General Probabilistic Surface Optimization PhD Seminar

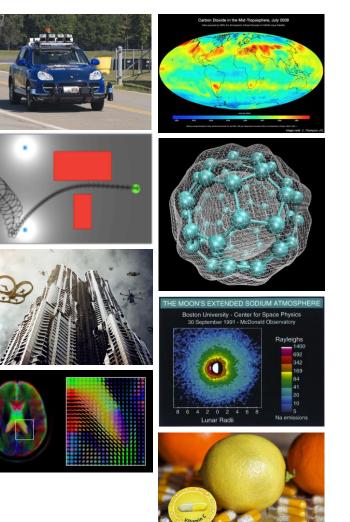
Dmitry Kopitkov

supervised by Vadim Indelman

August 2020

Motivation

- Consider two datasets $\{X_i^U\}_{i=1}^{N^U}$ and $\{X_i^D\}_{i=1}^{N^D}$ from **arbitrary** densities $\mathbb{P}^U(X)$ and $\mathbb{P}^D(X)$
- Data analysis of these datasets involves:
 - Density estimation
 - Mean/variance estimation
 - Conditional density
 - Density divergence/ratio
 - Distribution transformation/sampling
- Extremely and widely applicable in:
 - Robotics, computer science, economics, medicine and science in general



Motivation

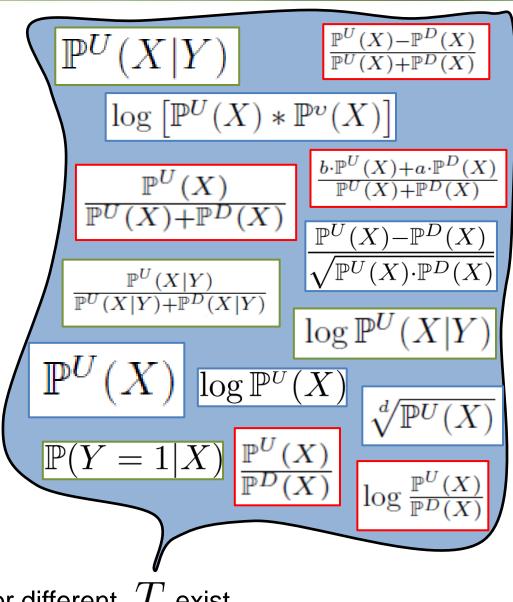
- Estimation of $\mathbb{P}^{U}(X)$ from $\{X_{i}^{U}\}_{i=1}^{N^{U}}$ is important for:
 - Measurement likelihood model
 - Distribution entropy
 - Image denoising

• Estimation of $\frac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}$ from $\{X_i^U\}_{i=1}^{N^U}$ and $\{X_i^D\}_{i=1}^{N^D}$:

- Anomaly detection
- Divergence learning (e.g. in generative models)
- Estimation of $\log \mathbb{P}^U(X)$ and $\log \frac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}$ is more numerically stable
- Many problems require us to learn some function

$$T\left[X, rac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}
ight]$$
 of ratio $rac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}$

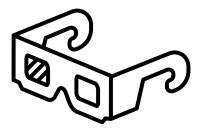
- Hundreds of papers with various probabilistic methods for different $\,T$ exist



Related Work

Estimation frameworks:

- Bregman divergence based methods
- 'f-divergence based methods (e.g. 'f-GAN [4,5])
- Divergence-based objective functions:
 - Maximum-Likelihood estimators (based on KL divergence)
 - Noise-contrastive estimators
 - Energy-based unnormalized models (e.g. Boltzman Machines)
 - Critic losses of GANs
 - Many others



Research Goals/Questions

- Statistical inference:
 - Deeper understanding of probabilistic modeling
 - How all methods are related to each other?
 - Proposal of new/improved density estimators
 - Make it easy and intuitive!
- Deep Models:
 - Apply neural networks (NNs) to infer intricate probabilistic modalities
 - Understand gradient-based optimization dynamics of NNs
 - Generalization/interpolation, bias-variance, etc.

Contributions

- Statistical inference:
 - Probabilistic Surface Optimization (PSO) estimation framework [1]
 - Offers infinitely many objective functions to learn (almost) any target $T\left[X, \frac{\mathbb{P}^{U}(X)}{\mathbb{P}^{D}(X)}\right]$
 - Systematic and simple theory of unsupervised learning
 - Mechanical recovery of existing and novel statistical objective functions
- Deep Models:
 - Relation between PSO performance and the model kernel (a.k.a. Neural Tangent Kernel)
 - Model kernel dynamics and its dependence on NN architecture

[1] **D. Kopitkov**, V. Indelman, "General Probabilistic Surface Optimization and Log Density Estimation", 2020, Journal of Machine Learning Research (JMLR), submitted, <<u>arXiv</u>>

6

Contents Outline

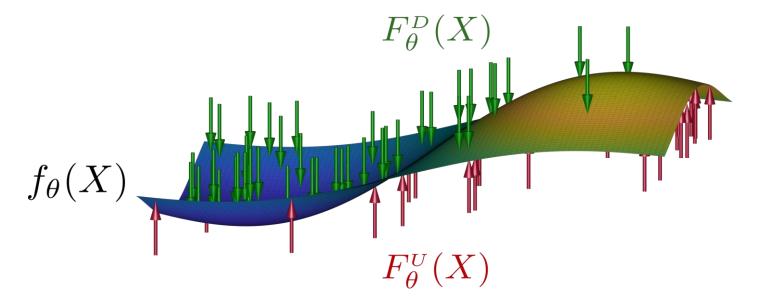
1. PSO Formulation and Derivation

2. Physical Perspective of Unsupervised Learning

- **3.** PSO Variational Equilibrium and its Applications
- 4. PSO GD Equilibrium and Relation to Model Kernel
- 5. Model Kernel Dynamics during NN Optimization

Probabilistic Surface Optimization (PSO)

- Consider function space $\mathcal F$ containing functions $f_ heta(X):\mathbb R^n o\mathbb R$
- Key idea: view model $f_{ heta}$ as a high-dimensional surface, pushed to equilibrium by virtual forces



• PSO concepts of force equilibrium allow to estimate various statistical modalities of given data (e.g. pdf function), by enforcing $f_{\theta}(X)$ to converge to any desired target $T\left[X, \frac{\mathbb{P}^{U}(X)}{\mathbb{P}^{D}(X)}\right]$

PSO Estimation Framework

- Consider two densities $\mathbb{P}^U(X)$ and $\mathbb{P}^D(X)$ over \mathbb{R}^n with identical support (not mandatory and can be relaxed..), and two corresponding datasets $\{X_i^U\}_{i=1}^{N^U}$ and $\{X_i^D\}_{i=1}^{N^D}$
- Choose any two magnitude functions (some minor conditions should hold): $M^U(X,s):\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}\,,\qquad M^D(X,s):\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}$
- Iterate gradient-descent algorithm (GD) via $\, heta_{t+1}= heta_t-\delta\cdot d heta$ with:

$$d\theta = -\frac{1}{N^{U}} \sum_{i=1}^{N^{U}} M^{U} \left[X_{i}^{U}, f_{\theta}(X_{i}^{U}) \right] \cdot \nabla_{\theta} f_{\theta}(X_{i}^{U}) + \frac{1}{N^{D}} \sum_{i=1}^{N^{D}} M^{D} \left[X_{i}^{D}, f_{\theta}(X_{i}^{D}) \right] \cdot \nabla_{\theta} f_{\theta}(X_{i}^{D})$$

$$i.i.d. \text{ samples:} \quad X^{U} \sim \mathbb{P}^{U}, \quad X^{D} \sim \mathbb{P}^{D}$$

PSO Estimation Framework

```
1 Inputs:
 2 \mathbb{P}^U and \mathbb{P}^D: up and down densities
 3 M^U and M^D: magnitude functions
 4 \theta: initial parameters of model f_{\theta} \in \mathcal{F}
 5 \delta : learning rate
 6 Outputs: f_{\theta^*}: PSO solution that satisfies balance state in Eq. (2)
 7 begin:
        while Not converged do
 8
             Obtain samples \{X_i^U\}_{i=1}^{N^U} from \mathbb{P}^U
 9
             Obtain samples \{X_i^D\}_{i=1}^{N^D} from \mathbb{P}^D
10
             Calculate d\theta via Eq. (1)
11
             \theta = \theta - \delta \cdot d\theta
12
        end
13
        \theta^* = \theta
14
15 end
```

Perform a standard GD via the defined $d\theta$

Algorithm 1: PSO estimation algorithm. Sample batches can be either identical or different for all iterations, which corresponds to GD and stochastic GD respectively.

• <u>Claim</u>: convergence is at

$$\mathbb{P}^{U}(X) \cdot M^{U}\left[X, f^{*}(X)\right] = \mathbb{P}^{D}(X) \cdot M^{D}\left[X, f^{*}(X)\right]$$

PSO Derivation - Euler-Lagrange Equation

• Consider a general-form PSO loss:

$$\begin{split} L_{PSO}(f) &= -\mathop{\mathbb{E}}_{X \sim \mathbb{P}^U} \widetilde{M}^U \left[X, f(X) \right] + \mathop{\mathbb{E}}_{X \sim \mathbb{P}^D} \widetilde{M}^D \left[X, f(X) \right] \\ & \downarrow \\ \\ & \text{antiderivative of } M^U \\ & M^U[X,s] = \frac{\partial \widetilde{M}^U(X,s)}{\partial s} & M^D[X,s] = \frac{\partial \widetilde{M}^D(X,s)}{\partial s} \end{split}$$

• According to Euler-Lagrange equation of $L_{PSO}(f)$, optima $f^* = \arg \min_{f \in \mathcal{F}} L_{PSO}(f)$ satisfies the variational equilibrium:

$$\mathbb{P}^{U}(X) \cdot M^{U}\left[X, f^{*}(X)\right] = \mathbb{P}^{D}(X) \cdot M^{D}\left[X, f^{*}(X)\right]$$

PSO Derivation - Optimization

• Solve optimization over $f_{ heta} \in \mathcal{F}$: $\min_{f_{ heta} \in \mathcal{F}} L_{PSO}(f_{ heta})$

• Loss gradient w.r.t.
$$\theta$$
:
 $\nabla_{\theta}L_{PSO}(f_{\theta}) = - \mathop{\mathbb{E}}_{X \sim \mathbb{P}^{U}} M^{U} [X, f_{\theta}(X)] \cdot \nabla_{\theta}f_{\theta}(X) + \mathop{\mathbb{E}}_{X \sim \mathbb{P}^{D}} M^{D} [X, f_{\theta}(X)] \cdot \nabla_{\theta}f_{\theta}(X)$
define metric over function space

• Approximated by d heta:

$$d\theta = -\frac{1}{N^U} \sum_{i=1}^{N^U} M^U \left[X_i^U, f_\theta(X_i^U) \right] \cdot \nabla_\theta f_\theta(X_i^U) + \frac{1}{N^D} \sum_{i=1}^{N^D} M^D \left[X_i^D, f_\theta(X_i^D) \right] \cdot \nabla_\theta f_\theta(X_i^D)$$

PSO Derivation - Balance State

• Stationary solution at (Euler-Lagrange Eq. of loss $L_{PSO}(f_{\theta})$):

$$\mathbb{P}^{U}(X) \cdot M^{U}\left[X, f^{*}(X)\right] = \mathbb{P}^{D}(X) \cdot M^{D}\left[X, f^{*}(X)\right]$$

- Choice of $\{M^{\scriptscriptstyle U}, M^{\scriptscriptstyle D}\}\,$ controls convergence f^*
- Knowledge of antiderivatives $\{\widetilde{M}^{\scriptscriptstyle U},\widetilde{M}^{\scriptscriptstyle D}\}$ is not necessary
- Can be used for (ratio) density estimation, but not only
- Magnitudes must satisfy some minor "sufficient" conditions

Contents Outline

1. PSO Formulation and Derivation

2. Physical Perspective of Unsupervised Learning

3. PSO Variational Equilibrium and its Applications

4. PSO GD Equilibrium and Relation to Model Kernel

5. Model Kernel Dynamics during NN Optimization

Physical System Perspective – Model Kernel

• Model $f_{ heta}$ as a representation of the surface:

- Examples of the function space $\,\, {\cal F}$:
 - NNs fully-connected, CNN, ResNet, etc.
 - RKHS $f_{\theta}(X) = \phi(X)^T \cdot \theta$ defined via reproducing kernel $k(X, X') = \phi(X)^T \cdot \phi(X')$

• Important property of \mathcal{F} – the model kernel: $g_{\theta}(X, X') \triangleq \nabla_{\theta} f_{\theta}(X)^T \cdot \nabla_{\theta} f_{\theta}(X')$

- Responsible for interpolation/extrapolation during GD
- NNs a.k.a. Neural Tangent Kernel (NTK) [6]
- RKHS $g_{\theta}(X, X') \equiv k(X, X')$

Physical System Perspective – Model Kernel

- Consider update $\theta_{t+1} = \theta_t + \nabla_{\theta} f_{\theta_t}(X)$. Then: $f_{\theta_{t+1}}(X') - f_{\theta_t}(X') \approx \nabla_{\theta} f_{\theta_t}(X')^T \cdot \nabla_{\theta} f_{\theta_t}(X) \triangleq g_{\theta_t}(X, X')$

- When we "push"/optimize at X, our model $f_ heta$ at any other X' changes according to $g_ heta(X,X')$, approximately
- Intuitively, $g_{\theta}(X, X')$ can be viewed as the shape of a pushing "wand":

t any other A changes

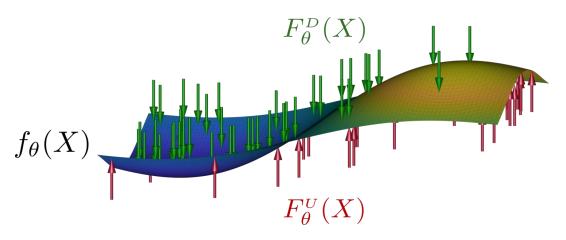
• Can we use this "wand" to sculpt $f_{ heta}$ to any desired shape?

Physical System Perspective

Consider PSO update:

$$d\theta = -\frac{1}{N^U} \sum_{i=1}^{N^U} M^U \left[X_i^U, f_\theta(X_i^U) \right] \cdot \nabla_\theta f_\theta(X_i^U) + \frac{1}{N^D} \sum_{i=1}^{N^D} M^D \left[X_i^D, f_\theta(X_i^D) \right] \cdot \nabla_\theta f_\theta(X_i^D)$$

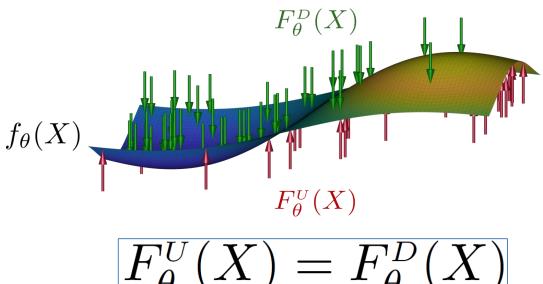
• We push up at $X_i^U \sim \mathbb{P}^U$ with force magnified by $M^U [X_i^U, f_\theta(X_i^U)]$ • We push down at $X_i^D \sim \mathbb{P}^D$ with force magnified by $M^D [X_i^D, f_\theta(X_i^D)]$



•
$$g_{ heta}(X,X')$$
 serves as sort of a sculpture tool set

Physical System Perspective

- In asymptotic regime $\min(N^U, N^D) \to \infty$ and when the bandwidth of g_θ goes to zero, the point-wise *up* and *down* averaged forces at any X can be defined as:
 - $F^{U}_{\theta}(X) \triangleq \mathbb{P}^{U}(X) \cdot M^{U}[X, f_{\theta}(X)], \quad F^{D}_{\theta}(X) \triangleq \mathbb{P}^{D}(X) \cdot M^{D}[X, f_{\theta}(X)]$
- Yields a dynamical system:



- PSO Equilibrium (variational equilibrium) at:
- Actual GD equilibrium strongly depends on $g_{ heta}$, $N^{\scriptscriptstyle U}$ and $N^{\scriptscriptstyle D}$!

Contents Outline

- 1. PSO Formulation and Derivation
- 2. Physical Perspective of Unsupervised Learning

3. PSO Variational Equilibrium and its Applications

- 4. PSO GD Equilibrium and Relation to Model Kernel
- 5. Model Kernel Dynamics during NN Optimization

Simple Example – Apply PSO Equilibrium for Inference

• Consider PSO estimator (also known as uLSIF [7]) with *magnitudes*:

$$M^{U}[X, f(X)] = 1, \quad M^{D}[X, f(X)] = f(X)$$

Solving PSO balance state:

$$\frac{\mathbb{P}^{U}(X)}{\mathbb{P}^{D}(X)} = \frac{M^{D}\left[X, f^{*}(X)\right]}{M^{U}\left[X, f^{*}(X)\right]} = \frac{f^{*}(X)}{1} \quad \Rightarrow \quad f^{*}(X) = \frac{\mathbb{P}^{U}(X)}{\mathbb{P}^{D}(X)}$$

• We got a method that infers a density ratio from data $\{X_i^U\}_{i=1}^{N^U}$ and $\{X_i^D\}_{i=1}^{N^D}$

Simple Example (Part 2)

Consider PSO estimator with magnitudes (denoted as DeepPDF [2]):

$$M^{\scriptscriptstyle U}[X,f(X)] = \mathbb{P}^{\scriptscriptstyle D}(X), \qquad M^{\scriptscriptstyle D}[X,f(X)] = f(X)$$

where \mathbb{P}^{D} is a known auxiliary distribution (e.g. Uniform, Gaussian)

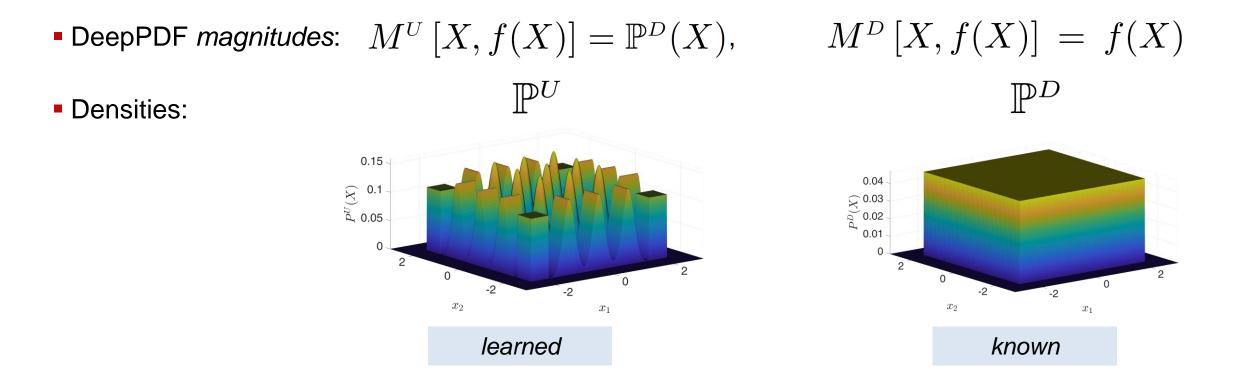
Solving PSO balance state:

$$\frac{\mathbb{P}^{U}(X)}{\mathbb{P}^{D}(X)} = \frac{M^{D}\left[X, f^{*}(X)\right]}{M^{U}\left[X, f^{*}(X)\right]} = \frac{f^{*}(X)}{\mathbb{P}^{D}(X)} \quad \Rightarrow \quad f^{*}(X) = \mathbb{P}^{U}(X)$$

• We got a new method for density estimation

[2] D. Kopitkov, V. Indelman, "Deep PDF: Probabilistic Surface Optimization and Density Estimation", 2018, <<u>arXiv</u>>

DeepPDF - Demonstration



• Given samples $\{X_i^U\}_{i=1}^{N^U}$ and $\{X_i^D\}_{i=1}^{N^D}$ from $\mathbb{P}^U(X)$ and $\mathbb{P}^D(X)$, we "push" $f_{\theta}(X)$ to have a shape of $\mathbb{P}^U(X)$, see online <<u>demo1</u>, <u>demo2</u>>

PSO Convergence – More General View

inversion

$$R[X,s] = \frac{M^D[X,s]}{M^U[X,s]}$$

• Define PSO convergence $T(X, z) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} : \quad f^*(X) = T \left| X, \frac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)} \right|$

- Then, R and T are inverses, $R\equiv T^{-1}$

• Define a ratio $R(X,s) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$:

Inverse Functions h and h^{-1} : $\forall z : h^{-1}[X, h[X, z]] = z$ and $\forall s : h[X, h^{-1}[X, s]] = s$.

• PSO instance for any target $T\left[X, \frac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}\right]$ can be constructed by:

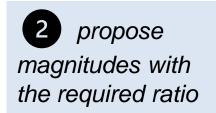
1 finding its inverse R, 2 finding magnitudes $\{M^U, M^D\}$ whose ratio is $R \equiv \frac{M^D}{M^U}$

Construct New PSO Methods for Log-density

- Let's invent new PSO methods to approximate $\log \mathbb{P}^{\scriptscriptstyle U}(X)$
- The corresponding PSO convergence $T\left[X, \frac{\mathbb{P}^U(X)}{\mathbb{P}^D(X)}\right]$ is described by: $T(X, z) = \log \mathbb{P}^D(X) + \log z$ • Its inverse is: $R(X, s) = \frac{\exp s}{\mathbb{P}^D(X)}$

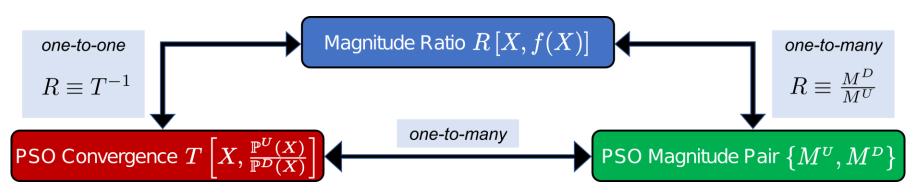
• Then, any PSO instance with $\{M^U, M^D\}$ satisfying below criteria (+ some "sufficient" conditions) will produce the required convergence:

$$\frac{M^D(X, f(X))}{M^U(X, f(X))} = \frac{\exp[f(X)]}{\mathbb{P}^D(X)}$$



Inverse Relation $R \equiv T^{-1}$

- One-to-one relationship knowing one we can identify other
- Antiderivatives of R and T are related via Legendre transformation (i.e. they are convex conjugate of one another)
- Reminds relation between Lagrangian and Hamiltonian mechanics, opens a bridge between control theory and learning theory
- Infinitely many pairs $\{M^{\scriptscriptstyle U}, M^{\scriptscriptstyle D}\}$ produce the same ratio R . Which should we choose?



Bounding PSO Magnitudes

- Consider any $\,\{M^{\scriptscriptstyle U},M^{\scriptscriptstyle D}\}\,$ with the corresponding convergence $\,T\,$
- Then, a new pair has the same convergence:

$$M_{bounded}^{U}\left[X,s\right] = \frac{M^{U}\left[X,s\right]}{|M^{U}\left[X,s\right]| + |M^{D}\left[X,s\right]|}, \quad M_{bounded}^{D}\left[X,s\right] = \frac{M^{D}\left[X,s\right]}{|M^{U}\left[X,s\right]| + |M^{D}\left[X,s\right]|}$$

- New pair is bounded to [-1, 1]
- Bounded magnitudes are typically more stable during the optimization
- Other norms can also be used
- Most of the popular losses have bounded magnitudes (NCE, Logistic loss, Cross-entropy)

PSO Instances - Summary so far..

Single algorithm to infer numerous statistical modalities - in a similar manner we can learn

$$\mathbb{P}^{_U}(X), \; rac{\mathbb{P}^{_U}(X)}{\mathbb{P}^{_D}(X)} \; ext{ or any function of it}$$

- Simple and intuitive
- Virtual force equilibrium surprising and easy to understand
- We can mechanically recover almost all existing objective functions for density estimation (e.g. MLE, Noise Contrastive Estimation, Importance Sampling, etc.)
- Cross-entropy and critic losses of most GANs
- Conditional density estimation by applying Bayes theorem
- Inventing new methods is also simple

Contents Outline

- 1. PSO Formulation and Derivation
- 2. Physical Perspective of Unsupervised Learning
- **3.** PSO Variational Equilibrium and its Applications

4. PSO GD Equilibrium and Relation to Model Kernel

5. Model Kernel Dynamics during NN Optimization

Model GD Dynamics

So far, we considered variational equilibrium. Now we shall focus on understanding GD behavior.
First-order dynamics of f_θ (t is iteration index):

$$f_{t+1} \approx f_t - \delta \cdot G_t F(f_t)$$

• Euler-Lagrange Eq. (steepest direction in a function space):

 $[Fu](\cdot) = -\mathbb{P}^{U}(\cdot) \cdot M^{U}[\cdot, u(\cdot)] + \mathbb{P}^{D}(\cdot) \cdot M^{D}[\cdot, u(\cdot)] \checkmark$

• GD operator (integral operator w.r.t. model kernel):

$$[G_t u](\cdot) = \int g_t(\cdot, X) u(X) dX$$

• How G_t affects the inference?

we are still in an

asymptotic regime:

 $\min(N^U, N^D) \to \infty$

Convoluted PSO Equilibrium

Variational PSO balance state $F(f_\infty) \equiv 0$ leads to PSO force equality:

$$\mathbb{P}^{U}(X) \cdot M^{U}[X, f_{\infty}(X)] = \mathbb{P}^{D}(X) \cdot M^{D}[X, f_{\infty}(X)]$$

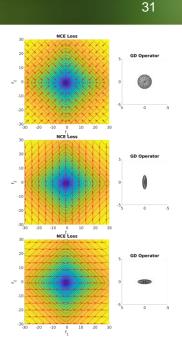
- GD balance state $G_{\infty}F(f_{\infty})\equiv 0$ changed! Convoluted with $g_{\infty}(X,X')$:

$$\int g_{\infty}(X, X') \cdot \mathbb{P}^{U}(X') \cdot M^{U}\left[X', f_{\infty}(X')\right] dX' = \int g_{\infty}(X, X') \cdot \mathbb{P}^{D}(X') \cdot M^{D}\left[X', f_{\infty}(X')\right] dX'$$

- Both equilibriums are identical iff $~G_{\infty}$ is an injective (invertible) operator
- Typically, at the optimization end $F(f_\infty)$ is zero only along $g_\infty(X,X')$'s top eigenfunctions
- Hence, a bias from the model kernel is introduced into the solution f_∞

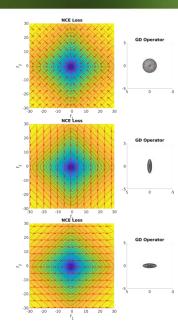
Role of GD Operator in $f_{t+1} \approx f_t - \delta \cdot G_t F(f_t)$

- G_t is a metric over a function space ${\cal F}$
- Eigenvalues/eigenfunctions of $g_t(X, X')$ define which directions are easy/fast to go to, and in which directions movement is **too** slow
- Alignment between $F(f_t)$ and eigenfunctions with largest eigenvalues decides the optimization outcome
- Kernel alignment methods are very popular in RKHS literature
- NNs perform such alignment during the optimization!



Role of GD Operator - Additional Aspects

- Spectrum of $g_t(X, X')$ can be considered as an implicit distribution over elements in \mathcal{F} (typical in Gaussian Process literature)
- G_t is constant for RKHS but time-dependent for NNs
- Bandwidth of $g_t(X,X')$ defines if we can move in a direction of high-frequency/"not smooth" functions



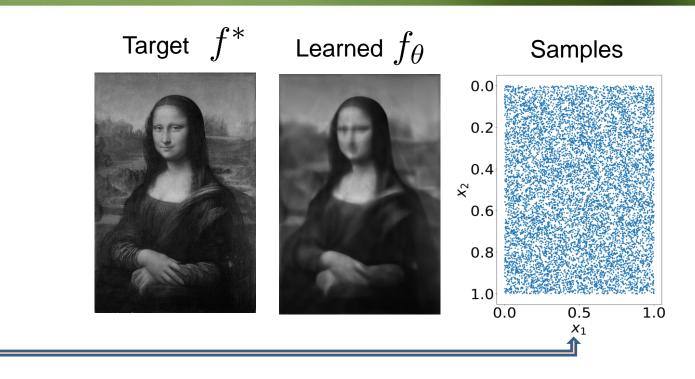
Contents Outline

- 1. PSO Formulation and Derivation
- 2. Physical Perspective of Unsupervised Learning
- **3.** PSO Variational Equilibrium and its Applications
- 4. PSO GD Equilibrium and Relation to Model Kernel

5. Model Kernel Dynamics during NN Optimization

NN Model Kernel Alignment

Consider a 2D regression task:



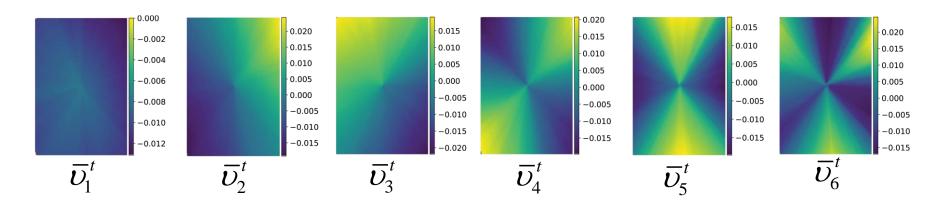
Setup:

- 10000 samples X^i,Y^i
- Least-Squares loss
- GD for 600000 steps

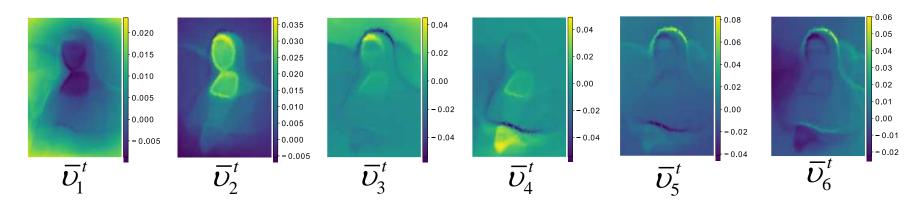
- Goal: investigate how $g_t(X, X')$, its eigenvalues $\{\lambda_i^t\}_{i=1}^N$ and eigenfunctions $\{\overline{\nu}_i^t\}_{i=1}^N$ change along the GD optimization

NN Model Kernel Alignment

First top eigenfunctions for FC NN with 6 layers at
t = 0:

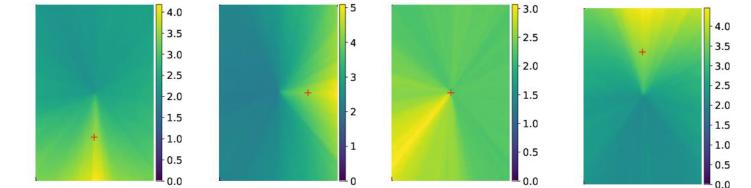


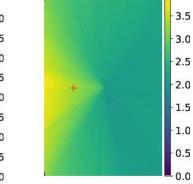
• *t* = 20000:



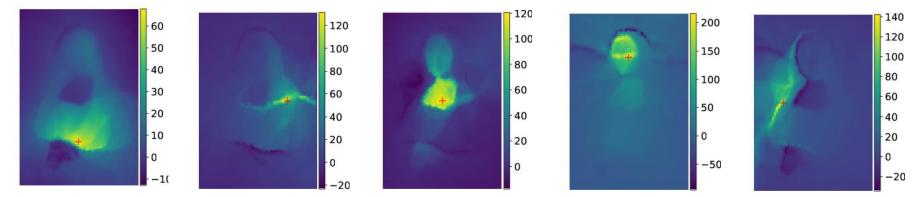
NN Model Kernel Alignment

• $g_t(X, X')$ for FC NN with 6 layers at • t = 0:



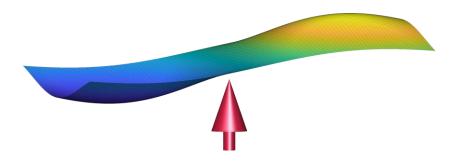


• t = 50000:



Experiment Outcome

- Strong evidence that top eigenfunctions of $\,g_t(X,X')\,$ align towards $\,f^*$
 - In other words, both $g_t(X,X^\prime)$ and f_t converge to f^*
- Increases movement speed into direction f^* within space ${\mathcal F}$
- Intuitively, our pushing stick obtains a shape that aligns well with the surface



- Deeper NNs have higher <u>alignment</u>, which also explains their performance superiority
- Beyond GD and L2 loss, similar behavior was also observed for SGD, Adam and unsupervised PSO learning losses (see [3])

[3] **D. Kopitkov**, V. Indelman, "Neural Spectrum Alignment: Empirical Study", International Conference on Artificial Neural Networks (ICANN) 2020, accepted, <<u>arXiv</u>>

Summary

Conclusions:

- Proposed PSO framework allows to learn (almost) any target $T\left[X, \frac{\mathbb{P}^{O}(X)}{\mathbb{P}^{D}(X)}\right]$
- Strong intuition allows to use PSO force concepts for various numerous applications
- Impact and evolution of the model kernel were studied
- Future work:
 - Robust statistics which PSO instance is better? What is optimal? How it is related to the kernel?
 - Convergence rates? Impact of $g_{\theta}(X, X')$ in small dataset setting?
 - Design a NN architecture to control properties of $g_{ heta}(X, X')$
 - Better regularization of models in high-dimensional small dataset setting
 - And many more exciting future directions...

References

- [1] **D. Kopitkov**, V. Indelman, "General Probabilistic Surface Optimization and Log Density Estimation", 2020, Journal of Machine Learning Research (JMLR), submitted, <<u>arXiv</u>>
- [2] **D. Kopitkov**, V. Indelman, "Deep PDF: Probabilistic Surface Optimization and Density Estimation", 2018, <<u>arXiv</u>>
- [3] D. Kopitkov, V. Indelman, "Neural Spectrum Alignment: Empirical Study", International Conference on Artificial Neural Networks (ICANN) 2020, accepted, <<u>arXiv</u>>
- [4] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):5847-5861, 2010.
- [5] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems, pages 271-279, 2016.
- [6] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems (NIPS), pages 8571-8580, 2018.
- [7] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 10(Jul):1391-1445,2009.

Thanks For Listening

Questions?

