables n′. Both are functions of the planning horizon L and can

be considered as being considerably smaller than state dimension n. Moreover, higher ratios

n/M(F (a)) lead to a bigger advantage of our approach vs the alternatives (see Chapter 6).

It is worthwhile to mention a specific case, whereM(F (a)) = n′, which happens for example

in SLAM application when candidate action a introduces only motion (or odometry) factors

between the new variables. In such case it is not difficult to show that Eq. (3.20) will be reduced

to JIG(a) =
n′·γ

2 + ln
∣∣∣∣Anew

∣∣∣∣. In other words, the information gain in such case depends only on

the partition Anew of A (see Figure 3.4), Jacobian entries related to new variables, , while the

prior Λk is not involved in the calculations at all.

Remark 2: It is possible that posterior state dimension N = n + n′ will be different for

different candidate actions (e.g. see Chapter 6). In such case, the entropy (or IG), being function

of posterior eigenvalues’ product, will be of different scale for each candidate and can not be

directly compared. Thus, dimension normalization of Eq. (3.20) may be required. Even though

the term n′·γ
2 may already play a role of such a normalization, the detailed investigation of this

aspect is outside the scope of this thesis.

We can further enhance the presented above approach by considering structure of A from

Eq. (3.17) (see also Figure 3.4). This will allow us to slightly improve complexity of JIG(a)’s

calculation. By applying AMDL Lemma 3.3.2, we can show that information gained from

connecting Gk (with covariance matrix Σk) and G(a) (with information matrix Λa = DT
new ·Dnew)

through factors F conn(a) will be:

JIG(a)=
n′ · γ

2
+

1
2

ln
∣∣∣∣C1

∣∣∣∣ +
1
2

ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + Λa

∣∣∣∣ . (3.22)

C1 = Imconn + Bold · Σk · BT
old (3.23)

where matrix B =
(
Bold Bnew

)
is Jacobian of factors in F conn(a).

Since Bold is sparse (see Figure 3.4), same as partition Aold in Eq. (3.19), C1 also can be

calculated in efficient way:

C1 = Imconn + IBold · Σ
M,IXold
k · (IBold)T (3.24)
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It is interesting to note that the terms of the above-presented solution for the unfocused

Augmented BSP problem (Eq. (3.22) and Eq. (3.24)) can be recognized as belonging to different

operands in augmentation Gk ⊕ G(a) ⊕ F conn(a): Prior covariance matrix Σ
M,IXold
k represents

information coming from prior factor graph Gk, information matrix Λa provides information

of action’s factor graph G(a), and various partitions of matrix B introduce information coming

from connecting factors F conn(a).

Although the above solution (Eq. (3.22) and Eq. (3.24)) look somewhat more complicated,

its matrix terms have slightly lower dimensions comparing with matrix terms in the general

solution presented in Eq. (3.20) and Eq. (3.21), with complexity O(M(F conn(a))3 + n′3), and

therefore can be calculated faster, as will be shown in our simulations below. Moreover, the

equations (3.22) and (3.24) have more independent terms which can be calculated in parallel,

further improving time performance.

3.3.3 Focused Augmented BSP

The focused scenario in Augmented BSP setting, with the factor graph augmentation Gk+L(a) =

Gk⊕G(a)⊕F conn(a), can be separated to different cases. One such case is when the set of focused

variables XF
k+L contains only new variables added during BSP augmentation, as illustrated in

Figure 3.5, i.e. XF
k+L ⊆ Xnew are the variables coming from factor graph G(a). Such a case

happens, for example, when we are interested in reducing entropy of robot’s last pose within the

planning horizon. Another case is when the focused variables XF
k+L contain only old variables,

as shown in Figure 3.6, i.e. XF
k+L ⊆ Xold ≡ Xk are the variables coming from factor graph Gk.

This, for example, could correspond to a scenario where reducing entropy of already-mapped

landmarks is of interest (e.g. improve 3D reconstruction quality). The third option is for both

new and old variables to be inside XF
k+L. Below we develop a solution for the first two cases; the

third case can be handled in a similar manner.

Remark 3: In most cases, actual variable ordering will be more sporadic than the one

depicted in Figures 3.4, 3.5 and 3.6. For example, iSAM [24] determines variable ordering

using COLAMD [8] to enhance sparsity of the square root information matrix. We note that our

approach applies to any arbitrary variable ordering, with the equations derived herein remaining

unchanged.

Focused Augmented BSP (XF
k+L ⊆ Xnew) - focused variables belong to G(a)

First we define additional partitions of Jacobian A (see Figure 3.5). The sub-matrices Aold, Anew,
IAold and ¬IAold were already introduced in the sections above. We now further partition Anew

into AF
new and AU

new, that correspond, respectively, to columns of new variables that are focused

and unfocused. Denote the former set of variables as XF
new and the latter as XU

new (see also Table

3.2). Note, XF
new ≡ XF

k+L.

Lemma 3.3.3. The posterior entropy of XF
new (Eq. (2.17)) is given by

JF
H

(a) =
nF · γ

2
+

1
2

ln
∣∣∣∣(AU

new)T ·C−1 · AU
new

∣∣∣∣ − 1
2

ln
∣∣∣∣AT

new ·C
−1 · Anew

∣∣∣∣ (3.25)
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Figure 3.5: Partitions of Jacobians and state vector Xk+L in Augmented BSP case, Focused (XF
k+L ⊆ Xnew) scenario. Note: the

shown variable ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note
that all white blocks consist of only zeros. Top: Jacobian A of factor set F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D
of factor sets F conn(a) and F new(a) respectively.

where C is defined in Eq. (3.21).

The proof of Lemma 3.3.3 is given in Appendix (9.3).

We got an exact solution for JF
H

(a) that, given Σ
M,IXold
k , can be calculated efficiently with

complexity O(M(F (a))3 + n′3), similarly to unfocused Augmented BSP in Section 3.3.2. In

Section 3.4 we will explain how the prior marginal covariance term (ΣM,IXold
k ) can be efficiently

retrieved, providing a fast solution for focused Augmented BSP.

Additionally, it is interesting to note that there is efficient way to calculate the term
1
2 ln

∣∣∣∣(AU
new)T ·C−1 · AU

new

∣∣∣∣ − 1
2 ln

∣∣∣∣AT
new ·C

−1 · Anew

∣∣∣∣ from Eq. (3.25). First, we calculate matrix

V � AT
new ·C

−1 · Anew. Note that each row/column of V represents one of the new variables Xnew.

Next, we reorder rows and columns of V to obtain matrix VUF where first go rows and columns

of XU
new, followed by rows and columns of XF

new. Now, we can perform Cholesky decomposition

of VUF = LT · L and retrieve L’s diagonal entries that belong to variables XF
new, denoted by rF

i,i.

It is not difficult to show that:

1
2

ln
∣∣∣∣(AU

new)T ·C−1 · AU
new

∣∣∣∣ − 1
2

ln
∣∣∣∣AT

new ·C
−1 · Anew

∣∣∣∣ = −
∑

log rF
ii (3.26)

Further, like in Section 3.3.2, we will additionally exploit the special structure of A from

Eq. (3.17) (see also Figure 3.5). Similarly to unfocused Augmented BSP, this will allow us to
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improve complexity of JF
H

(a)’s calculation.

Lemma 3.3.4. The posterior entropy of XF
new (Eq. (2.17)), where A has structure from Eq. (3.17),

is given by

JF
H

(a) =
nF · γ

2
+

1
2

ln
∣∣∣∣(BU

new)T ·C−1
1 · B

U
new + Λ

U |F
a

∣∣∣∣ − 1
2

ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + Λa

∣∣∣∣ , (3.27)

where C1 is defined in Eq. (3.24), Λa = DT
new · Dnew is information matrix of action’s factor

graph G(a), and Λ
U |F
a = (DU

new)T · DU
new is information matrix of variables XU

new conditioned on

XF
new and calculated from distribution represented by G(a).

The proof of Lemma 3.3.4 is given in Appendix (9.4).

Also here, the matrix terms from the above solution of focused Augmented BSP prob-

lem (Eq. (3.27) have lower dimensions comparing with the matrix terms from the general

solution presented in Eq. (3.25). Given the prior marginal covariance Σ
M,IXold
k its complexity is

O(M(F conn(a))3 +n′3). We demonstrate a run-time superiority of this solution in our simulations

below.

It is important to mention that information-based planning problem for a system that

is propagated through the (Extended) Kalman filter [41, 43], where the objective is to reduce

uncertainty of only marginal future state of the system, is an instance of the focused Augmented

BSP (XF
k+L ⊆ Xnew) problem. Thus, the solution provided in this section is applicable also for

Kalman filter planning.

Focused Augmented BSP (XF
k+L ⊆ Xold) - focused variables belong to Gk

Similarly to the previous section, we first introduce additional partitions of Jacobian A for the

considered case (see Figure 3.6). From the top part of the figure we can see that ¬IAold can further

be partitioned into ¬IAU
old and ¬IAF

old. In particular, ¬IAU
old represents columns of old variables

that are both not involved and unfocused, and ¬IAF
old represents columns of old variables that are

both not involved and focused. We denote the former group of variables by ¬IXU
old and the latter

by ¬IXF
old (see Table 3.2). Likewise, IAold can be partitioned into IAU

old and IAF
old, representing

old involved variables that are, respectively, unfocused (IXU
old) or focused (IXF

old). Note that in

this case, the set of focused variables is XF
k+L = XF

k = {¬IXF
old ∪

IXF
old} and is contained in factor

graph Gk.

Lemma 3.3.5. The focused IG of XF
k is given by

JF
IG(a) =

1
2

(ln
∣∣∣∣C∣∣∣∣ + ln

∣∣∣∣AT
new ·C

−1 · Anew

∣∣∣∣ − ln
∣∣∣∣S ∣∣∣∣ − ln

∣∣∣∣AT
new · S

−1 · Anew

∣∣∣∣), (3.28)

where C is defined in Eq. (3.21), and

S � Im + IAU
old · Σ

IXU
old |F

k · (IAU
old)T , (3.29)

and where Σ
IXU

old |F
k is the prior covariance of IXU

old conditioned on XF
k .
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Figure 3.6: Partitions of Jacobians and state vector Xk+L in Augmented BSP case, Focused (XF
k+L ⊆ Xold) scenario. Note: the

shown variable ordering is only for illustration, while the developed approach supports any arbitrary variable ordering. Also note
that all white blocks consist of only zeros. Top: Jacobian A of factor set F (a) = {F conn(a),F new(a)}. Bottom: Jacobians B and D
of factor sets F conn(a) and F new(a) respectively.

The proof of Lemma 3.3.5 is given in Appendix (9.5).

Similarly to the cases discussed above (Sections 3.3.2 and 3.3.3), given Σ
M,IXold
k and Σ

IXU
old |F

k ,

calculation of JF
IG(a) per each action a can be performed efficiently with complexity O(M(F (a))3+

n′3), independently of state dimension n.

It is interesting to note the specific case whereM(F (a)) = n′. In other words, number of

new measurements is equal to number of new state variables. In such case, it is not difficult

to show that Eq. (3.28) will always return zero. We can conclude that for this specific case

(M(F (a)) = n′) there is no new information about the old focused variables XF
k .

Additionally, similar to previous sections, we will use the special structure of A from

Eq. (3.17) (see also Figure 3.6) in order to improve complexity of JF
IG(a)’s calculation.

Lemma 3.3.6. The focused IG of XF
k , where A has structure from Eq. (3.17), is given by

JF
IG(a) =

1
2

(ln
∣∣∣∣C1

∣∣∣∣ + ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + Λa

∣∣∣∣ − ln
∣∣∣∣S 1

∣∣∣∣ − ln
∣∣∣∣BT

new · S
−1
1 · Bnew + Λa

∣∣∣∣), (3.30)

where C1 is defined in Eq. (3.24), Λa = DT
new · Dnew is information matrix of action’s factor

graph G(a), and

S 1 = Imconn + IBU
old · Σ

IXU
old |F

k · (IBU
old)T , (3.31)

and where Σ
IXU

old |F
k is the prior covariance of IXU

old conditioned on XF
k .
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Problem Required covariance entries

Unfocused BSP, Σ
M,IX
k (prior marginal covariance of variables

Section 3.2.1 involved in new terms in Eq. (2.6))

Focused BSP, Σ
M,IX
k and Σ

IXU |F
k (prior covariance of

Section 3.2.2 unfocused and involved variables IXU

conditioned on focused variables XF)

Unfocused Augmented BSP, Σ
M,IXold
k (prior marginal covariance of old

Section 3.3.2 variables involved in new terms in Eq. (2.6))

Focused Augmented BSP (XF
k+L ⊆ Xnew), Σ

M,IXold
k

Section 3.3.3

Focused Augmented BSP (XF
k+L ⊆ Xold), Σ

M,IXold
k and Σ

IXU
old |F

k (prior covariance of
Section 3.3.3 unfocused and involved old variables IXU

old
conditioned on focused variables XF)

Table 3.3: Different problems and required entries of prior covariance. BSP - short for non-augmented belief space planning,
Augmented BSP - augmented belief space planning.

The proof of Lemma 3.3.6 is given in Appendix (9.6).

The matrix terms from the above solution (Eq. (3.30) and Eq. (3.31)) have lower dimensions

comparing with the matrix terms from the general solution presented in Eq. (3.28) and Eq. (3.29),

with complexity O(M(F conn(a))3 + n′3) given the prior marginal covariance matrices Σ
M,IXold
k

and Σ
IXU

old |F
k . The next section presents our approach to calculate the appropriate entries in the

prior covariance only once and re-use the result whenever required.

3.4 Re-use Calculations Technique

As we have seen above, unfocused and focused (augmented) BSP problems require different

prior covariance entries, in order to use the developed expressions. The required entries for each

problem are summarized in Table 3.3. Note that Σ
M,IX
k and Σ

M,IXold
k both represent exactly the same

thing, prior marginal covariance of old variables involved in new terms in Eq. (2.6)), and have

slightly different notations due to specifics of augmented and non-augmented settings of BSP.

The same goes for Σ
IXU |F
k and Σ

IXU
old |F

k , with both representing prior covariance of unfocused

and involved old variables IXU
old conditioned on focused variables XF . In this section we will

use notations of Augmented BSP (ΣM,IXold
k and Σ

IXU
old |F

k ), considering the non-augmented BSP

setting its special case.

From Table 3.3 it is seen that all approaches require prior marginal covariance of the involved

old variables, i.e. IXold. In terms of factor graphs, in non-augmented BSP the IXold represents

variables connected to factors from set F (a) and has dimensionD(F (a)), whereas in augmented

BSP scenario the IXold represents variables from prior factor graph Gk connected to factors

in set F conn(a) and has dimension D(F conn(a)). Although each candidate action may induce

a different set of involved variables, in practice these sets will often have many variables in
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common as they are all related to the belief at the current time (e.g. about robot pose), in

one way or another. With this in mind, we perform a one-time calculation of prior marginal

covariance for all involved variables (due to at least one candidate action) and re-use it for

efficiently calculating IG and entropy of different candidate actions.

More specifically, denote by XAll ⊆ Xk the subset of variables that were involved in new

terms in Eq. (2.6) for at least one candidate action. We can now perform a one-time calculation

of the prior marginal covariance for this set, i.e. Σ
M,XAll
k . The complexity of such calculation

may be different for different applications. For example, when using an information filter, the

system is represented by information matrix Λk, and in general the inverse of Schur compliment

of XAll variables should be calculated. However, there are techniques that exploit sparsity of the

underlying matrices in SLAM problems, in order to efficiently recover marginal covariances [23],

and more recently, to keep and update them incrementally [17]. In Chapter 6 we show that

calculation time of Σ
M,XAll
k while exploiting sparsity [11, 23] is relatively small comparing to

total decision making time of alternative approaches. Still, the more detailed discussion about

complexity of covariance retrieval can be found in publications [17, 23].

For focused BSP (Section 3.2.2) and for focused Augmented BSP (XF
k+L ⊆ Xold) (Section

3.3.3) cases, we also need the term Σ
IXU

old |F
k (see Eq. (3.13) and (3.29)). This term can be computed

in two different ways as described below.

First way: we will calculate it through additional marginal covariance entries. First we

will calculate the prior marginal covariance Σ
M,(IXU

old ,F)
k for the set of variables {IXU

old, X
F
k }, and

then compute the Schur complement over the relevant partitions in Σ
M,(IXU

old ,F)
k (suffix M denotes

marginal):

Σ
IXU

old |F
k = Σ

M,IXU
old

k − Σ
M,IXU

oldF
k · (ΣM,F

k )−1 · Σ
M,F IXU

old
k (3.32)

Consequently, we can use a one-time calculation also for the focused BSP and for focused

Augmented BSP (XF
k+L ⊆ Xold) cases as follows. Let us extend the set XAll to contain also all

focused variables. Once Σ
M,XAll
k is calculated, Σ

M,(IXU
old ,F)

k will be just its partition and can be

easily retrieved from it. As a result, the calculation of Σ
IXU

old |F
k per candidate action becomes

computationally cheap (through Eq. (3.32)). Furthermore, term (ΣM,F
k )−1 can be calculated only

once for all candidates.

Second way: we will compute the Σ
IXU

old |F
k through information matrix partitioning. Note

that matrix Λ
XU

old
k , an partition of information matrix Λk that belong to old unfocused variables

XU
old, is information matrix of distribution of XU

old variables conditioned on focused variables

XF
k . Thus, the Σ

IXU
old |F

k is just a partition of (Λ
XU

old
k )−1 that belong to old unfocused involved

variables IXU
old. Therefore, we need to calculate specific entries of Λ

XU
old

k ’s inverse. In this case

our one-time calculation will be as following. We denote by XU
All ⊆ Xk the subset of unfocused

variables that were involved in new terms in Eq. (2.6) for at least one candidate action. Next, we

will calculate Σ
XU

All |F
k - the entries of Λ

XU
old

k ’s inverse that belong to XU
All. Now, the Σ

IXU
old |F

k is just

partition of Σ
XU

All |F
k and can be retrieved easily for each candidate action.

The first method is good option when dimension of XF
k is relatively small. In such cases
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the Eq. (3.32) can be calculated very fast. When this is not the case and number of focused

variables is large, the second technique will become much faster alternative.

Remark 4: As we will see in Section 4.2, there are cases where IXU
old is identical between all

candidate actions. In such cases Σ
IXU

old |F
k can be calculated only once and further reused by each

candidate action.

To summarize this section, the presented technique performs time-consuming calculations

in one computational effort; the results are then used for efficiently evaluating the impact of

each candidate action. This concept thus preserves expensive CPU resources of any given

autonomous system.

3.5 Connection to Mutual Information Approach and Theoretical
Meaning of IG

Mutual information I(a|b) is one additional metric from information theory that is used a lot in

the field of information-based decision making. Basically it encodes the quantity of information

about set of variables a that we would get in case the value of variables in other set b would be

revealed to us. For example, this metric was used in [9, 23] to determine the most informative

measurements in a measurement selection problem, and more recently in [2] for information-

based active exploration, with both problems being very similar. Additionally, it was used in [4]

to create a sparse approximation of the true marginalization using Chow-Liu tree.

In this section we will explore the connection between our BSP approach that uses IG

(see Section 3.2) and mutual information approach that is applied in [9, 23]; we will show that

objective functions of both are mathematically identical and calculate exactly the same metric,

even though calculations in our approach are made in a much more efficient way. Moreover, we

also will present theoretical meaning of IG that provides better intuition for equations (3.6) and

(3.11).

In MI approach we would like to select the most informative measurements from the avail-

able set {z1, z2, . . .} and also to account for possible measurement correlation. Each candidate

measurement has specific measurement model zi = hi(Xi
k)+υi with υi ∼ N(0,Ψi). The candidate

measurements are a priori unknown and can be viewed as random variables whose statistic prop-

erties are fully defined by a random state vector Xk and random noises υi, due to measurement

models. Combining candidate measurements with the state vector we have

W = (Xk, z1, z2, . . .)T , (3.33)
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and similarly to the mentioned papers, it can be shown that the covariance matrix of W is

ΣW =


Σk Σk · Ã1

T
Σk · Ã2

T
· · ·

Ã1 · Σk Ã1 · Σk · Ã1
T

+ Ψ1 Ã1 · Σk · Ã2
T

· · ·

Ã2 · Σk Ã2 · Σk · Ã1
T

Ã2 · Σk · Ã2
T

+ Ψ2 · · ·

...
...

...
. . .


, (3.34)

where Ãi is Jacobian of measurement model function hi(Xi
k) and where it wasn’t combined yet

with model noise Ψi, similarly to Ã defined in Eq. (2.9). The MI approach [9, 23] calculates

I(Xk|zi) for each candidate zi from ΣW and selects candidates with highest mutual information.

Now we will show that objective I(Xk|zi) is mathematically identical to our JIG(zi) from

Section 3.2.1 (see also Eq. (3.6)). First, note that Σ
Xk |zi
W = (Λk + Ãi

T
· Ψ−1

i · Ãi)−1 (easy to check

by using Schur complement from left and Woodbury matrix identity from right). Further, MI for

Gaussian distributions can be calculated through covariance matrices as

I(Xk|zi) = H(Xk) −H(Xk|zi) =
1
2

ln

∣∣∣∣ΣM,Xk
W

∣∣∣∣∣∣∣∣ΣXk |zi
W

∣∣∣∣ =

1
2

ln

∣∣∣∣ΣM,Xk
W

∣∣∣∣∣∣∣∣ΣM,Xk
W − Σ

M,Xkzi
W · (ΣM,zi

W )−1 · Σ
M,ziXk
W

∣∣∣∣ =

1
2

ln

∣∣∣∣Σk

∣∣∣∣∣∣∣∣Σk − Σk · Ãi
T
· (Ãi · Σk · Ãi

T
+ Ψi)−1 · Ãi · Σk

∣∣∣∣ (3.35)

and further can be reduced to I(Xk|zi) = 1
2 ln

∣∣∣∣∣Λk + Ãi
T
· Ψ−1

i · Ãi

∣∣∣∣∣∣∣∣∣∣Λk

∣∣∣∣∣ which is exactly the unfocused

IG from Eq. (3.6) for case when candidate action ai ≡ zi introduces single factor into the factor

graph.

While both approaches are obviously calculating the same metric, the computation complex-

ity is not the same. In both [9] and [23], the objective is calculated through Eq. (3.35) and its

complexity depends on Xk’s dimension. In contrast, our approach rAMDL does so independently

of state dimension through Eq. (3.7) as has been shown in sections above, making it more

efficient comparing to the MI technique.

Additionally, in [23] Kaess et al. presented the approach to sequentially select informative

measurements that accounts for measurements correlation and redundancy, but without the

need to update state estimation during each decision. In Section 4.1 we present our algorithm

Sequential rAMDL where we combine similar idea together with rAMDL technique in order to

eliminate the need in marginal covariance calculation at each decision.

Most importantly, from the above equations we can see conceptually a very interesting

meaning of the metric that is calculated (IG or MI). Without omitting noise matrix Ψ from our
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formulation, we can show that unfocused IG of future measurement z is

JIG(z) =
1
2

ln
∣∣∣∣Im + A · Σk · AT

∣∣∣∣ =
1
2

ln

∣∣∣∣Ψ + Ã · Σk · ÃT
∣∣∣∣∣∣∣∣Ψ∣∣∣∣ . (3.36)

Further, from Eq. (3.34) we see that Σz � Ψ + Ã · Σk · ÃT is covariance matrix of the random z.

Thus, we can see that

JIG(z) =
1
2

ln
∣∣∣∣Σz

∣∣∣∣ − 1
2

ln
∣∣∣∣Ψ∣∣∣∣ = H(z) −H(υ), (3.37)

where υ is random noise from z’s measurement model, with υ ∼ N(0,Ψ). From Eq. (3.37) we

see that information gain is exactly the difference between entropies of future measurement and

its noise. It can be explained in the following way - as was mentioned before, random variable z

is fully defined by random variables Xk and υ through measurement model. When z’s value is

revealed it obviously provides information about both state and noise. The information about

the state (the information gain) then will be the whole received information (the entropy of r.v.

z) minus the information about the noise υ.

From the above we can see that in order for measurement z to be notably informative three

conditions should apply. First, its noise should have small entropy H(υ) which also comes

from general knowledge about measurement estimation. Additionally, z should have big entropy

H(z) from which we can conclude second and third conditions - the involved variables IX from

the measurement model should have high prior uncertainty (high prior entropy), as also their
ĨA (Jacobian of measurement model at linearization point of IX) should contain high absolute

values (the sign does not matter because of quadratic term of Ã in Eq. (3.36)).

In same way we can review equation for focused IG (Eq. (3.11)). The first term
1
2 ln

∣∣∣∣Im + A · Σk · AT
∣∣∣∣ measures amount of information about whole state Xk, while the second

term

1
2

ln
∣∣∣∣Im + AU · Σ

U |F
k · (AU)T

∣∣∣∣ =
1
2

ln

∣∣∣∣Ψ + ÃU · Σ
U |F
k · (ÃU)T

∣∣∣∣∣∣∣∣Ψ∣∣∣∣ = H(z|XF
k ) −H(υ) (3.38)

measures the information given that XF
k was provided, meaning information for only unfocused

variables. The difference between total information and information of only unfocused vari-

ables will provide the information about the focused set XF
k .

Such interpretation of IG’s meaning through entropy of future measurement and of its noise

can be considered not only for measurement selection problem but also for the more general

formulation from Chapter 2, thus constituting a possible direction for future research.
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3.6 Mutual Information - Fast Calculation via Information Matrix

While deriving our approach rAMDL , through similar equations we come by to the way to

calculate mutual information from entries of only information matrix Λk, without necessity to

retrieve covariance matrix Σk. We note that such calculation will be more efficient and beneficial

in cases when only information matrix available (f.e. iSAM2 [24]). Thus, we present below the

developed mathematical notations as additional contribution of this thesis.

Lemma 3.6.1. When current state vector contains only variable sets a and b, Xk = {a, b}, then

I(a|b) can be calculated through

I(a|b) =
1
2

ln

∣∣∣∣Λa
k

∣∣∣∣ · ∣∣∣∣Λb
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (3.39)

where Λa
k and Λb

k are partitions of information matrix Λk with respect to variables from a and b

respectively.

Lemma 3.6.2. When current state vector contains additional variables r, Xk = {a, b, r}, then

I(a|b) can be calculated through

I(a|b) =
1
2

ln

∣∣∣∣Λ(a,r)
k

∣∣∣∣ · ∣∣∣∣Λ(b,r)
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ · ∣∣∣∣Λr
k

∣∣∣∣ (3.40)

where Λ
(a,r)
k is a partition of information matrix Λk with respect to variables from both a and r.

The proof of Lemmas 3.6.1 and 3.6.2 is given respectively in Appendix (9.9).

Practically we see that I(a|b) is function of determinants of information matrix and its

different partitions. Equations (3.39) and (3.40) allow quick calculation of mutual information

between different subsets of Xk using information matrix Λk as representative of the system, and

do not require calculation of covariance matrices first. And such formulation will be beneficial

for cases when Information-Kalman filter or ISAM2 are used to estimate the system.
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Chapter 4

Application to Different Problem
Domains

In Chapter 3, we provided an efficient solution for a general BSP problem, considering both

non-augmented and augmented cases. In this section we discuss various problem domains of

(augmented) BSP and show how our approach can be applied for each case. More concretely,

we focus on Sensor Deployment (Section 4.1), active SLAM (Section 4.2) and Graph Reduction

(Section 4.3), as specific non-augmented and augmented BSP applications. For the former, we

develop a more computationally efficient variant of our approach. For each case, we first briefly

formulate the problem and then describe our solution.

4.1 Sensor Deployment

Sensor deployment is one of the most researched problems of decision making. The basic idea

is to measure a specific metric in domain space such as, e.g., temperature within building’s

space. The goal is to find the best locations for available sensors in order to estimate the metric

in entire domain in the most accurate way.

Typically discretization of domain space is made due to computation complexity consid-

erations. Thus, we have n available locations in the space, L � {l1, . . . , ln}, where sensors can

be deployed. The metric’s values in these locations can be modeled as random variables and

combined into state vector: X = {x1, .., xn}.

Putting sensor at location li will allow us to take measurement zi at that location, which will

provide information about the metric at place, xi. Assume that measurement model of sensor is

known and is:

zi = hi(xi) + υi, υi ∼ N(0,Συ,i). (4.1)

Additionally, correlation between different locations may be known a priori. Such prior can be

presented as X’s joint distribution, P0(X). Assuming that it is Gaussian, it may be represented

as [20, 27, 44, 45]

X ∼ P0(X) = N(µ,Σ0) = N−1(η,Λ0). (4.2)
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Figure 4.1: Illustration of belief propagation in factor graph representation - Sensor Deployment scenario. The space is discretized
through grid of locations L � {l1, . . . , l9}. Factor f0 within prior factor graph Gk represents our prior belief about state vector,
P0(X). Factors f1 − f3 represent measurements taken from sensors deployed at locations l1, l2 and l4. Two actions ai = {l3, l6} and
a j = {l7, l8} are considered, introducing into graph two new factor sets F (ai) and F (a j) respectively (colored in green). In this
example value of c′ is 2.

Note that in practice in typical sensor deployment problems Λ0 is not actually available and

Σ0 is used instead. Nevertheless, in further formulation we assume that Λ0 was calculated a

priori (as Σ−1
0 ) and therefore is available to us.

Finding best sensor locations in order estimate the metric in most accurate way is another

instance of information-based not-augmented BSP and therefore can be viewed through a prism

of factor graphs (see Figure 4.1) as we show below.

Conceptually, the space of candidate actions in Sensor Deployment setting contains all

subsets of possible sensor locations S ⊆ L with the usual constraint on cardinality of subset

S , |S | ≤ c, to represent that number of sensors is limited. But considering all subsets of size

c is usually unrealistic as the number of all possible subsets
(
n
c

)
is astronomical due to its

combinatorial nature. Therefore, typically the problem is solved in greedy way.

We propose a sub-optimal approach where a sequence of decisions must be made instead

of one decision. During each decision we are looking for subset S ′, |S ′| � c′, with c′ locations

chosen from locations that were not yet selected. The optimal S ′ is the one that maximizes X’s

estimation accuracy. The algorithm ends when overall set of locations S = {S ′1, S
′
2, ..} grows to

cardinality of c. Note that number of locations in each subset, c′, should be such that number

of S ′ candidates,
(

n
c′
)
, is small enough to be evaluated in a realistic time period. Thus, c′ is

scenario-dependent and should be selected manually.

More specifically, we assume that till time tk the disjoint subsets {S ′1, . . . , S
′
k} of locations

were selected, where each location subset S ′j = {l1j , . . . , l
c′
j } provided measurements Z j =

40



{z1
j , . . . , z

c′
j }. Given these measurements, the joint pdf at time tk is

P(X|Z1:k) ∝ P0(X)
k∏

j=1

c′∏
i=1

P(zi
j|x

i
j), (4.3)

where observation model P(zi
j|x

i
j) is defined in Eq. (4.1)

MAP estimation of X according to information in Eq. (4.3) will provide current state belief

bk[X] � P(X|Z1:k) = N(X∗k ,Σk), and following Eq. (2.7) the information matrix of bk[X] is

Λk = Σ−1
k = Λ0 +

∑k
j=1

∑c′
i=1(Hi

j)
T · (Συ, j,i)−1 · Hi

j where Hi
j � 5xhi

j are the Jacobian matrices

of observation model (Eq. (4.1)) for all measurement terms in Eq. (4.3), linearized about the

current estimate X∗k . Note that the belief bk[X] can be naturally represented by a factor graph

Gk as was explained in Section 3.1 (see also Figure 4.1).

The next decision requires to select next candidate action a - a location subset S ′k+1 that

will minimize posterior uncertainty. Therefore, candidate space contains all subsets of form

S ′ ⊆ L \ {S ′1 ∪ . . . ∪ S ′k} and |S ′| = c′. Each such candidate subset a ≡ S ′ = {l1, . . . , lc
′

} will

provide future measurements Z′ = {z1, . . . , zc′} and thus future belief bk+1[X] and its information

matrix will be

bk+1[X] = P(X|Z1:k,Z′) ∝ bk[X]
c′∏

i=1

P(zi|xi), Λk+1 = Λk +

c′∑
i=1

(Hi)T · (Συ,i)−1 · Hi. (4.4)

Thus, the candidate S ′ introduces to Gk the factor set F (a), which contains exactly c′ factors.

Each one of the factors is connected to one variable - the xi that represents location of factor’s

sensor (see Figure 4.1).

Similarly to the general formulation in Chapter 2, stacking all new Jacobians in the above

equation together into a single matrix and combining all noise matrices into block-diagonal one,

will lead to Eq. (2.9). Hence, the optimal candidate subset S ′ will be the one that maximizes IG

from Eq. (2.15).

Note that the block-columns of Jacobian matrix A ∈ Rm×n from Eq. (2.9) represent all

possible sensor locations and block-rows represent new c′ measurement factors from Eq. (4.4).

As was mentioned before, only involved variables will have non-zero values in their block-

columns. It is not difficult to show that in the Sensor Deployment problem, the involved variables

are xi that belong to locations in subset S ′. Block-columns of all other variables in A will be

zeros.

The rest part of the problem definition (objective functions, unfocused and focused

settings) for the Sensor Deployment problem is exactly identical to the general formulation. In

particular, in unfocused setting the optimal S ′k+1 will be found through

S ′k+1 = arg max
S ′⊆X\{S ′1,..,S

′
k},|S

′ |=c′
JIG(S ′) =

1
2

ln
∣∣∣∣Im + AS ′ · Σk · AT

S ′

∣∣∣∣ (4.5)

where AS ′ is Jacobian matrix of candidate S ′.
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Solution - Sequential rAMDL

The above problem can be straightforwardly solved by rAMDL approach, through Eq. (3.7) and

(3.13). However, for each sequential decision the marginal covariance should be calculated for

set of variables involved in any of the candidate actions, and it is not difficult to show that this

set will contain all yet unoccupied locations. In scenarios with high number possible sensor

locations, this can negatively affect overall time performance.

Here we present an enhanced approach, Sequential rAMDL , that performs the same sub-

optimal sequence of decisions as described above, but uses only the prior covariance matrix

Σ0, without recalculating covariance entries after each decision. Such an approach gives an

approximated solution (compared to the sub-optimal sequence of decisions described above) but

without paying computation resources for expensive manipulation of high-dimensional matrices.

The first decision will be performed in exactly the same way - we will look for the best

subset S ′1 of size c′ that maximizes IG (Eq. (4.5)), for unfocused case. However, upon finding

such a subset, the estimation solution of the system will not be updated due to measurements

from new sensors. Instead, in each next decision we will look for a subset S ′k+1 that maximizes

the following objective

S ′k+1 = arg max
S ′⊆X\{S ′1,..,S

′
k},|S

′ |=c′
JIG(S̃ ) =

1
2

ln
∣∣∣∣Im̃ + AS̃ · Σ0 · AT

S̃

∣∣∣∣ , AS̃ =


AS ′1

:

AS ′k
AS ′

 (4.6)

where S̃ � {S ′1, .., S
′
k, S

′}, and AS̃ is a matrix with all appropriate Jacobians combined together.

Note that the sequential decision making through Eq. (4.6) will yield an exact solution,

compared to sequential decision making through Eq. (4.5), if Jacobian matrices Hi (Eq. (4.4))

do not change after acquiring measurements from newly deployed sensors. This is the case, for

instance, when linearization point X∗k stayed the same or when measurement model (Eq. (4.1)) is

linear with respect to xi (i.e. zi = xi + νi). Otherwise, Eq. (4.6) will merely be the approximation

of the above approach.

After looking into Eq. (4.6) one can see that matrix inside is actually:

Im̃+AS̃ ·Σ0·AT
S̃

=


VS ′1 YS ′1,S

′
2
· · · YS ′1,S

′

YS ′2,S
′
1

VS ′2 · · · YS ′2,S
′

...
...

. . .
...

YS ′,S ′1 YS ′,S ′2 · · · VS ′


,VS ′ � Im+AS ′ ·Σ0·(AS ′)T , YS ′i ,S

′
j
� AS ′i ·Σ0·AT

S ′j

(4.7)

where VS ′ and YS ′i ,S
′
j

can be efficiently calculated (independently of state dimension) due to

the sparsity of Jacobians. Moreover, after Σ0 is calculated (or given) at the beginning of the

algorithm, all its required entries are freely accessible through all the run-time of algorithm.

It can be seen that all diagonal matrices VS ′ were already calculated during the first decision

and can be kept and re-used. Also all the correlation matrices YS ′i ,S
′
j

(except for YS ′k ,S
′) were
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Figure 4.2: Illustration of belief propagation in factor graph representation - SLAM scenario. Nodes xi represent robot poses,
while nodes li - landmarks. Factor f1 is prior on robot’s initial position x1; factors between robot poses represent motion model
(Eq. (4.8)); factors between pose and landmark represent observation model (Eq. (4.9)). Two actions ai and a j are considered,
performing loop-closure to re-observe landmark l1 and l2 respectively. Both actions introduce their own factor graphs G(ai) and
G(a j) (colored in pink) that are connected to prior Gk through factor sets F conn(ai) and F conn(a j) (colored in green) respectively.

calculated in previous decisions. The only required calculation in every decision for each

candidate S ′ is the matrix YS ′k ,S
′ and determinant of the combined matrix.

Our unfocused Sequential rAMDL approach can be seen as providing a little increase in

the per-candidate calculation in order to escape the necessity of prior covariance calculation for

each decision, similarly to method of sequential informative measurements selection presented

in [23]. This approach can be a good alternative to rAMDL technique when one-time calculation

part of rAMDL (Section 3.4) is more time-consuming than the part of candidates evaluation, as

will be shown in our simulations. The focused Sequential rAMDL approach is also possible,

by following similar derivations. Moreover, the same idea is applicable to other sequential

domains like for example measurement selection problem.

4.2 Augmented BSP in Unknown Environments

In this section we discuss a specific case of the Augmented BSP problem from Chapter 2,

considering a SLAM setting. Such a specification provides the reader with an illustrated

example of the Augmented BSP problem for better intuition.

Let us refine the definition. In smoothing formulation of visual SLAM the state vector

Xk represents robot poses per each time step, {x0, . . . , xk}, and landmarks mapped till now,

Lk � {l1, . . . , lnk }. Further, we model robot motion dynamics and sensor observations through:

xi+1 = f (xi, ui) + ωi , ωi ∼ N(0,Σω,i) (4.8)
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zi, j = h(xi, l j) + υi, j , υi, j ∼ N(0,Συ,i, j) (4.9)

where ui is control at time ti, zi, j represents observation of landmark l j by robot from position xi

at time ti, and where ωi and υi, j are the motion and measurement noises, respectively. Note that

the motion model can be easily presented in the form of a general factor model r j
i = h j

i (X j
i ) + υ

j
i

from Eq. (2.3) by moving the left side to the right:

0 = f (xi, ui) − xi+1 + ωi = f̄ (xi, xi+1) + ωi , ωi ∼ N(0,Σω,i). (4.10)

The joint pdf for the SLAM problem at time tk (or current belief ) is then

b[Xk] = P(Xk|Z0:k, u0:k−1) ∝ P(x0)
k∏

i=1

{
P(xi|xi−1, ui−1)

ni∏
j=1

P(zi, j|xi, l j)
}
, (4.11)

where P(x0) is a prior on robot’s first pose, Zi = {zi,1, ..., zi,ni} represents all observations at time ti
and ni being the number of such observations. The motion and observation models P(xi|xi−1, ui−1)

and P(zi, j|xi, l j) are defined by Eq. (4.8) and Eq. (4.9). A factor graph representation, considering

for simplicity only a two landmarks l1 and l2, is shown in Figure 4.2. Performing MAP inference

over the belief b[Xk], one can write b[Xk] = N(X∗k ,Σk), with appropriate mean vector X∗k and

covariance matrix Σk.

The space of candidate actions in SLAM setting contains all control sequences uk+1:k+L−1,

where L is the planning horizon and can vary between different candidates. Typically finite

set of candidates is pooled from this infinite space according to their relevance to robot’s

current destination or to loop-closure maneuver, for example through simulation [39] and

sampling [1, 38]. Similar to Eq. (2.6), future belief b[Xk+L] � P(Xk+L|Z0:k+L, u0:k+L−1) for

particular candidate action a = uk+1:k+L−1 can be explicitly written as

b[Xk+L] ∝ b[Xk]
k+L∏

l=k+1

{
P(xl|xl−1, ul−1)

nl∏
j=1

P(zl, j|xl, l j)
}
, (4.12)

where Xk+L is the state vector at the L-th look ahead step. It contains all variables from the

current state vector Xk and is augmented by new robot poses Xnew = {xk+1, . . . , xk+L}. Also note

that in Eq. (4.12) we consider only new observations of landmarks that were already mapped till

time tk. It is also possible to reason about observing not yet mapped landmarks [18] but it is

outside scope of this work.

Following the model from Section 3.1, the candidate’s factor graph G(a) = (F new(a), Xnew,Enew)

will contain all new robot poses connected by motion model factors F new(a) = { f M
k+1, . . . , f M

k+L−1}

with appropriate motion models { f̄ (xk+1, xk+2), . . . ,

f̄ (xk+L−1, xk+L)}, whereas factors from F conn(a), which connect old variables Xk and new vari-

ables Xnew, will contain one motion model factor f M
k ( with motion model f̄ (xk, xk+1)) and all of

observation model factors connecting new poses with observed landmarks (see Figure 4.2).

Following the general formulation, the posterior information matrix of belief b[Xk+L],
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i.e. Λk+L, can be constructed by first augmenting the current information matrix Λk ≡ Σ−1
k with L

zero block-rows and block-columns, each block having dimension np of robot pose variable, to

get Λ
Aug
k+L ∈ R

N×N with N = n + L · np, and thereafter adding to it new information, as illustrated

in Figure 2.1 (see e.g. [21]):

Λk+L = Λ
Aug
k+L +

k+L∑
l=k+1

{
FT

l · Σ
−1
ω,l · Fl +

nl∑
j=1

HT
j · Σ

−1
υ,l, j · H j

}
, (4.13)

where Fl � 5x f and H j � 5xh are augmented Jacobian matrices of all new factors in Eq. (4.12)

(motion and observation terms all together), linearized about the current estimate of Xk and

about initial values of newly introduced robot poses.

Again, after stacking together all new Jacobians in the above equation and combining

all noise matrices into a block-diagonal matrix, we will get the same posterior information

expression as in Eq. (2.10).

Note that the block-columns of matrix A ∈ Rm×N from Eq. (2.10) represent all old robot

poses, mapped till now landmarks and new robot poses from L-horizon future. A’s block-rows

represent new motion and observation factors from Eq. (4.12). As mentioned before, only

involved variables will have non-zero values in their block-columns. It is not difficult to see that

in SLAM the involved ones are: all new robot poses, current robot pose xk and all landmarks

that will be observed following current candidate’s actions. Block-columns of all other variables

in A will be zeros.

The rest of the problem definition (objective functions, unfocused and focused settings)

for the active SLAM problem is identical to the general formulation in Chapter 2.

Solution - rAMDL applied to SLAM

The Augmented BSP problem for SLAM case, described in previous section, can be naturally

solved by our general approach from Section 3.3. However we will make one step further and

provide solution tailored specifically to the SLAM domain, as example of applying rAMDL to a

real problem and in order to show the underlying structure of the SLAM solution.

First, let us model informative partitions of Jacobian matrices B and D from Eq. (3.17),
IBold, Bnew and Dnew (see also Figure 3.4), for one of the candidate actions, action a. As was

mentioned above, the factors from action’s factor graph G(a), F new(a), contain all new motion

model factors from Eq. (4.12), except for factor f M
k . Therefore, Dnew will have the following
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form:

Dnew =

(columns of xk+1, . . . , xk+L)




block-row for f̄ (xk+1, xk+2)
...

block-row for f̄ (xk+L−1, xk+L)

=

Ψ
− 1

2
new ·

(xk+1) (xk+2) (xk+3) (xk+4) · · · (xk+L−2) (xk+L−1) (xk+L)





�k+1 −I 0 0 · · · 0 0 0

0 �k+2 −I 0 · · · 0 0 0

0 0 �k+3 −I · · · 0 0 0

0 0 0 �k+4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · −I 0 0

0 0 0 0 · · · �k+L−2 −I 0

0 0 0 0 · · · 0 �k+L−1 −I

� Ψ
− 1

2
new · D̃new

(4.14)

where �k+l � 5x f
∣∣∣
x=xk+l

is Jacobian of motion model function f from Eq. (4.8) with respect

to xk+l, −I is Jacobian of f̄ from Eq. (4.10) with respect to second pose and is actually an

identity matrix with dimension equal to dimension of robot pose. Matrix Ψnew is block-diagonal,

combining all noise matrices of F new(a) factors. Additionally, we denote by D̃new the Jacobian

entries of Dnew not weighted by factors’ noise Ψnew.

Assume that following a’s controls the set of landmarks La ⊆ Lk will be observed. Also,

define set of all new observation factors F obs(a) as

F obs(a) = { factor f O
i with observation model hi(x, l) : x ∈ Xnew, l ∈ La, 1 ≤ i ≤ no} (4.15)

where no is number of such factors. Thus, the connecting factors are F conn(a) = { f M
k ,F obs(a)};

and involved old variables will be IXold = {La, xk}, containing xk because of first factor’s motion

46



model f̄ (xk, xk+1). Therefore, IBold and Bnew will be:

(
IBold Bnew

)
=

(columns of La, xk, xk+1, . . . , xk+L)




block-row for f̄ (xk, xk+1)

block-row for h1
...

block-row for hno

=

Ψ
− 1

2
conn ·

(La) (xk) (xk+1) · · · (xk+L)




0 �k −I · · · 0

�
La
1 0 �

xk+1
1 · · · �

xk+L
1

...
...

...
. . .

...

�
La
no 0 �

xk+1
no · · · �

xk+L
no

(4.16)

IBold = Ψ
− 1

2
conn ·


0 �k

�
La
1 0
...

...

�
La
no 0


= Ψ

− 1
2

conn ·

 0 �k

�La 0

 , �
La �


�

La
1
...

�
La
no

 (4.17)

Bnew = Ψ
− 1

2
conn ·


−I · · · 0

�
xk+1
1 · · · �

xk+L
1

...
. . .

...

�
xk+1
no · · · �

xk+L
no


= Ψ

− 1
2

conn ·

 �
�Xnew

 ,

� �
(
−I · · · 0

)
, �

Xnew �


�

xk+1
1 · · · �

xk+L
1

...
. . .

...

�
xk+1
no · · · �

xk+L
no

 (4.18)

where �La
i � 5Lahi is Jacobian of i-th observation factor hi from Eq. (4.9) with respect to

variables La, and thus only one of its block-columns, corresponding to observed landmark, is

being not-zero. �xk+l
i � 5xk+lhi is Jacobian of hi with respect to xk+l, and therefore is being

non-zero only if factor’s observation was taken from pose xk+l. Matrix Ψconn is block-diagonal,

combining all noise matrices of F conn(a) factors.

As can be seen from the above, the Jacobian matrices IBold, Bnew and Dnew are sparse and

can be efficiently manipulated. More specifically, the information matrix of factor graph G(a),

Λa = DT
new · Dnew, which is required in our approach, can be calculated fast as a product of

sparse matrices Λa = D̃T
new ·Ψ

−1
new · D̃new due to the formulation in Eq. (4.14); additionally, it can

be shown to be singular and block-tridiagonal.
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The matrix C1 from Eq. (3.24) can also be reduced to following form:

C1 = Imconn + Ψ
− 1

2
conn ·

 �k · Σ
M,xk
k · �T

k �k · Σ
M,{xk/La}

k · (�La)T

�La · Σ
M,{La/xk}

k · �T
k �La · Σ

M,La
k · (�La)T

 · Ψ− 1
2

conn =

Ψ
− 1

2
conn ·

[
Ψconn +

 �k · Σ
M,xk
k · �T

k �k · Σ
M,{xk/La}

k · (�La)T

�La · Σ
M,{La/xk}

k · �T
k �La · Σ

M,La
k · (�La)T

 ] · Ψ− 1
2

conn �

Ψ
− 1

2
conn ·C2 · Ψ

− 1
2

conn, (4.19)

C2 � Ψconn +

 �k · Σ
M,xk
k · �T

k �k · Σ
M,{xk/La}

k · (�La)T

�La · Σ
M,{La/xk}

k · �T
k �La · Σ

M,La
k · (�La)T

 (4.20)

where Σ
M,{xk/La}

k is the prior cross-covariance between variables xk and La.

Additionally, C1’s determinant and its inverse can be calculated through:

∣∣∣∣C1

∣∣∣∣ =

∣∣∣∣C2

∣∣∣∣∣∣∣∣Ψconn

∣∣∣∣ , C−1
1 = Ψ

1
2
conn ·C

−1
2 · Ψ

1
2
conn. (4.21)

Next, we can calculate term BT
new ·C

−1
1 · Bnew from Eq. (3.22) as:

BT
new ·C

−1
1 · Bnew =

(
�T (�Xnew)T

)
· Ψ
− 1

2
conn · Ψ

1
2
conn ·C

−1
2 · Ψ

1
2
conn · Ψ

− 1
2

conn ·

 �
�Xnew

 =

(
�T (�Xnew)T

)
·C−1

2 ·

 �
�Xnew

 = B̃T
new ·C

−1
2 · B̃new (4.22)

where B̃new �

 �
�Xnew

 contains the Jacobian entries of Bnew not weighted by factors’ noise Ψconn.

Then, the unfocused IG objective from Eq. (2.16) in SLAM setting is given by

JIG(a)=
n′ · γ

2
−

1
2

ln
∣∣∣∣Ψconn

∣∣∣∣ +
1
2

ln
∣∣∣∣C2

∣∣∣∣ +
1
2

ln
∣∣∣∣B̃T

new ·C
−1
2 · B̃new + D̃T

new · Ψ
−1
new · D̃new

∣∣∣∣ . (4.23)

Above we have shown in detail how our rAMDL approach can be applied to information-

based SLAM planning problem types. The derived Eq. (4.23) is very similar to the general

solution from Eq. (3.22), having exactly the same runtime complexity. However, within both

Eq. (4.23) and Eq. (4.20) we can see a clear separation between noise of factor model and

the actual Jacobian entries. Such a separation can provide further theoretical insight about

how different terms of the SLAM problem affect the information impact of candidate action

a = uk:k+L−1. Moreover it can provide a good starting point for derivation of JIG(a)’s gradient

with respect to uk:k+L−1 which in turn can be used for gradient-descend algorithms that search

for locally optimal controls [21, 41]. Note the variable ordering in the above equation serves

only for visualization; the derivation remains valid for an arbitrary variable ordering.
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Additionally, for the sake of completeness we also provide SLAM-specific solution for

focused cases, where we consider either reducing entropy of the last pose (XF
k+L ≡ xk+L) or of

all the mapped landmarks (XF
k ≡ Lk). The corresponding derivation can be found in Appendix

(9.7 and 9.8).

4.3 Graph Reduction

It is a known fact that in long-term SLAM applications state dimension of smoothing techniques

can grow unboundedly. In such cases even most efficient state-of-the-art estimation algorithms

like iSAM2 [24] can become slow and will not support online operation. Approaches like

graph reduction and graph sparsification try to tackle the problem by reducing the number of

variables [16, 28, 35] and sparsifying entries of information matrix [4, 14, 31, 42], respectively.

Graph reduction requires first to select nodes to expel. In such cases, having a state vector X

with variables {x1, .., xn}, it would be logical to remove the most uncertain node, say xi, without

which the rest of the variables Xi � {X \ xi} would have the smallest entropy H(Xi). In this

section we outline a new approach for such a selection which is closely related to our rAMDL

technique.

Similarly to the focused objective function from Eq. (2.17), the best choice for expelled

variable x∗i among state variables will minimize the following objective function:

x∗i = arg min
xi∈X

JGR(xi) = H(Xi) =
(n − nx) · γ

2
−

1
2

ln
∣∣∣∣ΛM,Xi

∣∣∣∣ , (4.24)

whereH(Xi) is entropy of the state variables without xi, and nx is xi’s dimension.

Using Equation (3.9) from our approach, in order to calculate ΛM,Xi , we can reduce our

objective function to

JGR(xi) =
(n − nx) · γ

2
−

1
2

ln
∣∣∣∣Λ∣∣∣∣ +

1
2

ln
∣∣∣∣Λxi

∣∣∣∣ (4.25)

where Λ is information matrix of whole X, and Λxi is its partition related to variable xi.

Given that all xi variables have the same dimension nx, eventually we can conclude that

optimal x∗i will also minimize

x∗i = arg min
xi∈X

JGR(xi) = ln
∣∣∣∣Λxi

∣∣∣∣ (4.26)

which practically implies calculating determinant of every partition Λxi and choosing the state

variable xi with minimal determinant value. In case where all xi are scalars,
∣∣∣∣Λxi

∣∣∣∣ is just a value

from diagonal of the information matrix Λ. In case where xi’s dimension is nx, we will have to

calculate determinants of n matrices, each one of dimension nx × nx. Taking into account that

nx is usually not big at all (e.g. 3D pose has dimension of 6), the overall calculation is very fast

and is just O(n).
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Chapter 5

Alternative Approaches

We compare the presented rAMDL approach with two alternatives, namely From-Scratch and

iSAM techniques.

In From-Scratch, the posterior information matrix Λk+L is computed by adding new infor-

mation AT · A, followed by calculation of its determinant. In focused scenario the marginal

information matrix of XF
k+L is retrieved through Schur Complement performed on Λk+L, and

its determinant is then computed. The complexity of both focused and unfocused scenarios is

governed by the term O(N3), with N being posterior state dimension.

The second alternative, uses the iSAM algorithm [24] to incrementally update the posterior.

Here the (linearized) system is represented by a square root information matrix Rk, which

is encoded, while exploiting sparsity, by the Bayes tree data structure. The posterior matrix

Rk+L is acquired (e.g. via Givens rotations [24] or another incremental factorization update

method), and then the determinant is calculated |Λk+L| =
N∏

i=1
r2

ii, with rii being the ith entry on

the diagonal of triangular Rk+L. For focused case, the marginal covariance matrix of XF
k+L is

computed by recursive covariance per-entry equations [23] that exploit sparsity of matrix Rk+L.

The time complexity of this approach grows with state dimension and is discussed in more detail

in [23, 24].

While the iSAM technique outperforms batch From-Scratch, it still requires calculating Rk+L

for each action, which can be expensive, particularly in loop closures, and requires copy/clone

of the original matrix Rk. In contrast, in rAMDL, the per candidate action calculation (e.g. in

Eq. (3.20)) has constant complexity in general, given the prior marginal covariance terms that

are calculated only once.
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Chapter 6

Results

In this section we evaluate the performance of the proposed approach and compare it to alter-

native approaches considering unfocused and focused instantiations of several fundamental

problems: sensor deployment, measurement selection, and autonomous navigation in unknown

environments.

In sensor deployment, each candidate action represents a set of possible locations for

deploying a sensor, with a single sensor deployment corresponding to a unary factor. We

consider a nonmyopic setting and let each candidate action represent 2 sensor locations. In the

measurement selection problem, we consider a greedy decision making paradigm in the context

of aerial visual SLAM with pairwise factors.

Further, we present simulation results of applying our approach to autonomous navigation

in unknown environments (both unfocused and focused cases) on synthetic and real-world

datasets. The robot has to visit a sequence of goals while minimizing an objective function

comprising two terms (to be defined in the sequel): distance to goal, and an uncertainty metric.

Candidate actions are nonmyopic and involve multiple new and old state variables.

In all cases, the presented simulations reflect the performance of different approaches

developed within this research, and alternative methods that are described in Chapter 5. In

Table 6.1 we summarize the considered approaches in each of the above problems, and refer to

appropriate equations for each case.

The code is implemented in Matlab; for measurement selection and autonomous navigation

we use the GTSAM library [10, 24]. All scenarios were executed on a Linux machine with i7

2.40 GHz processor and 32 Gb of memory.

6.1 Sensor Deployment (focused and unfocused )

In this section we apply our approach rAMDL to the sensor deployment problem, considering

both focused and unfocused instantiations of this problem (see Section 4.1 for detailed

formulation). The prior of the sensor field is represented by information matrix Λ and it is dense

as usual in problem of sensor deployment.

We compare our rAMDL approach against the batch From-Scratch technique that is described
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Problem Approach Equations/Section

Sensor Deployment, rAMDL Unfocused Eq. (3.7)
Section 6.1 rAMDL Focused Eq. (3.13)

Sequential rAMDL Eq. (4.6), (4.7)
Partitions Givens Rotations

& Eq. (3.10)
From-Scratch, Unfocused & Focused Chapter 5

Measurement Selection, rAMDL Unfocused Eq. (3.7)
Section 6.2 iSAM Unfocused Chapter 5

Autonomous Navigation, rAMDL Unfocused Eq. (3.20), (3.21)
Section 6.3 rAMDL-Extended Unfocused Eq. (3.22), (3.24)

rAMDL Focused New Eq. (3.25), (3.21)
rAMDL-Extended Focused New Eq. (3.27), (3.24)

rAMDL Focused Old Eq. (3.28), (3.29)
rAMDL-Extended Focused Old Eq. (3.30), (3.31)

From-Scratch, Unfocused & Focused Chapter 5
iSAM, Unfocused & Focused Chapter 5

Table 6.1: Considered approaches in different problems from Chapter 6, along with their appropriate equations.

in Chapter 5, as also against the Sequential rAMDL described in Section 4.1 which does not

require marginal covariance computation at each decision.

While decision making involves evaluating action impact for all candidate actionsA, we

first analyze action impact calculation (JIG(a)) for a single candidate a ∈ A, comparing rAMDL

to the From-Scratch approach for the unfocused case. Figure 6.1 shows these timing results as

a function of state dimension n (Figure 6.1a) and as function of Jacobian A’s height m (Figure

6.1b). As expected, n effects running time of both the From-Scratch technique and calculation of

Σk (inverse of Λk which is dense in case of sensor deployment), while m only effects calculation

of IG objective of rAMDL (red line).

One might think, based on Figures 6.1a-6.1b, that the proposed approach is slower than

From-Scratch alternative because of the time needed for inverse calculation to get Σk. Yet, it

is exactly here that our calculation re-use paradigm comes into play (see Section 3.4): this

calculation is performed only once for all candidate actionsA, while, given Σk, calculating IG

for each action is no longer a function of n.

The substantial reduction in running time of our approach, compared to the From-Scratch

approach, can be clearly seen in Figure 6.1c, which considers the entire decision making

problem, i.e. evaluation of all candidate actionsA. The figure shows running time for sequential

decision making, where at each time instant we choose the best locations of 2 sensors, with

around |A| = 105 candidate actions. The number of all sensor locations is n = 625 in this

example. Overall, 15 sequential decisions were made. As seen, decision making using our

approach requires only about 5 seconds, while the the From-Scratch approach requires about

400 seconds.
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Figure 6.1: Unfocused sensor deployment scenario. Running time for calculating impact of a single action as a function of
state dimension n (a) and as a function of Jacobian A’s height m (b). In (a), m = 2, while in (b) n = 625. rAMDL Unfocused
Objective represents only calculation time of candidates’ impacts (IG objective for all actions), without one-time calculation of
prior covariance; Covariance Inverse represents the time it took to calculate covariance matrix Σk from dense information matrix
Λk , Σk = Λ−1

k . (c) Running time for sequential decision making, i.e. evaluating impact of all candidate actions, each representing
candidate locations of 2 sensors. (d) prior and final uncertainty of the field, with red dots marking selected locations. (e) number
of action candidates per decision. (f) running time for sequential decision making, with number of candidates limited to 100.

Sequential rAMDL technique is not always faster than rAMDL , as can be seen in Figure

6.1c. As described in Section 4.1 this technique will be more superior in cases where covariance

calculation takes significant part of whole decision calculation. We can see that this is the case in

Figure 6.1f, where number of candidates is limited to 100, and where the covariance calculation

time is the biggest part in the decision making of rAMDL approach. There we can see that
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Figure 6.2: Focused sensor deployment scenario, (a) overall time it took to make decision with different approaches; rAMDL
Focused Objective represents only calculation of candidates’ impacts (IG objective for all actions) while rAMDL Focused
- both one-time calculation of prior covariance Σk and candidates’ evaluation. (b) Final uncertainty of the field, with red dots
marking selected locations. (c) Focused set of variables (green circles) and locations selected by algorithm (red dots). (d)
Overall system entropy (above) and entropy of focused set (bottom) after each decision, with blue line representing unfocused
algorithm, and red line - focused algorithm. Note - all unfocused methods make exactly the same decisions, with difference
only in their runtime complexity. Same is also true for all focused methods.

Sequential rAMDL provides better performance than all other alternatives.

We now consider the focused version of the sensor deployment problem (Eq. 2.17). In

other words, the goal is to find sensor locations that maximally reduce uncertainty about chosen

focused variables XF . We have 54 such variables, which are shown in Figure 6.2c, while the

rest of the problem setup remains identical to the unfocused case.

In Figure 6.2 we show the corresponding results of rAMDL , compared to the From-Scratch.

The latter first calculates, for each candidate action, the posterior Λ+ = Λ + AT A, followed by

calculation of Schur complement ΛM,F of the focused set XF , and its determinant
∣∣∣∣ΛM,F

∣∣∣∣ in

order to get JF
H

(a) (Eq. 2.17). We also compare to an additional approach, termed Partitions,

which uses Givens rotations to compute R+ and instead of performing Schur complement,

calculates the posterior entropy of the focused set via Eq. (3.10). This equation is one of our

main contributions, being an essential step in the derivation of our approach, and we show here

that comparing to From-Scratch technique, the Partitions approach is considerably faster. Our

focused approach applies the matrix determinant lemma, transforming Eq. (3.10) to Eq. (3.13),
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Figure 6.3: Measurement selection scenario, (a) simulated trajectory of robot; black dots are the landmarks, blue marks and
surrounding ellipses are the estimated trajectory along with the uncertainty covariance for each time instant, red mark is robot’s
initial pose; (b) number of measurement candidates per decision; (c) state’s dimension n per decision; (d) overall time it took
to evaluate impacts of pose’s all measurements, with different approaches; rAMDL Unfocused Objective represents only
calculation of candidates’ impacts (IG objective for all actions) while rAMDL Unfocused - both one-time calculation of marginal
covariance Σ

M,XAll
k and candidates’ evaluation.

which, together with the re-use concept (Section 3.4), makes it possible to drastically reduce

running time as shown in Figure 6.2a (10 seconds versus about 1000 in Partitions and 1300 in

From-Scratch).

6.2 Measurement Selection in SLAM

In this section we consider a measurement selection problem (see Section 3.5) within a vi-

sual aerial SLAM framework, where one has to choose the most informative image feature

observations from the numerous image features typically calculated for each incoming new

image.

We demonstrate application of our approach in this problem, which, in contrast to the sensor

selection problem, involves pairwise factors of the type p(zi, j|xi, l j), relating between an image

observation zi, j, camera pose xi and landmark l j.
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A top view of the considered aerial scenario is shown in Figure 6.3a: an aerial vehicle

performs visual SLAM, mapping the environment and at the same time localizing itself. The

figure shows the landmarks and the estimated trajectory, along with the uncertainty covariance

for each time instant. One can clearly see the impact of loop closure observations on the latter.

In the considered scenario there are about 25000 landmarks and roughly 500 image features in

each view.

The number of image features that correspond to previously seen landmarks is relatively

small (around 30-50, see Figure 6.3b), which corresponds to a much smaller set of actionsA

compared to the sensor deployment problem (Section 6.1) where the cardinality ofA was huge

(105). Such a dataset was chosen on purpose in order to show the behavior of the proposed

algorithm in domains with small number of candidates. Also, in this scenario the actions are

myopic since the measurements are greedily selected.

Additionally, as opposed to the sensor deployment problem, in the current problem, state

dimensionality n grows with time as more poses and landmarks are added into inference (see

Figure 6.3c) and the information matrix is sparse.

Figure 6.3d shows the timing results for choosing 10 most informative image observations

comparing the proposed rAMDL to the iSAM approach (computing posterior square root infor-

mation matrix using iSAM, and then calculating determinant, see Chapter 5). This BSP problem

is solved sequentially, each time a new image is acquired. As seen, our approach rAMDL is

substantially faster than the iSAM, while providing identical results (the same decisions). In

particular, running time of the iSAM approach for the last time index with n = 10000 state

dimensionality, is around 7 seconds. In contrast, rAMDL takes about 0.05 seconds: calcula-

tion time of action impacts via calculation re-use is negligible (red line), while the one-time

calculation of marginal covariance Σ
M,XAll
k (yellow line) is efficiently performed, in the current

implementation, via sparse factorization techniques using GTSAM [10, 24].

6.3 Autonomous Navigation in Unknown Environment

In this section we present simulation results of applying our approach to autonomous navigation

in unknown environments (both unfocused and focused cases) on synthetic and real-world

datasets.

In the synthetic scenario (Figure 6.4c), the robot’s task is to visit a predefined set of

goals G = {G1, ..,G14} in unknown environment while reducing an uncertainty metric. More

specifically, the state vector Xk contains all robot poses and landmarks mapped till time tk (see

Section 4.2). At each point of time, the robot autonomously selects an optimal non-myopic

action a = uk:k+L−1, performs its first control uk and subsequently observes landmarks in radius

of 900 meters from its new position. The landmarks can be either old (seen before) or new (met

first time). Next, a SLAM solution is calculated given these new observations and a motion

model. To that end, the factor graph from the previous inference time is updated with new

observation and motion model factors, and new variable nodes, representing current robot pose

and new landmarks, are added (see Section 4.2). Afterwards, next action is chosen and executed,
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Figure 6.4: Focused BSP scenario with focused robot’s last pose. (a) Dimensions of the BSP problem (state dimension,
average number of new factor terms, average number of new variables, average number of old involved variables) at each time;
(b) Number of action candidates at each time; (c) Final robot trajectory. Blue dots are mapped landmarks, red line with small
ellipses is estimated trajectory with pose covariances, blue line is the real trajectory, red pluses with numbers beside them are
robot’s goals. Green mark is robot’s start position; (d) Zoom-in of robot’s trajectory near goal 12.

and so on.

The set of candidate actionsA contains one action that navigates the robot from its current

pose xk to the current goal Gi from a predefined set G (see Figure 6.4c); it also contains a set of

”loop-closure” actions which are generated in the following way. We start by taking all mapped

landmarks in radius of 1000 meters from the robot’s current pose. We cluster these landmarks,

similarly to [26], and obtain a set of landmark clusters. Each cluster’s center gcl represents a

”loop-closure” goal and contributes a ”loop-closure” action acl = uk:k+L−1 that navigates robot

the from xk to gcl.

Each action inA, taking the robot from xk to location g, is constructed by first discretizing

the map into grid and thereafter searching for optimal trajectory from current position to g

using an A∗ search algorithm, similarly to [21, 26]. The optimal candidate action is chosen by

evaluating an objective which has the following two terms: distance to current goal Gi, and a

term of uncertainty:

J(a) = d(xk+L,Gi) + JF
H/IG(a). (6.1)

In scenarios from Figures 6.4, 6.5, 6.6 and 6.8 we consider as term of uncertainty the entropy

JF
H

(a) of the last pose xk+L in planning segment (Section 3.3.3), while in scenario from Figure
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Figure 6.5: Focused BSP scenario with focused robot’s last pose. (a) Running time of planning, i.e. evaluating impact of all
candidate actions, each representing possible trajectory; Results are shown both for focused and unfocused cases; (b) Zoom of
fastest approaches from (a); (c) Focused approaches from (b). Note that iSAM Focused is not depicted because as seen in (a) it
is much slower comparing to other focused techniques; (d) Unfocused approaches from (b). The lowest line, labeled Marginal
Cov, represents time it took to calculate prior marginal covariance Σ

M,XAll
k in rAMDL approach (see Section 3.4). As can be seen,

while rAMDL technique (Unfocused and Focused ) is faster than From-Scratch and iSAM, the rAMDL-Extended gives even
better performance. Further, it is interesting to note that performance of Unfocused and Focused rAMDL is almost the same, as
also performance of Unfocused and Focused rAMDL-Extended .

6.7 we use instead the IG of mapped till now landmarks JF
IG(a) (Section 3.3.3). Note that the

running time presented in the figures refers only to the uncertainty term, since it is the focus of

this research and because calculation complexity of the first term (euclidean distance d(xk+L,Gi))

is relatively insignificant. As can be seen from above, we consider a non-myopic setting and let

each candidate action represent trajectory of various length. Limiting the clustering process to a

specific radius is done in order to bound the horizon lag of candidate actions.

In parallel, in scenarios from Figures 6.5 and 6.6, an unfocused uncertainty objective

JIG(a) is calculated (Section 3.3.2), mainly for the purpose of performance comparison between
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Figure 6.6: Focused BSP scenario with focused robot’s last pose. Running times from Figure 6.5 normalized by number of
candidates.

focused and unfocused cases. The robot’s motion is controlled only by focused objective

function.

Four techniques were applied to solve the planning problem - more common techniques

From-Scratch and iSAM (Chapter 5), and the proposed techniques - our general approach rAMDL

, and its extension rAMDL-Extended that exploits the Jacobian inner structure from Eq. (3.17)

(see Table 6.1, and Sections 3.3.2 and 3.3.3). The calculated values of the objective function

were numerically compared to validate that all four approaches are calculating exactly the same

metric, thus yielding the same decisions and only differ in running time.

In Figures 6.5-6.6 it can be clearly seen that while iSAM is faster than From-Scratch, the

running time of both techniques is growing with state dimensionality, as was mentioned before.

On the other hand, the running time of rAMDL approach is shown to be bounded, due to horizon
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Figure 6.7: Focused BSP scenario with focused landmarks. (a) Number of action candidates at each time; (b) Final robot
trajectory; (c) Running time of planning, i.e. evaluating impact of all candidate actions, each representing possible trajectory;
(d) Running time from (c) normalized by number of candidates; (e) Zoom of fastest approaches from (c); (f) Zoom of fastest
approaches from (d). The lowest line, labeled Marginal Cov, represents time it took to calculate prior marginal covariance Σ

M,XAll
k

in rAMDL approach (see Section 3.4).

lag of all candidate actions being limited (see Figure 6.4a). The number of candidate actions in

our scenario is around 20 at each planning phase (Figure 6.4b). Even with such relatively small

candidate set rAMDL approach is faster by order than its alternatives iSAM and From-Scratch,

while rAMDL-Extended approach is the fastest between all of them. This trend appears to be

correct for both focused and unfocused objective functions, though for the later, iSAM comes

very close to rAMDL technique.

While comparing running time of both From-Scratch and iSAM in focused and unfocused

objective functions, it is easy to see that unfocused case is evaluated much faster. The reason
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Figure 6.8: Focused BSP scenario with focused robot’s last pose, using Victoria Park dataset. (a) Number of action candi-
dates at each time; (b) Final robot trajectory; (c) Running time of planning, i.e. evaluating impact of all candidate actions, each
representing possible trajectory; (d) Running time from (c) normalized by number of candidates; (e) Zoom of fastest approaches
from (c); (f) Zoom of fastest approaches from (d). The lowest line, labeled Marginal Cov, represents time it took to calculate prior
marginal covariance Σ

M,XAll
k in rAMDL approach (see Section 3.4).

for this is that focused calculations contain computation of marginal covariance of focused

variable (last pose xk+L) for each candidate action, which requires marginalization over the

posterior information matrix Λk+L. Whereas this can be performed efficiently by exploiting the

sparsity of matrix Λk+L [23], the time complexity is significantly affected by variable elimination

ordering of iSAM algorithm [24]. While in our simulation we did not modify the default

ordering of iSAM (COLAMD heuristic), different strategies of ordering can be a point for future

investigation.

In contrast, for rAMDL approach both unfocused and focused objective functions
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(Eq. (3.20) and (3.25)) have a similar complexity, which is supported by the shown times.

The same is correct for rAMDL-Extended approach (Eq. (3.22) and (3.27)).

Next, we repeated our autonomous navigation scenario but this time, XF
k+L contained only

landmarks seen by time k (see Figure 6.7). The IG of such focused set XF
k+L can be used as

objective function for example in case when we want to improve 3D reconstruction quality. As

can be seen in Figure 6.7, this focused set causes both From-Scratch and iSAM techniques to

be much slower compared to their performance in the first scenario, where XF
k+L contained only

xk+L. The reason for this is that XF
k+L’s dimension is much higher here, representing dimensions

of all landmarks, and computation of its marginal covariance is significantly more expensive. In

contrast, performance of rAMDL has been barely changed thanks to re-use of calculations (see

Section 3.4). Moreover, rAMDL-Extended performs even better than rAMDL , with candidate

action impact evaluation being insignificant compared with the one-time calculation of marginal

covariance, as can be seen in Figures 6.7e-6.7f.

We also performed a hybrid simulation where part of the real-world Victoria Park dataset [12]

was used for offline planning (see Figure 6.8). At each timestep we collected candidate actions

by clustering landmarks seen till that time, just as it was done in the first simulation. Further,

we considered a focused objective function for each candidate with XF
k+L containing only xk+L.

After evaluating all candidates, the robot was moved to the next pose according to the dataset.

Recalling that our main contribution is to reduce time complexity, such an evaluation allowed

us to compare time performance of all the considered techniques, despite not actually using

the calculated actions in the hybrid simulation. As can be seen, also here rAMDL and rAMDL-

Extended outperform both of their alternatives, From-Scratch and iSAM, keeping the same trends

that were observed in previous simulations.
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Chapter 7

Conclusions and Future Work

We developed a computationally efficient and exact approach for non-myopic focused and

unfocused belief space planning (BSP) in both augmented and non-augmented settings, in

high dimensional state spaces. As a key contribution we developed an augmented version of

the well-known general matrix determinant lemma and use both of them to efficiently evaluate

the impact of each candidate action on posterior entropy, without explicitly calculating the

posterior information (or covariance) matrices. The second ingredient of our approach is the

re-use of calculations, that exploits the fact that many calculations are shared among different

candidate actions. Our approach drastically reduces running time compared to the state of the

art, especially when the set of candidate actions is large, with running time being independent

of state dimensionality that increases over time in many of BSP domains. The approach was

examined in three problems, sensor deployment, measurement selection in visual SLAM and

autonomous navigation in unknown environments, using both simulated and real-world datasets,

and exhibiting in each superior performance compared to the state of the art, and reducing

running time by several orders of magnitude (e.g. 5 versus 400 seconds in sensor deployment).

7.1 Future Work

In this work we have developed an novel approach to solve the information-theoretic BSP

problem in computationally efficient way. Still, number of extensions and improvements may

be done in order to further reduce the calculation requirements and in order avoid the maximal

likelihood assumption that was taken through our approach. Below we will list some directions

for the future research.

1. In many BSP scenarios different candidate actions will share some of their newly in-

troduced factor terms. For example, in mobile robotics scenario where there are two

trajectory candidates with some part of their trajectory being the same, both candidates

will have same factors representing the shared trajectory part. For such scenario, it can be

easily shown that the Jacobian matrices of both candidates will share some of their rows.

It is possible to exploit this fact in order to provide additional re-use of calculation and

reduce the rAMDL time-consumption even more.
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2. In this thesis we have taken the maximal likelihood assumption while propagating the

posterior belief. This assumption ignores the fact that obtaining measurements (e.g.

capturing in camera frame the specific landmark while passing near it) is itself probabilistic

process and its uncertainty should be accounted for. There are different ways to model and

consider such uncertainty within the BSP solution, and it is another possible extension of

rAMDL method.

3. The developed rAMDL technique is a general approach. As such, it could be also

applicable to a multi-robot setting, at least in its centralized formulation. Still, it may

be interesting to investigate if additional reduction of calculations can be achieved for

the multi-robot case, and if a decentralized multi-robot formulation can be handled in a

similar manner.
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Chapter 9

Appendix - Proof of Lemmas

9.1 Proof of Lemma 3.3.1

Problem definition: Given a positive definite and symmetric matrix Λ ∈ Rn×n (e.g. a prior

information matrix) and its inverse Σ (prior covariance matrix), first Λ is augmented by k zero

rows and columns and the result is stored in ΛAug. Then we have matrix A ∈ Rm×(n+k) and

calculate Λ+ = ΛAug + AT · A (see Figure 2.1). We would like to express the determinant of Λ+

in terms of Λ and Σ.

We start by modeling the matrix ΛAug through Σ. By introducing k new variables, before

adding any new constraints involving these variables, we can say that new variables are uncor-

related with old variables, and their uncertainty is infinite (nothing yet is known about them).

Then the appropriate covariance matrix after augmentation, ΣAug, can just be created by adding

k zero rows and columns to Σ, and setting new diagonal entries with parameter θ, noting that

θ → ∞:

ΣAug =

Σ 0

0 θ · I

. (A1)

Next, note that inverse of ΣAug is given by the following expression:

(ΣAug)−1 =

Λ 0

0 ε · I

. (A2)

where ε � 1
θ . Taking limit ε → 0 into account, we can see that the above equation converges to

ΛAug as it was defined above. Then in the limit we will have that (ΛAug)−1 = ΣAug. Also note

that ε → 0, even that it never becomes zero, ε , 0, thus if needed we can divide by ε without

worry.

Taking into account the limit of ε, expressing ΛAug through Eq. (A2) will not change the

problem definition. But such a model allows to inverse ΛAug:

(ΛAug)−1 = ΣAug =

Σ 0

0 θ · I

 , (A3)
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and therefore to use the generalized matrix determinant lemma [13]:∣∣∣∣Λ+
∣∣∣∣ =

∣∣∣∣ΛAug
∣∣∣∣ · ∣∣∣∣Im + A · ΣAug · AT

∣∣∣∣ =
∣∣∣∣Λ∣∣∣∣ · εk ·

∣∣∣∣Im + Aold · Σ · AT
old + θ · Anew · AT

new

∣∣∣∣ (A4)

where matrices Aold ∈ R
m×n and Anew ∈ R

m×k are constructed from A by retrieving columns of

only old n variables and of only new k variables, respectively (see Figure 3.4).

Using the matrix determinant lemma once more, we get:∣∣∣∣Λ+
∣∣∣∣ =

∣∣∣∣Λ∣∣∣∣ · εk ·

∣∣∣∣∆∣∣∣∣ · ∣∣∣∣Ik + θ · AT
new · ∆

−1 · Anew

∣∣∣∣ (A5)

where ∆ � Im + Aold · Σ · AT
old.

Moving ε inside the last determinant term, we have:∣∣∣∣Λ+
∣∣∣∣ =

∣∣∣∣Λ∣∣∣∣ · ∣∣∣∣∆∣∣∣∣ · ∣∣∣∣ε · Ik + ε · θ · AT
new · ∆

−1 · Anew

∣∣∣∣ (A6)

Recalling that ε → 0 and ε · θ = 1, we will get to:∣∣∣∣Λ+
∣∣∣∣ =

∣∣∣∣Λ∣∣∣∣ · ∣∣∣∣∆∣∣∣∣ · ∣∣∣∣AT
new · ∆

−1 · Anew

∣∣∣∣ (A7)

And the augmented determinant ratio will be:∣∣∣∣Λ+
∣∣∣∣∣∣∣∣Λ∣∣∣∣ =

∣∣∣∣Im + Aold · Σ · AT
old

∣∣∣∣ · ∣∣∣∣AT
new · (Im + Aold · Σ · AT

old)−1 · Anew

∣∣∣∣ =
∣∣∣∣∆∣∣∣∣ · ∣∣∣∣AT

new · ∆
−1 · Anew

∣∣∣∣
(A8)

�

9.2 Proof of Lemma 3.3.2

For A’s structure given in Eq. (3.17), the ∆ from Eq. (3.15) will be:

∆ = Im +

Bold

0

 · Σ · (BT
old 0

)
=

∆1 0

0 Imnew

 (A9)

where ∆1 = Imconn + Bold · Σ · BT
old, mconn =M(F conn(a)) and mnew =M(F new(a)).

Then we can conclude that: ∣∣∣∣∆∣∣∣∣ =
∣∣∣∣∆1

∣∣∣∣ (A10)

and that:

∆−1 =

∆−1
1 0

0 Imnew

 (A11)
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Now, by exploiting structure of Anew we will get:

AT
new ·∆

−1 ·Anew =
(
BT

new DT
new

)
·

∆−1
1 0

0 Imnew

 ·Bnew

Dnew

 = BT
new ·∆

−1
1 ·Bnew + DT

new ·Dnew (A12)

Then we can conclude that the augmented determinant lemma will be:∣∣∣∣Λ+
∣∣∣∣∣∣∣∣Λ∣∣∣∣ =

∣∣∣∣∆1

∣∣∣∣ · ∣∣∣∣BT
new · ∆

−1
1 · Bnew + DT

new · Dnew

∣∣∣∣ (A13)

�

9.3 Proof of Lemma 3.3.3

Consider the scenario of focused Augmented BSP where the focused set XF
k+L contains only

newly added variables as defined in Section 3.3.3, with appropriate illustration shown in Figure

3.5.

First let us overview the various partitions of Jacobian A which are relevant to our current

problem (Figure 3.5). Aold, Anew, IAold and ¬IAold were already introduced in previous sections.

Further, we can partition Anew into AF
new - columns of new variables that are focused XF

new ≡

XF
k+L ∈ R

nF , and AU
new - columns of new unfocused variables XU

new. Considering the figure, the

set of all unfocused variables in Xk+L will be XR
k+L � {Xold ∪ XU

new} ∈ R
nR , such that N = nF + nR,

providing another A’s partition AR = [Aold, AU
new].

Next, we partition the posterior information matrix Λk+L respectively to the defined above

sets XF
k+L and XR

k+L as

Λk+L =

 ΛR
k+L Λ

R,F
k+L

(ΛR,F
k+L)T ΛF

k+L

. (B14)

As was shown in Eq. (3.9), determinant of the marginal covariance of XF
k+L can be calculated

through: ∣∣∣∣ΣM,F
k+L

∣∣∣∣ =

∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣Λk+L

∣∣∣∣ (B15)

Now let us focus on ΛR
k+L term from the right side.

From Eq. (2.10) we can see that partition of posterior information matrix ΛR
k+L can be

calculated as:

ΛR
k+L = Λ

Aug,R
k + AT

R AR (B16)

where Λ
Aug,R
k can be constructed by augmenting Λk with zero rows and columns in number of

XU
new’s dimension (see Figure 3.5). The above equation has augmented determinant form as

defined in Section 3.3.1, and so the augmented determinant lemma can be applied on it. Using
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Eq. (3.15) we have: ∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ =
∣∣∣∣C∣∣∣∣ · ∣∣∣∣(AU

new)T ·C−1 · AU
new

∣∣∣∣ (B17)

where C is defined in Eq. (3.21).

Next, dividing Eq. (B17) by Eq. (3.19), we get

∣∣∣∣ΣM,F
k+L

∣∣∣∣ =

∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ ·
∣∣∣∣Λk

∣∣∣∣∣∣∣∣Λk+L

∣∣∣∣ =

∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣Λk+L

∣∣∣∣ =

∣∣∣∣(AU
new)T ·C−1 · AU

new

∣∣∣∣∣∣∣∣AT
new ·C

−1 · Anew

∣∣∣∣ , (B18)

and posterior entropy of XF
k+L is given by

JF
H

(a) =
nF · γ

2
+

1
2

ln
∣∣∣∣(AU

new)T ·C−1 · AU
new

∣∣∣∣ − 1
2

ln
∣∣∣∣AT

new ·C
−1 · Anew

∣∣∣∣ . (B19)

�

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.4 Proof of Lemma 3.3.4

For A’s structure given in Eq. (3.17), term AT
new ·C

−1 ·Anew from Eq. (B19), similarly to Eq. (A12),

will be:

AT
new ·C

−1 · Anew = BT
new ·C

−1
1 · Bnew + DT

new · Dnew, (B20)

where C1 is defined in Eq. (3.24).

In the same way we can conclude (see Figure 3.5) that:

(AU
new)T ·C−1 · AU

new = (BU
new)T ·C−1

1 · B
U
new + (DU

new)T · DU
new. (B21)

Therefore, posterior entropy of XF
k+L from Eq. (B19) is given by

JF
H

(a) =
nF · γ

2
+

1
2

ln
∣∣∣∣(BU

new)T ·C−1
1 · B

U
new + Λ

U |F
a

∣∣∣∣ − 1
2

ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + Λa

∣∣∣∣ , (B22)

where Λa = DT
new · Dnew is information matrix of action’s factor graph G(a), and where Λ

U |F
a =

(DU
new)T ·DU

new is information matrix of variables XU
new conditioned on XF

new ≡ XF
k+L and calculated

from distribution represented by G(a).

�

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.
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9.5 Proof of Lemma 3.3.5

Consider the scenario of focused Augmented BSP where the focused set XF
k+L contains only

old variables, with appropriate illustration shown in Figure 3.6 and with various partitions of

Jacobian A defined in Section 3.3.3.

First, let us look again over relevant partitions of Jacobian A (Figure 3.6). The Aold, Anew,
IAold and ¬IAold were already introduced in previous sections. From the figure we can see that
¬IAold can further be separated into ¬IAU

old - columns of old variables that are both not involved and

unfocused (¬IXU
old), and ¬IAF

old - columns of old variables that are both not involved and focused

(¬IXF
old). Additionally, IAold can be partitioned into IAU

old - columns of old variables that are both

involved and unfocused (IXU
old), and IAF

old - columns of old variables that are both involved and

focused (IXF
old) (see Table 3.2). The set of focused variables is then XF

k+L = {¬IXF
old ∪

IXF
old} ∈ R

nF ,

containing both involved and not involved variables. We will denote XF
k+L � XF

k to remind us

that focused set of variables is part of both Xk+L and Xk.

Likewise, the set of all remained, unfocused variables is XR
k+L � {

¬IXU
old∪

IXU
old∪Xnew} ∈ R

nR ,

containing all new variables and some of old ones (which can be involved or not involved),

and providing A’s partition AR = [¬IAU
old,

IAU
old, Anew]. Moreover, for purpose of simplification

of coming equations we’ll denote set of old variables inside XR
k+L by XR

old, having that XR
old �

{¬IXU
old ∪

IXU
old}, with appropriate Jacobian partition AR

old �
[
¬IAU

old,
IAU

old

]
.

Next, noticing that Xk = {XF
k ∪ XR

old} we can partition the prior information matrix Λk

respectively

Λk =

 ΛF
k Λ

F,Rold
k

(ΛF,Rold
k )T Λ

Rold
k

. (C23)

Similarly, due to Xk+L = {XF
k ∪XR

old∪Xnew} and XR
k+L � {X

R
old∪Xnew} the posterior information

matrix Λk+L can be respectively partitioned in next two forms:

Λk+L =


ΛF

k+L Λ
F,Rold
k+L Λ

F,Xnew
k+L

(ΛF,Rold
k+L )T Λ

Rold
k+L Λ

Rold ,Xnew
k+L

(ΛF,Xnew
k+L )T (ΛRold ,Xnew

k+L )T Λ
Xnew
k+L

 =

 ΛF
k+L Λ

F,R
k+L

(ΛF,R
k+L)T ΛR

k+L

 (C24)

with

ΛR
k+L =

 Λ
Rold
k+L Λ

Rold ,Xnew
k+L

(ΛRold ,Xnew
k+L )T Λ

Xnew
k+L

 . (C25)

We can see from above partitions (C23)-(C25) that posterior information partition ΛR
k+L of

XR
k+L is simply the augmentation of prior information partition Λ

Rold
k and can be calculated as:

ΛR
k+L = Λ

Aug,Rold
k + AT

R AR (C26)

where Λ
Aug,Rold
k can be constructed by first taking partition of prior information matrix Λk related

to XR
old, Λ

Rold
k , and augmenting it with n′ zero rows and columns (see Figure 3.6), where n′ is

just number of newly introduced variables. The above equation has augmented determinant
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form as defined in Section 3.3.1, and so the augmented determinant lemma can be applied also

here. Using Eq. (3.15) we have:∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣ΛRold
k

∣∣∣∣ =
∣∣∣∣S ∣∣∣∣ · ∣∣∣∣AT

new · S
−1 · Anew

∣∣∣∣ (C27)

S = Im + AR
old · (Λ

Rold
k )−1 · (AR

old)T (C28)

Then by combining the Eq. (B15), Eq. (3.19) and the above equations, we can see that:∣∣∣∣ΣM,F
k+L

∣∣∣∣∣∣∣∣ΣM,F
k

∣∣∣∣ =

∣∣∣∣ΛR
k+L

∣∣∣∣∣∣∣∣Λk+L

∣∣∣∣ ·
∣∣∣∣Λk

∣∣∣∣∣∣∣∣ΛRold
k

∣∣∣∣ =

∣∣∣∣S ∣∣∣∣ · ∣∣∣∣AT
new · S

−1 · Anew

∣∣∣∣∣∣∣∣C∣∣∣∣ · ∣∣∣∣AT
new ·C

−1 · Anew

∣∣∣∣ (C29)

where C is defined in Eq. (3.21).

And apparently the IG of XF
k+L can be calculated as:

JF
IG(a) = H(XF

k ) −H(XF
k+L) =

1
2

ln
∣∣∣∣ΣM,F

k

∣∣∣∣ − 1
2

ln
∣∣∣∣ΣM,F

k+L

∣∣∣∣ =

1
2

(ln
∣∣∣∣C∣∣∣∣ + ln

∣∣∣∣AT
new ·C

−1 · Anew

∣∣∣∣ − ln
∣∣∣∣S ∣∣∣∣ − ln

∣∣∣∣AT
new · S

−1 · Anew

∣∣∣∣), (C30)

Next, S term can be further reduced. It is clear that (ΛRold
k )−1 = Σ

Rold |F
k , or namely the prior

conditional covariance matrix of XR
old conditioned on XF

k . Moreover, due to sparsity of AR
old (its

sub-block ¬IAU
old contains only zeros) we will actually need only entries of matrix Σ

Rold |F
k that

belong to variables involved in new terms of Eq. (2.6) (see Figure 3.6) and can conclude that:

S = Im + AR
old · Σ

Rold |F
k · (AR

old)T = Im + IAU
old · Σ

IXU
old |F

k · (IAU
old)T (C31)

�

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.6 Proof of Lemma 3.3.6

For A’s structure given in Eq. (3.17), term S from Eq. (C31) will be:

S = Im + AR
old · Σ

Rold |F
k · (AR

old)T = Im +

BR
old

0

 · ΣRold |F
k ·

(
(BR

old)T 0
)

=

S 1 0

0 Imnew

 (C32)

where S 1 = Imconn + BR
old · Σ

Rold |F
k · (BR

old)T , mconn =M(F conn(a)) and mnew =M(F new(a)).

Then we can conclude that: ∣∣∣∣S ∣∣∣∣ =
∣∣∣∣S 1

∣∣∣∣ (C33)
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and that:

S −1 =

S −1
1 0

0 Imnew

 , (C34)

and similarly to Eq. (C31) (see also Figure 3.6) we have that:

S 1 = Imconn + BR
old · Σ

Rold |F
k · (BR

old)T = Im + IBU
old · Σ

IXU
old |F

k · (IBU
old)T (C35)

Next, term AT
new · S

−1 · Anew from Eq. (C30), similarly to Eq. (A12), will be:

AT
new · S

−1 · Anew = BT
new · S

−1
1 · Bnew + DT

new · Dnew, (C36)

with S 1 defined in Eq. (C35).

Then, by applying equations (B20), (C33), (C36) and notion
∣∣∣∣C∣∣∣∣ =

∣∣∣∣C1

∣∣∣∣, the IG of XF
k+L ⊆ Xold

from Eq. (C30) can be calculated as:

JF
IG(a) =

1
2

(ln
∣∣∣∣C1

∣∣∣∣ + ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + DT

new · Dnew

∣∣∣∣−
ln

∣∣∣∣S 1

∣∣∣∣ − ln
∣∣∣∣BT

new · S
−1
1 · Bnew + DT

new · Dnew

∣∣∣∣) =

1
2

(ln
∣∣∣∣C1

∣∣∣∣ + ln
∣∣∣∣BT

new ·C
−1
1 · Bnew + Λa

∣∣∣∣ − ln
∣∣∣∣S 1

∣∣∣∣ − ln
∣∣∣∣BT

new · S
−1
1 · Bnew + Λa

∣∣∣∣), (C37)

where C1 is defined in Eq. (3.24), and where Λa = DT
new · Dnew is information matrix of action’s

factor graph G(a).

�

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.7 SLAM Solution - focus on last pose XF
k+L ≡ xk+L

For XF
k+L ≡ xk+L the focused entropy objective in SLAM setting is given by Eq. (3.27). Here,

we will exploit the inner structure of Jacobian partitions in SLAM scenario (see Eq. (4.14)-

(4.18)) in order to provide solution tailored specifically to SLAM domain. It will provide an

illustrated example of applying rAMDL to real problem.
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From Eq. (4.18) we can see that BU
new has next form:

BU
new = Ψ

− 1
2

conn ·

(xk+1) · · · (xk+L−1)




−I · · · 0

�
xk+1
1 · · · �

xk+L−1
1

...
. . .

...

�
xk+1
no · · · �

xk+L−1
no

= Ψ
− 1

2
conn ·

 �U

�U
Xnew

 ,

�
U �

(
−I · · · 0

)
, �

U
Xnew

�


�

xk+1
1 · · · �

xk+L−1
1

...
. . .

...

�
xk+1
no · · · �

xk+L−1
no

 (C38)

where �xk+l
i � 5xk+lhi is Jacobian of hi with respect to xk+l, and therefore is being non-zero only

if factor’s observation was taken from pose xk+l. Note that in SLAM case the XU
new (all new and

unfocused variables) is {xk+1, . . . , xk+L−1}.

Similarly to Eq. (4.22), the term (BU
new)T ·C−1

1 · B
U
new from Eq. (3.27) can be calculated as:

(BU
new)T ·C−1

1 · B
U
new =

(
(�U)T (�U

Xnew
)T

)
· Ψ
− 1

2
conn · Ψ

1
2
conn ·C

−1
2 · Ψ

1
2
conn · Ψ

− 1
2

conn ·

 �U

�U
Xnew

 =

(
(�U)T (�U

Xnew
)T

)
·C−1

2 ·

 �U

�U
Xnew

 = (B̃U
new)T ·C−1

2 · B̃
U
new (C39)

where B̃U
new:

B̃U
new �

(xk+1) · · · (xk+L−1)




−I · · · 0

�
xk+1
1 · · · �

xk+L−1
1

...
. . .

...

�
xk+1
no · · · �

xk+L−1
no

=

 �U

�U
Xnew

 (C40)

contains the Jacobian entries of BU
new not weighted by factors’ noise Ψconn.

Additionally, from Eq. (4.14) we can derive structure of DU
new which is also used in Eq. (3.27):
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DU
new = Ψ

− 1
2

new ·

(xk+1) (xk+2) (xk+3) (xk+4) · · · (xk+L−2) (xk+L−1)





�k+1 −I 0 0 · · · 0 0

0 �k+2 −I 0 · · · 0 0

0 0 �k+3 −I · · · 0 0

0 0 0 �k+4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −I 0

0 0 0 0 · · · �k+L−2 −I

0 0 0 0 · · · 0 �k+L−1

� Ψ
− 1

2
new · D̃

U
new

(C41)

that due to its sparsity will allow fast calculation of Λ
U |F
a :

Λ
U |F
a = (DU

new)T · DU
new = (D̃U

new)T · Ψ−1
new · D̃

U
new. (C42)

Finally, placing all derived notations into Eq. (3.27), we will get to the SLAM-specific

solution for entropy of robot’s last pose:

JF
H

(a) =
nF · γ

2
+

1
2

ln
∣∣∣∣(B̃U

new)T ·C−1
2 · B̃

U
new + (D̃U

new)T · Ψ−1
new · D̃

U
new

∣∣∣∣−
1
2

ln
∣∣∣∣B̃T

new ·C
−1
2 · B̃new + D̃T

new · Ψ
−1
new · D̃new

∣∣∣∣ , (C43)

where C2 is defined in Eq. (4.20). �

Note that the variables inside information matrices do not have to be ordered in any particular

way, and that the provided above proof is correct for any ordering whatsoever.

9.8 SLAM Solution - focus on mapped landmarks XF
k+L ≡ Lk

The focused IG of XF
k ≡ Lk in SLAM setting is given by Eq. (3.30). Here, we will exploit

the inner structure of Jacobian partitions in SLAM scenario (see Eq. (4.14)-(4.18)) in order to

provide solution tailored specifically to SLAM domain. It will provide an illustrated example of

applying rAMDL to real problem.

First, note that all old involved and unfocused variables IXU
old contain only the current

robot’s pose xk. Thus, from Eq. (4.17) we can see that relevant partition of Jacobian B, the IBU
old
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used in Eq. (3.31), has the following inner structure:

IBU
old = Ψ

− 1
2

conn ·


�k

0
...

0


. (C44)

Using the above identity, the matrix S 1 from Eq. (3.31) can also be reduced to next form:

S 1 = Imconn + IBU
old · Σ

IXU
old |F

k · (IBU
old)T =

Imconn + Ψ
− 1

2
conn ·

�k · Σ
M,xk
k · �T

k 0

0 0

 · Ψ− 1
2

conn =

Ψ
− 1

2
conn ·

[
Ψconn +

�k · Σ
M,xk
k · �T

k 0

0 0

 ] · Ψ− 1
2

conn �

Ψ
− 1

2
conn · S 2 · Ψ

− 1
2

conn, (C45)

S 2 � Ψconn +

�k · Σ
M,xk
k · �T

k 0

0 0

 =

Σω,k + �k · Σ
M,xk
k · �T

k 0

0 Ψobs

 (C46)

where is Σω,k is noise matrix from motion model (Eq. (4.8)), and matrix Ψobs is block-diagonal,

combining all noise matrices of F obs(a) factors:

Ψconn =

Σω,k 0

0 Ψobs

 . (C47)

Further, let us define matrix S 3:

S 3 � Σω,k + �k · Σ
M,xk
k · �T

k (C48)

Now we can see that S 1’s determinant and inverse can be calculated through:

∣∣∣∣S 1

∣∣∣∣ =

∣∣∣∣S 2

∣∣∣∣∣∣∣∣Ψconn

∣∣∣∣ =

∣∣∣∣S 3

∣∣∣∣ · ∣∣∣∣Ψobs

∣∣∣∣∣∣∣∣Ψconn

∣∣∣∣ =

∣∣∣∣S 3

∣∣∣∣∣∣∣∣Σω,k∣∣∣∣ , (C49)

S −1
1 = Ψ

1
2
conn · S

−1
2 · Ψ

1
2
conn = Ψ

1
2
conn ·

S −1
3 0

0 Ψ−1
obs

 · Ψ 1
2
conn. (C50)
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Similarly to Eq. (4.22), the term BT
new · S

−1
1 · Bnew from Eq. (3.30) can be calculated as:

BT
new · S

−1
1 · Bnew =(

�T (�Xnew)T
)
· Ψ
− 1

2
conn · Ψ

1
2
conn · S

−1
2 · Ψ

1
2
conn · Ψ

− 1
2

conn ·

 �
�Xnew

 =

(
�T (�Xnew)T

)
· S −1

2 ·

 �
�Xnew

 =

(
�T (�Xnew)T

)
·

S −1
3 0

0 Ψ−1
obs

 ·  �
�Xnew

 =

�
T · S −1

3 · � + (�Xnew)T · Ψ−1
obs ·�

Xnew (C51)

where � and �Xnew are defined in Eq. (4.18) as

� �
(
−I · · · 0

)
, �

Xnew �


�

xk+1
1 · · · �

xk+L
1

...
. . .

...

�
xk+1
no · · · �

xk+L
no

 . (C52)

Thus we can see that �T · S −1
3 · � from Eq. (C51) is L · np × L · np matrix (np is the robot

pose’s dimension and L is the horizon length) which has non-zero entries only at its np × np top

left corner:

�
T · S −1

3 · � =


S −1

3 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


. (C53)

Finally, placing all derived notations into Eq. (3.30), we will get to the SLAM-specific

solution for IG of already mapped landmarks Lk:

JF
IG(a) =

1
2

(ln
∣∣∣∣C2

∣∣∣∣ − ln
∣∣∣∣Ψconn

∣∣∣∣ + ln
∣∣∣∣B̃T

new ·C
−1
2 · B̃new + D̃T

new · Ψ
−1
new · D̃new

∣∣∣∣−
− ln

∣∣∣∣S 3

∣∣∣∣ + ln
∣∣∣∣Σω,k∣∣∣∣ − ln

∣∣∣∣�T · S −1
3 · � + (�Xnew)T · Ψ−1

obs ·�
Xnew + D̃T

new · Ψ
−1
new · D̃new

∣∣∣∣) =

=
1
2

(ln
∣∣∣∣C2

∣∣∣∣ + ln
∣∣∣∣B̃T

new ·C
−1
2 · B̃new + D̃T

new · Ψ
−1
new · D̃new

∣∣∣∣−
− ln

∣∣∣∣S 3

∣∣∣∣ − ln
∣∣∣∣�T · S −1

3 · � + (�Xnew)T · Ψ−1
obs ·�

Xnew + D̃T
new · Ψ

−1
new · D̃new

∣∣∣∣ − ln
∣∣∣∣Ψobs

∣∣∣∣) (C54)

where C2 is defined in Eq. (4.20). Note that matrix S 3 will be the same for all candidates.

Therefore, the terms S 3, ln
∣∣∣∣S 3

∣∣∣∣ and �T · S −1
3 · � can be calculated only one time and shared

between the candidates thereafter. Additionally, the terms C2, B̃T
new ·C

−1
2 · B̃new, D̃T

new ·Ψ
−1
new · D̃new

and (�Xnew)T ·Ψ−1
obs ·�

Xnew can be calculated efficiently through sparse matrix operators since

we know the exact inner structure of all involved matrix operands. The overall complexity of

above SLAM solution is the same as in Eq. (3.30), O(M(F conn(a))3 + n′3). �

Note that the variables inside information matrices do not have to be ordered in any particular
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way, and that the provided above proof is correct for any ordering whatsoever.

9.9 Proof of Lemmas 3.6.1 and 3.6.2

Proof of Lemma 3.6.1

The basic definition of mutual information I(a|b) is:

I(a|b) = H(a) −H(a|b) (C55)

Using definition of entropy for Gaussian distribution from Eq. (2.15) we get to:

I(a|b) =
1
2

ln

∣∣∣∣ΣM,a
k

∣∣∣∣∣∣∣∣Σa|b
k

∣∣∣∣ (C56)

where Σ
M,a
k is marginal covariance matrix of set a, and Σ

a|b
k is conditional covariance matrix of

set a, conditioned on set b.

Now, if current state vector contains only a and b, or in other words Xk = {a, b}, then∣∣∣∣Σa|b
k

∣∣∣∣ = 1∣∣∣∣∣Λa
k

∣∣∣∣∣ , with Λa
k being partition of information matrix Λk with respect to variables from a.

Then by using Eq. (3.9) we will get:

I(a|b) =
1
2

ln

∣∣∣∣Λa
k

∣∣∣∣ · ∣∣∣∣Λb
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (C57)

�

Proof of Lemma 3.6.2

Consider case when Xk contains additional variables except for subsets a and b. Let’s join all

other variables in subset r, with Xk = {a, b, r} and where r is not empty. By applying Eq. (3.9)

we can see that:

∣∣∣∣ΣM,a
k

∣∣∣∣ =

∣∣∣∣ΣM,(a,b)
k

∣∣∣∣∣∣∣∣Σa|b
k

∣∣∣∣ , and therefore
∣∣∣∣Σa|b

k

∣∣∣∣ =

∣∣∣∣ΣM,(a,b)
k

∣∣∣∣∣∣∣∣ΣM,b
k

∣∣∣∣ , (C58)

as also ∣∣∣∣ΣM,a
k

∣∣∣∣ =

∣∣∣∣Λ(b,r))
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (C59)

∣∣∣∣ΣM,b
k

∣∣∣∣ =

∣∣∣∣Λ(a,r))
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (C60)
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∣∣∣∣ΣM,(a,b)
k

∣∣∣∣ =

∣∣∣∣Λr
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ (C61)

Then, after combining (C58), (C60) and (C61), another conclusion will be:

∣∣∣∣Σa|b
k

∣∣∣∣ =

∣∣∣∣Λr
k

∣∣∣∣∣∣∣∣Λ(a,r)
k

∣∣∣∣ (C62)

And after combining (C56), (C59) and (C62), we get the final expression for information gain:

I(a|b) =
1
2

ln

∣∣∣∣Λ(a,r)
k

∣∣∣∣ · ∣∣∣∣Λ(b,r)
k

∣∣∣∣∣∣∣∣Λk

∣∣∣∣ · ∣∣∣∣Λr
k

∣∣∣∣ (C63)

�
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Lemma, MDL) הדטרמיננטה במשפט משתמשים אנחנו זה, במקום יותר. נדרש אינו פעולה פר

חלקים לדעת מספיק פעולה של אינפורמציה תוספת חישוב שבשביל ומראים (Matrix Determinant

matrix) האפריורית הקווריאנס ממטריצת ספציפיים ואיברים פעולה של Jacobian מטריצת של שונים

הספציפיים האיברים את לחשב ניתן זמינה, אינה הקווריאנס ומטריצת במקרה .(a priori covariance

של חד־פעמי חישוב מבצעים אנחנו שלה). שורש מטריצת (או האינפורמציה מטריצת באזרת שלה

האינפורמציה תוספת את מחשבים ואחריו ,(n) המצב במימד שתלוי האפריורית הקווריאנס איברי

למקרה שלנו השיטה פיתוח לצורך .nב־ תלויה לא שבכלל חישובית סיבוכיות עם פעולה כל של

סכום של דטרמיננטה לחישוב חדש מתמטי משפט מפתחים אנחנו גודל, מצב וקטור מימד שבו

מראים ובנוסף ,(Augmented Matrix Determinant Lemma, AMDL) המטריצה מימד הגדלת עם מטריצות

AMDLה־ המועמדים. מפעולות אחת כל של האינפורמציה חישוב בזמן חישובים לשתף שאפשר

הבעיה, של גרפי ייצוג עם בשילוב שלנו. השיטה של העיקריים הרכיבים הם החישובים ושיתוף

ויעילה כללית בצורה תכנון של השונים תתי־המקרים כל את שפותרת שלנו בשיטה מסתכמים הם

שונים. וסטוכסטיות וודאות אי במקורות שמתחשבת חישובית,

גודל, או קבוע מצב וקטור מימד עם ־ האפשריים המקרים בכל שלנו השיטה את בוחנים אנחנו

האחרונות. בשנים בספרות המקובלות לשיטות אותה ומשווים "מרוכז", ותכנון "מרוכז" לא תכנון ועם

האמיתי, מהעולם בסצנות וגם וירטואליות בסימולציות גם משתמשים אנחנו הזו, המטרה בשביל

מראש, ידועה שאינה בסביבה אוטונומי ניווט של באפליקציות אינפורמטיבי תכנון בעיית ופותרים

דורשת שלנו שהשיטה מראים אנחנו אינפורמטיביות. מדידות ובחירת חיישנים של יעילה פריסה

של יעילה פריסה בבעית למשל, התכנון. באיכות כלשהי פגיעה ללא ריצה זמן פחות משמעותית

אותו שעושות אחרות שיטות לעומת שניות 5 תוך "מרוכז" לא תכנון מבצעת שלנו השיטה חיישנים

סופיים בשלבים מראש, ידועה שאינה בסביבה אוטונומי ניווט בבעיית בנוסף, שניות. 400 תוך תכנון

כאשר ה־"מרוכז" התכנון את לבצע בשביל שניות ל־10 זקוקות הסטנדרטיות השיטות הסימולציה של

אחת. משניה פחות תוך בעיה אותה את פותרת שלנו השיטה

ii



תקציר

והניווט רובוטיקה מלאכותית, בינה של בתחום יסוד בעיות הינן ודאות אי תחת החלטות וקבלת תכנון

מדידות בגלל בודאות, ידוע אינו המערכת מצב את המייצג הנעלמים וקטור אלו, בבעיות האוטונומי.

רובוט של מיקומים למשל המכיל הנעלמים, וקטור אלו, במקרים מושלמת. לא וחישה סטוכסטיות

המצב. במרחב המוגדר (distribution) פילוג ידי על לייצוג ניתן ,(landmarks) בעולם אובייקטים ושל

space planning, BSP) הסתברותי במרחב מתבצעת תכנון ובעיית (belief) אמונה בשם גם ידוע הפילוג

של פתרון מאפשר זה מודל שונות. אפשריות פעולות עבור המתקבלות שונות אמונות בין (belief

אקטיבי זמני בו ואיכון מיפוי אינפורמטיבי, תכנון חיישנים, של יעילה פריסה למשל כמו שונות, בעיות

מראש. ידועה הלא בסביבה אוטונומי וניווט ,(Active SLAM)

אי־ עם פעולה למצוא היא שהמטרה היכן BSP של תת־בעיה הוא אמונה במרחב אינפורמטיבי תכנון

מסלול למצוא בשביל למשל אותנו לשמש יכול הזה התכנון האמונה. של מינימלית פוסטריורית וודאות

מדוייקת. הכי בצורה מראש ידועה הלא המפה את ולשערך רועשות פחות הכי מדידות עם למטרה

חישובית. יקר מאוד והינו אמונה של (entropy) אנטרופיה בחישוב כלל בדרך כרוך זו בעיה פתרון

לכל פוסטריורית אמונה מחשבים אינפורמטיבי תכנון לפתרון האחרונות מהשנים אלגוריתמים בפרט,

ומחשבים ,(covariance) הקווריאנס מטריצת או האינפורמציה מטריצת עדכון בעזרת נבחנת פעולה

דטרמיננטה של כזה חישוב של סיבוכיות האנטרופיה. לחישוב נדרשת אשר זו מטריצה של דטרמיננטה

מאוד גדול מספר מהווה כלל ובדרך מערכתיים נעלמים וקטור של מימד הוא nשה־ איפה ,O(n3) הוא

איטי שזה מועמד, פר O(n3) היא הרגילים האלגוריטמים של הסיבוכיות זה, בעקבות .(> 10000)

אמיתי. זמן של לאפליקציות אינפורמטיבי בתכנון השימוש על שמקשה מה מאוד,

כללית שהינה אמונה במרחב אינפורמטיבי תכנון של לפתרון חדשה שיטה מפתחים אנחנו זה במחקר

תתי־מקרים של למספר האינפורמטיבי התכנון את לחלק שאפשר מראים אנחנו חישובית. ויעילה

שבו מקרה בין להפריד אפשר המצב וקטור גודל לפי כל, קודם כזה. תת־מקרה לכל פיתרון ומפתחים

של חדשים מיקומים (כמו חדשים נעלמים שבו ומקרה פעולה ביצוע אחרי זהה נישאר הנעלמים וקטור

מתמטית הינם האלו המקרים ששני נראה אנחנו התבצעה. שהפעולה אחרי לוקטור מתווספים רובוט)

תכנון וגם "מרוכז" לא תכנון גם כאן פותרים אנחנו בנוסף, מהם. אחד לכל יעיל פיתרון ונציג שונים

המצב, וקטור בתוך הנעלמים כל של וודאות אי להקטין רוצים אנחנו הראשון בסוג כאשר "מרוכז",

בודדים. נעלמים כמה של וודאות אי רק – ובשני

זקוקה לא וגם פוסטריוריות אמונות של חישוב דורשת אינה שלנו השיטה אחרות, משיטות בשונה

מבטאים אנחנו ריצה. בזמן משמעותי שיפור משיגה זה ובעקבות ענקיות, מטריצות של לדטרמינטות

פשוטה יותר הרבה היא הבעיה כזה שבייצוג ומראים הגרפיים המודלים בעזרת התכנון בעיית את

פוסטריורי אמונה שחישוב מוכיחים אנחנו בנוסף, הרגילה. לפורמליזציה בייחס ואינטואיטיבית
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