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Motivation

▪ Consider two datasets                   and                  

from arbitrary densities                  and

▪ Data analysis of these datasets involves:

▪ Density estimation

▪ Mean/variance estimation

▪ Conditional density

▪ Density divergence/ratio

▪ Distribution transformation/sampling

▪ Extremely and widely applicable in:

▪ Robotics, computer science, economics, medicine and science in general
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Motivation

▪ Estimation of                from                   is important for:

▪ Measurement likelihood model

▪ Distribution entropy

▪ Image denoising

▪ Estimation of                from                   and                  :

▪ Anomaly detection

▪ Divergence learning (e.g. in generative models)

▪ Estimation of                      and                    is more 

numerically stable

▪ Many problems require us to learn some function 

of ratio                

▪ Hundreds of papers with various probabilistic methods for different        exist
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Related Work

▪ Estimation frameworks:

 Bregman divergence based methods

 ‘f’-divergence based methods (e.g. ‘f’-GAN [4,5])

▪ Divergence-based objective functions:

 Maximum-Likelihood estimators (based on KL divergence)

 Noise-contrastive estimators

 Energy-based unnormalized models (e.g. Boltzman Machines)

 Critic losses of GANs

 Many others
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Research Goals/Questions

▪ Statistical inference:

▪ Deeper understanding of probabilistic modeling

▪ How all methods are related to each other?

▪ Proposal of new/improved density estimators

▪ Make it easy and intuitive!

▪ Deep Models:

▪ Apply neural networks (NNs) to infer intricate probabilistic modalities

▪ Understand gradient-based optimization dynamics of NNs

▪ Generalization/interpolation, bias-variance, etc.
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Contributions

▪ Statistical inference:

▪ Probabilistic Surface Optimization (PSO) estimation framework [1]

▪ Offers infinitely many objective functions to learn (almost) any target

▪ Systematic and simple theory of unsupervised learning

▪ Mechanical recovery of existing and novel statistical objective functions

▪ Deep Models:

▪ Relation between PSO performance and the model kernel (a.k.a. Neural Tangent Kernel)

▪ Model kernel dynamics and its dependence on NN architecture

[1] D. Kopitkov, V. Indelman, “General Probabilistic Surface Optimization and Log Density Estimation”, 2020, Journal of 

Machine Learning Research (JMLR), submitted, <arXiv>

https://arxiv.org/pdf/1903.10567.pdf
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Contents Outline

1. PSO Formulation and Derivation

2. Physical Perspective of Unsupervised Learning

3. PSO Variational Equilibrium and its Applications

4. PSO GD Equilibrium and Relation to Model Kernel

5. Model Kernel Dynamics during NN Optimization
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Probabilistic Surface Optimization (PSO)

▪ Consider function space       containing functions

▪ Key idea: view model        as a high-dimensional surface, pushed to equilibrium by virtual forces

▪ PSO concepts of force equilibrium allow to estimate various statistical modalities of given data 

(e.g. pdf function), by enforcing               to converge to any desired target 
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PSO Estimation Framework

▪ Consider two densities                and                 over          with identical support (not mandatory 

and can be relaxed..), and two corresponding datasets                    and

▪ Choose any two magnitude functions (some minor conditions should hold):

,

▪ Iterate gradient-descent algorithm (GD) via                                         with:

i.i.d. samples: ,
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PSO Estimation Framework

▪ Claim: convergence is at

Perform a standard 

GD via the defined



11

D. Kopitkov, General Probabilistic Surface Optimization, PhD Seminar

PSO Derivation - Euler-Lagrange Equation

▪ Consider a general-form PSO loss:

▪ According to Euler-Lagrange equation of                     , optima 

satisfies the variational equilibrium:

antiderivative of          antiderivative of          
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PSO Derivation - Optimization

▪ Solve optimization over                :

▪ Loss gradient w.r.t. :

▪ Approximated by        :

define variational equilibrium 

define metric over function space
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PSO Derivation - Balance State

▪ Stationary solution at (Euler-Lagrange Eq. of  loss                     ):

▪ Choice of                          controls convergence

▪ Knowledge of antiderivatives                          is not necessary

▪ Can be used for (ratio) density estimation, but not only

▪ Magnitudes must satisfy some minor “sufficient” conditions
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▪ Model          as a representation of the surface:

▪ Examples of the function space         :

▪ NNs – fully-connected, CNN, ResNet, etc.

▪ RKHS – defined via reproducing kernel 

▪ Important property of        – the model kernel:

▪ Responsible for interpolation/extrapolation during GD

▪ NNs – a.k.a. Neural Tangent Kernel (NTK) [6]

▪ RKHS –

Physical System Perspective – Model Kernel
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Physical System Perspective – Model Kernel

▪ Consider update                                               . Then:

▪ When we “push”/optimize at       , our model          at any other          changes

according to                           , approximately

▪ Intuitively,                            can be

viewed as the shape of a pushing “wand”:

▪ Can we use this “wand” to sculpt          to any desired shape?
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▪ Consider PSO update:

▪ We push up at                       with 

force magnified by 

▪ We push down at                       with

force magnified by 

▪ serves as sort of a sculpture tool set

Physical System Perspective
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▪ In asymptotic regime                                       and when the bandwidth of         goes to zero,

the point-wise up and down averaged forces at any       can be defined as:

▪ Yields a dynamical system:

▪ PSO Equilibrium (variational equilibrium) at:

▪ Actual GD equilibrium strongly depends on       ,           and          !

Physical System Perspective

,
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Simple Example – Apply PSO Equilibrium for Inference

▪ Consider PSO estimator (also known as uLSIF [7]) with magnitudes:

,

▪ Solving PSO balance state:

▪ We got a method that infers a density ratio from data                    and
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Simple Example (Part 2)

▪ Consider PSO estimator with magnitudes (denoted as DeepPDF [2]):

,

where         is a known auxiliary distribution (e.g. Uniform, Gaussian)

▪ Solving PSO balance state:

▪ We got a new method for density estimation

[2] D. Kopitkov, V. Indelman, “Deep PDF: Probabilistic Surface Optimization and Density Estimation”, 2018, <arXiv>

https://arxiv.org/pdf/1807.10728.pdf
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DeepPDF - Demonstration

▪ DeepPDF magnitudes:                                                     ,  

▪ Densities:

▪ Given samples                   and                     from                  and                 ,

we “push”                  to have a shape of                 , see online <demo1, demo2>

learned known

https://drive.google.com/file/d/1Rept7xv1VWG6NjcRs8ETKyxmvhrfnYAU/view?usp=sharing
https://drive.google.com/file/d/1clpChrs2sliJqgX5URSIVWZG2sjrlufz/view?usp=sharing
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PSO Convergence – More General View

▪ Define a ratio                                                  :

▪ Define PSO convergence                                                 :

▪ Then,        and        are inverses, 

▪ PSO instance for any target                          can be constructed by: 

finding its inverse     ,            finding magnitudes whose ratio is 

inversion
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Construct New PSO Methods for Log-density

▪ Let’s invent new PSO methods to approximate 

▪ The corresponding PSO convergence                             is described by:

▪ Its inverse is:

▪ Then, any PSO instance with                         satisfying below criteria (+ some “sufficient” conditions) 

will produce the required convergence:

inverse w.r.t.

second argument

propose

magnitudes with 

the required ratio
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Inverse Relation

▪ One-to-one relationship – knowing one we can identify other

▪ Antiderivatives of        and        are related via Legendre transformation (i.e. they are convex 

conjugate of one another)

▪ Reminds relation between Lagrangian and Hamiltonian mechanics, opens a bridge between 

control theory and learning theory

▪ Infinitely many pairs                         produce the same ratio      . Which should we choose?
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Bounding PSO Magnitudes

▪ Consider any                          with the corresponding convergence 

▪ Then, a new pair has the same convergence:

▪ New pair is bounded to [-1, 1]

▪ Bounded magnitudes are typically more stable during the optimization

▪ Other norms can also be used

▪ Most of the popular losses have bounded magnitudes (NCE, Logistic loss, Cross-entropy)
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PSO Instances - Summary so far..

▪ Single algorithm to infer numerous statistical modalities - in a similar manner we can learn

,                or any function of it

▪ Simple and intuitive

▪ Virtual force equilibrium – surprising and easy to understand

▪ We can mechanically recover almost all existing objective functions for density estimation (e.g. 

MLE, Noise Contrastive Estimation, Importance Sampling, etc.)

▪ Cross-entropy and critic losses of most GANs

▪ Conditional density estimation by applying Bayes theorem

▪ Inventing new methods is also simple
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Model GD Dynamics 

▪ So far, we considered variational equilibrium. Now we shall focus on understanding GD behavior.

▪ First-order dynamics of         (     is iteration index):

▪ Euler-Lagrange Eq. (steepest direction in a function space):

▪ GD operator (integral operator w.r.t. model kernel):

▪ How         affects the inference?

we are still in an 

asymptotic regime:
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Convoluted PSO Equilibrium

▪ Variational PSO balance state                            leads to PSO force equality:

▪ GD balance state                                    changed! Convoluted with                         :

▪ Both equilibriums are identical iff is an injective (invertible) operator

▪ Typically, at the optimization end                  is zero only along                        ‘s  top eigenfunctions

▪ Hence, a bias from the model kernel is introduced into the solution
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Role of GD Operator in

▪ is a metric over a function space       

▪ Eigenvalues/eigenfunctions of                          define which directions are

easy/fast to go to, and in which directions movement is too slow

▪ Alignment between               and eigenfunctions with largest eigenvalues decides 

the optimization outcome

▪ Kernel alignment methods are very popular in RKHS literature

▪ NNs perform such alignment during the optimization!
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Role of GD Operator - Additional Aspects

▪ Spectrum of                         can be considered as an implicit distribution over

elements in       (typical in Gaussian Process literature)

▪ is constant for RKHS but time-dependent for NNs

▪ Bandwidth of                         defines if we can move in a direction of 

high-frequency/”not smooth” functions
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NN Model Kernel Alignment

▪ Consider a 2D regression task:

▪ Setup:

▪ 10000 samples

▪ Least-Squares loss

▪ GD for 600000 steps

▪ Goal: investigate how                       , its eigenvalues                and eigenfunctions                      

change along the GD optimization

Target Learned

1{ }t N

i i = 1{ }t N

i i =

Samples
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NN Model Kernel Alignment

▪ First top eigenfunctions for FC NN with 6 layers at

▪ :

▪ :
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NN Model Kernel Alignment

▪ for FC NN with 6 layers at

▪ :

▪ :

0t =

50000t =
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Experiment Outcome

▪ Strong evidence that top eigenfunctions of                        align towards 

▪ In other words, both                          and          converge to

▪ Increases movement speed into direction        within space 

▪ Intuitively, our pushing stick obtains a shape that aligns well with the surface

▪ Deeper NNs have higher alignment, which also explains their performance superiority

▪ Beyond GD and L2 loss, similar behavior was also observed for SGD, Adam and unsupervised 

PSO learning losses (see [3])

[3] D. Kopitkov, V. Indelman, “Neural Spectrum Alignment: Empirical Study”, International Conference on Artificial Neural 

Networks (ICANN) 2020, accepted, <arXiv>

https://arxiv.org/pdf/1910.08720.pdf
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Summary

▪ Conclusions:

▪ Proposed PSO framework allows to learn (almost) any target

▪ Strong intuition allows to use PSO force concepts for various numerous applications

▪ Impact and evolution of the model kernel were studied

▪ Future work:

▪ Robust statistics – which PSO instance is better? What is optimal? How it is related to the kernel?

▪ Convergence rates? Impact of                         in small dataset setting?

▪ Design a NN architecture to control properties of 

▪ Better regularization of models in high-dimensional small dataset setting

▪ And many more exciting future directions…
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Thanks For Listening
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Questions?


