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Abstract

Fast covariance calculation is required both for simultaneous localization and mapping (SLAM; e.g., in order to solve

data association) and for evaluating the information-theoretic term for different candidate actions in belief space planning

(BSP). In this article, we make two primary contributions. First, we develop a novel general-purpose incremental covar-

iance update technique, which efficiently recovers specific covariance entries after any change in probabilistic inference,

such as the introduction of new observations/variables or relinearization. Our approach is shown to recover them faster

than other state-of-the-art methods. Second, we present a computationally efficient approach for BSP in high-dimensional

state spaces, leveraging our incremental covariance update method. State-of-the-art BSP approaches perform belief pro-

pagation for each candidate action and then evaluate an objective function that typically includes an information-

theoretic term, such as entropy or information gain. Yet, candidate actions often have similar parts (e.g., common trajec-

tory parts), which are however evaluated separately for each candidate. Moreover, calculating the information-theoretic

term involves a costly determinant computation of the entire information (covariance) matrix, which is O(n3) with n being

dimension of the state or costly Schur complement operations if only marginal posterior covariance of certain variables is

of interest. Our approach, rAMDL-Tree, extends our previous BSP method rAMDL, by exploiting incremental covariance

calculation and performing calculation reuse between common parts of non-myopic candidate actions, such that these

parts are evaluated only once, in contrast to existing approaches. To that end, we represent all candidate actions together

in a single unified graphical model, which we introduce and call a factor-graph propagation (FGP) action tree. Each

arrow (edge) of the FGP action tree represents a sub-action of one (or more) candidate action sequence(s) and in order

to evaluate its information impact we require specific covariance entries of an intermediate belief represented by the tree’s

vertex from which the edge is coming out (e.g., tail of the arrow). Overall, our approach has only a one-time calculation

that depends on n, while evaluating action impact does not depend on n. We perform a careful examination of our

approaches in simulation, considering the problem of autonomous navigation in unknown environments, where rAMDL-

Tree shows superior performance compared with rAMDL, while determining the same best actions.
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1. Introduction

Autonomous operation in unknown or uncertain environ-

ments is a fundamental problem in robotics and is an essen-

tial part in numerous applications such as autonomous

navigation in unknown environments, target tracking,

search-and-rescue scenarios, and autonomous manufactur-

ing. It requires both computationally efficient inference and

planning approaches, where the former is responsible for

tracking the posterior probability distribution function

given available data thus far, and the latter is dealing with

finding the optimal action given that distribution and a

task-specific objective. Since the state is unknown and only

partially observable, planning is performed in the belief

space, where each instance is a distribution over the original

state, while accounting for different sources of uncertainty.
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Such a problem can be naturally viewed as a partially obser-

vable Markov decision process (POMDP), which was

shown to be computationally intractable and typically is

solved by approximate approaches. The planning and

decision-making problems are challenging both theoreti-

cally and computationally. First, we need to accurately

model future belief as a function of future action while con-

sidering probabilistic aspects of state sensing. Second, we

need to be able to efficiently evaluate utility of this future

belief and to find an optimal action, and to do so on-line.

The utility function in belief space planning (BSP) typi-

cally involves an information-theoretic term, which quanti-

fies the posterior uncertainty of various variables within a

future belief. This, in turn, requires access to the marginal

covariance (information) matrix of appropriate variables

whose uncertainty we wish to account for (Kopitkov and

Indelman, 2017). Similarly, covariance of specific variables

is also required in the inference phase, for example, in the

context of data association (Kaess and Dellaert, 2009).

However, the recovery of specific covariances is computa-

tionally expensive in high-dimensional state spaces: while

the belief is typically represented in the (square-root) infor-

mation form to admit computationally efficient updates

(Kaess et al., 2012), retrieving the covariance entries

requires an inverse of the corresponding (potentially) high-

dimensional information matrix. Although sophisticated

methods exist to efficiently perform such inverse by

exploiting the sparsity of the square-root information

matrix and by reordering state variables for enhancing such

sparsity (Kaess et al., 2012), the overall complexity still is

at least quadratic with respect to state dimension (Ila et al.,

2015). Moreover, in the case of planning, such computation

needs to be performed for each candidate action.

The computational efficiency of the covariance recovery

and the planning process is the main point of this paper.

We develop a novel method to incrementally update covar-

iance entries after any change of the inference problem, as

defined next. Moreover, we present a planning algorithm

which leverages the key ability of incremental covariance

updates and by exploiting action similarity is much faster

and yet exact with respect to alternative state-of-the-art

techniques.

The inference problem can be represented by a set of

currently available observations and state variables whose

value we are to infer. For example, in a typical simulta-

neous localization and mapping (SLAM) scenario these

variables are the robot poses along a trajectory and land-

marks of the environment, while the observations are

motion odometry and projection/range measurements.

Covariances of the state variables can change as a result of

any change in the inference problem, such as the introduc-

tion of new observations or augmentation of the state (e.g.,

introduction of a new robot pose). Moreover, covariances

also depend on the current linearization point (the current

estimated mean) of the state vector, which in turn can also

change after the introduction of new observations. In this

article, we scrupulously analyze each such possible change

in the inference problem and show how covariance entries

can be appropriately incrementally updated. Such capabil-

ity to incrementally update covariance entries is important

not only for the inference phase but also for efficiently

addressing information-theoretic BSP, as we describe next.

BSP is typically solved by determining the best action,

given an objective function and a set of (non-myopic) can-

didate actions, while accounting for different sources of

uncertainty. Such an approach requires the evaluation of the

utility of each action from a given set of candidate actions.

This evaluation is usually done separately for each candi-

date action and typically consists of two stages. First, pos-

terior belief for candidate action is propagated and explicit

inference is performed. Second, an application-specific

objective function is evaluated given a candidate action and

the corresponding posterior belief. Yet, inference over the

posterior belief and evaluation of the objective function can

be computationally expensive, especially when the original

state is high-dimensional, since the complexity of both parts

depends on its dimension.

In addition, in many BSP applications candidate (non-

myopic) actions are partially overlapping, i.e., have similar

parts. For instance, in a building exploration scenario, can-

didate actions are trajectories to different locations in a

building (see Figure 1) that were provided, e.g., by

sampling-based motion planning approaches; some of these

sampled trajectories will have mutual parts. Typically, these

common parts will be evaluated a number of times, as part

of the evaluation of each action that shares them . Given

that we know what are the similar parts between the differ-

ent candidate actions, it can significantly reduce runtime

complexity if we could handle these similar parts only

once.

In this article, we present a technique for reusing com-

putation between the candidate actions and exploitation of

actions’ similarity, while leveraging the above-mentioned

method for incremental covariance updates. We show that

such a technique greatly reduces the total decision-making

Fig. 1. Illustration of possible candidate actions during

exploration of an unknown environment by an autonomous

robot. The robot’s current position is marked by a red circle; red

lines and green points represent the trajectory and final position

of each candidate action, respectively. As can be seen, actions

share many mutual parts.
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runtime. Further, we argue that for most cases, explicit

inference over the posterior belief is not required.

Moreover, evaluation of all candidate actions can be per-

formed very quickly by dividing the overall computation

into two computational blocks: first, with complexity

dependent on state dimension, yet which is performed only

once independently of the number of candidate actions;

and second, that computes the objective function for each

action efficiently by exploiting candidate actions’ similarity,

and providing complexity independent of the state dimen-

sion. In general, the objective function of BSP can contain

multiple terms, such as control cost, distance to goal, and

an information-theoretic term (e.g., entropy, information

gain (IG), or mutual information). Arguably, in typical set-

tings the control cost and distance to goal can be calculated

without explicit inference over the posterior belief, since

these terms depend only on the linearization point of the

state vector. In this article, we show that the information

term also does not require an explicit inference over the

posterior belief and that action similarity can be efficiently

exploited, concluding that the BSP problem can be solved

without performing time-consuming explicit inference over

the posterior belief at all.

To that end, we present a new paradigm that represents

all candidate (sequence of) actions in a single unified data

structure that allows the similarities between candidate

actions to be exploited while evaluating the impact of each

such action. We refer to this structure as factor-graph pro-

pagation (FGP) action tree, and show that the developed

herein incremental covariance calculation method allows us

to compute the IG of the tree’s various parts. This, in turn,

can be used to efficiently evaluate the information term of

different candidate actions while reusing calculations when

possible. Combining our recently developed rAMDL

approach (Kopitkov and Indelman, 2017) with an FGP

action tree and incremental covariance update, yields an

approach that calculates action impact without explicitly

performing inference over the posterior belief, while reus-

ing calculations among different candidate actions.

To summarize, our main contributions in this article are

as follows: (a) we develop an incremental covariance update

method to calculate specific covariance entries after any

change in the inference problem; (b) we introduce the FGP

action tree, that represents all candidate actions in a single

hierarchical model and allows us to mutually formulate

common parts of candidate actions; (c) we apply an incre-

mental covariance update method to calculate covariance

entries from intermediate and posterior beliefs within the

FGP action tree, where all calculations that depend on state

dimension n are accumulated into a single computational

block which is performed only once for all actions, with

further per-action computations independent of n; and (d)

we combine the FGP action tree graphical model, the incre-

mental covariance update method. and rAMDL approach

(Kopitkov and Indelman, 2017) to yield a new algorithm,

rAMDL-Tree, that efficiently solves an information-

theoretic BSP problem while handling candidates’ mutual

parts only once.

This article is organized as follows. In Section 2, we

describe relevant work. In Section 3, we present basic

notions and relevant background material on probabilistic

inference. Section 4 contains the problem definition. In

Section 5, we describe our approaches for incremental cov-

ariance recovery (Section 5.1) and information-theoretic

BSP problem (Section 5.2). Further, in Section 6 we pro-

vide simulation results that emphasize the advantages of

the approaches presented herein. Finally, in Section 7, we

conclude the discussion about the introduced methods and

point out several directions for future research. In addition,

we provide an appendix with proofs of several lemmas

introduced throughout the paper.

2. Related work

In this section, we discuss the work most relevant to our

approach, starting with computationally efficient covar-

iance calculation and then proceeding to state-of-the-art

BSP approaches.

2.1. Computationally efficient covariance

recovery in high-dimensional state spaces

Fast covariance recovery, under the Gaussian inference

setting, is an active research area that has been addressed

by several works in recent years. Naı̈vely calculating an

inverse of a high-dimensional information matrix is pro-

hibitively expensive. However, these calculations can be

avoided by exploiting sparsity of the square root informa-

tion matrix, yielding a recursive method to calculate the

required entries (Golub and Plemmons, 1980), which has

been recently also proposed by Kaess and Dellaert (2009)

within their incremental smoothing and mapping solver.

Although such a method is faster than a simple inverse of

square-root information matrix, the covariances are still

calculated from scratch and the complexity depends on

state dimension n. Moreover, in order to calculate a spe-

cific block of covariance matrix, the recursive approach

may still need to calculate the entire covariance matrix

(with dimensions n× n), which is undesirable for high-

dimensional state spaces.

More recently, Ila et al. (2015) introduced an approach

to incrementally update covariances after the inference

problem was changed. Given specific prior covariance

entries that were calculated in a previous time-step, their

approach efficiently calculates covariance deltas to these

entries, which comes out to be much faster than the recur-

sive approach from Golub and Plemmons (1980) and Kaess

and Dellaert (2009). Although this approach is similar in

spirit to our method of incremental covariance update, it is

more limited in the following sense. Its theoretical part

deals only with the specific scenario where new observa-

tions were introduced to the inference problem, without
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adding new variables. The latter is a common scenario in

SLAM where the state vector is augmented with new vari-

ables (e.g., robot poses), and its proper solution is essential

for robot navigation missions. Yet, the mathematical formu-

lation in Ila et al. (2015) does not handle such state aug-

mentation case, which actually involves singular matrices

that are assumed to be invertible according to the derivation

of Ila et al. (2015). Nevertheless, their simulation part sug-

gests that the approach can also be applicable in this case in

practice. Moreover, in case of state relinearization, the

authors used a recursive method as a fallback and calculate

covariances from scratch. In contrast, we present a general

approach that is mathematically sound and is capable of

dealing with any change in the inference problem, includ-

ing state augmentation and relinearization. In addition, we

show how the presented incremental covariance recovery

technique can be used to update conditional covariance

entries, which is also not supported in Ila et al. (2015).

Finally, even though a limited version of incremental covar-

iance update has been developed (Ila et al., 2015), it was

not considered within a BSP problem, which is one of our

main contributions in this work.

2.2. BSP

As was mentioned previously, BSP is an instantiation of a

POMDP problem. Calculating a globally optimal solution

of POMDP is known to be computationally intractable

(Kaelbling et al., 1998) in high-dimensional state spaces

owing to the curse of dimensionality. Therefore, most of

the modern research is focused on approximation methods

that solve the planning problem in a sub-optimal form with

tractable runtime complexity. These approximation meth-

ods can be categorized into those that discretize the state/

action/measurement space domains and those that act in

continuous spaces. Approaches that perform discretization

include sampling (Agha-Mohammadi et al., 2014; Prentice

and Roy, 2009), simulation (Stachniss et al., 2005), and

point-based value iteration (Pineau et al., 2006) methods.

Planning approaches that operate in continuous spaces,

often also termed as direct trajectory optimization methods,

calculate a locally optimal solution given an initial nominal

solution using different optimization techniques such as

dynamic programming and gradient descent (Indelman

et al., 2015; Patil et al., 2014; Platt et al., 2010; Van Den

Berg et al., 2012).

In addition, BSP methods can be separated into those

that solve myopic and non-myopic decision making. While

myopic approaches, also known as next best view (NBV)

approaches in computer vision community (e.g., Dunn and

Frahm, 2009; Wenhardt et al., 2007), reason about actions

taking the system only one step into the future, non-myopic

planning (e.g., He et al., 2011; Indelman et al., 2015; Kim

and Eustice, 2014; Platt et al., 2010; Prentice and Roy,

2009; Van Den Berg et al., 2012) deals with sequences of

actions taking the system multiple steps into the future.

Clearly, for more complex tasks non-myopic methods

will perform better as the time period before receiving

the reward can be long. Yet, such methods are typically

more computationally expensive as more effort is

required to consider different probabilistic outcomes along

the long planning horizon. In this article, we consider a

non-myopic setting and formulate the problem through fac-

tor graphs.

One way to reduce the computational complexity of

non-myopic information-theoretic planning is by appropri-

ate factoring of the covariance matrix, as proposed by

Prentice and Roy (2009). Such a procedure allows several

planning step updates to be combined into a one-stage

computation while using filtering estimators (e.g., Kalman

filter), thus reducing overall computation time. When a

smoothing formulation is used for planning instead, a non-

myopic candidate action can also be evaluated through a

one-stage computation, as will be demonstrated in

this paper. Further, by exploiting problem’s sparsity the

presented herein approach solves BSP in a very efficient

way.

An information-theoretic BSP problem seeks for an

optimal action that maximally reduce the estimation uncer-

tainty of the state vector. Such a problem can be separated

into two main cases: unfocused BSP tries to reduce

uncertainty of all variables inside the state vector, whereas

focused BSP is only interested in reducing the uncer-

tainty of a predefined subset (termed as focused vari-

ables) of these variables. Typically, the two cases have

different best actions, with optimal action from unfo-
cused BSP potentially providing little information about

focused variables of focused BSP (see, e.g., Levine

and How, 2013). In both cases, the objective function usu-

ally calculates posterior entropy or IG (of all variables from

the state vector or of only focused variables) and may

have high computational complexity that depends on state

dimension n. For instance, the calculation of unfocused
posterior entropy usually requires determinant computation

of information (covariance) matrix, which is, in general,

O(n3), and is smaller for sparse matrices as in SLAM prob-

lems (Bai et al., 1996). Calculation of focused posterior

entropy is even more expensive and requires additional

Schur complement computation.

Recently, we presented a novel approach, rAMDL

(Kopitkov and Indelman, 2017), to efficiently calculate

entropy and IG for both focused and unfocused
cases. This method requires only one-time calculation that

depends on dimension n: computation of specific prior

marginal (or conditional) covariances. Given these prior

covariances, rAMDL evaluates information impact of each

candidate action independently of state dimension n. Such

a technique was shown to significantly reduce runtime (by

orders of magnitude) compared with standard approaches.

Yet, in most BSP approaches, including our own

rAMDL approach, the similarity between candidate actions

is not exploited and each candidate is evaluated from

scratch. To the best of the authors’ knowledge, only the

work by Chaves and Eustice (2016) was done in this
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direction. Their approach performs fast explicit inference

over the posterior belief, by constraining variable ordering

of the Bayes tree data structure to have candidates’ com-

mon variables eliminated first. Still, this approach has its

limitations. It explicitly calculates the posterior belief for

each action, and though this calculation is done fast, the

method still requires additional memory to store such pos-

terior beliefs. Further, the approach in Chaves and Eustice

(2016) does not deal with information-theoretic objective

functions whose runtime complexity is usually very expen-

sive, as mentioned above. Moreover, it can only be applied

when the SLAM algorithm is implemented using a Bayes

tree (Kaess et al., 2012), and it was shown to work only for

the case where actions are trajectories constrained to have

only a single common part.

In contrast, in this article, we develop a BSP technique

that reuses calculations in a general way, by exploiting

potentially any number of mutual parts between the candi-

date actions. It is expressed in terms of factor graphs and

can be applied not just for trajectory planning, but for any

decision-making problem expressed via factor graphs.

Moreover, our technique can be implemented indepen-

dently of a chosen SLAM factor graph optimization infra-

structure. We combine several algorithmic concepts

together: a unified graphical model FGP action tree, incre-

mental covariance update, and rAMDL approach (Kopitkov

and Indelman, 2017), and present a BSP solution that does

not require explicit inference over the posterior belief while

carefully evaluating information impact of each action in

an exact way.

3. Notation and preliminaries

In this article, we address the covariance recovery and BSP

problems considering a smoothing formulation of probabil-

istic inference, where the state vector contains all variables

of interest without marginalizing old variables out. In gen-

eral, a probabilistic inference problem can be formulated in

terms of factor graphs (Kschischang et al., 2001).

Concretely, at time step k it can be represented by a factor

graph Gk = (Fk ,Xk , Ek), where Xk and Fk are variable and

factor nodes that correspond, respectively, to the estimated

state variables and the related probabilistic models. As

such, depending on the application, Xk can represent robot

configuration and poses (optionally also past and current

poses), environment-related variables or any other variables

of interest. Further, Fk = ff 1(X 1), . . . , f nf (X nf )g is the set

of all factors acquired until time step k (e.g., prior, motion

and measurement models), where X j � Xk are variables

involved in factor f j. Further, Ek encodes connectivity

according to the variables involved in each factor (see also

Figure 2a). Such a formulation is general and can express

various inference problems, including SLAM and naviga-

tion. The joint probability density function (pdf) over the

state vector Xk 2 R
n can be then written in a general

form as

P(Xk jHk)}
Ynf

j = 1

f j(X j), ð1Þ

whereHk is a history that contains all the information gath-

ered by the current time (measurements, controls, etc.).

As common in many inference problems, in this work

we assume that all factors have a Gaussian form,

f j(X j)} exp(� 1

2
k hj(X j)� rj k2

S
j ) ð2Þ

with an appropriate model

rj = hj(X j)+ yj, yj;N (0,S
j) ð3Þ

where hj is a known nonlinear function, yj is a zero-mean

Gaussian noise and rj is the expected value of hj, i.e.,

rj =E½hj(X j)�. Such a factor representation is a general way

to express information about the state. In particular, it can

represent a measurement model, in which case hj is the

observation model, and rj and yj are the actual measure-

ment z and measurement noise,, respectively. Similarly, it

can also represent a motion model.

As a basic example, consider a typical robot navigation

scenario where the joint pdf over robot trajectory can be

written as

P(Xk ju0:k�1, z1:k)} p(x0)
Yk

j = 1

p(xjjxj�1, uj�1)p(zjjxj) ð4Þ

where Xk is the state vector at time step k containing all

robot poses fxigk
i = 0 until now, p(x0) is a prior over initial

pose x0, p(xjjxj�1, uj�1) is the motion model and p(zjjxj) is

the measurement model. As can be seen, Equation (4) is a

particular instance of the more general formulation in (1).

Note that along time steps the state vector Xk is augmented

with new robot poses. Likewise, new measurement and

odometry factors are added to the product in (4). Typically,

Xk is estimated by maximizing (1), which provides a maxi-

mum a posteriori (MAP) estimation of the state vector. We

term this MAP solution as belief b½Xk �. In case all factors

are modeled as Gaussian distributions, MAP inference cor-

responds to solving a nonlinear least squares problem. Its

solution then, the belief b½Xk �, is itself parametrized by a

high-dimensional Gaussian distribution:

b½Xk � ¼: P(Xk jHk)=N (X H

k ,Sk)=N�1
(hH

k ,Lk) ð5Þ

where X H

k , Sk , hH

k , and Lk are the mean vector, covariance

matrix, information vector, and information matrix (inverse

of covariance matrix), respectively. Recent works developed

computationally efficient approaches to calculate the MAP

estimate X H

k incrementally while exploiting sparsity (see,

e.g., Dellaert and Kaess, 2006; Ila et al., 2017; Kaess et al.,

2012, 2008).

When an inference problem is updated along time (i.e.,

from time instant k to another time instant k + l), new
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factors and state variables are introduced into (1) and factor

graph Gk . As a smoothing formulation is considered, propa-

gating the belief b½Xk � to b½Xk + l� means performing infer-

ence over the updated (1):

b½Xk + l� ¼: P(Xk + ljHk + l)[P(Xk ,XnewjHk + l)

}
Ynf

j = 1

f j(X j)

" #
�
Y

i

f i
new(X

i)

" #
ð6Þ

where Xnew is a set of new state variables with the entire

state vector becoming Xk + l = Xk [ Xnew, and where ff i
newg

are newly introduced factors. The updated belief b½Xk + l� is

typically parametrized by the updated mean vector X H

k + l

and the updated information matrix Lk + l, or the square-

root information upper-triangular matrix Rk + l:

b½Xk + l� ¼: P(Xk + ljHk + l)=N (X H

k + l, (Lk + l)
�1)

=N (X H

k + l, (R
T
k + l � Rk + l)

�1)
ð7Þ

Solving for b½Xk + l� involves inferring belief over both new

and old state variables, where the belief over the latter in

general also changes (i.e., P(Xk jHk) 6¼ P(Xk jHk + l)). This

may happen, for example, when adding newly acquired

sensor measurements in inference, or in planning, when

considering a specific candidate action and the correspond-

ing future posterior belief.

In this article, we explore how the belief changes after

the factor graph Gk is modified as discussed previously.

Specifically, we provide methods to incrementally infer

information-based properties of the belief after Gk changes,

such as recovery of posterior covariance entries and com-

putation of an IG.

Furthermore, in this article we also deal with non-

myopic planning, where a candidate action may contain an

arbitrary number L of sub-actions. The belief b½Xk � can

then be propagated to b½Xk + L� for some specific action,

given the corresponding new factors and variables. Yet, in

general, belief propagation can be formulated simply as

factor graph augmentation, independently of the number of

look ahead steps L. That is, applying any candidate action

of any length L can be viewed as the addition of new vari-

able and factor nodes to graph Gk , thus making notation L

unnecessary in the context of this article.

Therefore, in this article, we reduce clutter by denoting

the belief, before the factor graph is changed, as b½X��.
Similarly, we denote the posterior belief, after the factor

graph is changed, as b½X+�. In inference, b½X�� corresponds

to the belief from the previous time instant, while b½X+�
corresponds to the posterior belief at the current time, after

incorporating new factors and variables. In the context of

planning, b½X�� denotes the belief at planning time (i.e.,

current time) and b½X+� denotes the propagated belief along

a given (non-myopic) candidate action. In both cases (infer-

ence and planning), X� and X+ represent the corresponding

state vector before and after the change in the inference

problem. For more details see also Table 1.

4. Problem formulation

We now introduce the two problems this article addresses,

along with appropriate notation: general-purpose incremen-

tal covariance update and computationally efficient BSP. As

shown in Section 5, our approach to address the latter prob-

lem builds upon the solution to the first problem.

Fig. 2. Illustration of belief propagation in factor graph representation, taken from SLAM application. (a) Prior factor graph G�
(colored in black) contains two robot poses x1 and x2, and two landmarks l1 and l2, as also the prior and motion model factors

ff0, f1, f2, f3g. Two different actions (trajectories) are considered. The first will take the robot to observe landmark l1 and will augment

the G� with new factors and state variables colored in green and red. The second will take robot to visit l2 instead, and will augment

the G� with new factors and state variables colored in green and purple. As can be seen, both candidate actions share some of their

new factors/state variables (colored in green). (b), (c) Candidates from (a) represented as an FGP action tree. In an FGP action tree,

each vertex represents a specific factor graph (or the belief that is associated with it) and each edge represents a specific action:

augmentation of the factor graph with an increment of the action, see (12). (b) Posterior factor graphs G
a1
+ and G

a2
+ are propagated

separately for each action. (c) First the prior factor G� is augmented by a mutual increment represented by ashr (colored green in (a))

and the posterior G
ashr

+ is received. Next, G
ashr

+ is augmented separately by non-mutual increments (colored red and purple in (a)) of

each action, providing posterior factor graphs G
a1
+ and G

a2
+ .
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4.1. Problem 1: Covariance recovery

As mentioned previously, in many applications it is manda-

tory to recover covariance entries of belief b½X��. However,

typically this belief ’s covariance matrix S� is represented

by an information matrix L�= (S�)
�1, or the square-root

information upper-triangular matrix R�, with

RT
� � R�= (S�)

�1.

Considering a square-root representation, the covariance

matrix is S�= R�1
� � R�T

� and its specific covariance entries

S�= (sij) can be calculated from entries R�= (rij) as

(Golub and Plemmons, 1980)

sii =
1

rii

1

rii

�
Xn

j = i + 1, rij 6¼0

rijsji

0
@

1
A ð8Þ

sij =
1

rii

�
Xj

k = i + 1, rik 6¼0

rikskj �
Xn

k = j + 1, rik 6¼0

rikskj

 !
ð9Þ

Note that in order to calculate the upper left covariance

entry (s11), all other covariance entries are required.

Therefore, the worst-case computation (and memory) com-

plexity of this recursive approach is still quadratic in state

dimension n. Yet, when applied to SLAM problems, the

actual complexity is usually better because the matrix R�
is typically sparse in such a setting.

In contrast, an incremental covariance update approach

can be applied in order to recover the required covariance

entries more efficiently. At each time-step, solving the

inference problem for the current belief b½X�� from (1)

provides a MAP estimate and the corresponding covariance

or (square-root) information matrix. However, at the next

step the inference problem changes. To see that,

consider the belief at the next time-step b½X+�, which was

obtained by introducing new state variables Xnew (e.g.,

new robot poses in SLAM smoothing formulation),

with X+ = X� [ Xnew, and by adding new factors (e.g., new

measurements, odometry, etc.) Fnew = ff 1
new(X

1
+)

, . . . , f nnew
new (X nnew

+ )g where X
j
+ � X+. In addition, consider

the set of variables Y � X+ whose marginal

covariance S
M , Y
+ from b½X+� we are interested in calculat-

ing. Note that these variables of interest can contain both

old Yold � X� and new Ynew � Xnew variables, with

Y = fYold, Ynewg.
Given that we already calculated the required covariance

entries S
M , Yold

� from the current belief b½X��, in incremental

covariance update approach we would like to update these

entries after the change in the inference problem (from

b½X�� to b½X+�) as

S
M , Yold

+ = S
M , Yold

� + DYold ð10Þ

where DYold represents the difference between old and new

covariance entries. In addition, in the general case we might

be interested in calculating the posterior covariance of new

variables of interest Ynew � Y , i.e., S
M , Ynew

+ , as well as also

the cross-covariances between Yold and Ynew.

Likewise, the conditional covariances, from the condi-

tional pdf of one state subset conditioned on another, are

also required for information-theoretic BSP as was shown

in Kopitkov and Indelman (2017). Hence, we would also

Table 1. Main notation used within the problem definition (Section 4).

Notation Description

Problem 1 Problem 2

X� state vector before state vector at planning time
a change in inference problem

X+ state vector after future state vector after
a change in inference problem applying a specific candidate action

Xnew new state variables introduced after new state variables introduced after
a change in inference problem applying a specific candidate action

Fnew new factors set introduced after new factors set introduced after
a change in inference problem applying a specific candidate action

L� and L+ prior and posterior information matrices
LAug

+ prior information matrix L� augmented with zero rows and columns
that represent new state variables Xnew (see Figure 3)

S� and S+ prior and posterior covariance matrices
R� and R+ prior and posterior square-root information upper-triangular matrices
b½X � belief of state vector X
H(b½X �) differential entropy of belief b½X �
S

M ,Y
marginal covariance of some state subset Y
(partition of covariance matrix S with columnsnrows belonging to Y )

I(a) increment of candidate action a, represents new factors and new state variables
introduced into inference problem after a is executed

A set of candidate actions considered in BSP
A noise-weighted Jacobian of newly introduced factors with respect to all state variables
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like to develop a similar approach for incremental condi-

tional covariance update.

A limited technique to perform an incremental update of

marginal covariances was presented in Ila et al. (2015). The

authors showed how to update the covariance entries by

downdating the posterior information matrix. Their deriva-

tion can be applied for the case where the state vector was

not augmented during the change in the inference problem

(Xnew is empty). However, that derivation is not valid for

the case of state augmentation, which involves zero-

padding of prior matrices (described in the following); such

padding yields singular matrices and requires more delicate

handling. Even though their approach is not mathematically

sound for the augmentation case, in the simulation part of

Ila et al. (2015) it is suggested that the approach can also

be applied here in practice. Still, the authors clearly declare

that their approach does not handle relinearization of the

state vector, which can often happen during the change in

the inference problem. Further, Ila et al. (2015) did not con-

sider recovery of conditional covariances. In contrast, we

develop a general-purpose method that handles incremental

(marginal and conditional) covariance updates in all of the

above cases in a mathematically sound way.

In Section 5, we categorize the above general change in

the inference problem into different sub-cases. Further, we

present an approach that carefully handles each such sub-

case and incrementally updates covariances that were

already calculated before the change in the inference prob-

lem, and also computes covariance of newly introduced

state variables. As will be shown, the computational com-

plexity of such a method, when applied to a problem where

only the marginal covariances need to be recovered (i.e.,

block diagonal of S�), is linear in n in the worst case.

Furthermore, we will show how our incremental covariance

update approach can be also applied to incrementally

update conditional covariance entries. Later, this capability

will be an essential part in the derivation of our BSP

method, rAMDL-Tree.

4.2. Problem 2: BSP

Typically in BSP and decision-making problems we have a

set of candidate actions A= fa1, a2, . . .g from which we

need to pick the best action according to a given objective

function. As shown in our previous work (Kopitkov and

Indelman, 2017), the posterior belief for each action can be

viewed as a specific augmentation of the prior factor graph

that represents the prior belief b½X�� (see Figure 2a). In this

article, we denote this factor graph by G�. Each candidate

action a can add new information about the state variables

in form of new factors. In addition, in specific applications,

action a can also introduce new state variables into the

factor graph (e.g., new robot poses). Thus, similarly to the

change in the inference problem described previously, for

each action a we can model the newly introduced state

variables denoted by Xnew, defining the posterior state

vector (after applying the action) as X+ = X� [ Xnew. In a

similar manner, we denote the newly introduced factors by

Fnew=ff 1
new(X

1
+), . . . , f nnew

new (X nnew

+ )g where X
j
+ � X+.

Therefore, similar to (1), after applying candidate action

a, the posterior belief b½X+� can be explicitly written as

b½X+�} b½X��
Ynnew

j = 1

f j
new(X

j
+) ð11Þ

Such a formulation is general and supports a non-myopic

action a with any planning horizon, that introduces into the

factor graph multiple new state variables and multiple fac-

tors with any measurement model. Still, in this article we

assume factors have a Gaussian form (2).

For the sake of conciseness, in this article the newly

introduced factors and state variables that are added when

considering action a will be called action a’s increment and

denoted as

I(a) ¼: fFnew,Xnewg ð12Þ

The posterior information matrix, i.e., the second moment

of the belief b½X+�, can be written as

L+ = L�+ AT � A, L+ = LAug
+ + AT � A ð13Þ

where we took the maximum likelihood assumption which

considers that the above, a single optimization iteration

(e.g., Gauss–Newton), sufficiently captures action impact

on the belief. Such an assumption is typical in BSP litera-

ture (see, e.g., Indelman et al., 2015; Kim and Eustice,

2014; Platt et al., 2010; Van Den Berg et al., 2012). The

left identity in (13) is true when Xnew is empty, while the

right identity is valid for non-empty Xnew. The matrix A is a

noise-weighted Jacobian of newly introduced factors Fnew

with respect to state variables X+; LAug
+ is constructed by

first augmenting the prior information matrix L� with zero

rows and columns representing the new state variables

Xnew, as illustrated in Figure 3 (see, e.g., Kopitkov and

Indelman, 2017).

After modeling the posterior information matrix L+ for

action a, the unfocused IG (uncertainty reduction of the

entire state vector X+) can be computed as

Fig. 3. Illustration of L+ ’s construction for a given candidate

action in the case where new state variables Xnew were introduced

into the state vector. First, LAug
+ is created by adding zero rows

and columns representing the new state variables. Then, the new

information of belief is computed through L+ = LAug
+ + ATA.
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JIG(a)=H(b½X��)�H(b½X+�)= dim:const +
1

2
ln

L+j j
L�j j
ð14Þ

where H(�) is the differential entropy function that mea-

sures the uncertainty of input belief, and dim:const is a

constant that only depends on the dimension of X+ and,

thus, is ignored in this paper. Note that the above unfo-
cused IG is typically used in applications where the set of

new variables, Xnew, is empty and so both X� and X+ have

the same dimension. In cases where Xnew is not empty

(e.g., SLAM smoothing formulation), usually focused
IG is used (see below). The optimal action a� is then given

by a�= argmaxa2AJIG(a).
For a focused BSP problem we would like to reduce

uncertainty of only a subset of state variables X F � X+.

When X F consists of old variables X�, X F � X�, we can

compute its IG. Such IG is a reduction of X F ’s entropy after

applying action a, H(b½X F
��)�H(b½X F

+ �) where b½X F
�� and

b½X F
+ � are prior and posterior beliefs of focused variables

X F . In case X F consists of newly introduced variables Xnew,

X F � Xnew, the IG function has no meaning as the prior

belief b½X F
�� does not exist. Instead, we can directly calcu-

late X F’s posterior entropy H(b½X F
+ �). The IG and entropy

functions can be calculated through respectively:

J F
IG(a)=

1

2
ln

S
M ,F
�

�� ��
S

M ,F
+

�� �� ,
JF
H(a)= dim:const +

1

2
ln S

M ,F
+

�� �� ð15Þ

where S
M ,F
� and S

M ,F
+ are prior and posterior marginal

covariance matrices of X F , respectively. Note that in

focused BSP the optimal action will be found through

a�= argmaxa2AJF
IG(a) or a�= argmina2AJF

H(a).
To summarize, in order to solve an information-

theoretic BSP problem, we are required to calculate IG

or entropy ((14) and (15)) for each candidate action a,

and then choose a candidate action with the maximal

gain.

5. Approach

In this section, we present our approaches that efficiently

solve the incremental covariance recovery (Section 5.1) and

information-theoretic BSP (Section 5.2). The notation is

given in Table 2.

5.1. Incremental covariance update

In this section, we present our technique for efficient update

of covariance entries (see Problem 1 in Section 4). In

Section 5.1.1, we show how to update marginal covariances

of specified variables Y � X+ after new state variables were

introduced into the state vector and new factors were added,

yet no state relinearization happened during the change in

the inference problem. We show that the information matrix

of the entire belief is propagated through a quadratic

update form, similarly to (13). Assuming such quadratic

update, we will derive a method to efficiently calculate the

change in old covariance entries, to compute the new covar-

iance entries and the cross-covariances between old and

new state variables. Further, in Section 5.1.2 we show that

also in the relinearization case the information matrix

update has an identical quadratic update form and conclude

that our method, derived in Section 5.1.1, can also be

applied when some of the state variables were relinearized.

Finally, in Section 5.1.3, we show that also the information

matrix of a conditional pdf is updated through a quadratic

update form and that the same technique from Section 5.1.1

can be applied in order to incrementally update conditional

covariance entries. We show that our approach’s complexity,

given the specific prior covariances, does not depend on

state dimension n.

5.1.1. Update of marginal covariance entries. Consider

Problem 1 from Section 4. Consider the belief was propa-

gated from b½X�� to b½X+� as described. Yet, let us assume

for now that no state relinearization happened (we will spe-

cifically handle it in the next section). In this section, we

show that the posterior covariances of interest S
M , Y
+ can be

efficiently calculated as

Table 2. Main notation used through the derivation of the incremental covariance recovery approach.

Notation Description

Y subset of state variables whose marginal covariance we are interested in updatingncomputing
Yold old variables inside Y
Ynew new variables inside Y (that were introduced during the change in the inference problem)
I X set of old involved variables in the newly introduced factors Fnew

W variable union of sets Yold and I X
n dimension of a prior state vector X�
N dimension of a posterior state vector X+

m overall dimension of the newly introduced factors Fnew
I A m× jI X j matrix that consists of A’s columns belonging to variables in I X
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S
M , Y
+ = f (SM ,W

� ) ð16Þ

where S
M ,W
� is the prior marginal covariance of set

W ¼: fYold,
I X g and f (�) is a transformation function, with

calculation complexity that does not depend on state

dimension n. We derive this function in detail in the follow-

ing. The set Yold contains old state variables inside Y

(Yold � X�) and I X � X� is the set of involved variables in

the newly introduced factors Fnew: variables that appear in

Fnew’s models (3). Note that the update of old covariances

(10) is only one part of this f (�), as also the computation of

covariances for new state variables Ynew and cross-

covariances between Yold and Ynew.

Next, let us separate all possible changes in the inference

problem into different cases according to augmented state

variables Xnew and the newly introduced factors Fnew.

If Xnew is empty, we call such a case as non-augmented.

This case does not change the state vector (X�[ X+) and

only introduces new information through new factors. The

information matrix in this case can be updated through

L+ = L�+ AT � A, where matrix A 2 R
m× n is a noise-

weighted Jacobian of newly introduced factors Fnew with

respect to state variables X+, and A’s height m is the dimen-

sion of all new factors within Fnew (see Section 4).

Given Xnew is not empty, we call such a case as rectan-

gular. This case augments the state vector to be

X+ = fX�,Xnewg and also introduces new information

through the new factors. Here the information matrix can

be updated through L+ = LAug
+ + AT � A where

LAug
+ 2 R

N ×N is a singular matrix that is constructed by

first augmenting the prior information matrix L� with zero

rows and columns representing the new state variables

Xnew, as illustrated in Figure 3; N = jX+j= n + jXnewj is

the posterior state dimension; A here will be an m×N

matrix.

Finally, for the case when Xnew is not empty and total

dimension of new factors m is equal to the number of

newly introduced variables jXnewj, we call such a case as

squared. Clearly, the squared case is a specific case of the

rectangular case, which for instance can represent the new

robot poses of candidate trajectory and the new motion

model factors. The reason for this specific case to be dealt

with in a special way is due to the fact that its f (�) function

is much simpler than the f (�) function of the more general

rectangular case, as we show in the following. Thus, when

m = jXnewj it would be advisable to use function f (�) of the

squared case.

A summary of the above cases can be found in Table 3.

Next, we present the function f (�) separately for each

one of the non-augmented, rectangular, and squared cases.

Although the function f (�) has an intricate form (especially

in the rectangular case), all matrix terms involved in it have

dimensions m, jXnewj, or jI X j; hence, the overall calculation

of posterior S
M , Y
+ does not depend on the state dimension

n.

Lemma 1. For the non-augmented case, the posterior mar-

ginal covariance S
M , Y
+ can be calculated as

S
M , Y
+ = S

Y
� � B � C�1 � BT, B ¼D S

C
� � (I A)T,

C ¼D Im + I A � SI
� � (I A)T

ð17Þ

where S
I
�, S

Y
�, and S

C
� are parts of prior marginal covar-

iance S
M ,W
� partitioned through W = fY , I X g:

S
M ,W
� =

S
Y
� S

C
�

(SC
�)

T
S

I
�

 !
ð18Þ

and where I A consists of A’s columns belonging to involved

old variables I X .

The proof of Lemma 1 is given in Appendix A. Note

that sets Y and I X are not always disjoint. In case these sets

have mutual variables, the cross-covariance matrix S
C
� can

be seen just as S
(Y , I X )
� , partition of prior covariance matrix

S� with rows belonging to Y and columns belonging to
I X . Also note that the columns inside information matrices

do not have to be ordered in any particular way, and that

the previous lemma is correct for any ordering whatsoever.

Typically, a symmetric matrix S
M ,W
� is already known since

it was already calculated at a previous time step as part of

covariance update. In case some rows/columns from S
M ,W
�

are unknown, we can calculate them by computing specific

columns of L� ’s inverse (see Section 5.1.4).

Lemma 2. For the rectangular case the prior marginal

covariance S
M ,W
� and the posterior marginal covariance

S
M , Y
+ have the forms

S
M ,W
� =

S
Yold

� S
C
�

(S
C
�)

T
S

I
�

 !
ð19Þ

Table 3. Summary of all different variations of change in inference problem. We use n to denote the prior state dimension, N to

denote the posterior state dimension, and m to denote the dimension of all new factors within Fnew.

Case Xnew Information Posterior State A’s Dimension
Update Dimension

Non-augmented empty L+ = L�+ AT � A n m× n
Rectangular not empty L+ = LAug

+ + AT � A N = n + jXnewj m×N
Squared (subcase of Rectangular ) not empty L+ = LAug

+ + AT � A N = n + jXnewj m×N , m = jXnewj
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S
M , Y
+ =

S
M , Yold

+ S
(Yold , Ynew)
+

(S(Yold , Ynew)
+ )

T
S

M , Ynew

+

 !
ð20Þ

where we partition Y variables into two subsets

Yold ¼: X� \ Y and Ynew ¼: Xnew \ Y , and where

W = fYold,
I X g.

Using parts of S
M ,W
� we can calculate parts of S

M , Y
+ as:

S
M , Yold

+ = S
Yold

� � B � G�1 � BT ð21Þ

S
M , Ynew

+ = P(Ynew, :) ð22Þ

C ¼D Im + I A � SI
� � (I A)T ð23Þ

P ¼D ½(AT
new � C�1 � Anew)

�1�(:, Ynew) ð24Þ

F ¼D (AT
new � Anew)

�1 ð25Þ

K ¼D Im � Anew � F � AT
new ð26Þ

K1 ¼D K�I A ð27Þ

B ¼D S
C
� � KT

1 ð28Þ

G ¼D Im + K1 � SI
� � KT

1 ð29Þ

where Anew consists of A’s columns belonging to newly

introduced variables Xnew. In addition, we use matrix sli-

cing operator (e.g., P(Ynew, :)) as is accustomed in Matlab

syntax.

Further, there are two methods to calculate S
(Yold , Ynew)
+

from (20).

Method 1:

S
(Yold , Ynew)
+ = S

C
� � (

I A)T � ½C�1�I A � SI
� � (

I A)T � Im� � Anew � P
ð30Þ

Method 2:

S
(Yold , Ynew)
+ =S

C
� � ½KT

1 � G�1 � K1 � SI
� � Ik � � (I A)T � Anew � F(:, Ynew)

ð31Þ

Empirically we found that method 2 is the fastest option.

The proof of Lemma 2 is given in Appendix B.

Lemma 3. For the squared case the prior marginal covar-

iance S
M ,W
� and the posterior marginal covariance S

M , Y
+

have the forms

S
M ,W
� =

S
Yold

� S
C
�

(S
C
�)

T
S

I
�

 !
ð32Þ

S
M , Y
+ =

S
M , Yold

+ S
(Yold , Ynew)
+

(S(Yold , Ynew)
+ )

T
S

M , Ynew

+

 !
ð33Þ

where we partition Y variables into two subsets

Yold ¼: X� \ Y and Ynew ¼: Xnew \ Y , and where

W = fYold,
I X g.

Using parts of S
M ,W
� we can calculate parts of S

M , Y
+ as

S
M , Yold

+ = S
Yold

� ð34Þ

S
M , Ynew

+ = Aiv � C � AT
iv ð35Þ

S
(Yold , Ynew)
+ = � S

C
� � (

I A)T � (Aiv)
T ð36Þ

Aiv ¼D ½A�1
new�

(Ynew, :) ð37Þ

C ¼D Im + I A � SI
� � (I A)T ð38Þ

We can see that in case of a squared alteration, the cov-

ariances of old variables X� do not change. The proof of

Lemma 3 is given in Appendix C.

Note that in some applications the inner structure of

Jacobian partitions I A and Anew can be known a priori. In

these cases, such knowledge can be exploited and the run-

time complexity of the above equations can be reduced

even more.

5.1.2. Incremental covariance update after

relinearization. Up to now we have explored scenarios

where new information is introduced into our estimation

system in a quadratic form via (13). Such information

update is appropriate for planning problems where we take

the linearization point of existing variables X� (their cur-

rent mean vector) and assume to know the linearization

point of newly introduced variables Xnew. However, during

the inference process itself, state relinearization can happen

and such a quadratic update form is no longer valid. This

is because relinearization can be viewed as the removal of

a factors subset and the addition of a new factors subset,

yet the quadratic update form in (13) is correct only when

new factors are solely added. Specifically, relinearization

can be seen as a modification of a factor graph where fac-

tors, linearized with an old linearization point, are removed

from the system and their relinearized versions are then

introduced. As we show in (39)–(40), such inference

update introduces new information that can be expressed

via a complex quadratic form instead of regular quadratic

form in (13). This complex quadratic form in its turn is

required to apply the approach derived in Section 5.1.1 to

incrementally update posterior covariances in relineariza-

tion case. In this section, we describe the entire process to

incrementally update covariance entries after a relineariza-

tion event, which is more efficient than state-of-the-art

approaches that calculate specific posterior covariances

from posterior information matrix from scratch.

Relinearization may happen when a significantly new

piece of information was added into the inference problem

and current linearization point of state vector X� does not

optimally explain it anymore. In such cases, iterative opti-

mization algorithms, such as Gauss–Newton, are responsi-

ble for updating the current linearization point, i.e., to find

a more optimal linearization point that better explains the

collected so far measurement/motion/prior factors.
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Conventional approaches relinearize the entire state vector

when new data comes in. On the other hand, incremental

optimizer ISAM2 (Kaess et al., 2012) tracks instead the

validity of a linearization point of each state variable and

relinearizes only those variables whose change in the line-

arization point was above a predefined threshold. At each

iteration of the nonlinear optimization and for each state

variable xi, ISAM2 finds di and, given it is too big (norm

of di is bigger than the threshold), updates the current esti-

mate of xi to x�i = x�i + di. In such case, factors involving

this state variable need to be relinearized. Clearly, the fre-

quency of such a relinearization event during the inference

process depends on the value of the threshold, and can be

especially high during, for example, loop closures in a

SLAM scenario. Still, in our simulations we have seen that

even with a relatively high threshold and small number of

loop closures, relinearization of some small state subset

R � X� happens almost every second time-step. Thus, in

order to accurately track covariances in the general case,

while using conventional approaches that relinearize each

time or ISAM2 which relinearizes only when it is needed,

it is very important to know how to incrementally update

covariance entries also after the state was relinearized. In

the following, we show that information update of such a

relinearization event can be also expressed in a quadratic

form by using complex numbers ; thus, the methods from

Section 5.1.1 that incrementally update specific covariance

terms can be used also here after applying complex num-

bers appropriately .

Denote by FR the factors that involve any of the vari-

ables in R. In order to update information of the estimation

after relinearization, we would want to remove FR’s infor-

mation with respect to old linearization point and to add

FR’s information with respect to the new one. It is not hard

to see that the posterior information matrix (after relineari-

zation of subset R) can be calculated through

L+ = L� � AT
� � A�+ AT

+ � A+ ð39Þ

where matrix A� is a noise-weighted Jacobian of factors FR

with respect to old linearization point, and matrix A+ is a

noise-weighted Jacobian of factors FR with respect to new

linearization point.

Next, using complex numbers the above equation

becomes

L+ = L�+ iAT
� AT

+

� �
�

iA�

A+

� �
= L�

+
iA�

A+

� �T

�
iA�

A+

� �
= L�+ BT � B, B ¼D

iA�

A+

� �
ð40Þ

Note that the T operator is transpose and not conjugate

transpose. In the above, we see that also here the informa-

tion update is quadratic and the update matrix B contains

terms of old and new Jacobians of factors FR that were

affected by the relinearization event. Therefore, the incre-

mental covariance update described in Section 5.1.1 is also

applicable here, making the update of specific covariances

much more efficient compared with computation of the

covariances from scratch (e.g., through (8)–(9)).

More specifically, the update in (40) is an instance of the

non-augmented case from Section 5.1.1. By exploiting the

specifics of matrix B’s structure, Lemma 1 can be reduced

to the following.

Lemma 4. For the relinearization case (40), the posterior

marginal covariance S
M , Y
+ can be calculated as

S
M , Y
+ = S

Y
� � U � UT, U ¼D S

C
� �M ,

M ¼D iM1 M2ð Þ,
ð41Þ

M2 ¼D (I A+)
T=chol½I + I A+ � SI

� � (I A+)
T�, ð42Þ

M1 ¼D ½(I A�)T �M2 � G�=chol

½I�I A� � SI
� � (I A�)T + GT � G�,

ð43Þ

G ¼D MT
2 � S

I
� � (I A�)T ð44Þ

where S
I
�, S

Y
�, and S

C
� are parts of the prior marginal cov-

ariance S
M ,W
� partitioned through W = fY , I X g:

S
M ,W
� =

S
Y
� S

C
�

(SC
�)

T
S

I
�

 !
ð45Þ

and where I A� consists of A� ’s columns belonging to the

involved variables I X ; I A+ contains columns of A+ that

belong to I X ; I is the identity matrix of an appropriate

dimension; chol(�) represents Cholesky decomposition

which returns an upper triangular matrix; and ‘‘=’’ is the

backslash operator from Matlab syntax (A=B = A � B�1).

The proof of Lemma 4 is given in Appendix D. While it

is mathematically equivalent to Lemma 1, empirically we

found that such a formulation is faster and more numeri-

cally stable in the case of relinearization.

5.1.3. Incremental conditional covariance update. Previously,

we have seen how to update specific prior marginal covariances

given that state’s information update has a quadratic form

L+ = L�+ AT � A or L+ = LAug
+ + AT � A. Similarly, we can

derive such a method that incrementally updates specific condi-

tional covariances since, as we show in the following, the update

of the conditional information matrix from the conditional pdf

has a similar form.

To prove this statement, let us focus on the non-augmen-

ted case where Xnew is empty. Define a set of variables Y ,

whose posterior conditional covariance S
Y jF
+ , conditioned

on an arbitrary disjoint variable set F (with fY [ Fg= ;),
needs to be updated. Next, let U be the set of all state vari-

ables that are not in F, and note that Y � U . The prior

information matrix LU jV
� of the prior conditional probabil-

ity distribution U jF is just a partition of the entire prior
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information matrix L� that belongs to columns/rows of

variables in U . Similarly, the posterior L
U jV
+ is a partition

of L+. It can be easily shown that

L
U jV
+ = LU jV

� + (AU )T � AU ð46Þ

where AU is a partition of the noise-weighted Jacobian

matrix A that belongs to columns of variables in U .

Equation (46) shows that the conditional probability dis-

tribution U jF has a quadratic update, similar to the mar-

ginal probability distribution of the entire state vector X. In

addition, note that the required posterior conditional matrix

S
Y jF
+ is a partition of the posterior conditional covariance

matrix S
U jV
+ = (L

U jV
+ )�1. For better intuition, it can be seen

similar to the posterior marginal matrix S
M , Y
+ being a parti-

tion of the posterior marginal covariance matrix

S+ = (L+)
�1 in the non-augmented case (see Lemma 1).

Thus, there exists a function f C(�) that calculates S
Y jF
+

from S
W jF
� , where S

W jF
� is the prior conditional covariance

matrix of set W ¼: fY , I X Ug, conditioned on the set F;

here, I X U are the involved variables that are in U .

Derivation of such a function f C(�) is trivial, by following

the steps to derive function f (�) in Section 5.1.1, and is left

out of this paper in order to not obscure it with additional

complex notation.

A similar exposition can be also shown in the augmen-

ted case (i.e., Xnew is not empty), where information update

of the conditional distribution also has the augmented

quadratic form. To summarize, the derived function f (�) in

Sections 5.1.1 and 5.1.2 can also be used to incrementally

update the specific conditional covariances by replacing

the prior marginal covariance terms in it with appropriate

prior conditional covariances.

5.1.4. Application of incremental covariance update to

SLAM. In order to apply our incremental update method in

a SLAM setting, we model each change in the inference

problem in the form of two separate changes as follows.

We consider a specific scenario where at each time step,

new robot pose xk (k is index of time step) and new land-

marks Lnew are introduced into the state vector X. Further,

new factors are introduced into the inference system; these

factors include one odometry factor fO between poses xk�1

and xk, projection and range factors FL
new between the new

pose xk and new landmarks Lnew, and finally projection

and range factors FL
old between xk and old landmarks. In

addition, in general a subset of old factors (denoted by FR)

was relinearized as a result of a linearization point change

of some old state variables during the inference stage. In

case no linearization point change was performed, this set

of factors FR is empty. Note that although we assume above

only range and visual measurements, our approach would

work for other sensors as well, e.g., in a purely monocular

case.

In the first modeled change, we introduce into the infer-

ence system all the new state variables (xk and Lnew) and

their constraining factors (fO and FL
new), denoted by

X S
new = fxk , Lnewg and FS

new = ffO,FL
newg, respectively. It

can be shown for this change that the dimension of its

newly introduced state variables X S
new is equal to the dimen-

sion of newly introduced factors FS
new. Thus, such change

has a form of the squared case (see Table 3) and the

updated covariance entries owing to this change can be cal-

culated by applying Lemma 3. Also note that after this

change all the new state variables are properly constrained,

which is essential for the information matrix to remain

invertible. Denote this information matrix, i.e., after apply-

ing the first change, by LM :

LM = L
Aug
k + AT

S � AS ð47Þ

where L
Aug
k is the prior information matrix Lk�1 augmented

with zero rows/columns for new state variables X S
new and AS

is noise-weighted Jacobian of factors FS
new.

The remaining parts of the original change in the infer-

ence problem are represented by the second change. The

posterior information matrix can be updated due to this sec-

ond change as

Lk = LM + AT
O � AO � AT

� � A�+ AT
+ � A+ ð48Þ

where AO is the noise-weighted Jacobian of factors FS
old;

A� and A+ are noise-weighted Jacobians of factors FR with

respect to old and new linearization points, respectively.

The above equation can be rewritten as

Lk = LM + BT � B, B ¼D
iA�
A+

AO

0
@

1
A ð49Þ

and the corresponding covariance matrix can be calculated

through Lemma 4, or through Lemma 1 in case there was

no relinearization at the current time step, i.e., B [ AO.

To summarize, any change in the inference problem of

our SLAM scenario can be represented as a combination of

two fundamental changes: squared (Eq. (47)) followed by

(relinearized) non-augmented (Eq. (49)); the information

matrix is updated as

Lk�1 ) LM ) Lk ð50Þ

where M can be seen as a logical time step of middle point.

Covariances after the first change can be updated very

fast through Lemma 3, since as we saw in Section 5.1.1, the

marginal covariances of old variables do not change and

only marginal covariances of new variables need to be com-

puted in this case. To do this, we require marginal covar-

iances of involved variables I X from Sk�1. Notice that I X

of the first change contains only xk�1, whose marginal cov-

ariance is available since it was already calculated in the

previous time step. Thus, Lemma 3 can be easily applied

and the marginal covariances of all state variables at middle

point M can be efficiently evaluated.
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To update all marginal covariances after the second

change (through Lemma 1 or Lemma 4) we require mar-

ginal covariance of involved variables I X (in factors FS
old

and FR of the second change) from covariance matrix

SM = L�1
M . Moreover, we will require cross-covariances

from SM between variables I X and the rest of the variables,

as can be seen from the equations of the lemmas. Thus, we

require entire columns from SM that belong to I X . These

columns can be easily calculated at time k � 1 (from prior

covariance matrix Sk�1) and propagated to middle point M

by applying Lemma 3. The specific columns (belonging to

some state subset Y ) of matrix Sk�1 can be efficiently cal-

culated through two back-substitution operations:

V ¼D RT
k�1 n IY , S

(:, Y )
k�1 = Rk�1 n V ð51Þ

where IY are columns from the identity matrix I that belong

to variables in Y ; Rk�1 is the square-root information

upper-triangular matrix at time step k � 1; and ‘‘n’’ is

Matlab’s back-substitution operator with x = A n B being

identical to solving linear equations Ax = B for x.

The other alternative for this two-stage incremental cov-

ariance update is to use Lemma 2 for the rectangular infer-

ence change as follows. The posterior information matrix

Lk can be calculated in one step as

Lk = L
Aug
k + AT

S � AS + AT
O � AO � AT

� � A�+ AT
+ � A+

= L
Aug
k + BT � B, B ¼D

AS

iA�

A+

AO

0
BBB@

1
CCCA

ð52Þ

Such a change has a form of the rectangular case (see

Table 3); therefore, the updated covariance entries and the

marginal covariances of new state variables can be calcu-

lated by applying Lemma 2. Note that the T operator within

the lemma is transpose and not conjugate transpose.

Similarly to the above two-stage method, the rectangular

case will also require entire columns from Sk�1 that belong

to old involved variables. This can be done here in the same

way through (51).

We evaluate the above methods in our SLAM simulation

in Section 6.1 and show their superiority over other state-

of-the-art alternatives.

5.1.5. Incremental covariance update by Ila et al.

(2015). In this section, we briefly describe an alternative

approach to incrementally update covariance entries as pro-

posed by Ila et al. (2015). Later, in Section 6.1 we will use

it as one of the state-of-the-art baseline methods and com-

pare its performance with our method presented in Section

5.1.4. After the estimation system at current time step was

updated and new information matrix Lk (or square-root

information matrix Rk) was inferred, we check whether

state relinearization happened. If any variable was relinear-

ized, the method from Ila et al. (2015) calculates all the

required covariances from scratch using the recursive

method from (8)–(9).

In case no relinearization was done, columns of involved

variables I X from matrix Sk = (Lk)
�1, denoted as S

(:, I X )
k ,

are calculated similarly to (51) via

V ¼D RT
k n II X , S

(:, I X )
k = Rk n V ð53Þ

Next, the posterior marginal covariances of I X are

retrieved from the calculated columns as Ŝ = S
(I X , I X )
k .

Further, covariances of new variables (which are a subset

of I X ) can be just retrieved from appropriate partitions of

the calculated above columns S
(:, I X )
k . In order to update

prior covariances S
(Y , Y )
k�1 of specific old variables Y , the fol-

lowing scheme is applied:

U = I�I A � Ŝ � (I A)T, ð54Þ

B̂Y = S
(Y , I X )
k � (I A)T, ð55Þ

DSY = B̂Y � U�1 � (B̂Y )
T, ð56Þ

S
(Y , Y )
k = S

(Y , Y )
k�1 + DSY ð57Þ

Algorithm 1: rAMDLInformationEvaluation evaluates information impact of candidates through rAMDL approach and picks
the one with the biggest impact.

1. Inputs:
2. fI

Aig: non-zero columns of noise-weighted Jacobians of action candidates faig
3. fI

Xig: variables that are involved in new factors Fnew of each action ai

4. Outputs: a�: optimal action
5. begin:
6. Calculate prior covariances of variables XAll = f[I Xig
7. for ai do
8. Calculate information impact (IG or posterior entropy, unfocused or focused), using I Ai and the required prior

covariances calculated in line 6
9. end

10. Select candidate a� with maximal information impact
11. end
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where I A is a noise-weighted Jacobian of all new factors

with respect to I X and S
(Y , I X )
k is a partition of previously

calculated columns S
(:, I X )
k . For more details please refer to

the original paper (Ila et al., 2015). The above method has

a similarity with our Lemma 1. Note, however, that unlike

matrix C in Lemma 1, the matrix U in (54) can be singular

since it is calculated as the difference between two

positive-definite matrices. In our evaluation this was indeed

the case: matrix U had very small eigenvalues which in

turn caused U�1 to have extra-large entries. Yet, these

entries did not affect the overall covariance update accu-

racy. Further, the above method is derived by applying

Woodbury matrix identity to inverse the L0= Lk � AT � A,

where A is a noise-weighted Jacobian of all new factors

with respect to the entire posterior state vector X+. In the

augmentation case scenario, such matrix L0 will have zero-

padding rows and columns and therefore cannot be

inverted. This can be another reason why matrix U was

almost singular in our simulations.

In addition, as can be seen from the equations, when no

relinearization is done both our approach and that proposed

by Ila et al. (2015) contain the same basic computations of

the same dimension and thus are expected to have similar

runtime complexity. In Section 6.1, we demonstrate it

empirically.

5.2. Information-theoretic BSP

In this section, we develop a new approach that, based on

the derived above incremental covariance update method,

efficiently solves the information-theoretic BSP problem

defined in Problem 2 from Section 4. Given a set of candi-

date actions, the proposed paradigm exploits common

aspects among different actions for efficient BSP in high-

dimensional state spaces. Each (non-myopic) action gives

rise to a posterior belief that can be represented by an

appropriate factor graph. In many applications different

candidate actions will share some newly introduced factors

and state variables (their factor graph increments). For

example, two trajectory candidates that partially share their

navigation path, will introduce the same factors for this

mutual trajectory part (see Figure 2a). The posterior factor

graphs of these candidate actions therefore have common

parts, in terms of factor and variable nodes, and in addition

all of these factor graphs start from the belief at the current

time.

Our proposed paradigm saves computation time by

identifying the common parts in these posterior factor

graphs, and switching to a unified graphical model that we

introduce, the FGP action tree, which represents gradual

construction of posterior factor graphs from the current fac-

tor graph. For instance, in Figures 2b and 2c two different

FGP action trees are depicted. Both lead to the same pos-

terior beliefs of candidate actions, yet one of them can be

evaluated more efficiently, as will be explained in Section

5.2.2. Given such a graphical model, we develop efficient

method to evaluate information impact of each candidate

action in unified way. As we show, this method requires

specific covariance entries for the intermediate beliefs that

are represented by the tree’s vertices, which we calculate by

our incremental covariance recovery method (see Section

5.1) with computational complexity that does not depend

on state dimension n (see Section 5.2.3). Further, we avoid

posterior belief propagation and calculation of determinants

of huge matrices for each candidate action by using the

aforementioned incremental covariance update and the

rAMDL method from Kopitkov and Indelman (2017).

Moreover, we evaluate candidates’ common parts only

once instead of considering these parts separately for each

of the candidates.

Determining the best topology of the FGP action tree,

given the individual factor graphs for different candidate

actions, is by itself a challenge that requires further

research. In this article, we consider one specific realization

of this concept, by examining the problem of motion plan-

ning under uncertainty and using the structure of the candi-

date trajectories for FGP action tree construction (see

Section 5.2.2). In the results reported in Section 6 we con-

sider scenario of autonomous exploration in unknown envi-

ronment where such tree topology allows us to reduce

computation time twice compared with baseline

approaches.

5.2.1. rAMDL Approach. In our recently developed

approach, rAMDL (Kopitkov and Indelman, 2017), the

information-theoretic costs (14) and (15) are evaluated effi-

ciently, without explicit inference over posterior beliefs for

different actions and without calculating determinants of

large matrices. As rAMDL is an essential part of our

approach presented herein, in the following we provide a

concise summary for the sake of completeness of the cur-

rent article. For a more detailed review of rAMDL the

reader is referred to Kopitkov and Indelman (2017).

In Kopitkov and Indelman (2017) we showed that the

information impact of action a ((14) and (15)) is a function

of prior covariances for the subset I X � X� that contains

variables involved in new factors Fnew of a, and of matrix
I A that contains non-zero columns of the noise-weighted

Jacobian matrix A. Given the prior covariances of I X , such

a function can be calculated very fast, with complexity

independent of state dimension. Thus, in rAMDL we first

calculate the required prior covariances for all candidate

actions as a one-time, yet still expensive, calculation, after

which we efficiently evaluate the information impact of

each candidate action. The main structure of the rAMDL

approach is shown in Algorithm 1.

In particular, for the case where Xnew is empty, the

unfocused IG from (14) can be calculated as

JIG(a)=
1

2
ln Im + I A � SM , I X

� � (I A)T
��� ��� ð58Þ

Kopitkov 15



where S
M , I X
� is the prior marginal covariance of I X

variables.

In case Xnew is empty and we want to calculate

focused IG of focused variables in X F � X� (see

(15), left), it can be calculated through

JF
IG(a)=

1

2
ln Im + I A � SM , I X

� � (I A)T
��� ���� 1

2

ln Im + I AU � S
I X U jX F

� � (I AU )
T

��� ��� ð59Þ

where I X U [ I X nX F denotes the involved variables that

are unfocused, S
I X U jX F

� is the prior conditional covar-

iance of I X U conditioned on X F , and I AU is a partition of
I A with columns that belong to variables in I X U .

In order to efficiently evaluate all candidates in the

unfocused case, rAMDL first calculates the prior mar-

ginal covariance S
M ,XAll

� of variables XAll � X�, where XAll

is the union of involved variables I X of all candidate

actions. Further, evaluation of IG for each action is done

by first retrieving S
M , I X
� from S

M ,XAll

� and then calculating

JIG(a) via (58). Overall, such a process consists of only

one-time calculation that depends on state dimension n,

i.e., calculation of S
M ,XAll

� . Other cases of interest (where

Xnew is non-empty or for focused BSP objective func-

tions) are also addressed by rAMDL. Note that in case of

focused BSP the prior conditional covariances S
I X U jX F

�
are additionally required (see (59)) and can also be calcu-

lated for all candidates in one-block computation.

Yet, the rAMDL method does not fully exploit similari-

ties between candidate actions. The mutual increment part

of the actions is expressed as identical block-rows in the

matrix I A of these actions and, thus, is evaluated multiple

times. In the next section, we present a novel approach to

perform planning under uncertainty where mutual parts of

the actions can be evaluated only once, further decreasing

the CPU demand of the overall planning task.

5.2.2 FGP action tree. The FGP action tree describes the

concept of belief propagation through a factor graph repre-

sentation. Each vertex in this tree (see Figures 2b and 2c)

encodes a factor graph that represents a specific belief. For

example, the root represents the prior belief b½X�� and leafs

represent the posterior factor graphs of different candidate

actions. Each edge ev!u, between vertices v and u, repre-

sents an action a with an appropriate increment I(a), see

(12). Thus, the factor graph encoded by vertex u is obtained

by applying the increment I(a) to the factor graph that is

encoded by vertex v. In the following, we show how such a

graphical model can be used to efficiently reason, while

exploiting common parts, about posterior beliefs of differ-

ent actions.

Let us consider a simple case as a running example,

where two candidate actions a1 and a2 share some of their

increments (see Figure 2a). As can be seen both trajectories

have a mutual part that is colored in green. One way to

evaluate the action impact for actions a1 and a2 is to handle

each case separately (see Figure 2b). Indeed, existing

approaches typically perform inference over the posterior

belief for each of the actions and then evaluate the

information-theoretic cost. However, this can be done by

far more efficiently using our recently developed rAMDL

approach (Kopitkov and Indelman, 2017), where first we

perform a one-time calculation of specific prior covariance

entries that are required by both candidates, followed by

information impact evaluation of each candidate (see

Section 5.2.1). While the one-time covariance computation

depends on state dimension n, the candidates evaluation

does not. Yet, in such an approach, although we signifi-

cantly reduce runtime by gathering the expensive computa-

tion of prior covariances from all candidates into a single

computational block, we still waste computational

resources related to the mutual increment, which is calcu-

lated separately for each candidate action (e.g., twice in the

considered example).

In this article, we propose another alternative. Referring

to the running example, we split each of the two actions

into a1 = fashr, a
0
1g and a2 = fashr, a

0
2g and present them

through a multiple-layered FGP tree (see Figure 2c), where

ashr represents the shared part of actions’ increments, and

where a01 and a02 represent parts of the original actions that

are not shared. It is not difficult to show that IG of each

Algorithm 2. EvaluateFGPTree evaluates the information impact of candidates and picks the one with the biggest impact.

1. Inputs: T : FGP tree
2. Outputs: a� : optimal action
3. begin:
4. for v: vertex of T do
5. Determine the set of variables Y whose covariances are required by rAMDL in order to calculate IG of action between v’s parent

and v (variables involved in factors that were introduced by augmenting v’s parent to acquire v)
6. end
7. Calculate these covariances (see Section 5.1)
8. Calculate IG of each edge of the tree through rAMDL (e.g., through (58))
9. Calculate IG of each candidate by summarizing IG along the candidate’s trajectory

10. Select candidate a� with maximal IG
11. end
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candidate ai is equal to sum of IGs of its sub-actions ashr

and a0i, i.e., IG(ai)= IG(ashr)+ IG(a0i) (see the proof in

Appendix E). Thus, in this specific example in order to

select the best action it is enough to calculate IG of a01 and

a02. This IG can be efficiently calculated through the

rAMDL technique, but this time we will require specific

covariance entries of the intermediate belief associated with

G
ashr

+ (factor graph obtained after execution of action ashr,

see Figure 2c). For example, unfocused IG of a10 (see

(58)) can be calculated as

JIG(a
0
1)=

1

2
ln Im + I A1 � SM , I X1

shr � (I A1)
T

��� ��� ð60Þ

where I X1 are variables involved in new factors of a01, I A1

are non-zero columns from noise-weighted Jacobian of

these new factors, and S
M , I X1

shr is the marginal covariance of
I X1 from intermediate belief represented by G

ashr

+ .

Assuming there is an efficient way to calculate specific

covariance entries for each vertex within the FGP tree (see

Section 5.2.3), we can apply the rAMDL method, calculate

the required information impacts and make a decision

between a1 and a2 while handling mutual increment ashr

only once, and not twice as would be done by existing

approaches.

The above concept applies also to more general problem

settings, with numerous candidate actions with mutual

parts in their increments. An excellent example for this is

BSP for autonomous navigation. Here, the set of trajectory

candidates can be naturally represented as a tree of possible

paths, and the FGP action tree can be constructed in such a

way that each of its intermediate vertices will represent a

belief at a specific splitting waypoint of the trajectories

(see Figure 4). In such a general case, in order to pick up

the optimal action we will need to calculate IG for each

one of the tree’s edges. This can be done again by applying

a rAMDL technique but will require us to know the specific

covariance entries for each intermediate vertex within the

FGP tree. An efficient calculation of these entries is pre-

sented in Section 5.2.3, while the overall algorithm to eval-

uate the FGP tree is summarized in Algorithm 2.

Note that although in this article we create an FGP

action tree with a structure similar to the tree of candidate

navigation paths, in general, different structures can be

used. For example, if candidates share their trajectories’ ter-

minal part, this part can be represented as first action under

root G�. As long as tree’s root represents the prior belief

b½X�� and the tree has a vertex for posterior belief of each

candidate action, it represents the same decision problem.

An interesting question that arises is how to find the tree’s

structure that provides the biggest calculation reuse between

the candidates and can be evaluated most efficiently. We

will leave this question for future research.

In addition, note that the proposed method can also be

applied to the scenario where a similar candidate trajectory

is evaluated at sequential time steps. Such a candidate tra-

jectory, taking the robot to some location, at each time step

may have a different starting section due to robot’s move-

ment since the previous time step, but will have the same

terminal section that brings the robot to the aforementioned

location (see also Chaves and Eustice (2016)). Thus, this

candidate trajectory will have similar posterior factor

graphs each time it is evaluated. This similarity between

posterior factor graphs can be naturally represented through

our FGP tree and hereof it is just another application for

our BSP approach.

5.2.3. Incremental covariance update within FGP action

tree. In order to reason about different actions inside an

FGP action tree, we have to know specific covariance

entries for each intermediate vertex in the tree. We can cal-

culate these entries by first propagating the beliefs through

(13) followed by appropriate Schur complement and inverse

Algorithm 3. CalculateCovariances incrementally calculates specific covariances in the beliefs represented by vertices of the
FGP action tree.

1. Inputs:
2. T : FGP tree
3. fYug: set of variables whose covariances from vertex u’s belief we are interested in, for each vertex u in T
4. Outputs: fSM , Yu

u g : the calculated covariances
5. begin:
6. for u: vertex of T , in bottom–top orderingdo
7. Message u’s parent v that we are interested in covariances in v’s belief for variables fYu,

I X ,Ychg, where Yu are variables
required by the main algorithm (Algorithm 2), I X are variables involved in factors that were introduced by augmenting
v to acquire u, and Ych are variables that were required by children of u

8. end
9. Define the set of variables YT ¼

: fYu,Ychg for each vertex u
10. Calculate marginal covariances of YT at T ’s root G�, S

M ,YT

� from prior belief b½X�� (e.g., through the Schur complement)
11. for u: vertex of T , in top–bottom orderingdo
12. Calculate S

M ,YT

u through function f ( � ) (see Section 5.1.1), by using required covariances S
M ,W
v from u’s parent v

13. Retrieve the required S
M , Yu

u from calculated S
M ,YT

u

14. end
15. end
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operations. However, such a procedure will depend on a

potentially huge state dimension n, which we would like to

avoid. Here we propose an alternative method to calculate

specific covariance entries at each one of the beliefs inside

the tree which is based on our incremental covariance

update technique (see Section 5.1) and does not depend on

n. Moreover, the proposed method can be applied to calcu-

late both specific marginal and conditional covariance

entries, where the former are required for the unfocused
information objective function (see (58)) and the latter are

required for the focused information objective function

(see (59)).

First, let us focus on a specific edge ev!u in the FGP

tree that represents some action a with increment

I(a)= fFnew,Xnewg. In other words, the factor graph repre-

sented by v is augmented by I(a) in order to receive the

factor graph that is represented by u. In addition, let us

denote state vectors of beliefs of v and of u by Xu and Xv,

respectively. Note that Xv � Xu, and that Xu will sometimes

contain state variables that are not present yet in Xv (the

variable set Xnew).

Now, consider the set of variables Y � Xu whose mar-

ginal covariance S
M , Y
u from u’s belief we would like to cal-

culate. As was shown in Section 5.1, S
M , Y
u can be

calculated efficiently and independently of state dimension

n, given that we have the marginal covariance of the set

W ¼: fYold,
I X g from v’s belief, where I X � Xv is the set

of involved variables in action a and Yold is the intersection

between Y and Xv. It is important to note that, in a general

case, the marginal covariance of Yold is modified after

applying some action a, i.e., S
M , Yold

u 6¼ S
M , Yold

v . Similarly to

Section 5.1 we can separate all possible actions in the FGP

tree into different categories depending on their increments,

i.e., non-augmented, rectangular, and squared.

Consequently, for each action type we can use an appropri-

ate covariance update method in order to calculate

S
M , Y
u = f (SM ,W

v ).
Next, we can use the above-mentioned function

S
M , Y
u = f (SM ,W

v ) to calculate the required specific

covariances for each one of the vertices in the tree recur-

sively (see also Figure 5). First, for each vertex u we define

by Y the variables of interest whose marginal covariances

S
M , Y
u at the belief associated with u we would like to calcu-

late. In our case Y are the variables required by rAMDL in

order to evaluate the impact of actions that are performed

on u (see Section 5.2.2). Next, for each leaf vertex u we

message its parent v that we require v’s marginal covar-

iances for fY , I X g. Then in recursive form from bottom to

top each vertex v will message its parent that it requires its

parent’s covariances for fY , I X , Ychg where Ych is the set of

variables that were required by v’s children. Eventually, for

each vertex v in the tree we will have a total set of variables

YT ¼: fY , Ychg whose covariances we need to compute for

this specific vertex.

Finally, we start to propagate these covariances in top to

bottom order. Using the equations from Section 5.1.1, for

each vertex u we can calculate S
M , YT

u using S
M ,W
v from its

parent vertex v. Note that when following top to bottom

order, when we get to node u, its parent’s covariances S
M ,W
v

will already be computed. Also note that the required prior

covariance entries of the root G� should be calculated first.

This is done only once and its complexity depends on state

dimension n, similarly to the rAMDL technique. But once

calculated, the rest of the covariance updates do not depend

on n.

To summarize, the described algorithm consists of two

parts: detecting variables set YT for each vertex and propa-

gating specific covariances from top to bottom. See

Algorithm 3 and a schematic illustration of the incremental

Fig. 4. Different candidate trajectories and their FGP action tree

representation. Here A and B are splitting waypoints; C, D, and E

are the final waypoints of three trajectory candidates. Each

waypoint has an associated factor graph vertex within the tree.

Each action ax
y is an augmenting factor graph with factors/

variables gathered by passing path x! y.

Fig. 5. Incremental covariance update within an FGP action tree,

illustrated on the tree from Figure 4. Each vertex in the tree

represents a specific factor graph and belief associated with it.

Each edge in tree (black arrows) represents action that augments

parent’s factor graph in order to obtain the child’s factor graph.

The covariance update consists of two stages. First (left drawing):

from bottom to top each vertex notifies (green arrows) its parent

what are the marginal covariance entries that it needs from

parent’s belief. Second (right drawing): from top to bottom each

vertex calculates the required marginal covariance entries of its

belief and notifies its children (red arrows) to proceed with their

covariance calculations. This covariance update process contains

one-time calculation depending on state dimension n, the

computation of required marginal covariance entries at root G�.

The rest of the calculation is incremental and does not depend on

n, as described in Section 5.1.
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covariance update in Figure 5. The runtime complexity of

the algorithm mainly depends on its second part, because

variable detection does not require any matrix manipula-

tions and can be done quickly. The second part handles

each edge of the FGP tree only once, thus again allowing

us to evaluate mutual increment of actions only once. The

runtime to propagate specific covariances along each edge

depends on a number of parameters such as dimension of

required covariances and the size of an action’s increment.

In a similar way, we can also incrementally propagate

specific conditional covariances along the FGP tree. Such

covariances may also be required in order to perform

informative-theoretic decision making when we want to

reduce uncertainty of a subset of old variables X F � X�,

see (Kopitkov and Indelman, 2017).

6. Results

We evaluate the proposed approaches for incremental cov-

ariance update and BSP in simulation considering the prob-

lem of autonomous navigation in unknown environments.

The robot has to autonomously visit a set of predefined

goals while localizing itself and mapping the environment

using its onboard sensors. In our simulation, we currently

consider a monocular camera and a range sensor. The code

is implemented in Matlab and uses the GTSAM library

(Dellaert, 2012; Kaess et al., 2012). All scenarios were exe-

cuted on a Linux machine with an Intel i7 2.40 GHz proces-

sor and 32 GB of memory. All compared approaches were

implemented in single thread to provide better visualization

of their runtime complexity. In addition, we provide our

implementation of the FGP action tree as an open-source

library at http://goo.gl/dmNenc.

6.1. Covariance recovery

Here we consider the passive setting where at each time

step the robot moves toward the next predefined goal (see

Figure 6), updates the inference problem with new pose/

landmarks and motion/measurement factors, and calcu-

lates/updates marginal covariance of each variable inside

the state vector.

We apply our incremental covariance update methods

(2-stage and Rectangular) as described in Section 5.1.4.

Their performance is compared with two baseline

approaches. First, Recursive uses a recursive formulation

(see (8)–(9)) to calculate the covariance matrix Sk (k is

index of time step) from a square-root information matrix

Rk . It is done for each k and entire Sk is calculated at each

time step from scratch. Note that to calculate the marginal

covariance of each state variable (block-diagonal of Sk) the

Recursive method requires the entire covariance matrix Sk

to be calculated as was explained in Problem 1 from

Section 4.

The second approach, Backsubstitution, calculates Sk

through the back-substitution operation:

V ¼D Rk n I , Sk = V � VT ð61Þ

where I is an identity matrix of appropriate dimensions and

‘‘n’’ is the Matlab’s back-substitution operator with

x = A n B being identical to solving linear equations

Ax = B for x. Such back-substitution can be done very effi-

ciently since the matrix Rk is upper triangular and sparse.

Still, similar to Recursive, the Backsubstitution method cal-

culates covariances from scratch for each time step and

needs to calculate the entire Sk matrix before fetching its

diagonal blocks.

As can be seen in Figure 7, in general both of our incre-

mental approaches have very similar runtime, and the both

are significantly faster than the baseline alternatives.

Towards the end of the scenario, while the fastest alterna-

tive (Backsubstitution) needs almost 400 ms to recover

marginal covariance for a 3,054-dimensional state vector,

our incremental method does it in only 20 ms.

The only time our methods are slower than the alterna-

tives is around pose 150, at which point a loop-closure

event occurs: the robot reaches a predefined goal 6 (see

Figure 6a) and observes old landmarks from the beginning

of the scenario. As expected for such a relatively big loop

closure, the number of relinearized state variables and the

affected factors is very large (see Figures 6b–6c). Thus, m

(overall dimension of new/relinearized factors) and jI X j
(dimension of involved variables) are huge and increase the

runtime complexity of our incremental method. However,

such results are expected: it is a known fact that incremental

techniques become slower in the presence of big loop clo-

sures. For example, the incremental optimization algorithm

iSAM2 (Kaess et al., 2012), which calculates incrementally

the MAP estimate of the state but not its covariance matrix,

takes significantly more time during loop-closure events. It

is reasonable to expect a similar situation also in the context

of incremental covariance recovery. Also note that during a

loop-closure event, the Rectangular technique is signifi-

cantly slower than the 2-stage technique (around 6 s versus

0.6 s, respectively). The reason is that during huge loop clo-

sure, m impacts the entire calculation of the Rectangular

method (Lemma 2), while in the 2-stage technique only the

second stage is affected (Lemma 1 or Lemma 4). Lemma 2

is more computationally demanding than Lemma 1 or

Lemma 4, thus producing such a big runtime difference

during a loop closure.

On the other hand, the Backsubstitution method does

not depend on m or jI X j; instead its complexity mainly

depends on the state dimension n and the sparsity level of a

matrix Rk . The n, the overall dimension of all state vari-

ables, is not affected by loop closures. While, in general,

the matrix Rk (a factorization of information matrix Lk)

becomes denser during the loop closures, an appropriate
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variable reordering (of the entire matrix) can mitigate this

effect. In our simulations we used SYMAMD ordering

(symmetric approximate minimum degree permutation)

(Amestoy et al., 1996) to reorder an entire Lk before pro-

ducing Rk . As can be seen in Figure 6d (blue line), the

resulting sparsity of Rk grows smoothly with time, with

only a minor increase during the loop-closure event (around

pose 150). Thus, we can see no peaks in calculation time

plot of Backsubstitution approach around this time (see

Figures 7c–7d, purple line). In practice, when implement-

ing our incremental approach on a real robot, to handle this

loop-closure shortcoming we can check whether a big loop

closure happens (m or jI X j are bigger than current state

dimension n) and use Backsubstitution as a fallback.

Comparing Recursive versus Backsubstitution we can

see that the former is considerably slower. The first was

implemented by us in C++ code, while the second is

based on highly optimized Matlab implementation of back-

substitution. Apparently, our current C++ implementation

of Recursive method is not properly optimized. We foresee

that it can be done in much better way so that both

Recursive versus Backsubstitution techniques will have

very similar runtime complexity.

6.1.1. Comparison with Ila et al. (2015). Here we compare

our approach with that from Ila et al. (2015); that approach

was briefly described in Section 5.1.5. As mentioned

Fig. 6. Robot follows a predefined path by navigating through given way-points. (a) Robot trajectory. Blue dots are mapped

landmarks, red line with small ellipses is estimated trajectory with pose covariances, blue line is the real trajectory, pluses with

numbers beside them are robot’s predefined goals. Green mark is robot’s start position. (b) Dimensions at each time-step of state

vector X , of overall introduced and relinearized factors and of involved variables in these factors. (c) Number of overall poses/

landmarks inside state vector X and number of relinearized poses/landmarks. (d) Number of non-zero entries inside the information

matrix Lk and the square-root information matrix Rk .
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above, their method is limited and cannot be applied after

relinearization of state vector, thus we execute this method

only at time steps where no variable was relinearized. In

Figure 6c we can see that there is only a sparse number of

such time steps. Nonetheless, from Figure 8 we can see that

it is enough to understand the overall trend. Specifically, as

we expected, both our and Ila15icra’s methods have very

similar runtime complexity, since the runtime of both tech-

niques depends on m and jI X j. Furthermore, note that in

some edge cases our approach is much more efficient (see

time-steps 357–386 in Figure 8). When during the time-

step only new poses and only new odometry factors are

added to the inference system, that is when m = jI X j, our

approach updates covariances incrementally via Lemma 3.

This lemma is computationally very efficient since it does

not update covariances of old variables which are

unchanged in such a case. In contrast, the method in Ila

et al. (2015) does not exploit the properties of this specific

setting m = jI X j.
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Fig. 7. Robot follows a predefined path by navigating through given way-points. (a) Running time of marginal covariance recovery,

i.e., evaluating the marginal covariance matrix for each pose and each landmark. (b) Running time from (a) with zoom-in on loop

closure around pose 150. (c) Running time from (a) with zoom-in on three fastest approaches. (d) Running time from (c) with zoom-

in on loop closure around pose 150.

Fig. 8. Running time of marginal covariance recovery during

robot navigation, i.e., evaluating the marginal covariance matrix

for each pose and each landmark. The figure compares the

proposed approach and that from Ila et al. (2015). The latter is

only shown for time-steps when no state relinearization occurred.
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In addition, the incremental recovery of conditional cov-

ariance entries is essential to efficiently solve the

information-theoretic BSP problem which is considered in

Section 6.2; yet, this key aspect was also not supported in

Ila et al. (2015).

6.2. BSP

Thus far, we have performed simulation of a passive SLAM

problem, where the robot follows a predefined trajectory.

As can be seen in Figure 6a, by the end of the trajectory the

covariance of robot position (red ellipse) is considerably

big. Such uncertainty in robot localization may fail the

navigation task and is undesirable in general. In this sec-

tion, we focus on an active SLAM scenario, where the robot

autonomously decides whether to follow the navigation

path or to perform a loop closure and reduce state uncer-

tainty. At each time step, the robot autonomously decides

its next action according to a specified objective function

that is discussed in the following.

We compare the performance of the proposed BSP

approach, that we denote as rAMDL-Tree, with our previ-

ous method rAMDL (Kopitkov and Indelman, 2017), which

was shown to be superior in runtime complexity to other

state-of-the-art information-based BSP methods. Note that

both rAMDL and rAMDL-Tree, as well as other relevant

state-of-the-art alternatives, make identical decisions, i.e.,

calculate the same optimal actions. Thus, the only differ-

ence is the runtime complexity, the reduction of which is

the main motivation behind the work presented herein.

In our simulation, at each time step we sample a set of

trajectories to the current goal g, and also to (clusters of)

already mapped landmarks for uncertainty reduction via

loop closures (see Figure 9a). The overall number of candi-

date actions (number of trajectories) is around 200 (see

Figure 9b). In our simulations different trajectories were

sampled by using a probabilistic roadmap (PRM) algorithm

(Kavraki et al., 1996), see Figures 9c–9d, although the

planning method presented herein does not depend on the

sampling procedure and other sampling techniques can be

applied.

We consider the objective function

J (a)= a1d(xk + L, g)+ a2c(a)+ a3Jinf (a) ð62Þ

where d(xk + L, g) is the distance between the current goal g

and candidate’s last pose xk + L for a given action a, c(a) is

the control cost, and Jinf (a) is an information-theoretic

term. As was mentioned previously, both first and second

terms can be calculated very quickly and do not require

belief propagation. Thus, in the following, we ignore these

terms and discuss runtime only for the term Jinf (a).
In our first simulation, Jinf (a) calculates the posterior

entropy of the robot’s last pose xk + L within the candidate

trajectory. We evaluated this term for all action candidates

independently through our previous method, rAMDL, and

through the approach proposed herein, rAMDL-Tree,

which, using the FGP action tree, accounts for candidate

actions’ mutual parts and evaluates them only once. In

Figures 10a–10b we can see that rAMDL-Tree is twice as

fast as rAMDL and succeeds to evaluate more than 200

actions in less than 100 ms. In addition, we can see that the

only algorithmic part that depends on the state dimension

n, i.e., the one-time calculation of prior covariances at G�
during the incremental covariance update termed in the fig-

ure as GTSAM-PriorMarginals, takes a small portion of

the overall runtime (green lines in Figures 10a–10b); most

of the time is consumed by propagation of covariance

entries within the FGP action tree and IG calculation for

each edge in this tree. Note that the marginal/conditional

covariances required by rAMDL-Tree are propagated from

the root of FGP action tree to its leaves based on our incre-

mental covariance update technique (see Section 5.1).

Specifically, as described in Section 5.2.3, covariance pro-

pagation is performed in two phases. In the first, each tree

node in bottom-to-top order determines what covariance

entries are required from its belief. In the second phase, the

required covariances are calculated in top-to-bottom order

using incremental covariance update lemmas (see also

Figure 5).

In addition, we have performed a similar simulation

considering this time Jinf (a) calculating the IG of the land-

marks that were mapped until now. The results are shown

in Figure 11. Comparing the time performance between the

first and second scenarios we can see that ‘‘focused-land-

marks’’ requires more time; while rAMDL-Tree takes

around 50–100 ms in the first, it requires 100–250 ms in

the second. This is due to the fact that calculation of the

focused IG contains a one-time computation that

depends on the dimension of focused variables set X F
+ .

In the ‘‘focused-landmarks’’ scenario this is the dimension

of all landmarks mapped thus far, and it increases with time

as more landmarks are observed and introduced into the

state vector. Also in this scenario we see a similar trend

where rAMDL-Tree performs twice as fast as rAMDL

(100–250 ms versus 200–500 ms), while determining the

same optimal actions.

7. Conclusions

We have developed computationally efficient approaches

that address incremental covariance recovery and BSP over

high-dimensional state spaces. Our incremental covariance

update technique allows us to efficiently update specific

covariance entries (both marginal and conditional) after any

change in the inference problem, including introduction of

new state variables, addition of new measurement factors,

and relinearization of the entire state vector or only a subset

of the state variables. It can be applied whenever an effi-

cient method is required to track covariance entries within

the estimation system (e.g., in SLAM for data association

or safety), and is also an indispensable part of our BSP

approach.
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Fig. 9. Focused BSP scenario with focused robot’s last pose. (a) Final robot trajectory. Blue dots are mapped landmarks, red line

with small ellipses is estimated trajectory with pose covariances, blue line is the real trajectory, red pluses with numbers beside them

are robot’s predefined goals. Green mark is robot’s start position. (b) Number of action candidates at each time. (c) Candidate

trajectories at time step 69. (d) Enlarged view of (c). The pentagram represents current robot pose and hexagrams are current goal g

and various landmark clusters. As can be seen, there are a number of candidate trajectories to each hexagram and many candidate

trajectories share path sections. Our approach exploits the shared trajectory parts for faster planning.
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Fig. 10. Focused BSP scenario with focused robot’s last pose. (a) Running time of planning, i.e., evaluating the impact of all

candidate actions, each representing a possible trajectory. (b) Running time from (a) normalized by the number of candidates.
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Furthermore, considering the BSP problem our key

observation is that in many robotics applications, candidate

actions have mutual parts where each part can be evaluated

only once, independently of the number of candidate

actions that share it. For this purpose, we presented a novel

approach to model future posterior beliefs of different can-

didate actions within a single graphical model which we

called an FGP action tree. This tree model allows shared

parts of different actions to be evaluated only once by rep-

resenting belief propagation of posterior factor graphs from

the current factor graph sequentially. The FGP action tree

has a consecutive hierarchic form, with intermediate ver-

tices that represent beliefs after applying only part of a can-

didate action. Further, we use the aforementioned

incremental covariance recovery technique to efficiently

calculate covariances at intermediate and final beliefs

within the FGP action tree, doing so independently of state

dimension n. The calculated covariance entries let us rea-

son about probabilistic properties of the beliefs and actions

within the FGP action tree. Specifically, this allowed us to

efficiently calculate the information impact of all candidate

actions by reusing calculation from candidates’ mutual

parts. Overall, our method involves two passes over the

FGP action tree, bottom-to-top query of required covar-

iance entries and top-to-bottom propagation of these covar-

iance entries. We evaluated the proposed approach in

simulation considering the problem of autonomous naviga-

tion in unknown environments, and showed it reduces run-

time by half compared with our previous approach

(Kopitkov and Indelman, 2017), rAMDL.

There are several avenues for future research to take the

proposed concept of reusing calculations between different

candidate actions further. In this work, we considered a

specific realization of the FGP action tree, using the struc-

ture of candidate trajectories in an autonomous navigation

scenario. However, given posterior factor graphs for differ-

ent candidate actions, multiple FGP action trees can be

constructed. A key question that will be addressed as part

of future research is how to construct an FGP action tree so

that most of actions’ similarity would be exploited. Another

direction for future research is to make BSP runtime com-

plexity totally independent of state dimension. The process

of information evaluation via FGP action tree consists of

only a single, one-time, calculation that depends on state

dimension n, i.e., recovering the prior marginal (or condi-

tional) covariance entries of variables involved in candidate

actions. When there are many candidates (above 500 in our

simulations), this one-time part is insignificant with respect

to the overall process time and can be ignored. However,

for a smaller number of candidate actions this part takes

considerable time (about 50% of time in our simulation in

Figure 11) and additional research efforts are required in

order to reduce its time complexity. Anticipating what state

variables would be involved in the near-future candidate

actions and incrementally tracking specific covariance

entries of these involved variables during the inference pro-

cess through our incremental covariance recovery method

may be an appropriate solution and will be investigated in

the future.
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Appendix A. Proof of Lemma 1:

Non-augmented case

The variables set W in this case is fYold,
I X g= fY , I X g.

Define the prior marginal covariance matrices:

S
I
�[ S

M , I X
� , S

Y
�[ S

M , Y
� . Also denote the prior cross-

covariance between Y and I X as S
C
�. Then, S

M ,W
� will have

the following form:

S
M ,W
� =

S
Y
� S

C
�

(S
C
�)

T
S

I
�

 !
ð63Þ

In addition, let us separate prior (old) state variables X�
into involved I X (in new factors Fnew) and not involved :I X

variables. Similarly, let us partition the Jacobian matrix A

into

A = :I A I A
� �

= 0 I A
� �

ð64Þ

where :I A contains noise-weighted Jacobians with respect

to X:I , and I A with respect to I X . From its definition we

can conclude that :I A contains only zeros.

Next, using the Woodbury matrix identity and informa-

tion update equation L+ = L�+ AT � A, the posterior cov-

ariance matrix is

S+ = (L+)
�1 = (L�+ AT � A)�1 = S� � S� � AT

� ½Im + A � S� � AT��1 � A � S�= S� � S� � AT

� ½Im + I A � SI
� � (I A)T�

�1 � A � S�

ð65Þ

where A � S� � AT = I A � SI
� � (I A)T because of A’s sparsity

structure.

Then S+ can be calculated as
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S+ = S� � S� � AT � C�1 � A � S� ð66Þ

C = Im + I A � SI
� � (I A)T ð67Þ

Further, S
M , Y
+ can be calculated by retrieving from S+

rows and columns that belong to variables Y :

S
M , Y
+ = S

M , Y
� � S

(Y , :)
� � AT � C�1 � A � S(:, Y )

� = S
M , Y
�

� ½A � S(:, Y )
� �T � C�1 � ½A � S(:, Y )

� �
= S

M , Y
� � ½I A � (SC

�)
T�T � C�1 � ½I A � (SC

�)
T�= S

M , Y
�

� ½SC
� � (I A)T� � C�1 � ½SC

� � (I A)T�
T

ð68Þ

where using Matlab syntax we have S
(Y , :)
� ¼: S�(Y , : ) and

S
(:, Y )
� ¼: S�( : , Y ). �

Note that the columns inside information matrices do

not have to be ordered in any particular way, and that the

above-provided proof is correct for any ordering

whatsoever.

Appendix B. Proof of Lemma 2: Rectangular

case

In this case we can partition variables set Y into two subsets

Yold ¼: X� \ Y and Ynew ¼: Xnew \ Y or, in other words, into

old and new state variables. The posterior marginal covar-

iance matrix S
M , Y
+ will have then the following form:

S
M , Y
+ =

S
M , Yold

+ S
(Yold , Ynew)
+

(S(Yold , Ynew)
+ )

T
S

M , Ynew

+

 !
ð69Þ

and we are looking for an efficient way to calculate

matrices S
M , Yold

+ , S
M , Ynew

+ and S
(Yold , Ynew)
+ .

The variables set W in this case is fYold,
I X g. Define

next the prior marginal covariance matrices: S
I
�[ S

M , I X
� ,

S
Yold

� [ S
M , Yold

� . Also denote the prior cross-covariance

between Yold and I X as S
C
�. Then, S

M ,W
� will have the fol-

lowing form:

S
M ,W
� =

S
Yold

� S
C
�

(SC
�)

T
S

I
�

 !
ð70Þ

In addition, let us separate prior (old) state variables X�
into involved I X (in new factors Fnew) and not involved
:I X . The posterior state vector is then

X+ = fI
X , :I X ,Xnewg. Similarly, let us partition the

Jacobian matrix A into

A = Aold Anewð Þ, Aold = :I A I A
� �

= 0 I A
� �

ð71Þ

where Aold contains noise-weighted Jacobians with respect

to old variables X�, Anew with respect to new variables

Xnew, :I A with respect to :I X , and I A with respect to I X .

From its definition we can conclude that :I A contains only

zeros.

Following the information update equation

L+ = LAug
+ + AT � A (see also Figure 3), the posterior infor-

mation matrix can be partitioned using separation

X+ = fX�,Xnewg as

L�=
L�+ AT

old � Aold AT
old � Anew

AT
new � Aold AT

new � Anew

� �
ð72Þ

Now, let us partition the posterior covariance matrix S+

in a similar way:

S+ =
S

old
+ S

cross
+

(S
cross
+ )

T
S

new
+

 !
ð73Þ

Given the setup until now, we derive each of the matrices

S
M , Yold

+ , S
M , Ynew

+ , and S
(Yold , Ynew)
+ from (69) using parts from

S
M ,W
� defined in (70).

SM,Ynew

+ By using block-wise matrix inversion (which is

based on the notion of Schur complements), S
new
+ is equal

to

S
new
+ = (AT

new � Anew � AT
new � Aold � (L�+ AT

old � Aold)
�1

� AT
old � Anew)

�1 = (AT
new � (Im � Aold

� (L�+ AT
old � Aold)

�1 � AT
old) � Anew)

�1

ð74Þ

Now, let us define matrix C as follows:

C ¼D Im + Aold � S� � AT
old = Im + I A � SI

� � (I A)T ð75Þ

Through the Woodbury matrix identity it can be easily

shown that C’s inverse is

C�1 = I � Aold � (L�+ AT
old � Aold)

�1 � AT
old ð76Þ

Therefore, S
new
+ is equal to

S
new
+ = (AT

new � C�1 � Anew)
�1 ð77Þ

and S
M , Ynew

+ can be calculated in the following way (note

that such calculation’s complexity is independent of state

dimension):

S
M , Ynew

+ = P(Ynew, :), P ¼D ½(AT
new � C�1 � Anew)

�1�(:, Ynew)

ð78Þ

where in brackets we are using Matlab syntax to index rele-

vant rows/columns. Note that ½(AT
new � C�1 � Anew)

�1�(:, Ynew)

can be calculated without calculation of full

(AT
new � C�1 � Anew)

�1, by using backslash operator in

Matlab:

P = ½AT
new � C�1 � Anew�nI (:, Ynew) ð79Þ
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where I (:, Ynew) are particular columns of the identity matrix.

SM,Yold

+
Using the block-wise matrix inversion again we know

that S
old
+ from (73) is equal to

S
old
+ = (L�+ AT

old � Aold � AT
old � Anew � (AT

new � Anew)
�1

� AT
new � Aold)

�1

= (L�+ AT
old � (Im � Anew � (AT

new � Anew)
�1 � AT

new)

� Aold)
�1 = (Lk + AT

old � K � Aold)
�1

ð80Þ

with

K ¼D Im � Anew � (AT
new � Anew)

�1 � AT
new

= Im � Anew � F � AT
new, F ¼D (AT

new � Anew)
�1

ð81Þ

where K is a singular, symmetric, idempotent projection

matrix, with properties K = K2 and K = KT.

Further, S
old
+ can be now rewritten as

S
old
+ = (L�+ AT

old � KT � K � Aold)
�1

= L�1
� � L�1

� � AT
old � KT

� (Im + K � Aold � L�1
� � AT

old � KT)�1

� K � Aold � �L�1
� = S� � S� � AT

old � KT

� (Im + K � Aold � S� � AT
old � KT)�1

� K � Aold � �S�= S� � S� � AT
old

� KT � G�1 � K � Aold � S�

ð82Þ

with

G ¼D Im + K � Aold � S� � AT
old � KT = Im + K�I A

� SI
� � (

I A)T � KT = Im + K1 � SI
� � KT

1

ð83Þ

K1 ¼D K�I A ð84Þ

where K1 are non-zero columns from Aold projected outside

of vector space that is spanned by columns in Anew. In other

words, K1 contains information from Aold that is not con-

tained within Anew.

Then S
M , Yold

+ can be calculated by retrieving from S
old
+

rows and columns that belong to variables Yold:

S
M , Yold

+ = S
M , Yold

� � S
(Yold , :)
� � AT

old � KT � G�1

� K � Aold � S(:, Yold)
� = S

M , Yold

� � ½K � Aold � S(:, Yold)
� �T � G�1

� ½K � Aold � S(:, Yold)
� �

= S
M , Yold

� � ½K�I A � S(X I , Yold)
� �T � G�1 � ½K�I A � S(X I , Yold)

� �
= S

M , Yold

� � ½K1 � (SC
�)

T�T � G�1 � ½K1 � (SC
�)

T�
= S

M , Yold

� � B � G�1 � BT

ð85Þ

where

B ¼D S
C
� � KT

1 = S
C
� � (

I A)T � K ð86Þ

S(Yold,Ynew)
+ : Method 1

Using the block-wise matrix inversion again we know that

S
cross
+ from (73) is equal to

S
cross
+ = � (L�+ AT

old � Aold)
�1 � AT

old � Anew

� (AT
new � C�1 � Anew)

�1

= � (S� � S� � AT
old � C�1 � Aold � S�)

� AT
old � Anew � (AT

new � C�1 � Anew)
�1

= � S� � AT
old � Anew � (AT

new � C�1 � Anew)
�1

+ S� � AT
old � C�1 � Aold � S� � AT

old � Anew

� (AT
new � C�1 � Anew)

�1

= S� � AT
old � ½�Im + C�1 � Aold � S� � AT

old�
� Anew � (AT

new � C�1 � Anew)
�1

= S� � AT
old � ½C�1�I A � SI

� � (I A)T � Im� � Anew

� (AT
new � C�1 � Anew)

�1

ð87Þ

where matrix C is defined in (75)

Then S
(Yold , Ynew)
+ can be calculated by retrieving from

S
cross
+ the entries that correspond to Yold rows and Ynew

columns:

S
(Yold , Ynew)
+ = S

(Yold , :)
� � AT

old � ½C�1�I A � SI
� � (I A)T � Im�

� Anew � ½(AT
new � C�1 � Anew)

�1�(:, Ynew)

= S
C
� � (I A)T � ½C�1�I A � SI

� � (I A)T � Im�
� Anew � P

ð88Þ

where matrix P is defined in (78).

S(Yold,Ynew)
+ : Method 2

Using another form of block-wise matrix inversion, S
cross
+

from (73) is equal to

S
cross
+ = � ½S� � S� � AT

old � KT � G�1 � K � Aold � �S��
� AT

old � Anew � (AT
new � Anew)

�1

= ½S� � AT
old � KT � G�1 � K � Aold � �S� � AT

old � S� � AT
old �

� Anew � (AT
new � Anew)

�1

= ½S� � AT
old � KT � G�1 � K � Aold � �S� � AT

old � S� � AT
old �

� Anew � F
= ½S� � AT

old � KT � G�1 � K�I A � SI
� � (I A)T � S� � AT

old�
� Anew � F

ð89Þ

where matrix F is defined in (81).
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Then S
(Yold , Ynew)
+ can be calculated by retrieving from

S
cross
+ the entries that correspond to Yold rows and Ynew

columns:

S
(Yold , Ynew)
+ = ½S(Yold , :)

� � AT
old � KT � G�1 � K�I A � SI

�

� (I A)T � S
(Yold , :)
� � AT

old � � Anew � F(:, Ynew)

= ½SC
� � (I A)T � KT � G�1 � K�I A � SI

� � (I A)T � S
C
� � (I A)T�

� Anew � F(:, Ynew)

= S
C
� � ½(I A)T � KT � G�1 � K�I A � SI

� � Ik � � (I A)T � Anew

� F(:, Ynew)

= S
C
� � ½KT

1 � G�1 � K1 � SI
� � Ik � � (I A)T � Anew � F(:, Ynew)

ð90Þ

where matrix K1 is defined in (84) and the identity matrix

Ik has dimension jI X j. �

Note that the columns inside information matrices do

not have to be ordered in any particular way, and that the

above-provided proof is correct for any ordering

whatsoever.

Appendix C. Proof of Lemma 3: Squared case

The squared case is a special instance of the rectangular

case and, thus, we will use here the same setup as for the

rectangular case. In other words, we use the partitioning

that was defined in (69), (70), and (71).

In the squared case, we have that m = jXnewj from which

we can conclude that matrix Anew from (71) is a squared

matrix. Then, matrix K from (26) is equal to a zero matrix:

K = Im � Anew � (AT
new � Anew)

�1 � AT
new

= Im � Anew � A�1
new � (AT

new)
�1 � AT

new = 0
ð91Þ

Further, matrices K1 and B from (27) and (28) contain

only zeros, and S
M , Yold

+ is equal to

S
M , Yold

+ = S
M , Yold

� � B � G�1 � BT = S
M , Yold

� ð92Þ

Next, S
new
+ from (77) can be calculated as

S
new
+ = (AT

new � C�1 � Anew)
�1 = A�1

new � C � (AT
new)

�1

= A�1
new � C � (A�1

new)
T

ð93Þ

and S
M , Ynew

+ is equal to

S
M , Ynew

+ = ½A�1
new�

(Ynew, :) � C � ½(A�1
new)

T�(:, Ynew)

= ½A�1
new�

(Ynew, :) � C � (½A�1
new�

(Ynew, :))T = Aiv � C � AT
iv

ð94Þ

where

Aiv ¼D ½A�1
new�

(Ynew, :) ð95Þ

and can be efficiently calculated through the Matlab back-

slash operator:

Aiv = AnewnI (:, Ynew) ð96Þ

Next, we can reduce (31) to

S
(Yold , Ynew)
+ = S

C
� � ½KT

1 � G�1 � K1 � SI
� � Ik �

� (I A)T � Anew � F(:, Ynew)

= � S
C
� � (

I A)T � Anew � F(:, Ynew)

= � ½SC
� � (

I A)T � Anew � F�(:, Ynew)

= � ½SC
� � (I A)T � Anew � A�1

new � (AT
new)

�1�(:, Ynew)

= � ½SC
� � (I A)T � (AT

new)
�1�(:, Ynew)

= � S
C
� � (I A)T � ½(AT

new)
�1�(:, Ynew) = � S

C
� � (I A)T

� (½A�1
new�

(Ynew, :))T = � S
C
� � (I A)T � (Aiv)

T

ð97Þ

�

Note that the columns inside information matrices do

not have to be ordered in any particular way, and that the

above-provided proof is correct for any ordering

whatsoever.

Appendix D. Proof of Lemma 4:

relinearization case

As we saw in (40), the information update here has the fol-

lowing form:

L+ = L�+ BT � B, B ¼D iA�
A+

� �
ð98Þ

First, denote by I A� the non-zero columns of A� and by
I A+ the non-zero columns of A+ (note that indices of such

columns are the same in both A� and A+). Next, apply

Lemma 1 as follows:

S
M , Y
+ = S

Y
� � V � C�1 � VT, V ¼D S

C
� � (I B)T,

C ¼D Im + I B � SI
� � (I B)T, I B ¼D i�I A�

I A+

� � ð99Þ

where S
I
�[ S

M , I X
� is the prior marginal covariance of vari-

ables I X involved in the relinearized factors FR;

S
Y
�[ S

M , Y
� is the prior marginal covariance of variables Y ;

S
C
� is the cross-covariance between Y and X I .

Next we can see that

C = Im +
i�I A�
I A+

� �
� SI
� � i � (I A�)

T
(I A+)

T
� �

=
I�I A� � SI

� � (I A�)
T

i�I A� � SI
� � (I A+)

T

i�I A+ � SI
� � (I A�)

T
I + I A+ � SI

� � (I A+)
T

 !

¼D
C11 i � C12

i � CT
12 C22

0
B@

1
CA

ð100Þ
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where I is the identity matrix of appropriate dimension.

Note that while C11 can sometimes not be a positive-

definite (PD) matrix, C22 is always PD and therefore is

invertible.

Next, we use a block-wise inversion in order to calculate

C�1:

C�1 ¼D Cinv
11 Cinv

12

(Cinv
12 )

T
Cinv

22

� �
, ð101Þ

Cinv
11 ¼

D
(C11 + C12 � C�1

22 � CT
12)
�1, ð102Þ

Cinv
12 ¼

D �i � Cinv
11 � C12 � C�1

22 , ð103Þ

Cinv
22 ¼

D
C�1

22 � C�1
22 � CT

12 � Cinv
11 � C12 � C�1

22 ð104Þ

Using the above notation we can see that

(I B)T � C�1�I B = i � (I A�)
T

(I A+)
T

� �

�
Cinv

11 Cinv
12

(Cinv
12 )

T
Cinv

22

 !
�

i�I A�
I A+

 !

= (I A+)
T � C�1

22 �I A+ � (I A�)
T � Cinv

11 �I A�+ (I A�)
T

� Cinv
11 � C12 � C�1

22 �I A+

+ (I A+)
T � C�1

22 � CT
12 � Cinv

11 �I A� � (I A+)
T � C�1

22 � CT
12

� Cinv
11 � C12 � C�1

22 �I A+

= (I A+)
T � C�1

22 �I A+ � ½(I A�)T � (I A+)
T � C�1

22 � CT
12�

� Cinv
11 � ½(I A�)T � (I A+)

T � C�1
22 � CT

12�
T

= (I A+)
T � C�1

22 �I A+ � ½(I A�)T � (I A+)
T � C�1

22 � CT
12�

� ½C11 + C12 � C�1
22 � CT

12�
�1

� ½(I A�)T � (I A+)
T � C�1

22 � CT
12�

T

= (I A+)
T � ½I + I A+ � SI

� � (I A+)
T��1�I A+

� ½(I A�)T � (I A+)
T � ½I + I A+ � SI

� � (I A+)
T��1�I A+

� SI
� � (I A�)T� � J�1 � ½(I A�)T � (I A+)

T

� ½I + I A+ � SI
� � (I A+)

T��1�I A+ � SI
� � (I A�)T�

T

,

ð105Þ

J ¼D C11 + C12 � C�1
22 � CT

12 = I�I A� � SI
� � (I A�)T + I A�

� SI
� � (I A+)

T � ½I + I A+ � SI
� � (I A+)

T��1�I A+

� SI
� � (I A�)T

ð106Þ

Next, introduce new notation

M2 ¼D (I A+)
T=chol½I + I A+ � SI

� � (I A+)
T�, ð107Þ

G ¼D MT
2 � S

I
� � (I A�)T ð108Þ

where chol(�) represents Cholesky decomposition, which

returns an upper triangular matrix, and ‘‘=’’ is the backslash

operator from Matlab syntax (A=B = A � B�1).

It can be clearly seen that

M2 �MT
2 = (I A+)

T � ½I + I A+ � SI
� � (I A+)

T��1�I A+ ð109Þ

GT � G = I A� � SI
� � (I A+)

T � ½I + I A+ � SI
� � (I A+)

T��1�I

A+ � SI
� � (I A�)T,

ð110Þ

M2 � G = (I A+)
T � ½I + I A+ � SI

� � (I A+)
T��1�I A+

� SI
� � (I A�)T

ð111Þ

Using matrices M2 and G, we can rewrite an expression

for (I B)T � C�1�I B as

(I B)T � C�1�I B = M2 �MT
2 � ½(I A�)T �M2 � G�

� J�1 � ½(I A�)T �M2 � G�T,
ð112Þ

J = I�I A� � SI
� � (I A�)T + GT � G ð113Þ

Next, let us define another matrix:

M1 ¼D ½(I A�)T �M2 � G�=chol½I�I A� � SI
� � (

I A�)
T + GT � G�

ð114Þ

with M1 �MT
1 being equal to

M1 �MT
1 = ½(I A�)T �M2 � G�

� ½I�I A� � SI
� � (I A�)T + GT � G��1

� ½(I A�)T �M2 � G�T = ½(I A�)T �M2 � G�
� J�1 � ½(I A�)T �M2 � G�T

ð115Þ

Thus, we will have

(I B)T � C�1�I B = M2 �MT
2 �M1 �MT

1 = M �MT,

M ¼D iM1 M2ð Þ
ð116Þ

By combining the above equation with (99) we can con-

clude that

S
M , Y
+ = S

Y
� � S

C
� �M �MT � (SC

�)
T = S

Y
� � U � UT,

U ¼D S
C
� �M

ð117Þ

�

Note that the columns inside information matrices do

not have to be ordered in any particular way, and that the

above-provided proof is correct for any ordering

whatsoever.
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Appendix E. Sum of information gains

Consider action a with increment I(a)= fFnew,Xnewg.
Further, consider specific partitioning of a into sub-actions

a = fa01, . . . , a0kg where each sub-action a0i has increment

Ii(a
0
i)= fFi, new,Xi, newg. The factor sets Fi, new are disjoint,

so are the new variable sets Xi, new. In addition, for proper

action partitioning we will have
Sk

i = 1 Fi, new = Fnew andSk
i = 1 Xi, new = Xnew.

Next, we will prove that the IG of a is equal to sum of

IGs of sub-actions fa0ig
k
i = 1 in the unfocused scenario. A

similar proof can also be shown for focused BSP.

The unfocused IG of action a by definition is

JIG(a)=H(b½X��)�H(b½X+�) ð118Þ

where b½X�� is a prior belief before applying action a, and

b½X+� is a posterior belief after applying it.

In addition, denote the posterior belief of each sub-

action ai0 as bi½Xi, + �. When applying sub-actions consecu-

tively in sequence, belief propagation will have the follow-

ing form:

b½X�� ) b1½X1, + � ) b2½X2, + � ) � � � ) bk�1½Xk�1, + �
) b½X+�

ð119Þ

Then, the IG of each sub-action is equal to

JIG(a
0
1)=H(b½X��)�H(b1½X1, + �)

JIG(a
0
2)=H(b1½X1, + �)�H(b2½X2, + �)

� � �

JIG(a
0
k�1)=H(bk�2½Xk�2, + �)�H(bk�1½Xk�1, + �)

JIG(a
0
k)=H(bk�1½Xk�1, + �)�H(b½X+�)

and sum of these IGs is equal to

Xk

i = 1

JIG(a
0
i)=H(b½X��)�H(b½X+�)= JIG(a) ð120Þ

�
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