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Abstract. Expressiveness and generalization of deep models was recently
addressed via the connection between neural networks (NNs) and kernel
learning, where first-order dynamics of NN during a gradient-descent (GD)
optimization were related to gradient similarity kernel, also known as
Neural Tangent Kernel (NTK) [9]. In the majority of works this kernel is
considered to be time-invariant [9,13]. In contrast, we empirically explore
these properties along the optimization and show that in practice top
eigenfunctions of NTK align toward the target function learned by NN
which improves the overall optimization performance. Moreover, these
top eigenfunctions serve as basis functions for NN output - a function
represented by NN is spanned almost completely by them for the entire
optimization process. Further, we study how learning rate decay affects
the neural spectrum. We argue that the presented phenomena may lead
to a more complete theoretical understanding behind NN learning.

Keywords: Deep Learning · Neural Tangent Kernel · Kernel Learning.

1 Introduction

Understanding expressiveness and generalization of deep models is essential for
robust performance of NNs. Recently, the optimization analysis for a general
NN architecture was related to gradient similarity kernel [9], whose properties
govern NN expressivity level, generalization and convergence rate. Under various
considered conditions [9,13], this NN kernel converges to its steady state and is
invariant along the entire optimization, which significantly facilitates the analyses
of Deep Learning (DL) theory [9,13,2,1].

Yet, in a typical realistic setting the gradient similarity kernel is far from
being constant, as we empirically demonstrate in this paper. Particularly, during
training its spectrum aligns towards the target function that is learned by NN,
which improves the optimization convergence rate [1,15]. Furthermore, we show
that these gradient similarity dynamics can also explain the expressive superiority
of deep NNs over more shallow models. Hence, we argue that understanding the
gradient similarity of NNs beyond its time-invariant regime is a must for full
comprehension of NN expressiveness power.
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To encourage the onward theoretical research of the kernel, herein we report
several strong empirical phenomena and trends of its dynamics. To the best of
our knowledge, these trends neither were yet reported nor they can be explained
by DL theory developed so far. To this end, in this paper we perform an empirical
investigation of fully-connected (FC) NN, its gradient similarity kernel and the
corresponding Gramian at training data points during the entire period of a
typical learning process. Our main empirical contributions are:

(a) We show that Gramian serves as a NN memory, with its top eigenvectors
changing to align with the learned target function. This improves the opti-
mization performance since the convergence rate along kernel top eigenvectors
is typically higher.

(b) During the entire optimization NN output is located inside a sub-space
spanned by these top eigenvectors, making the eigenvectors to be a basis
functions of NN.

(c) Deeper NNs demonstrate a stronger alignment, which may explain their
expressive superiority. In contrast, shallow wide NNs with a similar number
of parameters achieve a significantly lower alignment level and a worse
optimization performance.

(d) We show additional trends in kernel dynamics as a consequence of learning
rate decay, demonstrating that the information of the target function is
spread along bigger number of top eigenvectors after each decay.

(e) Experiments over various FC architectures, real-world datasets, supervised
and unsupervised learning algorithms and number of popular optimizers were
performed. All experiments showed the mentioned above spectrum alignment.

The paper is structured as follows. In Section 2 we define necessary notations.
In Section 3 we relate gradient similarity with Fisher information matrix (FIM)
of NN and in Section 4 we provide more insight about NN dynamics on L2
loss example. In Section 5 the related work is described and in Section 6 we
present our main empirical study. Conclusions are discussed in Section 7. Further,
additional derivations and experiments are placed in Appendix [12].

2 Notations

Consider a NN fθ(X) : Rd → R with a parameter vector θ, a typical sample loss `
and an empirical loss L, training samples D =

[
XXX = {Xi ∈ Rd},YYY = {Y i ∈ R}

]
,

i ∈ [1, . . . , N ] and loss gradient ∇θL:

L(θ,D) =
1

N

N∑
i=1

`
[
Y i, fθ(X

i)
]
, ∇θL(θ,D) =

1

N

N∑
i=1

`′
[
Y i, fθ(X

i)
]
·∇θfθ(Xi),

(1)
where `′ [Y, fθ(X)] , ∇fθ` [Y, fθ(X)]. The above formulation can be extended to
include unsupervised learning methods in [11] by eliminating labels YYY from the
equations. Further, techniques with a model fθ(X) returning multidimensional
outputs are out of scope for this paper, to simplify the formulation.
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Consider a GD optimization with learning rate δ, where parameters change at
each discrete optimization time t as dθt , θt+1− θt = −δ ·∇θL(θt, D). Further, a
model output change at any X according to first-order Taylor approximation is:

dfθt(X) , fθt+1
(X)− fθt(X) ≈ − δ

N

N∑
i=1

gt(X,X
i) · `′

[
Y i, fθt(X

i)
]
, (2)

where gt(X,X
′) , ∇θfθt(X)T · ∇θfθt(X ′) is a gradient similarity - the dot-

product of gradients at two different input points also known as NTK [9].
In this paper we mainly focus on optimization dynamics of fθ at training

points. To this end, define a vector f̄t ∈ RN with i-th entry being fθt(X
i).

According to Eq. (2) the discrete-time evolution of fθ at testing and training
points follows:

dfθt(X) ≈ − δ

N
· gt(X,XXX ) · m̄t, df̄t , f̄t+1 − f̄t ≈ −

δ

N
·Gt · m̄t, (3)

where Gt , gt(XXX ,XXX ) is a N ×N Gramian with entries Gt(i, j) = gt(X
i, Xj) and

m̄t ∈ RN is a vector with the i-th entry being `′
[
Y i, fθt(X

i)
]

.
Likewise, denote eigenvalues of Gt, sorted in decreasing order, by {λti}Ni=1,

with λtmax , λt1 and λtmin , λtN . Further, notate the associated orthonormal
eigenvectors by {ῡti}Ni=1. Note that {λti}Ni=1 and {ῡti}Ni=1 also represent estimations
of eigenvalues and eigenfunctions of the kernel gt(X,X

′) (see Appendix A for more
details). Below we will refer to large and small eigenvalues and their associated
eigenvectors by top and bottom terms respectively.

Eq. (3) describes the first-order dynamics of GD learning, where m̄t is a
functional derivative of any considered loss L, and the global optimization
convergence is typically associated with it becoming a zero vector, due to Euler-
Lagrange equation of L. Further, Gt translates a movement in θ-space into a
movement in a space of functions defined on XXX .

3 Relation to Fisher Information Matrix

NN Gramian can be written as Gt = ATt At where At is |θ| × N Jacobian
matrix with i-th column being ∇θfθt(Xi). Moreover, Ft = AtA

T
t is known as

the empirical FIM of NN3 [14,10] that approximates the second moment of
model gradients 1

N Ft ≈ EX
[
∇θfθt(X)∇θfθt(X)T

]
. Since Ft is dual of Gt, both

matrices share same non-zero eigenvalues {λti 6= 0}. Furthermore, for each λti
the respectful eigenvector ω̄ti of Ft is associated with appropriate ῡti - they are
left and right singular vectors of At respectively. Moreover, change of θt along
the direction ω̄ti causes a change to f̄t along ῡti (see Appendix C for the proof).
Therefore, spectrums of Gt and Ft describe principal directions in function space
and θ-space respectively, according to which f̄t and θt are changing during the
optimization. Based on the above, in Section 5 we relate some known properties
of Ft towards Gt.

3 In some papers [17] FIM is also referred to as a Hessian of NN, due to the tight
relation between Ft and the Hessian of the loss (see Appendix B for details)
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4 Analysis of L2 Loss For Constant Gramian

To get more insight into Eq. (3), we will consider L2 loss with `
[
Y i, fθ(X

i)
]

=
1
2

[
fθ(X

i)− Y i
]2

. In such a case we have m̄t = f̄t − ȳ, with ȳ being a vector
of labels. Assuming Gt to be fixed along the optimization (see Section 5 for
justification), NN dynamics can be written as:

f̄t = f̄0 −
N∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > ῡi, (4)

m̄t =

N∑
i=1

[
1− δ

N
λi

]t
< ῡi, m̄0 > ῡi. (5)

Full derivation and extension for dynamics at testing points appear in Appendices

D-E. Under the stability condition δ < 2N
λmax

that satisfies lim
t→∞

[
1− δ

N λi
]t

= 0,

the above equations can be viewed as a transmission of a signal from m̄0 = f̄0− ȳ
into our model f̄t. At each iteration m̄t is decreased along each {ῡi : λi 6= 0} and
the same information decreased from m̄t in Eq. (5) is appended to f̄t in Eq. (4).

Hence, in case of L2 loss and for a constant Gramian matrix, conceptually GD
transmits information packets from the residual m̄t into our model f̄t along each
axis ῡi. Further, sti , 1− |1− δ

N λi| governs a speed of information flow along ῡi.

Importantly, note that for a high learning rate (i.e. δ ≈ 2N
λmax

) the information
flow is slow for directions ῡi with both very large and very small eigenvalues,
since in former the term 1 − δ

N λi is close to −1 whereas in latter - to 1. Yet,
along with the learning rate decay, performed during a typical optimization, sti
for very large λi is increased. However, the speed along a direction with small
λi is further decreasing with the decay of δ. As well, in case λmin > 0, at the
convergence t→∞ we will get from Eqs. (4)-(5) the global minima convergence:
f̄∞ = f̄0 − m̄0 = ȳ and m̄∞ = 0̄.

Under the above setting, there are two important key observations. First, due
to the restriction over δ in practice the information flow along small λi can be
prohibitively slow in case a conditional number λmax

λmin
is very large. This implies

that for a faster convergence it is desirable for NN to have many eigenvalues as
close as possible to its λmax since this will increase a number of directions in
the function space where information flow is fast. Second, if m̄0 (or ȳ if f̄0 ≈ 0)
is contained entirely within top eigenvectors, small eigenvalues will not affect
the convergence rate at all. Hence, the higher alignment between m̄0 (or ȳ) and
top eigenvectors may dramatically improve overall convergence rate. The above
conclusions and their extensions towards the testing loss are proved in formal
manner in [1,15] for two-layer NNs. Further, the generalization was also shown
to be dependent on the above alignment.

In Section 6 we evaluate the above conclusions experimentally, showing them
to be true. Moreover, we will demonstrate the exceptional alignment between ȳ
and top eigenvectors of Gt along the optimization process. Such behavior can
further explain the expressiveness power of NNs.
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5 Related Work

First-order NN dynamics can be understood by solving the system in Eq. (3).
However, its solution is highly challenging due to two main reasons - non-linearity
of m̄t w.r.t. f̄t (except for the L2 loss) and intricate and yet not fully known
time-dependence of Gramian Gt. Although gradient similarity gt(X,X

′) and
corresponding Gt achieved a lot of recent attention in DL community [9,13], their
properties are still investigated mostly only for limits under which Gt becomes
time-constant. In [9] gt(X,X

′) was proven to converge to Neural Tangent Kernel
(NTK) in infinite width limit, while in [13] G0 was shown to accurately explain
NN dynamics when θt is nearby θ0. The considered case of constant Gramian
facilitates solution of Eq. (3), as demonstrated in Section 4, which otherwise
remains intractable.

Yet, in practical-sized NNs the spectrum of Gt is neither constant nor it is
similar to its initialization. Recent several studies explored its adaptive dynamics
[18,3], with most works focusing on one or two layer NNs. Further, in [4,8]
equations for NTK dynamics were developed for a general NN architecture.
Likewise, in the Appendix F we derive similar dynamics for the Gramian Gt. Yet,
the above derivations produce intricate equations and it is not straightforward to
explain the actual behavior of Gt along the optimization, revealed in this paper.
In Section 6 we empirically demonstrate that top spectrum of Gt drastically
changes by aligning itself with the target function. To the best of our knowledge,
the presented NN kernel trends were not investigated in such detail before.

Further, many works explore properties of FIM Ft both theoretically and
empirically [17,6,10,15]. All works agree that in typical NNs only a small part
of FIM eigenvalues are significantly strong, with the rest being negligibly small.
According to Section 3 the same is also true about eigenvalues of Gt. Furthermore,
in [1,15] authors showed that NN learnability strongly depends on alignment
between labels vector ȳ and top eigenvectors of Gt. Intuitively, it can be explained
by fast convergence rate along ῡi with large λi vs impractically slow one along
directions with small λi, as was shortly described in Section 4. Due to most of
the eigenvalues being very small, the alignment between ȳ and top eigenvectors of
Gt defines the optimization performance. Moreover, in [15] authors shortly noted
the increased aforementioned alignment comparing ResNet convolutional NN
before and after training. In Section 6 we empirically investigate this alignment
for FC architecture, in comprehensive manner for various training tasks.

Furthermore, the picture of information flow from Section 4 also explains
what target functions are more ”easy” to learn. The top eigenvectors of Gt
typically contain low-frequency signal, which was discussed in [1] and proved in
[2] for data uniformly distributed on a hypersphere. In its turn, this explains
why low-frequency target functions are learned significantly faster as reported in
[19,16,1]. We support findings of [2] also in our experiments below, additionally
revealing that for a general case the eigenvectors/eigenfunctions of the gradient
similarity are not spherical harmonics considered in [2].
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Fig. 1: (a) Mona Lisa target function for a regression task. (b) NN fθ(X) at
convergence. (c) 104 sampled training points. (d) Accuracy of first order dynamics

in Eq. (3). Depicted is errort =
‖df̃t−df̄t‖
‖df̃t‖ , where df̄t = − δtN ·Gt · m̄t is the first-

order approximation of a real differential df̃t , f̄t+1 − f̄t; cos (αt) is cosine of an
angle between df̃t and df̄t. As observed, Eq. (3) explains roughly 90% of NN
change. (e) Learning rate δt and its upper stability boundary 2N

λtmax
along the

optimization. We empirically observe a relation λtmax ≈ 2N
δt

.

6 Experiments

In this section we empirically study Gramian dynamics along the optimization
process. Our main goal here is to illustrate the alignment nature of the gradient
similarity kernel and verify various deductions made in Section 4 under a constant-
Gramian setting for a real learning case. To do so in detailed and intuitive
manner, we focus our experiments on 2D dataset where visualization of kernel
eigenfunctions is possible. We perform a simple regression optimization of FC
network via GD, where a learning setup is similar to common conventions
applied by DL practitioners4. All empirical conclusions are also validated for
high-dimensional real-world data, which we present in Appendix [12].

Setup We consider a regression of the target function y(X) with X ∈ [0, 1]2 ⊆ R2

depicted in Figure 1a. This function is approximated via Leaky-Relu FC network
and L2 loss, using N = 10000 training points sampled uniformly from [0, 1]2 (see
Figure 1c). Training dataset is normalized to an empirical mean 0 and a standard
deviation 1. NN contains 6 layers with 256 neurons each, with |θ| = 264193, that
was initialized via Xavier initialization [5]. Such large NN size was chosen to
specifically satisfy an over-parametrized regime |θ| � N , typically met in DL
community. Further, learning rate δ starts at 0.25 and is multiplied by 0.5 each
105 iterations, with the total optimization duration being 6 · 105. At convergence
fθ(X) gets very close to its target, see Figure 1b. Additionally, in Figure 1d
we show that first-order dynamics in Eq. (3) describe around 90 percent of the
change in NN output along the optimization, leaving another 10 for higher-order
Taylor terms. Further, we compute Gt and its spectrum along the optimization,
and thoroughly analyze them below.

4 Related code can be accessed via a repository https://bit.ly/2kGVHhG

https://bit.ly/2kGVHhG
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Fig. 2: (a) Eigenvalues {λti}Ni=1 for different t. (b) Individual eigenvalues along t.
(c) δt

N λ
t
i along time t, for various i. (d) The information flow speed sti = 1−|1− δ

N λi|
discussed in Section 4, for various i. For first 8 eigenvectors, roughly, this speed
is increased at learning rate drop.

Eigenvalues In Figures 2a-2b it is shown that each eigenvalue is monotonically
increasing along t. Moreover, at learning rate decay there is an especial boost
in its growth. Since δt

N λ
t
i also defines a speed of movement in θ-space along

one of FIM eigenvectors (see Section 3), such behavior of eigenvalues suggests
an existence of mechanism that keeps a roughly constant movement speed of
θ within R|θ|. To do that, when δt is reduced, this mechanism is responsible
for increase of {λti}Ni=1 as a compensation. This is also supported by Figure 2c
where each δt

N λ
t
i is balancing, roughly, around the same value along the entire

optimization. Furthermore, in Figure 1e it is clearly observed that an evolution of
λtmax stabilizes5 only when it reaches value of 2N

δt
, further supporting the above

hypothesis.

Neural Spectrum Alignment Notate by cos
[
αt
(
φ̄, k

)]
,
√∑k

i=1<ῡ
t
i ,ȳ>

2

‖φ̄‖2
2

the

cosine of an angle αt
(
φ̄, k

)
between an arbitrary vector φ̄ and its projection to

the sub-space of RN spanned by {ῡti}ki=1. Further, Et(φ̄, k) , cos2
[
αt
(
φ̄, k

)]
can

be considered as a relative energy of φ̄, the percentage of its energy
∥∥φ̄∥∥2

2
located

inside span
(
{ῡti}ki=1

)
. In our experiments we will use Et(φ̄, k) as an alignment

metric between φ̄ and {ῡti}ki=1. Further, we evaluate alignment of Gt with ȳ
instead of m̄0 since f̄0 is approximately zero in the considered FC networks.

In Figure 3a we depict relative energy of the label vector ȳ in top k eigenvectors
of Gt, Et(ȳ, k). As observed, 20 top eigenvectors of Gt contain 90 percent of ȳ for
almost all t. Similarly, 200 top eigenvectors of Gt contain roughly 98 percent of ȳ,
with rest of eigenvectors being practically orthogonal w.r.t. ȳ. That is, Gt aligns
its top spectrum towards the ground truth target function ȳ almost immediately
after training starts, which improves the convergence rate since the information
flow is fast along top eigenvectors, as discussed in Section 4 and proved in [1,15].

5 Trend λtmax → 2N
δt

was consistent in FC NNs for a wide range of initial learning rates,
number of layers and neurons, and various datasets (see Appendix [12]), making it
an interesting venue for a future theoretical investigation
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Fig. 3: (a) For different k, relative energy of the label vector ȳ in top k eigenvectors
of Gt, Et(ȳ, k), along the optimization time t. (b) Relative energy of NN output,
Et(f̄t, k). (c) Relative energy of the residual, Et(m̄t, k). (d) Relative energy of
NN output, Et(f̄

test
t , k), with both Gt and f̄ testt computed at 104 testing points.

Dashed vertical lines depict time t at which learning rate δ was decayed (see
Figure 1e).

Further, we can see that for k < 400 the relative energy Et(ȳ, k) is decreasing
after each decay of δ, yet for k > 400 it keeps growing along the entire optimization.
Hence, the top eigenvectors of Gt can be seen as NN memory that is learned/tuned
toward representing the target ȳ, while after each learning rate drop the learned
information is spread more evenly among a higher number of different top
eigenvectors.

Likewise, in Figure 3b we can see that NN outputs vector f̄t is located entirely
in a few hundreds of top eigenvectors. In case we consider Gt to be constant,
such behavior can be explained by Eq. (3) since each increment of f̄t, df̄t, is
also located within top eigenvectors of Gt. Yet, for a general NN with a time-
dependent kernel the theoretical justification for the above empirical observation
is currently missing. Further, similar relation is observed also at points outside
of XXX (see Figure 3d), leading to the empirical conclusion that top eigenfunctions
of gradient similarity gt(X,X

′) are the basis functions of NN fθ(X).

Residual Dynamics Further, a projection of the residual m̄t onto top eigenvec-
tors, shown in Figure 3c, is decreasing along t, supporting Eq. (5). Particularly,
we can see that at t = 600000 only 10% of m̄t’s energy is located inside top
4000 eigenvectors, and thus at the optimization end 90% of its energy is inside
bottom eigenvectors. Moreover, in Figure 4a we can observe that the projection
of m̄t along bottom 5000 eigenvectors almost does not change during the entire
optimization. Thus, we empirically observe that the information located in the
bottom spectrum of Gt was not learned, even for a relatively long optimization
process (i.e. 600000 iterations), which can be explained by slow convergence
associated with bottom eigenvectors. Furthermore, since this spectrum part is
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Fig. 4: (a) Spectral projections of the residual m̄t, < ῡti , m̄t >
2, at t = 20000

and t = 600000; (b) and (c) Fourier Transform of m̄t at t = 20000 and t = 600000
respectively. The high frequency is observed to be dominant in (c). (d) a linear

combination f̄t,k ,
∑k
i=1 < ῡti , f̄t > ῡti of first k = {10, 100, 200, 500} eigenvectors

at t = 600000. Each vector f̄t,k was interpolated from training points {Xi}Ni=1 to
entire [0, 1]2 via a linear interpolation.

also associated with high-frequency information [2], m̄t at t = 600000 comprises
mostly the noise, which is also evident from Figures 4b-4c.

Moreover, we can also observe in Figure 3c a special drop of Et(m̄t, k) at
times of δ decrease. This can be explained by the fact that a lot of m̄t’s energy is
trapped inside first several {ῡti} (see Et(m̄t, 5) in Figure 3c). When learning rate
is decreased, the information flow speed sti , 1− |1− δt

N λ
t
i|, discussed in Section

4, is actually increasing for a few top eigenvectors (see Figure 2d). That is, terms
δt
N λ

t
i, being very close to 2 before δ’s decay, are getting close to 1 after, as seen

in Figure 2c. In its turn this accelerates the information flow along these first
{ῡti}, as described in Eq. (4)-(5). Further, this leads also to a special descend of
Et(m̄t, k) and of the training loss (see Figure 7b below).

Eigenvectors We further explore {ῡti} in a more illustrative manner, to produce
a better intuition about their nature. In Figure 4d a linear combination of several
top eigenvectors at t = 600000 is presented, showing that with only 100 vectors
we can accurately approximate the NN output in Figure 1b.

Furthermore, in Figure 5 several eigenvectors are interpolated to entire [0, 1]2.
We can see that top {ῡti} obtained visual similarity with various parts of Mona
Lisa image and indeed can be seen as basis functions of fθ(X) depicted in Figure
1b. Likewise, we also demonstrate the Fourier Transform of each ῡti . As observed,
the frequency of the contained information is higher for smaller eigenvalues,
supporting conclusions of [2]. More eigenvectors are depicted in Appendices I-N.

Likewise, in Figure 6 same eigenvectors are displayed at t = 20000. At this
time the visual similarity between each one of first eigenvectors and the target
function in Figure 1a is much stronger. This can be explained by the fact that
the information about the target function within Gt is spread from first few
towards higher number of top eigenvectors after each learning rate drop, as was
described above. Hence, before the first drop at t = 100000 this information is
mostly gathered within first few {ῡti} (see also Et(ȳ, 10) in Figure 3a).
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Fig. 5: Eigenvectors of Gramian Gt at t = 600000, and their Fourier Transforms
(see the Appendix G for technical details). First two rows: from left-to-right, 6
first eigenvectors. Last two rows: 10-th, 100-th, 500-th, 1000-th, 2000-th and
4000-th eigenvectors . As observed, a frequency of signal inside of each eigenvector
increases when moving from large to small eigenvalue.
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Fig. 6: First line: from left-to-right, 6 first eigenvectors of Gramian Gt at
t = 20000. Second line: 10-th, 100-th, 500-th, 1000-th, 2000-th and 4000-th
eigenvectors.
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Fig. 7: (a) For NNs with a different number of layers L and number of neurons
W, relative energy of labels ȳ in top 400 eigenvectors of Gt, Et(ȳ, 400), along the
optimization time t; (b) training loss and (c) testing loss of these models.
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Alignment and NN Depth / Width Here we further study how the width
and the depth of NN affect the alignment between Gt and the ground truth signal
ȳ. To this purpose, we performed the optimization under the identical setup, yet
with NNs containing various numbers of layers and neurons. In Figure 7a we
can see that in deeper NN top eigenvectors of Gt aligned more towards ȳ - the
relative energy Et(ȳ, 400) is higher for a larger depth. This implies that more
layers, and the higher level of non-linearity produced by them, yield a better
alignment between Gt and ȳ. In its turn this allows NN to better approximate a
given target function, as shown in Figures 7b-7c, making it more expressive for a
given task. Moreover, in evaluated 2-layer NNs, with an increase of neurons and
parameters the alignment rises only marginally.

Scope of Analysis The above empirical analysis was repeated under numerous
different settings and can be found in Appendix [12]. We evaluated various
FC architectures, with and without shortcuts between the layers and including
various activation functions. Likewise, optimizers GD, stochastic GD and Adam
were tested on problems of regression (L2 loss) and density estimation (noise
contrastive estimation [7]). Additionally, various high-dimensional real-world
datasets were tested, including MNIST and CIFAR100. All experiments exhibit
the same alignment nature of kernel towards the learned target function. The
results are also consistent with our previous experiments in [11].

7 Discussion and Conclusions

In this paper we empirically revealed that during GD top eigenfunctions of
gradient similarity kernel change to align with the target function y(X) learned
by NN fθ(X), and hence can be considered as a NN memory tuned during the
optimization to better represent y(X). This alignment is significantly higher for
deeper NNs, whereas a NN width has only a minor effect on it. Moreover, the same
top eigenfunctions represent a neural spectrum - the fθ(X) is a linear combination
of these eigenfunctions during the optimization. As well, we showed various trends
of the kernel dynamics affected by learning rate decay. Same alignment behavior
was observed for various supervised and unsupervised losses and high-dimensional
datasets, optimized via several different optimizers. Likewise, several variants of
FC architecture were evaluated. Since the above alignment is critical for a learning
[1,2,15], the main question remains to how NN architecture and optimization
hyper-parameters affect this spectrum, and what is their optimal configuration
for learning a given function y(X). We shall leave it for a future exciting research.
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