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Appendix

This document provides supplementary material to the main paper [8]. Therefore,
it should not be considered a self-contained document, but instead regarded as
its appendix.

Appendices A-F present derivations and proofs required by the main paper.
Further, in Appendix G the technical details of Fourier Transform calculation
are described.

In Appendices H-N we place more information about the spectrum of FC-
NN-L6-W256 - trained fully-connected NN with 6 layers, each containing 256
neurons. Each shown vector f̄t was interpolated from training points {Xi}Ni=1 to
entire [0, 1]2 via a linear interpolation.

Further, in Appendix O we present spectrum information for FC-NN-L4-W256,
in Appendix P - for FC-NN-L2-W256, and in Appendix Q - for FC-NN-L2-W66000.
Observe that FC-NN-L6-W256 and FC-NN-L2-W66000 have roughly the same
number of parameters, hence these two models demonstrate the depth effect on
the expressiveness of gradient similarity kernel gt(·, ·).

Next, in Appendix R the spectrum of FC-NN-L6-W256-shortcuts is presented
where we additionally add residual (skip) connections between different NN
layers [5]. This architecture is also compared with FC-NN-L6-W256 and FC-
NN-L4-W256. Further, in Appendix S we evaluate FC-NN-L6-W256 with Swish
activation function [10] and Adam optimization [7]. These experiments show
that NN spectrum alignment phenomena is not limited only to simple NNs with
Leaky-Rely and GD optimization, but actually is ubiquitous for various NN
architectures and optimizers,

In Appendix T experiments are performed for noise contrastive estimation
(NCE) approach [11,4]. The applied NN architecture is FC-NN-L6-W256, and
optimization is performed via stochastic GD (SGD) over training dataset of
size 105. The spectrum of NN and its alignment towards the target function is
observed again, similarly to L2 regression experiments.

Lastly, in Appendices U-W experiments are performed for MNIST, CIFAR100
and UCI Buzz datasets, applying L2 loss and GD/SGD on FC network. These
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experiments provide the insights on NN alignment for high-dimensional real-
world data. Here again, the alignment towards the target function is very distinct,
similarly to Mona Lisa experiments in the main paper.

A Relation between spectrums of gt(X,X
′) and its

Gramian Gt

Consider N dataset points XXX = {Xi ∈ Rd}Ni=1 sampled from an arbitrary
probability density function (pdf) P (X). Further, consider a kernel gt(X,X

′)
and the corresponding Gramian Gt defined on XXX , with Gt(i, j) = gt(X

i, Xj).
Eigenvalues {λ̃k}k, sorted in decreasing order, and eigenvectors {υ̃k(·)}k of gt(·, ·)
w.r.t. P (X) are defined as solutions of:

λ̃k · υ̃k(X) =

∫
gt(X,X

′) · υ̃k(X ′) · P (X)dX ′. (A1)

The integral in Eq. (A1) can be approximated via a sampled approximation:

∫
gt(X,X

′) · υ̃k(X ′) · P (X)dX ′ ≈ 1

N

N∑
i=1

gt(X,X
i) · υ̃k(Xi), (A2)

with the LHS of the above expression converging to the RHS as N →∞ due to
the law of large numbers.

Further, denote by ῡk a N × 1 vector whose i-th entry is υ̃k(Xi). Combining
Eq. (A1) and Eq. (A2), ῡk can be written as:

λ̃k · ῡk =
1

N
Gt · ῡk, (A3)

where we can see ῡk to be eigenvector of Gt. Therefore, eigenvectors {ῡk}k of Gt
can be considered as unbiased estimations of eigenfunctions {υ̃k(·)}k at points in
XXX . Note that the above sampled approximations are expected to be less accurate
for larger indexes k since the corresponding υ̃k(·) will contain more high-frequency
oscillations.

Furthermore, from Eq. (A3) it is clear that each ῡk is associated with the
eigenvalue λk = N · λ̃k of Gt. Hence, eigenvalues {λk}k of Gt can be considered
as unbiased estimations of eigenfunctions {λ̃k}k, up to a multiplier N .

Likewise, υ̃k(X) at an arbitrary point X can be estimated in a similar way,
by combining Eq. (A1) and Eq. (A2):

λ̃k · υ̃k(X) ≈ 1

N

N∑
i=1

gt(X,X
i) · υ̃k(Xi) =⇒ λk · υ̃k(X) ≈ gt(X,XXX ) · ῡk, (A4)

where gt(X,XXX ) is a row vector with gt(X,XXX )(i) = gt(X,X
i). The above approxi-

mation is used in the Appendix E to derive NN dynamics at testing points.
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B Relation between FIM and Hessian of the Loss

Hessian of a typical loss in Eq. (1) can be written as:

Ht ,
∂2L(θt, D)

∂θ2
=

1

N
AtDtA

T
t +

1

N

N∑
i=1

`′
[
Y i, fθt(X

i)
]
· Ht(Xi), (A5)

where At is Jacobian matrix defined in Section 3, Dt is a diagonal matrix with

Dt(i, i) =
∂2`[Y i,fθt (X

i)]
∂f2
θ

and Ht(X) ,
∂2fθt (X)

∂θ2 is the model Hessian.

Further, in case of L2 loss we will have Dt = I and

Ht =
1

N
Ft +

1

N

N∑
i=1

`′
[
Y i, fθt(X

i)
]
· Ht(Xi). (A6)

Finally, considering final stages of the optimization, the residual
`′
[
Y i, fθt(X

i)
]

= fθt(X
i)− Y i is approximately zero and hence the second term

of Eq. (A6) RHS can be neglected. Therefore, for L2 loss we will have Ht ≈ 1
N Ft.

Beyond L2 loss, a connection between FIM and the loss Hessian was also
observed for the cross-entropy loss in [3]. Authors empirically observed that the
loss gradient ∇θL(θt, D) converges very fast into a tiny subspace spanned by a
few top eigenvectors of Ht. This suggests that top eigenvectors of Ht and Ft are
tightly aligned and are spanning the same subspace of R|θ| also for cross-entropy
case, as follows. Denote At’s SVD as triplets {

√
λti, ω̄

t
i , ῡ

t
i}N

′

i=1 of ordered singular
values, left and right singular vectors respectively, where N ′ is a number of
non-zero singular values. Then, ∇θL(θt, D) can be written as:

∇θL(θt, D) =
1

N
At · m̄t =

1

N

 N ′∑
i=1

√
λti · ω̄

t
i · (ῡti)T

 · m̄t =

=
1

N

N ′∑
i=1

√
λti < ῡti , m̄t > ω̄ti . (A7)

Due to typical extremely fast decay of λti w.r.t. i, described along this paper,
∇θL(θt, D) in the above expression can be roughly seen as a linear combination
of only {ω̄ti} associated with several top {λti}. Noting that these are also the
top eigenvectors of Ft, we see that ∇θL(θt, D) is located in top-spectrum of Ft.
Further, taking into account the empirical observation from [3], we can conclude
from above that top eigenvectors of Ft and Ht are tightly aligned.

C Movement of θ along FIM Eigenvector causes
Movement of NN Output along Gramian Eigenvector

To understand the relation between FIM Ft and Gramian Gt more intuitively,
here we show their dual connection in terms of how the movement along FIM
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eigenvector ω̄ti in θ-space affects the movement in the function space. Specifically,
consider f̄t to be a vector of NN outputs at training points at optimization time
t, similarly to the formulation in Section 2. Further, consider a movement of the
model in θ-space from current θt to a new location θt′ = θt+

√
λti · ω̄ti in direction

ω̄ti where
√
λti is used as a step size. Then the f̄t′ at the new location can be

approximated via first-order Taylor as:

f̄t′ = f̄t +
√
λti ·A

T
t · ω̄ti , (A8)

where At is Jacobian matrix defined in Section 3. Moreover, considering the
singular value decomposition (SVD) of At, we can see that f̄t′ − f̄t = λti · ῡti .
That is, walking in the direction ω̄ti in θ-space changes NN outputs only along
ῡti , according to first-order dynamics.

D Dynamics of L2 Loss for a Fixed Gramian, at Training
Points

Consider Eq. (3) with a fixed Gramian G whose eigenvalues and eigenvectors
are {λi}Ni=1 and {ῡi}Ni=1 respectively. Define N ′ to be a number of non-zero
eigenvalues. Likewise, consider the residual vector m̄t = f̄t − ȳ whose first-order
dynamics can be written as:

dm̄t , m̄t+1 − m̄t = f̄t+1 − f̄t = df̄t = − δ

N
·G · m̄t =⇒

=⇒ m̄t+1 =

[
I − δ

N
·G
]
· m̄t =⇒

=⇒ m̄t =

N ′∑
i=1

[
1− δ

N
λi

]t
< ῡi, m̄0 > ῡi + m̄z

0, (A9)

where m̄z
0 is a projection of m̄0 to null-space of G, with G · m̄z

0 = 0̄.
Further, noting that:

t−1∑
j=0

m̄j =

N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi + tm̄z
0, (A10)

the f̄t can be then rewritten as:

f̄t = f̄0 +

t−1∑
j=0

df̄j = f̄0 −
δ

N
G ·

t−1∑
j=0

m̄j =

= f̄0 −
δ

N
G ·

N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi =

= f̄0 −
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > ῡi. (A11)
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E Dynamics of L2 Loss for a Fixed Gramian, at Testing
Points

From Eq. (2) we can also derive dynamics of NN output at an arbitrary testing
point X ′:

dfθt(X
′) = fθt+1

(X ′)− fθt(X ′) = − δ

N
g(X ′,XXX ) · m̄t, (A12)

where g(X ′,XXX ) , ∇θfθt(X ′)T ·At is a row vector with g(X ′,XXX )(j) = g(X ′, Xj).
Moreover, similarly to Eq. (A11) we get:

fθt(X
′) = fθ0(X ′) +

t−1∑
j=0

dfθj (X
′) = fθ0(X ′)− δ

N
g(X ′,XXX ) ·

t−1∑
j=0

m̄j =

= fθ0(X ′)− δ

N
g(X ′,XXX ) ·

 N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi + tm̄z
0

 . (A13)

In case G is invertible (i.e. λmin > 0), the above expression can also be

written as fθt(X
′) = fθ0(X ′) − g(X ′,XXX ) · G−1 ·

[
I −

[
I − δ

N ·G
]t] · m̄0; a very

similar expression was previously derived in [9]. Likewise, considering the stability
condition δ < 2N

λmax
, which is required for a proper optimization convergence

lim
t→∞

[
1− δ

N λi
]t

= 0, at time t =∞ we will have fθ∞(X ′) = fθ0(X ′)− g(X ′,XXX ) ·
G−1 · m̄0.

Furthermore, for a singular G Eq. (A13) can be simplified via two methods,
using a gradient at X ′ or eigenfunctions of the kernel g(·, ·).

Simplification via Gradient Observe that for G = ATt ·At to be time-invariant
it is necessary for gradients {∇θfθt(Xi)}Ni=1 at training points either to be
constant along the optimization or rotating together via some time-variant
rotation matrix Rt, ∇θfθt(Xi) = Rt ·∇θfθ0(Xi) and At = Rt ·A0. Such rotational
behavior will lead to the required time-independence of G = AT0 ·RTt ·Rt ·A0 =
AT0 ·A0. Similarly, for g(X ′,XXX ) to be time-invariant the gradient ∇θfθt(X ′) at the
testing point must rotate with the same rotation Rt, ∇θfθt(X ′) = Rt ·∇θfθ0(X ′).

Assuming the above gradient rotation, the row vector g(X ′,XXX ) can be written
as:

g(X ′,XXX ) = ∇θfθt(X ′)T ·At = ∇θfθ0(X ′)T ·RTt ·Rt·A0 = ∇θfθ0(X ′)T ·A0. (A14)

Next, consider A0’s SVD as triplets {
√
λi, ω̄i, ῡi}N

′

i=1 of ordered singular values,

left and right singular vectors respectively, and denote ∇θfθ0(X ′) =
∑N ′

i=1 ai ·√
λi · ω̄i for ai ,

<ω̄i,∇θfθ0 (X′)>√
λi

. Using SVD properties of A0, we get an identity

g(X ′,XXX ) =
∑N ′

i=1 ai · λi · ῡTi , and we can rewrite fθt(X
′) from Eq. (A13) as (note
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that m̄z
0 is reduced since it is orthogonal to {ῡi : λi 6= 0}):

fθt(X
′) = fθ0(X ′)−

N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
ai < ῡi, m̄0 >=

= fθ0(X ′)−
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
1√
λi

< ῡi, m̄0 >< ω̄i,∇θfθ0(X ′) > .

(A15)

Likewise, under the stability condition δ < 2N
λmax

, fθt(X
′) at time t =∞ can

be expressed as:

fθ∞(X ′) = fθ0(X ′)−
N ′∑
i=1

1√
λi

< ῡi, m̄0 >< ω̄i,∇θfθ0(X ′) > . (A16)

Simplification via Kernel Eigenfunctions According to Eq. (A4), a product
g(X ′,XXX ) · ῡi can be approximated by λi · υ̃i(X ′), with υ̃i(·) being an eigenfunction
of g(·, ·). Using this approximation, Eq. (A13) is reduced to:

fθt(X
′) ≈ fθ0(X ′)− δ

N
·

[
N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N

< ῡi, m̄0 > υ̃i(X
′)+

+t·
∑
i:λi=0

λi < ῡi, m̄0 > υ̃i(X
′)

]
= fθ0(X ′)−

N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > υ̃i(X

′),

(A17)

which at time t =∞ will converge to:

fθ∞(X ′) = fθ0(X ′)−
N ′∑
i=1

< ῡi, m̄0 > υ̃i(X
′). (A18)

Intuition Eq. (A15) and Eq. (A17) describe first-order dynamics of NN output
at a testing point. The intuition behind these expressions can be summarized
as following. First, for standard NN initialization fθ0(X ′) is typically very close
to be zero and can be neglected, leading to m̄0 ≈ −ȳ. Like in Eq. (A11), the
inner-product term < ῡi, m̄0 >, independent of testing point X ′, defines which
part of the signal contained in m̄0 is learned along each spectral direction. In

general,
[
1− δ

N λi
]t

converges faster for large eigenvalues. Also, due to large
λi being typically associated with ῡi that contains a low-frequency signal, this
leads to fast learning of low-frequency information and slow (sometimes infinitely
slow) learning of high-frequency information. Further, the inner-product term
< ω̄i,∇θfθ0(X ′) > in Eq. (A15) or the eigenfunction υ̃i(X

′) in Eq. (A17), that
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are functions of X ′, determine amount of information along i-th spectral direction
that is transferred into fθt(X

′), basically describing the generalization behind
Eq. (3) for a fixed Gramian G. Note that the convergence rate of fθt(X

′) towards
fθ∞(X ′) is governed by how close terms 1− δ

N λi in Eq. (A15) and Eq. (A17) are
to zero, similarly to the convergence rate of a system in Eq. (A11). Hence, we
expect fθt to converge to its final state at both training and testing points with
a similar speed.

F First-order Change of Gt

Here we describe the first-order Taylor approximation of a change in Gt between
sequential iterations of GD optimization. We theorize that the thorough analysis
of below expressions will lead to the mathematical explanation required to
understand evolution of Gt as also to better understanding of NN dynamics.

First, change of the Jacobian At, defined in Section 3, can be described as:

dAt , At+1 −At ≈ −
δ

N
·Wt, (A19)

where Wt is |θ| × N matrix with i-th column being Ht(Xi) · At · m̄t, with

Ht(X) ,
∂2fθt (X)

∂θ2 being the model Hessian.
Hence, the change between Gt+1 = ATt+1 · At+1 and Gt = ATt · At can be

written as:

dGt , Gt+1 −Gt ≈ −
δ

N
·
[
ATt ·Wt +WT

t ·At
]

+
δ2

N2
·WT

t ·Wt. (A20)

The last term can be neglected due to δ2

N2 being significantly smaller than δ
N ,

which leads to:

dGt , Gt+1 −Gt ≈ −
δ

N
·
[
Qt +QTt

]
, (A21)

where Qt is N ×N matrix whose i-th column is ATt · Ht(Xi) ·At · m̄t.
Recently, similar expressions were reported by [1] (specifically, see Eq. (100-

102)) and by [6].

G Computation Details of Fourier Transform

Here we provide more details on how Fourier Transform was calculated in our
experiments. Consider a function ϕ(X) and N dataset points XXX = {Xk ∈ Rd}Nk=1

sampled from an arbitrary pdf P (X). Further, consider a N × 1 vector ϕ̄ with
entries ϕ̄(k) = ϕ(Xk). Given ϕ̄, we compute Fourier Transform ϕ̂(ξ) of a function
ϕ(X) at ξ ∈ Rd as following:

ϕ̂(ξ) =

∫
ϕ(X) · exp [−2πi· < ξ,X >] · P (X)dX ≈

≈ 1

N

N∑
k=1

ϕ(Xk) · exp
[
−2πi· < ξ,Xk >

]
=

1

N
ϕ̄T ε̄, (A22)
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where ε̄ is a N × 1 vector with entries ε̄(k) = exp
[
−2πi· < ξ,Xk >

]
. Note that

the above definition of Fourier Transform w.r.t. pdf P (X) is identical to the
common formulation without a term P (X) inside, since in our experiments data
distribution is P (X) = 1 (see ”Setup” in Section 6).

In all our experiments we compute ϕ̂(ξ) for ξ taking values in [−40, 40]2.
Further, we present a frequency component |ϕ̂(ξ)| as an image.

To perform the above computation, we require sampled values ϕ̄ of the
analyzed function ϕ(X). In case this function is the eigenfunction of gradient
similarity kernel, the eigenvector of Gt approximates this eigenfunction’ values
at the training points, as is shown in the Appendix A. Hence, in this case
the eigenvector of Gt serves as a vector ϕ̄ in Eq. (A22). Likewise, the above
calculation using the residual vector m̄t can be considered as a Fourier Transform
of a function r(X) , fθt(X)− y(X).

H NN Spectrum Preservation

Here, we examine how stable are eigenvectors of Gt along t. For this we explore
the relative energy of G600000’s eigenvectors, final eigenvectors of the optimization,
within spectrum of G20000. Note that we compare spectrums at t = 600000 and
t = 20000 to skip first several thousands of iterations since during this bootstrap
period the change of Gt is highly notable.

In Figure 1 we depict E20000(ῡ600000
i , k) as a function of k, for various {ῡ600000

i }.
As observed, 10 first top eigenvectors of G600000 are also located in the top
spectrum of G20000 - the function E20000(ῡ600000

i , k) is almost 1 for even relatively
small k. Hence, the top Gramian spectrum was preserved, roughly, along the
performed optimization. Further, eigenvectors of smaller eigenvalues (i.e. with
higher indexes i) are significantly less stable, with large amount of their energy
widely spread inside bottom eigenvectors of G20000. Moreover, we can see a clear
trend that with higher i the associated eigenvector is less preserved.
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Fig. 1: For different i, relative energy of ῡ600000
i in spectrum of G20000,

E20000(ῡ600000
i , k), as a function of k, with horizontal axes being log-scaled. As

seen, 10 first top eigenvectors at final time t = 600000 are located also in the top
spectrum of G20000, hence the top Gramian spectrum was preserved along the
optimization. Yet, bottom eigenvectors are significantly less stable.
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I NN Spectrum at time t = 0

Here we show the NN state before the optimization - both its output f̄0 and
Gramian G0.

Fig. 2: Interpolation of f̄0.
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Fig. 3: First two rows: from left-to-right, 6 first eigenvectors of G0 and their
Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G0 and their Fourier Transforms.
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Fig. 4: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 0. In each plot we draw gt(X, ·) between specific X, marked
by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has a local
behavior, with its outputs being higher for nearby points X and X ′.
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J NN Spectrum at time t = 1

Here we show the NN state after a single optimization iteration - both its output
f̄1 and Gramian G1.

Fig. 5: Interpolation of f̄1.
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Fig. 6: First two rows: from left-to-right, 6 first eigenvectors of G1 and their
Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G1 and their Fourier Transforms.
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Fig. 7: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 1. In each plot we draw gt(X, ·) between specific X, marked
by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has a local
behavior, with its outputs being higher for nearby points X and X ′.
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K NN Spectrum at time t = 100

Fig. 8: Interpolation of f̄100.
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Fig. 9: First two rows: from left-to-right, 6 first eigenvectors of G100 and their
Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G100 and their Fourier Transforms.
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Fig. 10: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 100. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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L NN Spectrum at time t = 5000

Fig. 11: Interpolation of f̄5000.
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Fig. 12: First two rows: from left-to-right, 6 first eigenvectors of G5000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G5000 and their Fourier Transforms.
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Fig. 13: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 5000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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M NN Spectrum at time t = 50000

Fig. 14: Interpolation of f̄50000.
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Fig. 15: First two rows: from left-to-right, 6 first eigenvectors of G50000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G50000 and their Fourier Transforms.
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Fig. 16: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 50000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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N NN Spectrum at time t = 600000
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Fig. 17: From left-to-right, 7-th, 8-th, 9-th, 11-th, 12-th and 13-th eigenvector
of Gramian Gt at t = 600000, and their Fourier Transforms.
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Fig. 18: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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O 4-Layer 256-Wide NN Spectrum at time t = 600000

Fig. 19: Interpolation of f̄600000.
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Fig. 20: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 21: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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P 2-Layer 256-Wide NN Spectrum at time t = 600000

Fig. 22: Interpolation of f̄600000.
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Fig. 23: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 24: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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Q 2-Layer 66000-Wide NN Spectrum at time t = 600000

Fig. 25: Interpolation of f̄600000.
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Fig. 26: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 27: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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R 6-Layer 256-Wide NN with shortcuts, Spectrum at
time t = 600000

Fig. 28: Interpolation of f̄600000.
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Fig. 29: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 30: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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Fig. 31: (a) For different k, relative energy of the label vector ȳ in top k eigen-
vectors of Gt, Et(ȳ, k), along the optimization time t. As observed, the alignment
between ȳ and top eigenvectors is growing along the optimization. Dashed vertical
lines depict time t at which learning rate δ was decayed. (b) Relative energy of
NN output, Et(f̄t, k). 99% of f̄t’s energy is contained within top 200 eigenvectors
for all t. (c) Accuracy of first order NN dynamics, similar to Figure 1d in the main

paper. Depicted is errort =
‖df̃t−df̄t‖
‖df̃t‖ , where df̄t = − δtN ·Gt · m̄t is the first-order

approximation of a real differential df̃t , f̄t+1 − f̄t; cos (αt) is cosine of an angle
between df̃t and df̄t. As observed, first-order approximation is more accurate for
NN with shortcuts, especially at the training initial stage. (d) Learning rate δt
and its upper stability boundary 2N

λtmax
along the optimization. We empirically

observe that the boundary chases the learning rate, with a relation λtmax ∝ 1
δt

.

(e) Eigenvalues {λti}Ni=1 for different t. Eigenvalues λi < λmax · 10−8 are cut out.
(f) Individual eigenvalues along t. As observed, eigenvalues monotonically grow
along t, with growing boost at times of the learning rate drop. (g) For various
NNs, relative energy of the label vector ȳ in top 400 eigenvectors of Gt, Et(ȳ, 400),
along the optimization time t; as seen the alignment of 6-layer NN with shortcuts
is higher than of 4-layer NN and is lower than of 6-layer NN. (h) Training loss and
(i) testing loss of these models. Similarly to the alignment, losses of 6-layer NN
with shortcuts are smaller than of 4-layer NN and are bigger than of 6-layer NN.
Hence, we can again observe that the alignment correlates with the optimization
and generalization performances.
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S 6-Layer 256-Wide NN, Swish Activation Function,
Adam optimization, Spectrum at time t = 600000

Here, we explore the alignment dynamics beyond Leaky-Relu activation function
and GD optimization. The considered NN here is identical to the one from
the main paper, with Swish activation function σ(x) = x · sigmoid(x) [10].
Applied optimization is Adam [7], with initial learning rate 1e-4, β1 = 0.75,
β2 = 0.999 and ε = 1e-10. Importantly, note that first order NN dynamics via
kernel gt(X,X

′) , ∇θfθt(X)T · ∇θfθt(X ′) were specifically derived for GD and
hence are improper for Adam. Yet, below we still can observe the alignment
between gt(X,X

′)’s eigenvectors/eigenfunctions and the target function. We
speculate that the reason for this is that the implicit first-order kernel of Adam is
closely linked with gt(X,X

′). We leave investigation of Adam’s kernel for future
work.

(a) (b)

Fig. 32: (a) NN fθ(X) at convergence. (b) Interpolation of f̄600000.
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Fig. 33: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 34: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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Fig. 35: (a) For different k, relative energy of the label vector ȳ in top k eigen-
vectors of Gt, Et(ȳ, k), along the optimization time t. As observed, the alignment
between ȳ and top eigenvectors is growing along the optimization, especially
during the first few thousands of iterations. Particularly, 98% of ȳ’s energy is
contained within top 400 eigenvectors. Dashed vertical lines depict time t at
which learning rate δ was decayed. (b) Relative energy of NN output, Et(f̄t, k).
98% of f̄t’s energy is contained within top 200 eigenvectors for all t. (c) Accuracy
of first order NN dynamics, similar to Figure 1d in the main paper. Depicted is

errort =
‖df̃t−df̄t‖
‖df̃t‖ , where df̄t = − δtN ·Gt · m̄t is the first-order approximation of

a real differential df̃t , f̄t+1 − f̄t; cos (αt) is cosine of an angle between df̃t and
df̄t. As expected, first-order approximation derived for GD is not valid anymore
for Adam optimization. (d) Learning rate δt and 2N

λtmax
along the optimization. We

empirically observe that 2N
λtmax

accelerates its decrease at learning rate drop, with

a relation λtmax ∝ 1
δt

similarly to GD case. (e) Eigenvalues {λti}Ni=1 for different t.

Eigenvalues λi < λmax · 10−8 are cut out. (f) Individual eigenvalues along t. As
observed, eigenvalues monotonically grow along t, with growing boost at times of
the learning rate drop. Additionally, the decay of {λti}Ni=1 w.r.t. i is much faster
than for Leaky-Rely NN, suggesting that Swish NN is less expressive or that
Xavier initialization [2] is not optimal for it.
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T 6-Layer 256-Wide NN, Noise Contrastive Estimation
loss, SGD optimization, Spectrum at time t = 600000

The objective of NCE approach [11,4] is to estimate probability density function
(pdf) of the available dataset XXX = {Xi ∈ Rd}Ni=1 sampled from pdf P(X). The
simplified version of its loss is defined as:

L(θ,XXX , {Xi
n ∈ Rd}Ni=1) =

=
1

N

N∑
i=1

log
exp[fθ(X

i)] + Pn(Xi)

exp[fθ(Xi)]
+

1

N

N∑
i=1

log
exp[fθ(X

i
n)] + Pn(Xi

n)

Pn(Xi
n)

.

(A23)

Here Pn(X) denotes an arbitrary known ”noise” pdf (e.g. Gaussian or Gaussian
Mixture Model) whose support covers the support of P(X). Further, {Xi

n ∈
Rd}Ni=1 are N samples from Pn(X). At convergence fθ(X) is unbiased estimator
of logP(X). See [11,4] for more information about NCE.
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Fig. 36: (a) Mona Lisa target function for a pdf estimation task. (b) NN exp fθ(X)
at convergence. (c) 105 sampled training points. (d) 104 sampled testing points
on which Gramian Gt was computed. (e) Interpolation of f̄600000.

Setup NCE experiment is configured similarly to the L2 regression demonstrated
in the main paper. We specifically consider the target pdf P(X) with X ∈ [0, 1]2 ⊆
R2 which is proportional to Mona Lisa image in Figure 36a, up to a normalization
constant. We approximate this pdf with Leaky-Relu FC network via NCE loss,
using N = 100000 training points sampled from P(X) (see Figure 36c). Pn(X) is
chosen to be Uniform distribution over [0, 1]2. Due to large training dataset we
applied SGD with mini-batch size 1000 - at each iteration 1000 training points
{Xi} and 1000 ”noisy” points {Xi

n} are sampled from a priori prepared training
dataset. Further, Eq. (A23) is optimized over sampled mini-batches. Learning
rate δ starts at 0.003 and is decayed twice each 105 iterations. At convergence
fθ(X) gets very close to its target, see Figure 36b. To reduce runtime complexity,
we calculated Gramian Gt, NN outputs f̄t and their dynamics only for a set
of 10000 testing points depicted in Figure 36c. Below the spectrum of gt(·, ·) is
visualized, showing the same trends as in case of L2 regression.
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Fig. 37: First two rows: from left-to-right, 6 first eigenvectors of G600000 and
their Fourier Transforms. Last two rows: from left-to-right, 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors of G600000 and their Fourier Transforms.
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Fig. 38: Gradient similarity kernel gt(X, ·) for various points within the input
domain [0, 1]2 at t = 600000. In each plot we draw gt(X, ·) between specific X,
marked by red ”+”, and rest of the points. As observed, the kernel gt(X,X

′) has
a local behavior, with its outputs being higher for nearby points X and X ′.
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Fig. 39: (a) For different k, relative energy of the label vector ȳ in top k eigenvec-
tors of Gt, Et(ȳ, k), along the optimization time t. The i-th entry of ȳ is computed
as logP(Xi), where Xi is i-th training point. As observed, the alignment between
ȳ and top eigenvectors is growing along the optimization. Dashed vertical lines
depict time t at which learning rate δ was decayed. (b) Relative energy of NN
output, Et(f̄t, k). 99% of f̄t’s energy is contained within top 400 eigenvectors for
all t. (c) Eigenvalues {λti}Ni=1 for different t. Eigenvalues λi < λmax · 10−8 are cut
out. (d) Individual eigenvalues along t. As observed, eigenvalues monotonically
grow along t, with growing boost at times of the learning rate drop. (e) δt

N λ
t
i

along time t, for various i. Similarly to regression, also in NCE case each δt
N λ

t
i is

balancing, roughly, around the same value along the entire optimization.
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U 6-Layer 512-Wide NN, L2 loss, MNIST, GD
optimization, Spectrum at time t = 600000

Setup MNIST experiment is configured identically to Mona Lisa experiment
demonstrated in the main paper. Chosen architecture is Leaky-Relu FC with
6 layers of 512 width each, with overall number of parameters |θ| = 1453057.
Training dataset consists of only 10000 images, 1000 images per class were chosen
from the original training dataset. Dimension of each image is 784. Gradient
descent with constant learning rate 10−5 is applied for optimization. The used
loss is L2. Dynamics of gt(·, ·) are visualized below, showing the same alignment
trends as in case of L2 regression of 2D Mona Lisa dataset.
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Fig. 40: (a) Accuracy of first order NN dynamics, similar to Figure 1d in the

main paper. Depicted is errort =
‖df̃t−df̄t‖
‖df̃t‖ , where df̄t = − δtN · Gt · m̄t is the

first-order approximation of a real differential df̃t , f̄t+1 − f̄t; cos (αt) is cosine
of an angle between df̃t and df̄t. As observed, first-order approximation is less
accurate for high-dimensional data, and degrades with the optimization time t.
(b) Learning rate δt and its upper stability boundary 2N

λtmax
along the optimization.

(c) Eigenvalues {λti}Ni=1 for different t. (d) Individual eigenvalues along t. As
observed, eigenvalues monotonically grow along t, and their overall magnitude is
much higher than in 2D experiments.
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Fig. 41: (a) For different k, relative energy of the label vector ȳ in top k eigen-
vectors of Gt, Et(ȳ, k), along the optimization time t. (b) Relative energy of
the initial residual m̄0 = f̄0 − ȳ, Et(m̄0, k). (c) Relative energy of NN output,
Et(f̄t, k). (d) Relative energy of the residual, Et(m̄t, k). As observed, the align-
ment between ȳ and top eigenvectors is growing along the optimization. Similar
alignment is also observed with m̄0 due to f̄0 being very close to zero in FC
architecture. Further, 99% of f̄t’s energy is contained within top 200 eigenvectors
for all t. (e) Multiplication ȳT ·Gt · ȳ and (f) multiplication ȳT ·G−1

t · ȳ, along
time t. ȳT ·Gt · ȳ can be considered as an alignment measure between ȳ and top
eigenvectors, whereas ȳT · G−1

t · ȳ - alignment measure between ȳ and bottom
eigenvectors. Hence, similarly to (a), these alignment measures indicate that the
top spectrum of Gt aligns towards ȳ.
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V 6-Layer 512-Wide NN, L2 loss, CIFAR100, GD
optimization, Spectrum at time t = 600000

Setup CIFAR100 experiment is configured identically to MNIST experiment
above. Overall number of NN parameters is |θ| = 2624513. Training dataset
consists of only 10000 images, 100 images per class were chosen from the original
training dataset. Gradient descent with constant learning rate 5 · 10−6 is applied
for optimization. Dynamics of gt(·, ·) are visualized below, showing the same
alignment trends as in case of L2 regression of 2D Mona Lisa dataset.
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Fig. 42: (a) Learning rate δt and its upper stability boundary 2N
λtmax

along the

optimization. As observed, after t = 200000 the stability condition is not satisfied,
∀t > 200000 : δt >

2N
λtmax

. According to constant-Gramian dynamics (Section

4 in the main paper) the unsatisfied stability criteria must diverge the entire
optimization, by creating numerical overflows. Yet, in practice the optimization
algorithm continues, indicating that not all conclusions for constant-Gramian
system are also correct for time-variant Gramian. Also note that 2N

λtmax
reduces

itself, so that the learning rate and its upper stability boundary are almost equal.
This behavior was detected in all our experiments. (b) Accuracy of first order NN

dynamics, similar to Figure 1d in the main paper. Depicted is errort =
‖df̃t−df̄t‖
‖df̃t‖ ,

where df̄t = − δtN ·Gt · m̄t is the first-order approximation of a real differential

df̃t , f̄t+1 − f̄t; cos (αt) is cosine of an angle between df̃t and df̄t. As observed,
the accuracy of first-order approximation degrades after t = 200000. Hence, this
indicates that NN dynamics are far from being linear when the stability criteria
is not fulfilled. (c) Eigenvalues {λti}Ni=1 for different t. (d) Individual eigenvalues
along t. As observed, eigenvalues monotonically grow along t, and their overall
magnitude is much higher than in 2D experiments.
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Fig. 43: (a) For different k, relative energy of the label vector ȳ in top k eigen-
vectors of Gt, Et(ȳ, k), along the optimization time t. (b) Relative energy of
the initial residual m̄0 = f̄0 − ȳ, Et(m̄0, k). (c) Relative energy of NN output,
Et(f̄t, k). (d) Relative energy of the residual, Et(m̄t, k). As observed, the align-
ment between ȳ and top eigenvectors is growing along the optimization. Similar
alignment is also observed with m̄0 due to f̄0 being very close to zero in FC
architecture. Further, 97% of f̄t’s energy is contained within top 1000 eigenvectors
for all t. (e) Multiplication ȳT ·Gt · ȳ and (f) multiplication ȳT ·G−1

t · ȳ, along
time t. ȳT ·Gt · ȳ can be considered as an alignment measure between ȳ and top
eigenvectors, whereas ȳT · G−1

t · ȳ - alignment measure between ȳ and bottom
eigenvectors. Hence, similarly to (a), these alignment measures indicate that the
top spectrum of Gt aligns towards ȳ.
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W 6-Layer 256-Wide NN, L2 loss, Social Buzz, SGD
optimization, Spectrum at time t = 600000

Setup Here we perform experiment over one of UCI regression datasets, specifi-
cally Social Buzz. This experiment is configured identically to Mona Lisa experi-
ment demonstrated in the main paper. Chosen architecture is Leaky-Relu FC
with 6 layers of 256 width each, with overall number of parameters |θ| = 283393.
Training dataset consists of 5 · 105 data points. Dimension of each sample is
77. SGD with initial learning rate 5 · 10−6 and batch size 10000 is applied for
the optimization. The used loss is L2. This experiment uses real-world high-
dimensional data, with huge training dataset, and applies very popular SGD
algorithm. Hence, its setting is very close to DL usage in practice, and it can
serve to further support all conclusions of the main paper. Dynamics of gt(·, ·) are
visualized below, showing the same alignment trends as in case of L2 regression of
2D Mona Lisa dataset. To reduce runtime complexity, we calculated Gramian Gt,
NN outputs f̄t and their dynamics only for a set of first 10000 training points.
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Fig. 44: (a) Learning rate δt and its upper stability boundary 2N
λtmax

along the

optimization, where N is batch size 104. Dashed vertical lines depict time t at
which learning rate δ was decayed. We empirically observe that the boundary
chases the learning rate, with a relation λtmax ∝ 1

δt
. This behavior was detected in

all our experiments, typically for GD optimization. Here we see it to be true also
for SGD. (b) Eigenvalues {λti}Ni=1 for different t. Eigenvalues λi < λmax ·10−8 are
cut out. (c) Individual eigenvalues along t. As observed, eigenvalues monotonically
grow along t, with growing boost at times of the learning rate drop. (d) δt

N λ
t
i along

time t, for various i. Similarly to 2D Mona Lisa experiment, also here each δt
N λ

t
i is

balancing, roughly, around the same value along the entire optimization. Hence,
we see another evidence for existence of the balancing mechanism mentioned
in [8]. This mechanism keeps product of learning rate and eigenvalue almost
fixed during the entire optimization. (e) and (f) are training and testing losses
respectively.
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Fig. 45: (a) For different k, relative energy of the label vector ȳ in top k eigen-
vectors of Gt, Et(ȳ, k), along the optimization time t. (b) Relative energy of
the initial residual m̄0 = f̄0 − ȳ, Et(m̄0, k). (c) Relative energy of NN output,
Et(f̄t, k). (d) Relative energy of the residual, Et(m̄t, k). As observed, the align-
ment between ȳ and top eigenvectors is growing along the optimization. Similar
alignment is also observed with m̄0 due to f̄0 being very close to zero in FC
architecture. Further, 99% of f̄t’s energy is contained within top 60 eigenvectors
for all t. (e) Multiplication ȳT ·Gt · ȳ and (f) multiplication ȳT ·G−1

t · ȳ, along
time t. ȳT ·Gt · ȳ can be considered as an alignment measure between ȳ and top
eigenvectors, whereas ȳT · G−1

t · ȳ - alignment measure between ȳ and bottom
eigenvectors. Hence, similarly to (a), these alignment measures indicate that the
top spectrum of Gt aligns towards ȳ.
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