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Abstract— Typical inference approaches that work with high-
dimensional visual measurements use hand-engineered image
features (e.g. SIFT) that require combinatorial data association,
or predict only hidden state mean without considering its
uncertainty and multi-modality aspects. We develop a novel
approach to infer system hidden state from visual observations
via CNN features which are outputs of a CNN classifier. To
that end, at pre-deployment stage we use neural networks to
learn a generative viewpoint-dependent model of CNN features
given the robot pose and approximate this model by a spatially-
varying Gaussian distribution. Further, at deployment this
model is utilized within a Bayesian framework for proba-
bilistic inference, considering a robot localization problem.
Our method does not involve data association and provides
uncertainty covariance of the final estimation. Moreover, we
show empirically that the CNN feature likelihood is unimodal
which simplifies the inference task. We test our method in a
simulated Unreal Engine environment, where we succeed to
retrieve high-level state information from CNN features and
produce trajectory estimation with high accuracy. Additionally,
we analyze robustness of our approach to different light
conditions.

I. INTRODUCTION

Inferring a system state from multiple measurements, pos-
sibly captured by different sensors, is a fundamental problem
in robotics. Bayesian inference for system identification is
one of the main building blocks on which modern real-
world robotic applications rely, such as autonomous navi-
gation and simultaneous localization and mapping (SLAM).
The inference task is challenging considering the stochastic
nature of the captured measurements. Moreover, retrieving
state information from measurements becomes even harder
when the measurements are high-dimensional (e.g. images).

A common approach to deal with images is by producing
from them visual features - points in a picture that have very
recognizable/special local appearance (e.g. SIFT). Further,
such landmarks are tracked along the trajectory and help
to localize the robot pose via triangulation and multi-view
geometry. However, such geometric methods have significant
weaknesses. The landmarks are not always robustly detected
w.r.t. changing environment conditions, such as weather,
day-night changes, spatial occlusions and moving objects.
Further, landmark-based techniques require determining data
association, i.e. matching different landmarks in different
images. This process is tough and prone to mistakes that
introduce measurement outliers into estimation and damage
the inference accuracy.
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Fig. 1: Approach overview. In this paper we use CNN features for robot’s state
inference within a Bayesian framework. An image captured from robot pose xi
is passed to a CNN classifier which produces a features vector fi that represents
the image. (a) During the pre-deployment stage we learn spatially-varying CNN
probability likelihood P(fi|xi) approximated by N (µ(xi),Σ(xi)). Two neural
networks produce viewpoint-dependent mean and covariance functions of fi given xi,
and are trained through losses Jµ and JΣ respectively. (b) During the deployment
stage the likelihood of fi is evaluated at xi’s estimation x̂i. Such spatially-varying
probability likelihood P(fi|x̂i) turns to be very informative during the Bayesian
inference optimization where we estimate robot’s entire trajectory.

In this paper we present an approach that instead uses
short descriptors of image high-dimensional measurements
produced by a convolutional neural network (CNN), the
CNN feature vectors. We will show that by using these
descriptors as the measurements we can recover essential
information for the state estimation task.

In recent years the usage of convolutional neural networks
(CNN) in computer vision and robotics became very popular.
CNN is applied for both passive and active autonomous
tasks, such as occlusion detection, place recognition, visual
odometry and camera localization [5], [8], [9], [11], [13],
[17]. The corresponding approaches typically use the output
from different layers of a CNN, also known as the CNN
feature vectors, as noisy measurements and utilize these to
regress the required hidden state of the system (e.g. camera
pose). However, in many CNN-based works [5], [11] only
the mean of state estimation is found and the estimation
uncertainty is ignored. Accounting for such uncertainty is
of prime importance in robotics applications, as ignoring it
can cause severe operation malfunction. Only recently, deep



machine learning approaches started to focus on estimation
error uncertainty as well [8], [17]. Moreover, as we discuss in
this paper, in many cases the distribution of the hidden state
(e.g. robot pose) given the image measurement is multimodal
due to perceptual aliasing. If this is the case, the estimation
mean may not adequately represent the real hidden state of
the system.

In contrast, in this paper we present an approach that
learns the opposite distribution - of a CNN feature vector
given camera pose. We approximate this distribution as a
Gaussian with mean vector and covariance matrix that are
functions of the camera pose, i.e. viewpoint-dependent. Dur-
ing pre-deployment we learn these functions using two neural
networks, and produce a viewpoint-dependent measurement
model of a CNN feature vector. At the deployment stage
we use this measurement model to infer state information
from CNN feature vectors produced from images that were
acquired along the robot trajectory (see Figure 1). Specifi-
cally, we perform robot localization by utilizing the fact that
CNN feature vectors are viewpoint-dependent (see Figure 3).
For this purpose, we express the trajectory inference problem
via Bayesian formulation where both mean and covariance of
CNN feature vectors are exploited. Moreover, we speculate
in this paper that the feature distribution conditioned on pose
is unimodal since given specific pose the feature values are
typically oscillating around one single value, as we will see
further. Learning such a unimodal distribution and using it
for state inference is a significantly simpler task than learning
a distribution with several modes and using it for state
estimation. This is an additional motivation for the research
direction of this paper.

To summarize, our main contributions in this paper are
as follows: (a) we learn a spatial measurement likelihood
of CNN features; (b) we exploit the viewpoint-dependency
of CNN features for camera pose estimation; (c) we solve
Bayesian inference with spatially varying measurement like-
lihood, in particular using tensorflow/computation graphs;
(d) for inference we use image measurements without data
association requirement; and (e) we analyze robustness of
CNN features to different light conditions via night scenario
simulation.

II. RELATED WORK

In many CNN-based techniques a neural network provides
an image descriptor that contains high-level semantic infor-
mation and is used to infer the hidden system state [11],
[13]–[15], [20]. Specifically, solving camera pose estimation
and localization problems by using CNN descriptors got
a big attention in the last years. Particularly, the PoseNet
network [11] was introduced to regress a 6-DOF camera
pose from a CNN feature vector given an image. However,
such a regression was producing only the mean of the
pose conditioned on CNN features, since the CNN feature
vector has an innate sensor noise and the connection between
camera pose and CNN feature vector is stochastic in nature.

In particular, there are two main reasons that cause the
regressed pose to be stochastic. First is the mentioned above

image noise affected for example by specific light conditions
and weather. The second is the learning process itself,
where a specific chosen CNN architecture, learning hyper-
parameters and training dataset affect the final regression
outputs of PoseNet. The error uncertainty of pose estimation
is affected by these two stochastic sources, and accounting
for such uncertainty is typically required in order to perform
robust estimation, e.g. using Bayesian fusion.

In later works [7], [8] the authors deal with the second
source mentioned above, by performing dropout during
regression, i.e. at test time, and averaging over several
regression samples. Further, in [10] both uncertainty sources
were termed as aleatoric (measurement noise) and epistemic
(model noise), and the first one was dealt through measure-
ment heteroscedastic covariance regression in an image seg-
mentation problem. Later, in [3] the approach was extended
to regress an entire trajectory from video clips. To deal with
multi-modality of pose estimation the authors infer camera
pose distribution through Gaussian mixture approximation.
In contrast, in our work we explore the opposite distribution
of CNN feature vector given pose which we argue to be
unimodal and simpler to learn.

In another related work [13], Li et al. convert CNN
features into a low-dimensional space by locally-inverse
transformations using pose-feature pairs from past experi-
ments. Further, the measurement model of the new features
is approximated via data perturbation and used in Bayesian
inference to estimate robot trajectory. Yet, such a technique
requires past measurements and their localized poses from
the entire environment which is typically problematic to
acquire in real-world applications. In contrast, in this paper
we first learn the measurement model of CNN features and
at the deployment stage use this model without any need for
old observations.

Lately, uncertainty regression through neural networks
became more popular [3], [10], [17], though the idea is not
new. In 1996, Williams at el. [18] introduced an efficient
representation to parametrize a positive-definite covariance
matrix of a Gaussian distribution through a neural network.
In our work we use this representation to regress the het-
eroscedastic covariance matrix of a CNN feature vector.

III. PROBLEM FORMULATION

We consider a Bayesian inference framework and use
a typical smoothing formulation, where the entire robot
trajectory is inferred. Denote the robot pose at time step i
as xi, and combine all such positions till current time step
k as state vector Xk = {x0, . . . , xk}. Also, consider fac-
tors F = {f1(X1), . . . , fnf (Xnf )} added to the inference
system till current time. Each such factor f j(Xj) represents
a measurement model, prior or odometry, with Xj ⊂ Xk

being a subset of the involved state variables.
The probability density function (pdf) of Xk can be

represented as

P(Xk|history) ∝
nf∏
j=1

f j(Xj), (1)



Fig. 2: Illustration of a factor graph that represents this paper’s trajectory inference
problem. It contains odometry factors fODOi for each pose pair {xi−1, xi} and
CNN factors fCNNi for each pose xi.

where history represents all information gathered till current
time.

Typically in the robotics domain, factors are represented
as Gaussian functions:

f j(Xj) ∝ det(2πΣj)−
1
2 · exp(−1

2
‖hj(Xj , zj)‖2Σj ), (2)

with an appropriate model

υj = hj(Xj , zj), υj ∼ N (0,Σj), (3)

where hj is a known nonlinear function with state subset
Xj ⊆ X and measurement zj as parameters, and υj is a
Gaussian white noise with covariance Σj .

The maximum a posteriori (MAP) estimation of trajectory
Xk can be calculated through the optimization:

X∗k = arg min
Xk

nf∑
j=1

logdet(Σj) +

nf∑
j=1

‖hj(Xj , zj)‖2Σj . (4)

In this paper we infer robot trajectory within known envi-
ronment considering odometry and camera measurements.
Specifically, we will use odometry factors involving two
subsequent poses each (Xj ≡ {xi−1, xi}). Further, typically
in SLAM and localization approaches, human engineered
visual features (e.g. SIFT features) are recovered from the
camera images and used to provide better trajectory estima-
tion. In contrast, in our work we will use CNN features -
outputs from a CNN classifier that receives images as input.
In a pre-deployment stage we learn a viewpoint-dependent
measurement model of these features and use this model to
formulate CNN factors for trajectory inference; each CNN
factor will involve a single robot pose (see Figure 2). These
CNN factors are one of the paper’s main contributions and
we will show in Section V how these factors can improve
accuracy of the trajectory inference.

State of the art SLAM and localization approaches typ-
ically assume the covariance Σj of the model noise to
be position-independent. In such a case logdet terms in
Eq. (4) can be ignored. In the same way, the covariance in
Mahalanobis terms is typically considered fixed, reducing the
problem in Eq. (4) to a weighted least squares optimization,
which can be solved efficiently (see e.g. [6]). In contrast,
CNN factors have a state-dependent noise. To see that, recall
that the measurement used within CNN factors is the output
of a CNN classifier given a camera-captured image. Such
a measurement is a feature vector taken from one of the
layers in CNN, and both its expected value and its variability
changes between different areas of the environment (see
Figure 4), thus making it position-dependent. Therefore,
the noise covariance within measurement model of CNN

Fig. 3: Illustration of a CNN feature vector fi changing along camera pose xi. In
this example, a CNN classifier provides fi = {pA, pB , pC} for each pose xi,
with fi representing probabilities of seeing objects of Class A, B and C. Learning
how fi behaves in our environment, we can use the classifier output in real-time to
improve accuracy of robot localization. See also Figure 4 for actual CNN features in
UE environment.

factors is spatially-varying, Σj(xi), making the optimization
problem in Eq. (4) more complicated. We discuss different
methods to deal with logdet terms and the covariance-varying
Mahalanobis distance in Section IV.

IV. APPROACH

In this paper, rather than using hand-engineered features,
we exploit high-level/CNN features and their viewpoint
dependence, which we learn, and develop a correspond-
ing Bayesian inference formulation. CNN features behave
differently in different map areas (see Figures 3 and 4).
Learning their behavior as a function of robot pose x
allows us to utilize this information later at the deployment
stage for better localization estimation. For that purpose,
we use pre-trained Inception-v3 [16] that provides a vector
of class probabilities f given an image captured at each
time step. The weights from the Inception-v3 network are
not modified, keeping their pre-trained values. During the
pre-deployment stage we learn heteroscedastic viewpoint-
dependent measurement model P(f |x) of this vector f in a
simulation environment, and incorporate this learned model
within probabilistic inference during a deployment. This
results in an improved accuracy of robot localization due to
the spatial dependence of CNN features. In such a way we
recover high-level state-dependent information from trained
CNN networks.

Importantly, however, our localization inference does not
rely on the quality of classifier object predictions since f
within P(f |x) represents only classifier outputs and not nec-
essarily the real probabilities to see specific objects. In other
words, when a classifier fails to recognize objects in the area
and returns incorrect probabilities inside f , the trajectory
estimation will still be accurate since the learned likelihood
P(f |x) will also contain information about such classification
inconsistency. That is, as long as our learned likelihood
captures the viewpoint-dependency of the classifier output
it will be informative during the trajectory inference.

CNN features behave differently in different environment
areas depending on what objects are observed from each
viewpoint. Both the expected value and the variability of the
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Fig. 4: Environment simulated in this paper. (a)-(b) Map and image examples of the environment simulated through UE. The environment contains a single object of a sofa
at the center, daily lighting from sun, sky clouds and brown terrain. Note that both floor and sky do not have many edge features, making it hard to use SIFT-like feature-
based approaches for visual odometry. (c)-(d) CNN produced probabilities of observing a park bench (b) and a rocking chair (c) from grid-sampled camera pose xi. The
xi = {x, y, yaw, pitch} is positioned in area marked by green in (a), with constant orientation {yaw = 180◦, pitch = 0◦} and with {x, y} representing grid intersections of the
green area. Note as the probability to see a park bench (b) and its variability get bigger when camera gets closer to the sofa. In this paper we exploit such viewpoint-dependency
of CNN feature distribution to infer robot state (see also Figure 3).

specific feature f vary spatially, making the distribution of
the feature to be position-dependent (see Figure 4). More-
over, we speculate that such feature distribution P(f |x) con-
ditioned on a position x will have only a single mode - given
a specific position, the CNN feature (e.g. probability to see a
chair in the captured image) will be spread around a specific
single value. This can be seen empirically from Figures 4c-
4d. In contrast, many existing techniques learn the opposite
distribution P(x|f) of pose given the feature/measurement,
or its mean E(x|f) (e.g. Posenet in [11]). Such a conditional
distribution typically will have multiple modes - there can
be multiple objects of the same type in the area; thus, the
same feature can be produced at different positions. We
argue that learning a unimodal distribution is by far an easier
task compared to learning a multimodal one, further adding
motivation to our research direction.

Below, in Section IV-A we will describe the main intuition
behind our approach. In Section IV-B we describe how to
learn the CNN measurement model using deep learning (DL)
techniques. Further, in Section IV-C we discuss Bayesian
inference optimization that involves factors with a spatially-
varying noise.

A. General Idea

We use a designated neural network to approximate the
CNN measurement model. Specifically, define a sample
dataset D = {xi, fi} where pose xi is taken uniformly from
the scenario’s environment and where fi is a CNN feature
vector provided for image captured at pose xi (see Figure
1). Given such a training dataset we learn a conditional pdf
P(fi|xi), representing the probability likelihood of getting a
specific feature vector from a specific pose. In this paper
we approximate this pdf by a spatially varying Gaussian
distribution N (µ(xi),Σ(xi)). Given input xi, our neural
network returns a mean vector µ(xi) and covariance matrix
Σ(xi) of likelihood distribution fi|xi.

In this paper we simulate our environment using Unreal
Engine [2] (UE) which can be viewed as a deterministically
controlled world (see Figure 4). Thus, unlike the real-world
scenario, an image Ii = Image(xi) captured at pose xi is
deterministic, i.e. given pose the generated image is always
the same. Therefore, the CNN feature fi = classifier(Ii)
will be also deterministic since the classifier weights are

fixed. However, due to the complexity of functions Image(·)
and classifier(·) the CNN feature fi can be thought
as pseudo-stochastic, produced by some distribution fi|xi
which we want to learn. Such a perspective is supported
by Figures 4c and 4d where CNN features seem to have a
stochastic nature. Another explanation for looking for µ(xi)
and Σ(xi), while the feature vector fi(xi) is a deterministic
function of xi is as follows. We aim to approximate fi(xi)
via µ(xi). However, since this function is complicated, µ(xi)
can approximate it only up to a specific resolution, producing
an approximation error err(fi, xi) = fi − µ(xi). This error
would be very different in various areas of xi since in some
areas the function fi(·) can be easily approximated (e.g. areas
where it is zero), while in other areas the approximation
would be very rough (e.g. areas where it is spiky). Since
one of the requirements of Bayesian inference and least-
squares regression (see Section IV-C) is for errors to have a
unified magnitude, the Σ(xi) is responsible for canceling the
difference between approximation errors. Thus, for a large
error err(fi, xi), Σ(xi) will be high on average, while for
small error values, it will be small.

Note that when applying our method in a real-world sce-
nario, the CNN features fi would become entirely stochastic
since the images are affected by other factors such as
light conditions and pedestrians. In this setting learning a
conditional distribution P(fi|xi) of a random variable fi
would become even more crucial and beneficial.

In the next section we discuss how DL can be used to
learn the required P(fi|xi).

B. Measurement Model Learning via DL

To represent N (µ(xi),Σ(xi)) via neural networks we use
a Gaussian parametrization introduced in [18]. Specifically,
we use two separate networks to learn µ(xi) and Σ(xi). Both
mean and covariance networks have a similar architecture
and the separation was done for a more stable learning
process (see Figure 1).

In this paper we address a 4DOF case scenario where
each pose xi = {x, y, yaw, pitch} has 4 degrees of freedom.
Each network gets poses xi as input. It contains several fully
connected (FC) layers (we examined different architectures
with varying number of the layers), where the output of the
final layer, oi, is transformed into an appropriate function



as follows. In the mean network, oi has the dimension of
m ≡ |fi| and the learned function is:

µ(xi) = sigmoid(oi). (5)

In this paper we use class probabilities vector fi for a specific
class subset produced by a CNN classifier. The fi’s entries
are bounded by [0, 1] and bounding entries of the function
µ(xi) to this range through the sigmoid helped stabilize the
learning. Note that we do not constrain the sum of the µ’s
entries to be 1 since we do not use all CNN class probabilities
but only a small subset of thereof.

We represent the conditional covariance of fi through
a positive-definite upper-triangular square-root information
matrix R(xi) with Σ(xi) = (R(xi)

T ·R(xi))
−1. The dimen-

sion of the final layer output oi of the covariance network is
m · (m + 1), which corresponds to the number of non-zero
entries in R(xi). R(xi) is constructed as:

diag(R(xi)) = exp(oi(1 : m))

utri(R(xi)) = oi(m+ 1 : end)

ltri(R(xi)) = 0

(6)

where utri(·) and ltri(·) represent matrix entries above and
below the main diagonal, respectively, and where we ensure
the positive-definiteness of R(xi) by forcing its diagonal
entries to be positive.

First, we train the mean network with an L2 regression
loss:

min
θµ

Jµ(D) = min
θµ

∑
i

1

2
‖µ(xi)− fi‖2. (7)

After the training converges, we use it for the covariance
network learning through a maximum likelihood loss:

max
θΣ

∏
i

P(fi|xi) = min
θΣ

JΣ(D) =

= min
θΣ

∑
i

logdet(Σ(xi)) + ‖µ(xi)− fi‖2Σ(xi)
,where (8)

logdet(Σ(xi)) = −2 · logdet(R(xi)) = −2 ·
m∑
j=1

oj , (9)

‖µ(xi)− fi‖2Σ(xi)
= ‖R(xi) · (µ(xi)− fi)‖2. (10)

Note that the loss JΣ is optimized only with respect to the
covariance network weights θΣ, since the mean network
weights θµ were already optimized.

The training process considering the loss JΣ can be
complicated by the fact that logarithm terms are in general
not bounded from below as opposed to Mahalanobis terms.
In fact, the logdet(Σ(xi)) has significantly low values w.r.t.
other terms, specifically in the areas where variability of
CNN features is low. In such areas the term det(Σ(xi))
approaches 0+ and logdet(Σ(xi)) goes to −∞. Thereby, the
learning process is busy to approximate covariance function
in areas where covariance is almost zero, and puts only little
effort to approximate it in other areas. To tackle this problem
and stabilize the learning, we defined a minimal covariance
threshold δΣ = 0.005 and clipped the logdet(R(xi)) from
above by −m2 log(δΣ).

To better approximate P(fi|xi) we examined differ-
ent architectures. The architecture of each network was

parametrized by the number of FC layers NF and number
of hidden-units within each layer NH . Additionally, after
each FC layer, dropout was performed with probability PD.
Networks with a range of different NF , NH and PD were
trained and the best networks were chosen by evaluating the
loss on the testing dataset.

Although theoretically µ(xi) and R(xi) can be learned
together in a single network, we empirically found that the
training separation (first learning mean and then covariance)
provides better approximations to the real distribution of
the learned CNN feature vector. Nevertheless, it is possible
that other regularization methods, besides dropout, can be
performed to make the unified neural network a better
alternative. This will be explored in our future work.

C. MAP Inference via Spatially-Varying Models

After learning µ(xi) and Σ(xi), the CNN factor from
Section III can be represented as:

fCNN (xi)
.
= P(fi|xi) =

= det(2πΣ(xi))
− 1

2 · exp(−1

2
‖µ(xi)− fi‖2Σ(xi)

), (11)

where xi is robot pose at time step i and fi is the CNN
measurement (output of a CNN classifier). Note that due
to the spatial variability of Σ(xi), the det(·) term and the
weight matrix within the Mahalanobis norm in Eq. (11) are
state-dependent, in contrast to the usual setting in SLAM,
which typically considers both terms to be constant.

The above factor will introduce two terms into the MAP
inference (4):

X∗k = arg min
Xk

[
. . .+ logdet(Σ(xi)) + ‖µ(xi)− fi‖2Σ(xi)

]
(12)

where both terms can be calculated from neural networks
via Eq. (9) and Eq. (10), and i is timestep index. The
above Bayesian optimization can be efficiently solved using
incremental Gauss-Newton [6] given that it has a least-
squares form.

Unfortunately, the first term, logdet, is not a square func-
tion. One possibility to deal with it is by taking its root and
then raising it in the power of two, (

√
λ+ logdet(Σ(xi)))

2,
where the constant λ assures the inner root expression to
be positive. Replacing the logdet(Σ(xi)) with such a least-
squares term in Eq. (12) will not change the MAP solution
X∗k . However, in our empirical evaluation (see Section V)
this squared term did not change much the MAP solution
compared to the solution where we use only Mahalanobis
terms of Eq. (12). Thus, this suggests that there is not much
information about state Xk inside logdet terms. Moreover,
we optimized Eq. (12) using general optimizers (Gradient
Descent, Adam and BFGS) that do not require a least-squares
form, and found also there that logdet terms do not affect
optimization solution in any significant way.

The Mahalanobis distance term can be represented as a
simple Euclidean-square norm via Eq. (10). Typical least-
squares optimizers (e.g. [4], [6]) require, for each such term,
the residual res and the Jacobian A, defined as follows.



The residual of a CNN factor can be calculated via a neural
network as:

res(xi, fi)
.
= R(xi) · (µ(xi)− fi). (13)

The Jacobian A of res w.r.t. xi can be calculated by exploit-
ing the automatic differentiation capability of modern neural
network libraries. Note that in case we ignore the covariance
part of Mahalanobis distance during the differentiation and
compute the Jacobian as A = R(xi) · ∂

∂xi
(µ(xi) − fi), an

incorrect Jacobian will be obtained and will negatively affect
accuracy of our MAP estimation, as shown in Section V.

V. RESULTS

In this section we evaluate our approach considering a
robot localization problem. Specifically, we use CNN fea-
tures in order to improve estimation accuracy of a robot
trajectory. In Section V-A we provide details about the
learning process of mean and covariance networks. Sec-
tion V-B demonstrates how the information extracted from
CNN features influences the trajectory inference. Finally,
in Section V-C we show how different light conditions
alter the conditional likelihood P(fi|xi) and examine the
corresponding effect on our approach performance.

A. Learning Process of µ(xi) and Σ(xi) Networks

The networks for µ(xi) and Σ(xi) were trained according
to the scheme described in Section IV-B using the Ten-
sorFlow library [1]. We use Unreal Engine to simulate an
environment with a single object (sofa, see Figure 4), daily
lighting from sun, sky clouds and brown terrain. We sampled
xi uniformly in this environment and captured an image Ii
and CNN output f̂i for each sample, producing a dataset
D = {xi, f̂i} with 200000 samples where each f̂i contains
1008 class probability values. Further, this dataset was di-
vided 75%-25% to training and testing sets respectively. We
selected fi ⊂ f̂i to include 10 class probabilities for which
CNN classifier returned high values on average for samples
from D. The chosen classes are: park bench, sandbar, beacon,
seashore, wing, patio, forklift, trailer truck, harvester and
rocking chair. Note that most of the objects do not really
appear in our environment and the CNN classifier produces
high probabilities for them due to perceptual aliasing. Yet,
as was explained in Section IV, as long as fi within learned
P(fi|xi) represents a classifier output (i.e. not necessarily
the real probability to see object of a specific class), the
learned likelihood can be used within the proposed Bayesian
inference framework.

Network architecture parameters NF , NH and PD were
sampled from ranges [2, 8], [100, 1000] and [0.7, 1], respec-
tively. In the first stage we trained multiple mean networks
for different architecture configurations and picked the opti-
mal one that produces minimal loss on the testing set. In the
second stage we used the optimal mean network with fixed
weights to train multiple covariance networks according to
Eq. (8). Finally, we picked 5 best mean networks and 5
best covariance networks (according to their testing loss)
and combined them into 25 mixes, each one representing a
different learned likelihood {Pj(fi|xi)}25

j=1.

In Figures 5a-5d we show the output of one of these
likelihood models for a specific environment area marked
in green in Figure 4a. Specifically, we present mean and
standard deviation for two specific CNN feature entries of
a park bench and a rocking chair whose real values are
displayed in Figures 4c-4d. As can be seen, the learned
measurement models resemble the real distribution of the
values, though not in the best possible way since the real
distribution is complex and hard to approximate. Yet, in the
next section we show that each one of the 25 learned sub-
optimal likelihoods holds an essential information about the
robot state and can improve localization accuracy.

B. Bayesian Inference

In our localization problem the robot moves in a ”star”-
pattern trajectory (see Figure 6a) where at the star center the
sofa object is located. At each time step, the robot receives
an odometry measurement and an image from UE, which
is converted into CNN feature vector by a CNN classifier.
Using appropriate likelihoods for each measurement, the
trajectory inference problem can be represented as a factor
graph, as illustrated in Figure 2. The inference optimization
was solved via GTSAM library [4], [6].

Initially, we solved the problem in Eq. (4) using general
gradient-based optimizers. We optimized both versions, with
and without logdet terms, and saw empirically that these
terms have negligible impact on the solution and thus can
be ignored. Further, after discarding logdet terms and af-
ter whitening residuals with state-dependent covariance via
Eq. (13), the Eq. (4) becomes ordinary least-squares problem
which we optimized using an incremental least-squares opti-
mizer ISAM2 [6]. We evaluate estimation through Absolute
Trajectory Error (ATE) performance measure which is the
mean of norm of Cartesian error between estimated and
ground truth poses (see Figure 6b).

First, we solved the problem using emulated CNN mea-
surements fi. That is, for each ground truth pose xi we sam-
pled a CNN feature vector fi from the likelihood P(fi|xi)
and used these sampled features in our trajectory inference.
Such a setting can be viewed as the scenario where we
succeeded to learn a precise likelihood P(fi|xi). As can be
seen from Figure 6c (blue line) where all 25 models are
considered, in such case the trajectory estimation turns to
be very accurate compared to the odometry-only scenario
(∼15 ATE vs 283 ATE). This indicates that if we can
perfectly learn a CNN measurement model, it becomes very
informative for the system inference problem.

Further, we performed the same scenario but with a real
CNN features that were produced by a CNN classifier from
Unreal Engine synthesized images. In Figure 6c (red line) we
can see that estimation error is around 50-150 ATE which
is still much lower compared to the odometry drift. Yet,
it is higher than the samples-emulated scenario, suggesting
that the CNN likelihood P(fi|xi) was not perfectly learned.
Nonetheless, it is apparently close enough to the real one
since it is still very informative in our inference solution.

Additionally, we evaluate inference where Jacobian A
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Fig. 5: Learned likelihood P1(fi|xi) in area marked green in Figure 4a. (a)-(b) are mean and standard deviation of ”park bench” feature. (c)-(d) are mean and standard deviation
of ”rocking chair” feature.
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Fig. 6: Robot trajectory inference using CNN and odometry factors for the first
measurement model P1(fi|xi). (a) Ground truth trajectory colored-coded with
information gain of CNN factors, odometry-only estimation (green) and estimation
using both odometry and CNN factors (blue). (b) ATE error and uncertainty covariance
of CNN estimation and odometry versus pose index. The vertical lines separate 8
sections of star trajectory. (c) Performance ATE error for all considered 25 models for
different inference configurations.

from Section IV-C is calculated through A = R(xi) ·
∂
∂xi

(µ(xi) − fi). Such calculation does not account for
the first-order derivative of the covariance function, making
the optimizer to progress in a slightly different direction.
In samples-emulated setting the new optimization direc-
tion results in considerably reduced performance (yellow
line in Figure 6c) - around 101 ATE vs around 15 ATE
for A’s proper calculation. However, in real-measurement
setting both approximate and accurate A matrices (purple

and red lines in Figure 6c) provide similar performance.
This suggests that accurate A can be useful only when our
measurement model is accurate. When this is not the case,
also roughly-calculated A will provide the same level of
performance.

Furthermore, we analyzed in detail the performance of the
first model P1(fi|xi), in a setting with real measurements
and accurate A. In Figure 6a, the final (smoothed) trajectory
estimation is shown to be very close to the ground truth.
Additionally, we colored the ground truth path according to
the information gain a CNN factor provides at each robot
pose, and we use it to assess the learned model quality (IG-
LMQ). It is calculated according to [12] as

IG–LMQ
.
=

1

2
ln
∣∣Im +A · S ·AT

∣∣ , (14)
where S is a constant scale matrix that accounts for different
scales of pose coordinates. We calculated IG-LMQ over
ground truth states and real measurements; in such a setting
S replaces the prior covariance matrix of camera pose (see
[12]). IG-LMQ can be thought as a metric of novelty that
a factor/measurement contains. Since we calculate it over
ground truth, i.e. the Jacobian A of res w.r.t. xi (see
Eq. (13)) is obtained using the ground truth value for xi
as the linearization point, there should be no novelty and
IG-LMQ just reflects how good the model P1(fi|xi) was
learned at a specific pose. That is, high IG-LMQ values
indicate that real model of measurements is far from our
learned approximation P1(fi|xi). As can be seen from Figure
6a, the highest IG-LMQ values are in areas where the sofa
object is visible and the robot is getting closer to it. One
possible reason to explain this is that CNN classifier outputs
fi behave more dynamically (not constant) around the object
and learning their behavior via P(fi|xi) is more difficult
w.r.t. other areas where object is not observed and where
the viewpoint-dependence of CNN features is less significant
(fi’s values are lower and more stable w.r.t. xi). Nevertheless,
as seen in Figure 6b, there are significant improvement in
estimation accuracy when the object is observed.

In Figure 6b the uncertainty covariance of pose estimation
and the ATE error are shown as a function of trajectory pose.
As can be seen, pattern of covariance is opposite to IG-LMQ
- it gets bigger when robot does not see the sofa object and
gets smaller when sofa is captured in images.

Finally, we applied kernels from robust estimation to im-
prove the inference performance. Since we saw that learned
likelihoods {Pj(fi|xi)}25

j=1 are not very accurate, some of the
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Fig. 7: CNN produced probabilities of observing a park bench (a) and a rocking chair
(b) in area marked green in Figure 4a. Used environmental light is considerably darker
than in Figures 4c-4d.

measurements can be seen as outliers. Thus we tried different
robust kernels [19] which are typically used to deal with
measurement outliers. In scenario with real measurements
and accurate A we succeeded to reduce average ATE from
117 to 85 via ”Fair” and ”Cauchy” kernels.

C. Light Conditions Effect

In order to test robustness of our approach to different
light conditions, we have constructed a similar ”sofa” UE
environment but with a significantly darker illumination. In
Figure 7 we can see how some CNN features behave in
this environment. Compared with the same features in the
environment with usual illumination (Figures 4c-4d) we can
see that the feature values (and the appropriate distribution
P(f |x)) were changed, meaning that the used CNN features
f are not robust to different light conditions.

The inference task in dark environment using the learned
likelihoods {Pj(fi|xi)}25

j=1 produced estimation that was
only a little better than odometry drift (226 average ATE
vs 283 ATE). The robust kernels did not succeed to improve
it. Obviously, the reason for such results is that changing
light conditions increased the distance between the real
feature distribution and the one approximated through neural
networks. When such distance becomes big enough, the
approximated likelihood P(fi|xi) is not consistent anymore
and cannot be used for inference. In future we will try
to robustify the P(fi|xi), e.g. by training on dataset with
changing light conditions.

VI. CONCLUSIONS

In this paper we developed a Bayesian approach to recover
high-level state information from features learned by a CNN
classifier and use this information for more accurate state
inference. We showed that the CNN features are highly
viewpoint-dependent and their generative model can be suc-
cessfully learned via neural network probability density func-
tion (pdf) approximations. Further, we demonstrated how
such model can be used to localize robot trajectory as Gaus-
sian factor in Bayesian estimation. Importantly, our approach
does not require to solve the challenging data association
problem. Moreover, the learned conditional pdf of CNN
features’ subset given state pose was shown empirically to be
a unimodal distribution, unlike the opposite pdf of pose given
CNN features which is multimodal due to possible perceptual
aliasing. As a consequence, using initial pose values from

odometry sensors, the learned unimodal likelihood does not
involve dealing with multiple inference hypotheses, unlike
the inference process involving multimodal pdfs. In future
we will explore ways to improve model accuracy, to use
information from the entire CNN feature vector, and to make
model more robust to different light conditions.
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