General Probabilistic Surface
Optimization and
Log Density Estimation

Dmitry Kopitkov

General Probabilistic Surface
Optimization and
Log Density Estimation

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Dmitry Kopitkov

Submitted to the Senate
of the Technion — Israel Institute of Technology
Cheshvan 5781 Haifa October 2020

This research was carried out under the supervision of Associate Prof. Vadim Indelman, in the

Faculty of Aerospace Engineering.

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Vadim Indelman for all the guidance, help, support
and research freedom I enjoyed through the years of my PhD’s studies. My research skills and
knowledge got elevated significantly all thanks to his high-standard demands and him driving
me to reach my limits.

I would also like to thank the people from Technion Autonomous Systems Program for
helping me getting over the bureaucracy of the university and for being supportive through
sometimes very uneasy moments during these years.

Finally, I thank deeply all my friends for having my back and being there for me this entire
time. You continued to believe in me even at my darkest days, and your help allowed me to
keep standing on my legs and to accomplish this research. You have my immense gratitude and

appreciation for all your support.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Tables

Abstract

Abbreviations and Notations

1 Introduction

1.1 Thesis Structure

1.2 Thesis Contribution

2 Related work

2.1 Unsupervised Probabilistic Inference
2.2 Parametric vs Non-parametric Approaches
2.3 Additional Density Estimation Techniques
2.4 Relation to GANs

2.5 Classification Domain

3 Probabilistic Surface Optimization
3.1 Formulation
3.2 Derivation
3.3 PSO Balance State

3.4 Virtual Surface Perspective

4 PSO Functional
4.1 Mutual Support Optima
4.1.1 PSO Non-Differentiable Case

4.1.2 PSO Differentiable Case

4.1.3 Unlimited Range Conditions

4.2 Disjoint Support Optima
42.1 AreaSY\P

422 AreaSP\V

10

11

Instances of PSO

5.1 Deriving Convergence of PSO Instance
5.2 Deriving New PSO Instance
5.3 PSO Feasibility Verification and Polar Parametrization
54 PSOSubsets
5.5 PSO Methods Summary

PSO, Bregman and ”’ f”’ Divergencies

6.1 PSODivergence e
6.2 Bregman Divergence e
6.3 f-Divergence

6.4 Divergence Relation Summary

Properties of PSO Estimators

7.1 Consistency and Asymptotic Normality
7.2 Bounded vs Unbounded Magnitude Functions
7.3 Statistics of Surface Change L oo
7.4 Convoluted PSO Balance State
7.5 Model Expressiveness and Smoothness vs Kernel Bandwidth

7.6 Infinite Height Problem and its Solutions

Density Estimation via PSO
8.1 DeepPDF e
8.2 PSO-LDE - Density Estimation on Logarithmic Scale

Conditional Density Estimation
9.1 Conditional Density Estimation
9.2 Relation to Conditional GANs

Additional Applications and Relations of PSO Framework

10.1 Cross-Entropy as Instance of PSO
10.2 Relation to Maximum Likelihood Estimation
10.3 PSO with Unit Magnitudes and Contrastive Divergence
10.4 Mutual Information Estimation

10.5 Learning Probabilistic Occupancy Mapping

NN Architecture

11.1 Block-Diagonal Layers
11.1.1 Flexibilityof BDvsFC.
11.1.2 Relation between BD and FC - Additional Aspects
11.1.3 Similar Proposed Architectures

11.2 NN Pre-Conditioning ittt

11.3 Other NN Architecture Aspects

33
39
40
42
44
44

45
45
45
47
50

51
51
53
54
56
57
59

63
63
64

71
71
75

12 Overfitting of PSO 95

12.1 Problem Illustration e 95
12.2 Possible Solutions e 99

13 Experimental Evaluation of PSO Framework 101
13.1 Learning Setup o e e e 102
13.2 PDF Estimation via PSO - Columns Distribution 103
13.2.1 PSOInstances Evaluation 104

13.2.2 Baselines 109

13.2.3 NN Architectures Evaluation 114

13.2.4 Batch SizeImpact 118

13.2.5 Small Training Dataset 120

13.3 PDF Estimation via PSO - Transformed Columns Distribution 125
13.4 PDF Estimation via PSO - 3D Image-based Densities 129
13.5 PDF Estimation via PSO - Joint Over Poses and CNN Features 132
13.6 Probabilistic Occupancy Mapping v 134

14 Neural Spectrum Alignment 137
14.1 Notations for Alignment Experiment 138
14.2 Relation to Fisher Information Matrix 139
14.3 Analysis of L2 Loss For Constant Gramian 140
14.4 Work Related to Model Kernel 141
14.5 EXperiments o v v it e e e e e e e e e 142
14.6 Summary e e e e e e e e e e 148

15 Conclusions and Future Work 149
15.1 Future Research Directions 151

A Proof of Lemmas 14 and 15 153
Al Lemma 14 153
A2 Lemmal5 e 155

B Proof of Theorem 16 159
B.1 Lemmata e 159
B.2 Proofof Theorem e 160

C Proof of Theorem 18 163
D Proof of Theorem 19 165
E Proof of Theorem 20 167
E.1 Lemmata e 167

E.2 Proofof Theorem 169

Proof of Softmax Cross-Entropy being Instance of PSO 171

Differential approximation 175
Weights Uncorrelation and Gradient Similarity Space 179
LSQR Divergence 187
Matrix A from definition of Transformed Columns Distribution 189
Relation between spectrums of ¢;(X, X’) and its Gramian G, 191
Relation between FIM and Hessian of the Loss 193

Movement of 0 along FIM Eigenvector causes Movement of NN Output along

Gramian Eigenvector 195
Dynamics of L2 Loss for a Fixed Gramian, at Training Points 197
Dynamics of L2 Loss for a Fixed Gramian, at Testing Points 199
First-order Change of G, 203

Computation Details of Fourier Transform 205

List of Tables

5.1
5.2
53
54
5.5
5.6

8.1

9.1
9.2

13.1
13.2
13.3

Thesis Main Notations 4
PSO Instances For Density Estimation, Part 1 34
PSO Instances For Density Estimation, Part2 35
PSO Instances For Density Ratio Estimation, Part 1 36
PSO Instances For Density Ratio Estimation, Part2 37
PSO Instances For Density Ratio Estimation, Part3 38
Common target functions, their corresponding 7" and R mappings, and the

convergence interval IK. L 41
Several PSO Instances that converge to fy(X) =logPY(X) 65
Main Notations for Conditional Density Estimators 72
PSO Instances For Conditional Density (Ratio) Estimation. 74
Performance comparison between various PSO instances 108
Performance comparison between various NN pre-conditioning ways. 117

Performance comparison between various PSO instances for Transformed

Columnsdensity e 127

Abstract

Probabilistic inference, such as density (ratio) estimation, is a fundamental and highly important
problem that needs to be solved in many different domains. Recently, a lot of research was
done to solve it by producing various objective functions optimized over neural network (NN)
models. Such Deep Learning (DL) based approaches include unnormalized and energy models,
as well as critics of Generative Adversarial Networks, where DL has shown top approximation
performance. In this thesis we contribute a novel algorithm family, which generalizes all above,
and allows us to infer different statistical modalities (e.g. data likelihood and ratio between
densities) from data samples. The proposed unsupervised technique, named Probabilistic
Surface Optimization (PSO), views a model as a flexible surface which can be pushed according
to loss-specific virtual stochastic forces, where a dynamical equilibrium is achieved when the
pointwise forces on the surface become equal. Concretely, the surface is pushed up and down
at points sampled from two different distributions. The averaged up and down forces become
functions of these two distribution densities and of force magnitudes defined by the loss of
a particular PSO instance. Upon convergence, the force equilibrium imposes an optimized
model to be equal to various statistical functions depending on the used magnitude functions.
Furthermore, this dynamical-statistical equilibrium is extremely intuitive and useful, providing
many implications and possible usages in probabilistic inference. We connect PSO to numerous
existing statistical works which are also PSO instances, and derive new PSO-based inference
methods as a demonstration of PSO exceptional usability. Likewise, based on the insights
coming from the virtual-force perspective we analyze PSO stability and propose new ways
to improve it. Finally, we present new instances of PSO, termed PSO-LDE, for data log-
density estimation and also provide a new NN block-diagonal architecture for increased surface
flexibility, which significantly improves estimation accuracy. Both PSO-LDE and the new
architecture are combined together as a new density estimation technique. In our experiments
we demonstrate this technique to be superior over state-of-the-art baselines in density estimation
tasks for multi-modal 20D data.

Abbreviations and Notations

PSO . Probabilistic Surface Optimization
PSO-LDE : PSO log density estimators
PSO-CM : PSO consistent magnitude set

pdf . probability density function

NN : Neural Network

CNN : Convolutional NN

FC . Fully-connected NN

BD . Block-diagonal NN

RKHS . Reproducing Kernel Hilbert Space
DL : Deep Learning

GD : Gradient Descent optimization
NTK : Neural Tangent Kernel

FIM : Fisher Information Matrix

MLE : Maximum Likelihood Estimation
KDE : Kernel Density Estimation

NCE : Noise Contrastive Estimation
GAN : Generative Adversarial Network model
cGAN : Conditional GAN model

MC : Monte Carlo sampling

CD : Contrastive Divergence

LF . Legendre-Fenchel transform

Notation Description

R0, R>p and R sets of real numbers; positive {z € R|z > 0}, non-negative
{z € R|z > 0} and negative {x € R|z < 0} respectively

F function space over which PSO is inferred

fo(X):R* - R model fy € F, parametrized by 6 (e.g. a neural network),

can be viewed as a surface with support in R"™ whose
height is the output of fy(X)

6 € Rl model parameters (e.g. neural network weights vector)

X eR" input space of fp(X), can be viewed as support of
model surface in space R !

XU ~PY n-dimensional random variable with pdf PV, samples of which
are the locations where we push the model surface up

XP ~ PP n-dimensional random variable with pdf P”, samples of which
are the locations where we push the model surface down

SY C R support of PV

S Cc R” support of PP

svvP C R” support union of PV and P”

SvnP C R” support intersection of PY and P”

SU\P C R™ support of PV where P”(X) =0

SPY C R™ support of P where PV(X) =0

MY X, fo(X)]: R" xR = R force-magnitude function that amplifies an up push force
which we apply at XY

MP[X, fo(X)]: R* x R - R force-magnitude function that amplifies a down push force
which we apply at X ?

R[X,fo(X)]:R" xR =R ratio function %—5

T [X , 752%” :R" xR — R convergence function satisfying 7' = R~!, describes
the modality that PSO optima f*(X') approximates

K = (Smin; Smaz) C R convergence interval defined as the range of T' [X, z] w.r.t.
z € Ry, represents a set of values f* can have, f*(X) € K

MV and MP antiderivatives of MY and M” (PSO primitives)

FjJ(X) and F(X) point-wise up and down forces, that are applied (on average)
at any point X € R"

NV and N” batch sizes of samples from PV and from P”, that are used in
a single optimization iteration

Lpso: F—=R population PSO functional

ﬁg;bND F =R empirical PSO functional, approximates L pgo via training
points {X '}V and {X P}

go(X, X") model kernel that is responsible for generalization and
interpolation during the GD optimization

ro(X, X) relative model kernel, a scaled version

ro(X, X') = go(X, X")/g90(X, X) of go(X, X') whose properties
can be used to analyze the bias-variance trade-off of PSO

Table 1: Thesis Main Notations

CHAPTER 1

Introduction

Probabilistic inference is the wide domain of extremely important statistical problems includ-
ing density (ratio) estimation, distribution transformation, density sampling and many more.
Solutions to these problems are extensively used in domains of robotics, computer image,
economics, and other scientific/industrial data mining cases. Particularly, in robotics we require
to manually/automatically infer a measurement model between sensor measurements and the
hidden state of the robot, which can further be used to estimate robot state during an on-line
scenario. Considering the above, solutions to probabilistic inference and their applications to

real-world problems are highly important for many scientific fields.

The universal approximation theory [48] states that an artificial neural network with fully-
connected layers can approximate any continuous function on compact subsets of R”, making it
an universal approximation tool. Moreover, in the last decade methods based on Deep Learning
(DL) provided outstanding performance in areas of computer vision and reinforcement learning.
Furthermore, recently strong frameworks (e.g. [19, 108, 135]) were developed that allow fast

and sophisticated training of neural networks (NNs) using GPUs.

With the above motivation, in this thesis we contribute a novel unified paradigm, Probabilis-
tic Surface Optimization (PSO), that allows to solve various probabilistic inference problems
using DL, where we exploit the approximation power of NNs in full. PSO expresses the proba-
bilistic inference as a virtual physical system where the surface, represented by a function from
the optimized function space (e.g. NN), is pushed by forces that are outcomes of a Gradient
Descent (GD) optimization. We show that this surface is pushed during the optimization to
the target surface for which the averaged pointwise forces cancel each other. Further, by using
different virtual forces we can enforce the surface to converge to different probabilistic functions
of data, such as a data density, various density ratios, conditional densities and many other

useful statistical modalities.
We show that many existing probabilistic inference approaches, like unnormalized models,

GAN critics, energy models and cross-entropy based methods, already apply such PSO principles

implicitly, even though their underlying dynamics were not explored before through the prism

of virtual forces. Additionally, many novel and original methods can be forged in a simple way
by following the same fundamental rules of the virtual surface and the force balance. Moreover,
PSO framework permits the proposal and the practical usage of new objective functions that
can not be expressed in closed-form, by instead defining their Euler-Lagrange equation. This
allows introduction of new estimators that were not considered before. Furthermore, motivated
by usefulness and intuitiveness of the proposed PSO paradigm, we derive sufficient conditions
for its optimization stability and further analyze its convergence.

Importantly, we emphasize that PSO is not only a new interpretation that allows for sim-
plified and intuitive understanding of statistical learning. Instead, in this thesis we show that
optimization dynamics that the inferred model undergoes are indeed matching the picture of
a physical surface with particular forces applied on it. Moreover, such match allowed us to
understand the optimization stability of PSO instances in more detail and to suggest new ways
to improve it.

Further, we apply PSO framework to solve the density estimation task - a fundamental
statistical problem essential in many scientific fields and application domains. We analyze PSO
sub-family with the corresponding equilibrium, proposing a novel PSO log-density estimators
(PSO-LDE). These techniques, as also other PSO-based density estimation approaches presented
in this thesis, do not impose any explicit constraint over a total integral of the learned model,
allowing it to be entirely unnormalized. Yet, the implicit PSO force balance produces at the
convergence density approximations that are highly accurate and almost normalized, with total
integral being very close to 1.

Additionally, we examine several NN architectures for a better estimation performance, and
propose new block-diagonal layers that led us to significantly improved accuracy. PSO-LDE
approach combined with new NN architecture allowed us to learn multi-modal densities of 20D
continuous data with superior precision compared to other state-of-the-art methods, including
Noise Contrastive Estimation (NCE) [39, 126], which we demonstrate in our experiments.

Lastly, we relate the performance of PSO estimators to the model kernel also known in DL
community as Neural Tangent Kernel (NTK) [54]. We analyze its impact on PSO accuracy
and on bias-variance tradeoff, and further investigate its evolution during a typical optimization
process. The revealed alignment of this kernel towards the target function provides insights on
the learning dynamics of deep models which may lead in the future to a better understanding of
DL theory.

1.1 Thesis Structure

The thesis is organized into 15 chapters as follows.

Chapter 2 In this chapter we cover the work related to PSO framework. Since the topic of
this thesis is very wide and since PSO has tight relations with numerous existing works, here we

describe only the most related scientific literature.

Chapter 3 In this chapter we formulate PSO algorithm family, the main contribution of
this thesis. The proposed estimation procedure minimizes the novel PSO functional, whose
Euler-Lagrange equation allows to learn many statistical objective functions. As described, such
optimization resembles a physical system of forces applied over the virtual geometric body
which we call the model surface. Such physical system perspective brings with itself a strong

intuition and a conceptual simplicity, which makes PSO framework convenient and easy to use.

Chapter 4 In this chapter we use convex theory to derive sufficient optimality conditions over
various PSO components, under which the Euler-Lagrange equation represents a minimum of
PSO functional. Likewise, we derive PSO convergence in the neighborhoods where only one
physical force is present, which can be used to understand PSO dynamics outside of the mutual

support of involved densities.

Chapter 5 In this chapter we relate PSO framework to many other existing methods, showing
them to be its instances. Additionally, we show how to derive convergence of any considered
PSO instance and how to derive new PSO instances for inference of various statistical modalities.

Likewise, here we introduce the terminology to modulate PSO into various subgroups.

Chapter 6 In this chapter we define PSO divergence and outline its relation towards Bregman
divergence and f-divergence. Particularly, we show that estimators based on these divergences

are subsets of PSO estimation family.

Chapter 7 In this chapter numerous estimation properties are proved, including consistency
and asymptotic normality. Likewise, here we investigate the model kernel’s impact on the

optimization equilibrium.

Chapters 8-9 In these chapters we focus in more detail on application of PSO for (conditional)
density estimation. We introduce novel PSO-LDE estimators with bounded magnitude functions,
and likewise present their conditional form. Further, we relate conditional GAN (cGAN)
methods with PSO framework.

Chapter 10 In this chapter we show various additional PSO applications and relations. Partic-
ularly, we describe in detail the connection between PSO, cross-entropy, MLE, and contrastive
divergence [46]. Further, we describe the procedure for estimation of mutual information
between two random variables, and PSO-based solution for occupancy mapping in robotics

domain.

Chapter 11 In this chapter we investigate the NN design and its optimization influence.
Specifically, here we propose a new block-diagonal (BD) NN architecture as an alternative to the

fully-connected NN. We show that the new connectivity pattern, employed by BD NN, reduces

the bandwidth of the corresponding model kernel which can be used to reduce the estimation
bias of PSO.

Chapter 12 In this chapter we empirically illustrate the main practical issue of PSO algorithm
- PSO overfitting. Particularly, we show that in case of a small amount of training points and
a narrow bandwidth of the model kernel we may succeed in stretching the virtual surface to
have spikes at each training point. Such convergence is very undesirable and may be interpreted
as overfitting of the learning process. Further, here we describe several techniques that may

prevent this over-flexibility phenomena.

Chapter 13 In this chapter we experiment with various PSO instances and solve numerous
probabilistic inference tasks. Specifically, we apply PSO on the density estimation problem
and investigate the actual performance of different PSO instances in large and small dataset
size settings. Likewise, we compare the results with other state-of-the-art density estimation

methods that are not part of PSO, and show the superiority of PSO-based techniques.

Chapter 14 In this chapter we empirically investigate dynamics of the model kernel of NNs
during a typical optimization process, showing its extreme alignment towards the target function.
Such surprising behavior of deep models may explain their approximation power supremacy
compared to more shallow models. Further, in context of PSO this alignment improves the
overall inference accuracy, and may lead in the future to additional theoretical insights of PSO

dynamics.

Chapter 15 In this chapter we conclude the thesis and discuss its main contributions. We also
describe possible directions for future research. These include many important PSO aspects that
need to be solved in order to further enhance the estimation performance, such as an optimality
of various PSO instances and a study of interplay between magnitude functions and the model

kernel.

1.2 Thesis Contribution

The main contributions of this thesis are:

(a) We develop a Probabilistic Surface Optimization (PSO) that enforces any approximator

function to converge to a target statistical function which nullifies a point-wise virtual force.

(b) We derive sufficient optimality conditions under which the functional implied by PSO is
stable during the optimization.

(c) We show that many existing probabilistic and (un-)supervised learning techniques can be

seen as instances of PSO.

(d)

(e

)

(2

(h)

We show how new probabilistic techniques can be derived in a simple way by using PSO

principles, and also propose several such new methods.

We provide analysis of PSO convergence where we relate its performance towards properties

of the model kernel implicitly defined by the optimized function space.

We use PSO to approximate a logarithm of the target density, proposing for this purpose
several hyper-parametric PSO subgroups and analyzing their properties.

We present a new NN architecture with block-diagonal layers that allows for lower side-
influence (a smaller bandwidth of the corresponding model kernel) between various regions
of the input space and that leads to a higher NN flexibility and to more accurate density

estimation.

We experiment with different continuous 20D densities, and accurately infer all of them
using the proposed PSO instances, thus demonstrating these instances’ robustness and top
performance. Further, we compare our methods with state-of-the-art baselines, showing the

superiority of former over latter.

We show that the model kernel of NN serves as a NN memory, with its fop eigenfunc-
tions changing to align with the learned target function. This improves the optimization

performance since the convergence rate along kernel fop eigenfunctions is typically higher.
The following works were published/in submission process as part of this thesis:

* D. Kopitkov, V. Indelman. Robot Localization through Information Recovered From
CNN Classificators. International Conference on Intelligent Robots and Systems (IROS),
2018.

* D. Kopitkov, V. Indelman. Neural Spectrum Alignment: Empirical Study. International
Conference on Artificial Neural Networks (ICANN), 2020 (accepted).

* D. Kopitkov, V. Indelman. General Probabilistic Surface Optimization and its Variational
Equilibrium. Submitted to Journal of Machine Learning Research (JMLR).

Preprints in arXiv (still to be submitted):

* D. Kopitkov, V. Indelman. General Probabilistic Surface Optimization and Log Density

Estimation.

* D. Kopitkov, V. Indelman. Deep PDF: Probabilistic Surface Optimization and Density

Estimation.

10

CHAPTER 2

Related work

In this section we consider very different problems all of which involve reasoning about statistical
properties and probability density of a given data, which can be also solved by various instances
of PSO as is demonstrated in later sections. We describe studies done to solve these problems,
including both DL and not-DL based methods, and relate their key properties to attributes of
PSO.

2.1 Unsupervised Probabilistic Inference

Statistical estimation consists of learning various probabilistic modalities from acquired sample
realizations. For example, given a dataset we may want to infer the corresponding probability
density function (pdf). Similarly, given two datasets we may want to approximate the density
ratio between sample distributions. The usage of NNs for statistical estimation was studied
for several decades [14,16,44,127,140]. Furthermore, there is a huge amount of work that
treats statistical learning in a similar way to PSO, based on sample frequencies, the optimization
energies and their forces. Arguably, the first methods were Boltzman machines (BMs) and
Restricted Boltzman machines (RBMs) [1, 46, 98]. Similarly to PSO, RBMs can learn a
distribution over data samples using a physical equilibrium, and were proved to be very useful
for various ML tasks such as dimensionality reduction and feature learning. Yet, they were based
on a very basic NN architecture, containing only hidden and visible units, arguably because
of over-simplified formulation of the original BM. Moreover, the training procedure of these
methods, the contrastive divergence (CD) [46], applies computationally expensive Monte Carlo
(MC) sampling. In Section 10.3 we describe CD in detail and outline its exact relation to PSO
procedure, showing that the latter replaces the expensive MC by sampling auxiliary distribution
which is computationally cheap.

In [91] authors extended RBMs to Deep Energy Models (DEMs) that contained multiple
fully-connected layers, where during training each layer was trained separately via CD. Further,

in [151] Deep Structured Energy Based Models were proposed that used fully-connected,

11

convolutional and recurrent NN architectures for an anomaly detection of vector data, image
data and time-series data respectively. Moreover, in the latter work authors proposed to train
energy based models via a score matching method [50], which does not require MC sampling. A
similar training method was also recently applied in [119] for learning an energy function of data
- an unnormalized model that is proportional to the real density function. However, the produced
by score matching energy function is typically over-smoothed and entirely unnormalized, with
its total integral being arbitrarily far from 1 (see Section 13.2.2). In contrast, PSO based density
estimators (e.g. PSO-LDE) yield a model that is almost normalized, with its integral being very
close to 1 (see Section 13.2.1).

In [69] authors examined many statistical loss functions under the perspective of energy
model learning. Their overview of existing learning rules describes a typical optimization
procedure as a physical system of model pushes at various data samples in up and down
directions, producing the intuition very similar to the one promoted in this work. Although [69]
and our works were done in an independent manner with the former preceding the latter, both
acknowledged that many objective functions have two types of terms corresponding to two force
directions, that are responsible to enforce model to output desired energy levels for various
neighborhoods of the input space. Yet, unlike [69] we take one step further and derive the
precise way to control the involved forces, producing a formal framework for the generation
of infinitely many learning rules to infer an infinitely large number of target functions. The
proposed PSO approach is conceptually very intuitive, and permits unification of many various
methods under a single algorithm umbrella via a formal yet simple mathematical exposition.
This in its turn allows to address the investigation of different statistical techniques and their
properties as one mutual analysis study.

In context of pdf estimation, one of the most relevant works to presented in this thesis
PSO-LDE approach is NCE [39, 126], which formulates the inference problem via a binary
classification between original data samples and auxiliary noise samples. The derived loss allows
for an efficient (conditional) pdf inference and is widely adapted nowadays in the language
modeling domain [65,83,84]. Further, the proposed PSO-LDE can be viewed as a generalization
of NCE, where the latter is a specific member of the former for a hyper-parameter o = 1. Yet
importantly, both algorithms were derived based on different mathematical principles, and their
formulations do not exactly coincide.

Furthermore, the presented herein PSO family is not the first endeavor for unifying different
statistical techniques under a general algorithm umbrella. In [105] authors proposed a family of
unnormalized models to infer log-density, which is based on Maximum Likelihood Monte Carlo
estimation [28]. Their method infers both the energy function of the data and the appropriate
normalizing constant. Thus, the produced (log-)pdf estimation is approximately normalized.
Further, this work was extended in [38] where it was related to the separable Bregman divergence
and where various other statistical methods, including NCE, were shown to be instances of this
inference framework. In Section 6 we prove Bregman-based estimators to be contained inside
PSO estimation family, and thus both of the above frameworks are strict subsets of PSO.

Further, in [92] and [94] new techniques were proposed to infer various f-divergences

12

between two densities, based on M -estimation procedure and Fenchel conjugate [47]. Likewise,
the f-GAN framework in [94] was shown to include many of the already existing GAN methods.
In Section 6 we prove that estimation methods from [92] and critic objective functions from [94]
are also strict subsets of PSO.

The above listed methods, as also the PSO instances in Section 5, are all derived using
various math fields, yet they also could be easily derived via PSO balance state as is described
in this thesis. Further, the simplest way to show that PSO is a generalization and not just
another perspective that is identical to previous works is as follows. In most of the above
approaches optimization objective functions are required to have an analytically known closed
form, whereas in our framework knowledge of these functions is not even required. Instead, we
formulate the learning procedure via magnitude functions, the derivatives of various loss terms,
knowing which is enough to solve the corresponding minimization problem. Furthermore, the
magnitudes of PSO-LDE sub-family in Eq. (8.7)-(8.8) do not have a known antiderivative for the
general case of any a, with the corresponding PSO-LDE loss being unknown. Thus, PSO-LDE
(and therefore PSO) cannot be viewed as an instance of any previous statistical framework.
Additionally, the intuition and simplicity in viewing the optimization as merely point-wise
pushes over some virtual surface are very important for the investigation of PSO stability and

for its applicability in numerous different areas.

2.2 Parametric vs Non-parametric Approaches

The most traditional probabilistic problem, which is also one of the main focuses of this thesis,
is density approximation for an arbitrary data. Approaches for statistical density estimation may
be divided into two different branches - parametric and non-parametric. Parametric methods
assume data to come from a probability distribution of a specific family, and infer parameters
of that family, for example via minimizing the negative log-probability of data samples. Non-
parametric approaches are distribution-free in the sense that they do not take any assumption
over the data population a priori. Instead they infer the distribution density totally from data.

The main advantage of the parametric approaches is their statistical efficiency. Given
the assumption of a specific distribution family is correct, parametric methods will produce
more accurate density estimation for the same number of samples compared to non-parametric
techniques. However, in case the assumption is not entirely valid for a given population, the
estimation accuracy will be poor, making parametric methods not statistically robust. For
example, one of the most expressive distribution families is a Gaussian Mixture Model (GMM)
[79]. One of its structure parameters is the number of mixtures. Using a high number of
mixtures, it can represent multi-modal populations with a high accuracy. Yet, in case the real
unknown distribution has even higher number of modes, or sometimes even an infinite number,
the performance of a GMM will be low.

To handle the problem of unknown number of mixture components in parametric techniques,
Bayesian statistics can be applied to model a prior over parameters of the chosen family.

Models such as Dirichlet process mixture (DPM) and specifically Dirichlet process Gaussian

13

mixture model (DPGMM) [4,33,122] can represent an uncertainty about the learned distribution
parameters and as such can be viewed as infinite mixture models. Although these hierarchical
models are more statistically robust (expressive), they still require to manually select a base
distribution for DPM, limiting their robustness. Likewise, Bayesian inference applied in these
techniques is more theoretically intricate and computationally expensive [75].

On the other hand, non-parametric approaches can infer distributions of an (almost) arbitrary
form. Methods such as data histogram and kernel density estimation (KDE) [120, 125] use
frequencies of different points within data samples in order to conclude how a population
pdf looks like. In general, these methods require more samples and prone to the curse of
dimensionality, but also provide a more robust estimation by not taking any prior assumptions.
Observe that “non-parametric” terminology does not imply lack of parametrization. Both
histogram and KDE require selection of (hyper) parameters - bin width for histogram and kernel
type/bandwidth for KDE.

In many cases a selection of optimal parameters requires the manual parameter search [125].
Although an automatic parameter deduction was proposed for KDE in several studies [24,43,95],
it is typically computationally expensive and its performance is not always optimal. Furthermore,
one of the major weaknesses of KDE is its time complexity during the query stage. Even the
most efficient KDE methods (e.g. [95]) require an above linear complexity (O(mlogm)) in
the number of query points m. In contrast, PSO yields robust non-parametric algorithms that
optimize the NN model, which in its turn can be queried at any input point by a single forward
pass. Since this pass is independent of m, the query runtime of PSO is linear in m. When
the complexity of NN forward pass is lower than log m, PSO methods become a much faster
alternative. Moreover, existing KDE implementations do not scale well for data with a high

dimension, unlike PSO methods.

2.3 Additional Density Estimation Techniques

A unique work combining DL and non-parametric inference was done by Baird et al. [10]. The
authors represent a target pdf via Jacobian determinant of a bijective NN that has an implicit
property of non-negativity with the total integral being 1. Additionally, their pdf learning
algorithm has similarity to our pdf loss described in [61] and which is also shortly presented
in Section 8.1. Although the authors did not connect their approach to virtual physical forces
that are pushing a model surface, their algorithm can be seen as a simple instance of the more
general DeepPDF method that we contributed in our previous work.

Furthermore, the usage of Jacobian determinant and bijective NNs in [10] is just one in-
stance of DL algorithm family based on a nonlinear independent components analysis. Given
the transformation G4(-) typically implemented as a NN parametrized by ¢, methods of this
family [20-22, 114] exploit the integration by substitution theorem that provides a mathemat-
ical connection between random X’s pdf P[X] and random G4 (X)’s pdf P[G4(X)] through
Jacobian determinant of G . In case we know P[X] of NN’s input X, we can calculate in

closed form the density P[G (X)| of NN’s output and vice versa, which may be required in

14

different applications. However, for the substitution theorem to work the transformation G ()
should be invertible, requiring to restrict NN architecture of G (-) which significantly limits NN
expressiveness. In contrast, the presented PSO-LDE approach does not require any restriction
over its NN architecture.

Further, another body of research in DL-based density estimation was explored in [27,
67,140], where the autoregressive property of density functions was exploited. The described
methods NADE, RNADE and MADE decompose the joint distribution of a multivariate data into
a product of simple conditional densities where a specific variable ordering needs to be selected
for better performance. Although these approaches provide high statistical robustness, their
performance is still limited since every simple conditional density is approximated by a specific
distribution family thus introducing a bias into the estimation. Moreover, the provided solutions
are algorithmically complicated. In contrast, in this thesis we develop a novel statistically robust

and yet conceptually very simple algorithm for density estimation, PSO-LDE.

2.4 Relation to GANs

Recently, Generative Adversarial Networks (GANSs) [32,70, 109] became popular methods to
generate new data samples (e.g. photo-realistic images). GAN learns a generative model of
data samples, thus implicitly learning also the data distribution. The main idea behind these
methods is to have two NNs, a generator and a critic, competing with each other. The goal
of the generator NN is to create new samples statistically similar as much as possible to the
given dataset of examples; this is done by transformation of samples from a predefined prior
distribution z ~ P# which is typically a multivariate Gaussian. The responsibility of the critic
NN is then to decide which of the samples given to it is the real data example and which is the
fake. This is typically done by estimating the ratio between real and fake densities. The latter is
performed by minimizing a critic loss, where most popular critic losses [6, 36,76, 85, 86, 153]
can be shown to be instances of PSO (see Section 5). Further, both critic and generator NNs are
trained in adversarial manner, forcing generator eventually to create very realistic data samples.

Another extension of GAN is Conditional GAN methods (cGANs). These methods use
additional labels provided for each example in the training dataset (e.g. ground-truth digit of
image from MNIST dataset), to generate new data samples conditioned on these labels. As an
outcome, in cGAN methods we can control to some degree the distribution of the generated
data, for example by conditioning the generation process on a specific data label (e.g. generate
an image of digit ’5”). Similarly, we can use such a conditional generative procedure in robotics
where we would like to generate future measurements conditioned on old observations/current
state belief. Moreover, cGAN critics are also members of PSO framework as is demonstrated in
Section 9.1.

Further, it is a known fact that optimizing GANSs is very unstable and fragile, though
during the years different studies analyzed various instability issues and proposed techniques to
handle them [5]. In [109], the authors proposed the DCGAN approach that combines several

stabilization techniques such as the batch normalization and Relu non-linearity usage for a better

15

GAN convergence. Further improvement was done in [118] by using a parameter historical
average and statistical feature matching. Additionally, in [5] it was demonstrated that the main
reason for instability in training GANS is the density support difference between the original
and generated data. While this insight was supported by very intricate mathematical proofs,
we came to the same conclusion in Section 7 by simply applying equilibrium concepts of PSO.
As we show, if there are areas where only one of the densities is positive, the critic’s surface is
pushed by virtual forces to infinity, causing the optimization instability (see also Figure 7.2).
Moreover, in our analysis we detected another significant cause for estimation inaccuracy
- the strong implicit bias produced by the model kernel. In our experiments in Section 13 the
bandwidth of this kernel is shown to be one of the biggest factors for a high approximation error
in PSO. Moreover, in this thesis we show that there is a strong analogy between the model kernel
and the kernel applied in kernel density estimation (KDE) algorithms [120, 125]. Considering
KDE, low/high values of the kernel bandwidth can lead to both underfitting and overfitting,
depending on the number of training samples. We show the same to be correct also for PSO.

See more details in Sections 12 and 13.

2.5 Classification Domain

Considering supervised learning and the image classification domain, convolutional neural
networks (CNNSs) produce discrete class conditional probabilities [64] for each image. The
typical optimization loss used by classification tasks is a categorical cross-entropy of data and
label pair, which can also be viewed as an instance of our discovered PSO family, as shown
in Section 10.1. In particular, the classification cross-entropy loss can be seen as a variant of
the PSO optimization, pushing in parallel multiple virtual surfaces connected by a softmax
transformation, that concurrently estimates multiple Bernoulli distributions. These distributions,
in their turn, represent one categorical distribution P(C'|) that models probability of each object
class C' given a specific image /.

Beyond cross-entropy loss, many possible objective functions for Bayes optimal decision
rule inference exist [77, 112, 123]. These objectives have various forms and a different level of
statistical robustness, yet all of them enforce the optimized model to approximate P(C|I). PSO
framework promotes a similar relationship among its instances, by allowing the construction
of infinitely many estimators with the same equilibrium yet with some being more robust to
outliers than the others. Further, the recently proposed framework [17] of classification losses
extensively relies on notions of Fenchel duality, which is also employed in this thesis to derive

the sufficient conditions over PSO magnitudes.

16

CHAPTER 3

Probabilistic Surface Optimization

In this section we formulate the definition of Probabilistic Surface Optimization (PSO) algorithm
framework. While in previous work [61] we already explored a particular instance of PSO
specifically for the problem of density estimation, in Section 5 we will see that PSO is actually
a very general family of probabilistic inference algorithms that can solve various statistical tasks

and that include a great number of existing methods.

3.1 Formulation

Consider an input space X € R™ and two densities PY and P” defined on it, with appropriate
pdfs PY(X) and P”(X) and with supports S C R"™ and S” C R"; U and D denote the up
and down directions of forces under a physical perspective of the optimization (see below).
Denote by SU"P, SU\P and SP\Wsets {X : X e SV X €SP} {X: X e SYVX ¢ S} and
{X : X ¢ SY VX €SP} respectively. Further, denote a model fp(X) : R” — R parametrized
by the vector 6 (e.g. NN or a function in Reproducing Kernel Hilbert Space, RKHS). Likewise,
define two arbitrary functions MY (X,s) : R" x R — Rand M”(X,s) : R" x R — R, which
we name magnitude functions; both functions must be continuous almost everywhere w.r.t.
argument s (see also Table 1 for list of main notations). We propose a novel PSO framework for
probabilistic inference, that performs a gradient-based iterative optimization 6,11 = 6; — J - df

with a learning rate § where:

ZMU Js fo(X)] - Vafo(XY) +7ZMD 7 fo(X7)] - Vefo(X7).

3.1

{XUIN' and {XP}N" are sample batches from PV and P respectively. Each PSO instance is

defined by a particular choice of {PY,P”, MY, M P} that produces a different convergence of
fo(X) by approximately satisfying PSO balance state (within a mutual support SV""):

PY(X) _ MP[X. fy-(X)]
BP(X) MU[X. fo-(X)]

(3.2)

17

fo(X)

Fy' (X)

Figure 3.1: Hlustration of PSO principles. Model fy(X) : R™ — R (in this thesis NN parametrized by) represents a virtual
surface that is pushed in opposite directions - up at points X Y sampled from PV (X') and down at points X © sampled from PP (X).
Magnitude of each push is amplified by analytical function - MV [X, fo(X)] when pushing at XV and M [X, fo(X)] when
pushing at X P, where both functions may have an almost arbitrary form, with only minor restrictions. During optimization via loss
gradient in Eq. (3.1) the up and down forces F/ (X) = PY(X) - MY [X, fp(X)] and F?(X) = PP(X) - MP [X, fo(X)],
containing both frequency and analytical components, adapt to each other till point-wise balance state Féj (X) = FBD (X)is
achieved. Such convergence causes final f(X) to be a particular function of PV (X)) and PP (X), and can be used for inferring
numerous statistical functions of arbitrary data (see Section 5).

Such optimization, outlined in Algorithm 3.1, will allow us to infer various statistical modalities

from available data, making PSO a very useful and general algorithm family.

3.2 Derivation

Consider PSO functional over a function f : R™ — R as:

L =— E MYIX,f(X)]+ E MP[X, f(X 3.3

psolf) == E NUIX,f(X)]+ E_N°[X, (X) 6:3)
r A r A

where we define MY [X,s] £ [7 MY(X,t)dt and M” [X,s] = [MP(X,t)dt to be an-

tiderivatives of MY (-) and M P (-) respectively; these functions, referred below as primitive

functions of PSO, are not necessarily known analytically. The above integral can be separated

into several terms related to SY"?, S\ and SP\V. A minima f* of Lpso(f) is described

below, characterizing f* within each of these areas.

Theorem 1 (Variational Characterization). Consider densities PV and PP and magnitudes
MV and MP. Define an arbitrary function h : SY\P? — R. Then for f* to be minima of L pso,
it must fulfill the following properties:

1. Mutual support: under ”sufficient” conditions over { MY, M} the f* must satisfy PSO
balance state VX € SU"P: PY(X) - MV [X, f*(X)] = PP (X) - M" [X, f*(X)].

2. Disjoint support: depending on properties of a function MY, it is necessary to satisfy
VX e SU\P:

(a) IfVs e R: MY(X,s) >0, then f*(X) = oc.

18

AT RN R 7 B N I S

[
<>

Algorithm 3.1 PSO estimation algorithm. Sample batches can be either identical or different
for all iterations, which corresponds to GD and stochastic GD respectively.

Inputs:

PY and P” : up and down densities

MY and M® : magnitude functions

0 : initial parameters of model fy € F

¢ : learning rate

Outputs: fy- : PSO solution that satisfies balance state in Eq. (3.2)

begin:

while Not converged do
Obtain samples { X} from PV
Obtain samples { X2}V from PP
Calculate df via Eq. (3.1)
0=6—-9-do

end

0* =14

end

(b) IfVs e R: MY(X,s) <O, then f*(X) = —oo.
(c) IfVs e R: MY(X,s) =0, then f*(X) can be arbitrary.

(d) IfVs € R:
=0, s=h(X)
MY(X,s) = {>0, s<h(X) (3.4)
<0, s>h(X)

then f*(X) = h(X).

(e) Otherwise, additional analysis is required.

The theorem’s proof, showing PSO balance state to be Euler-Lagrange equation of Lpso(f),
is presented in Section 4. Sufficient conditions over { MY, M} are likewise derived there. Part
2 helps to understand dynamics in areas outside of the mutual support, and its analogue for S?\Y
is stated in Section 4.2.2. Yet, below we will mostly rely on part 1, considering the optimization
in area SY"P. Following from the above, finding a minima of L pgo will produce a function f
that satisfies Eq. (3.2).

To infer the above f*, we consider a function space F, whose each element fy can be
parametrized by 0, and solve the problem miny,c 7 Lpso(fp). Assuming that F contains f*, it
will be obtained as a minima of the above minimization. Further, in practice L pgo is optimized

via gradient-based optimization where gradient w.r.t. 6 is:

Volpso(fo) =~ E M"[X, fo(X)]-Vefo(X)+ E M”IX, fo(X)]-Vofs(X) (3.5

~PU

with Eq. (3.1) being its sampled approximation. Considering a hypothesis class represented

by NN and the universal approximation theory [48], we assume that J is rich enough to learn

19

the optimal f* with high accuracy. Furthermore, in our experiments we show that in practice

NN-based PSO estimators approximate the PSO balance state in a very accurate manner.

Remark 2. PSO can be generalized into a functional gradient flow via the corresponding
functional derivative of Lpso(f) in Eq. (3.3). Yet, in this thesis we will focus on GD formulation
w.r.t. 0 parametrization, outlined in Algorithm 3.1, leaving more theoretically sophisticated form
for future work. Algorithm 3.1 is easy to implement in practice, if for example fy is represented
as NN. Furthermore, in case F is RKHS, this algorithm can be performed by only evaluating
RKHS’s kernel at training points, by applying the kernel trick. The corresponding optimization
algorithm is known as the kernel gradient descent. Further, in this thesis we consider loss
functions without an additional regularization term such as RKHS norm or weight decay, since
a typical GD optimization is known to implicitly produce a regularization effect [74]. Analysis

of PSO combined with the explicit regularization term is likewise left for future work.

3.3 PSO Balance State

Given that PY and P” have the same support, PSO will converge to PSO balance state in
Eq. (3.2). By ignoring possible singularities (due to an assumed identical support) we can
see that the converged surface fy« will be such that the ratio of frequency components will be
opposite-proportional to the ratio of magnitude components. To derive a value of the converged
fo+ for a specific PSO instance, { MY, M} of that PSO instance, which typically involve fy
inside them, must be substituted into Eq. (3.2) and then it needs to be solved for fy. This

is equivalent to finding inverse T'(X, z) of the ratio R(X,s) = %58{(3 w.r.t. the second
argument, T = R~!, with the convergence described as fp«(X) = T [X , gggﬂ Such

balance state can be used to mechanically recover many existing methods and to easily derive
new ones for inference of numerous statistical functions of data; in Section 5 we provide full
detail on this point. Furthermore, the above general formulation of PSO is surprisingly simple,
considering that it provides a strong intuition about its optimization dynamics as a physical

system, as explained below.

3.4 Virtual Surface Perspective

The main advantage of PSO is in its conceptual simplicity, revealed when viewed via a physical
perspective. Specifically, fo(X) can be considered as a virtual surface in R™*! space, with its
support being R"™, see Figure 3.1. Further, according to the update rule of a gradient-descent
(GD) optimization and Eq. (3.1), any particular training point X updates 6 during a single GD
update by Vy fo(X) magnified by the output of a magnitude function (MY or M ”). Furthermore,
considering the update of a simple form 6;11 = 6; + Vg fy,(X), it is easy to show that the
height of the surface at any other point X’ changes according to a first-order Taylor expansion

as.:
founr (X') = fo,(X') = Vo fo (X')T - Vo fa(X). (3.6)

20

Hence, by pushing (optimizing) a specific training point X, the surface at other points changes
according to the elasticity properties of the model expressed via a gradient similarity kernel
90(X, X") & Vofo(X)T - Vofe(X'). It helps also to think that during the above update we
push at X with a virtual rod, appeared inside Figure 3.1 in form of green and red arrows, whose
head shape is described by gy (X, X').

When optimizing over RKHS, the above expression turns to be identity and go(X, X')
collapses into the reproducing kernel!. For NN, this model kernel is known as Neural Tangent
Kernel (NTK) [54]. As was empirically observed, NTK has a strong local behavior with its
outputs mostly being large only when points X and X' are close by. More insights about
NTK can be found in [23, 54, 63]. Further assuming for simplicity that g9 has zero-bandwidth
VX # X' : go(X,X') = 0 and that { MY, M} are non-negative functions, it follows then
that each X7 in Eq. (3.1) pushes the surface at this point up by go(X”, X”) magnified by
MU [X7, fo(X[)], whereas each X7 is pushing it down in a similar manner.

Considering a macro picture of such optimization, fy(X) is pushed up at samples from
PY and down at samples from P?, with the up and down averaged point-wise forces being
FJ(X)£PU(X) MY [X, fo(X)] and FP(X) £ PP(X)- MP [X, fo(X)] (go(X, X) term is
ignored since it is canceled out). Intuitively, such a physical process converges to a stable state
when point-wise forces become equal, Fy' (X) = Fj’(X). This is supported mathematically
by the part 1 of Theorem 1, with such equilibrium being named as PSO balance state. Yet,
it is important to note that this is only the variational equilibrium, which is obtained when
training datasets are infinitely large and when the bandwidth of kernel gg is infinitely small. In
practice the outcome of GD optimization strongly depends on the actual amount of available
sample points and on various properties of gg, with the model kernel serving as a metric over
the function space F. Thus, the actual equilibrium somewhat deviates from PSO balance state,
which we investigate in Section 7.

Additionally, the actual force direction at samples X and X" depends on signs of
MU XY, fo(X7)] and MP [XY, fo(X/)], and hence may be different for each instance of
PSO. Nonetheless, in most cases the considered magnitude functions are non-negative, and thus
support the above exposition exactly. Moreover, for negative magnitudes the above picture of
physical forces will still stay correct, after swapping between up and down terms.

The physical equilibrium can also explain dynamics outside of the mutual support SY"7,
Considering the area SY\” C R™ where only samples X are located, when MY has positive
outputs, the model surface is pushed indefinitely up, since there is no opposite force required
for the equilibrium. Likewise, when M Y’s outputs are negative - it is pushed indefinitely down.
Further, when magnitude function is zero, there are no pushes at all and hence the surface can
be anything. Finally, if the output of MY [X, fp(X)] is changing signs depending on whether
fo(X) is higher than h(X), then fp(X) must be pushed towards h(X) to balance the forces.
Such intuition is supported mathematically by part 2 of Theorem 1. Observe that convergence at

infinity actually implies that PSO will not converge to the steady state for any number of GD

'In RKHS defined via a feature map ¢(X) and a reproducing kernel k(X, X') = #(X)T - ¢(X’), every
function has a form fg(X) = ¢(X)7 - 0. Since Vo fo(X) = ¢(X), we obtain go (X, X') = k(X, X').

21

iterations. Yet, it can be easily handled by for example limiting range of functions within the

considered F to some set [a, b] C R.

Remark 3. In this thesis we discuss PSO and its applications in context of only continuous
multi-dimensional data, while in theory the same principles can work also for discrete data.
The sampled points X and X will be located only at discrete locations of the surface fo(X)
since the points are in ' C R™. Yet, the balance at each such point will still be governed by
the same up and down forces. Thus, we can apply similar PSO methods to also infer statistical

properties of discrete data.

22

CHAPTER 4

PSO Functional

Here we provide a detailed analysis of PSO functional Lpso(f), proving Theorem 1 and
deriving sufficient optimality conditions to ensure its optimization stability for any considered

pair of MV and M”. Examine Lpgo’s decomposition:

Lpso(f) = LU"P(f) + LY (f) + L™U(f), 4.1)

Lron(py & [<P M X FOO] + B(X) - M7 X, F(X)]dX
LNP(f) £ - /S oo PU(X) - MY X, (X)) dX 4.2)

L) 2 [BP0 M7, (X)) dX.
SD\U

In Section 4.1 we analyze LV"", specifically addressing non-differentiable functionals (Section

4.1.1), differentiable functionals (Section 4.1.2) and deriving extra conditions for unlimited

range of F (Section 4.1.3). Further, in Section 4.2 we analyze LY\P and LP\Y, proving part 2

of Theorem 1.

4.1 Mutual Support Optima

Consider the loss term LY""(f) corresponding to the area SV"”, where PY(X) > 0 and
PP(X) > 0. The Euler-Lagrange equation of this loss is —PY(X) - MV [X, f(X)] + P?(X) -
MP X, f(X)] = 0, thus yielding the conclusion that LY"?’s minimization must lead to the
convergence in Eq. (3.2). Yet, calculus of variations does not easily produce the sufficient
conditions that { MY, M”} must satisfy for such steady state. Instead, below we will apply

notions of Legendre-Fenchel (LF) transform from the convex optimization theory.

23

0%(2)
v

z S z S

(@ (b) (0) (d)

Figure 4.1: (a) Example of a convex function () defined on an interval (a, b), (b) its convex-conjugate J (), (c) subderivative
9p(z) and (d) subderivative 87:27(5). The & (z) has jumps at points in (a, b) where @ (z) is non-differentiable, and is constant at
points where () is not strictly convex. Further, d(z) and 81}(3) are inverse mappings between (a, b) and (c, d), with constant
regions in g (2) corresponding to jumps in 612 (s), and vice versa. Additionally, any of the above four functions can be recovered
from any other, thus each of them is a different representation of the same information. Observe that a convex function 7:[; (s)

can be recovered from its subderivative 91 (s) only up to an additive constant. Yet, this constant will not affect optima s* of the

considered below optimization minge (¢, 4) 1(s) — z - s and hence can be ignored. Furthermore, codomains of 5(7;) and of 1; (s)
do not play any role in our derivation.

4.1.1 PSO Non-Differentiable Case

The core concepts required for the below derivation are properties of convex functions and their
derivatives, and an inversion relation between (sub-)derivatives of two convex functions that
are also convex-conjugate of each other. Each convex function ¢(z) on an interval (a, b) of
real-line can be represented by its derivative ¢(z), with latter being increasing on (a, b) with
finitely many discontinuities (jumps). Each non-differentiable point zy of ¢ is expressed within
© by a jump at zp, and at each point where ¢ is not strictly convex the ¢ is locally constant.
Left-hand and right-hand derivatives @ D_(z) and p D (z) of ¢

3D_(z) = lim ?(2) — $(z0) 3D, () = lim p(2) — #(20)

z—zg Z =20 z—>zar zZ— 20

4.3)

can be constructed from ¢ by treating its finitely many discontinuities as left-continuities
and right-continuities respectively. Further, ¢’s subderivative at z is defined as dp(z) =
[(¢D_(z), D (z)]. Note that ¢ can be recovered from any one-sided derivative by integration
[106, see Appendix C], up to an additive constant which will not matter for our goals. Hence,
each one of ¥, p, pD_, @D and 0@ is just a different representation of the same information.

The LF transform @Z of ¢ (also known as convex-conjugate of) is a convex function
defined as) (s) £ sup,cg{sz — $(z)}. Subderivatives @ and 94 have the following useful
inverse relation [115, see Proposition 11.3]: 9i(s) = {z : s € d(z)}. Moreover, in case &
and 1 are strictly convex and differentiable, their derivatives ¢ and v are strictly increasing and
continuous, and actually are inverse functions between (a, b) and (¢, d), with ¢ = inf ¢ 4.4 ¢(2)
and d £ SUD,¢(q,p) P(2). Further, since A can be recovered from 0, it contains the same
information and is just one additional representation form. See illustration in Figure 4.1 and
refer to [155] for a more intuitive exposition.

The above inverse relation can be used in optimization by applying the Fenchel-Young

inequality: for any z € (a,b) and s € (¢, d) we have @(z) + ¥(s) — z - s > 0, with equality

24

obtained iff s € 9p(z). Thus, for any given z € (a, b) the optima s* = arg min,¢ . q) ¥(s) —2's
must be within g (z). It is helpful to identify a role of each term within the above optimization
problem. The 1; serves as part of the cost, Jp defines the optima s*, 8@5 is required to solve this
optimization in practice (i.e. via subgradient descent), and {bv is not actually used. Thus, in order
to define properties we want s* to have and to perform the actual optimization, we only need to
know d@ and 812, with the latter being easily recovered from the former. For this reason, given
an increasing function ¢(z) with domain (a, b) and codomain (c,d), in practice it is sufficient to
know its inverse () (or the corresponding subderivative 8{5) to solve the optimization and to
obtain the optima s* € (¢, d) s.t. s* = ¢(2) (or s* € d@(z)). Convex functions @ and 1) can
be used symbolically for a math proof, yet their actual form is not required, which was also
noted in [112]. This idea may seem pointless since to find s* we can compute ¢(z) in the first
place, yet it will help us in construction of a general optimization framework for probabilistic
inference.

In following statements we define several functions with two arguments, where the first
argument X can be considered as a spectator” and where all declared functional properties
are w.r.t. the second argument for any value of the first one. Define the required estimation
convergence by a transformation 7'(X, z) : R” x R-g — R. Given that T is increasing and
right-continuous (w.r.t. z € Ryg at any X € R"), below we will derive a new objective
functional whose minima is f*(X) = T {X , %} and which will have a form of LV"".
Furthermore, this derivation will yield the sufficient conditions over PSO magnitudes.

Consider any fixed value of X € R™. Denote by K = (S;in, Smaz) the effective conver-
gence interval, with $,,,;, = inf,cr_, T(X, 2) and spp = SUP,eRr-, T(X, z); at the conver-
gence we will have f*(X) € K. Further, below we will assume that the effective interval K is
identical for any X, which is satisfied by all convergence transformations 7" considered in our
work. It can be viewed as an assumption that knowing value of X without knowing value of
fﬁ%ﬁ; does not yield any information about the convergence T' [X , %} .

Due to its properties, T'(X, z) : R" x Ry — K can be acknowledged as a right-hand
derivative of some convex function T'(X, z) (w.r.t. z). Denote by TD_ (X, z), TD, (X, z) =
T(X,z) and T (X, z) left-hand derivative, right-hand derivative and subderivative of T.

Next, define a mapping G(X, s) to be a strictly increasing and right-continuous function
on s € K, with K = {G[X, s] : s € K} being an image of K under G. Set K may depend
on value of X, although it will not affect below conclusions. We denote the left-inverse of
G(X,s):R"xK—-Kas G HX,t):R" xK - Kst. Vs c K: G71(X,G(X,s)) = s.

Define a mapping &(X, z) 2 G(X,T(X, z)) : R* x R~ — K and note that it is increasing
(composition of two increasing functions is increasing) and right-continuous (right-continuity
of G preserves all limits required for right-continuity of ®). Similarly to T', define #(X, z),
$D_(X,z) = G(X,TD_(X,z)), PD, (X, 2) = G(X,TD4 (X, z)) and 0D(X, z) to be the
corresponding convex function, its left-hand derivative, right-hand derivative and subderivative
respectively.

Denote by ¥(X, ¢) the LF transform of (X, z) w.r.t. z. Its subderivative at any ¢ € K is
OV(X,t) = {z: G7I(t) € dT(X, 2)} C Rsg. According to the Fenchel-Young inequality,

25

for any given z € R the optima ¢* of min, g U(X,t) —t - z must be within dB(X, z).
Further, this optimization can be rewritten as mingx):sex U(X,G(X,s)) — G(X,s) -z with
its solution satisfying s* : G(X, s*) € 8P(X, z), or

s* = argmin —z - G(X, s) + U(X, G(X, s)), (4.4)
seK

G(X,s*) € [PD_(X,2),dD (X, 2)] = s* € [TD_(X,2),TD,(X,z2)] = s* € 0T(X, z) C K,
4.5)

where we applied the left-inverse G~!. The above statements are true for any considered

X € R", with the convergence interval K being independent of X’s value. Additionally, while

the above problem is not necessarily convex in s (actually it is easily proved to be quasiconvex),

it still has a well-defined minima s*. Further, various methods can be applied if needed to solve

this nonconvex nonsmooth optimization using OW and various notions of G’s subdifferential [9].

Substituting z =]H;[U)E)(g G(X,s) = MUY(X,s)and U(X,G(X,s)) = MP(X, s) we get:

P)U(S() — —
s* = arg min — MY(X,s)+ MP(X,s) =
%eK PP(X) () ()

— arginf —PY(X) - MY(X,s) + P?(X)- M"(X,s), (4.6)
sek

pU (X)}

PD(X)

)] other-

where we replaced minimum with infimum for the latter use. Optima s* is equal to T’ {X

if T' is continuous at z = igg;, or must be within [TD_ (X, gDEX%) TD (X, <

9 IP’D
wise.

Next, denote F to be a function space with measurable functions f : SY"? — K w.r.t.
a base measure dX. Then, the optimization problem inf yc 7 LY"7(f) solves the problem in
Eq. (4.6) for f(X) ateach X € SY"”:

inf LU"P :/ inf [—PY(X)- MY [X, f(X)]+P°(X)- M"[X, f(X)]| dX
inf LYP(f) = [nf [P0 MY (X (0] + P2 (X) - MP X, f(X)]] dX,
4.7)
where we can move infimum into the integral since f is measurable, the argument used also
in works [92,94]. Thus, the solution f* = arginf . r LY""(f) must satisfy VX € S""" :

(X)) e 8T[’PDEXg] given that f* € F.

Finally, we summarize all conditions that are sufficient for the above conclusion: function
T(X, z) is increasing and right-continuous w.r.t. z € Ry, the convergence interval K is
X-invariant, G(X, s) (also aliased as MY (X, s)) is right-continuous and strictly increasing
wrt. s € K, and F’s range is K. Given T, K, GG and F have these properties, the entire above

derivation follows.

26

R0

R>o

T(X,z2)

Smin Smax

Figure 4.2: Summary of requirements over mappings 7'(X, z), R(X, s), MY (X, s) and M P (X, s). For any X € R™, T must
be strictly increasing and continuous on z € Rx ¢, with its image K = (Symin, Smaz) marked by yellow. The inverse R of T is
likewise strictly increasing and continuous function from K to R . Further, MY and M P are any two functions that are positive

and continuous on K with MD R
MU .

4.1.2 PSO Differentiable Case

More “nice” results can be obtained if we assume additionally 7'(X, z) : R” x Ryg — K
to be strictly increasing and continuous w.r.t. z € R, and G(X,s) : R x K — K to be
differentiable at s € K. This is the main setting on which our work is focused.

In such case T is invertible. Denote its inverse as R(X,s) : R" x K — Rsg. The R is
strictly increasing and continuous w.r.t. s € KK, and satisfies Vz € Ry : R[X, T [X,z]] = =
andVs e K: T[X,R[X,s]] =s.

Further, the derivative of &(X, z) is #(X, z) = G(X,T(X, z)). The & is strictly increasing
and continuous w.r.t. z € R+, and thus P is strictly convex and differentiable on R+ .

By LF transform’s rules the derivative ¥'(X, z) of W is an inverse of ¢’s derivative $(X, z),
and thus it can be expressed as ¥ (X, z) = R(X,G (X, 2)). This leads to Wwb#’s)) =
R(X,s)-G'(X,s) where G'(X,s) = % is the derivative of G.

From above we can conclude that MV (X, s) = G(X, s) and MP (X, s) = U(X,G(X, s))
are both differentiable at s € K, with derivatives MY (X, s) = G'(X,s) and MP(X,s) =
R(X,s) - G'(X, s) satisfying %38{(3 = R(X,s). Functions MY and M " can be considered
as magnitudes of physical forces, as explained in Section 3.4. Also, MY (X,s) > 0 for

any s € K due to properties of G. Observe that we likewise have R(X,s) > 0 for any
s € Ksince R(X,s) € Rsp. This leads to M”(X,s) > 0 at any s € K, which implies
MP (X, s) to be strictly increasing at s € K (similarly to MV). Moreover, additionally taken
assumptions will enforce the solution f* = arginf ;. LV"P(f) to satisfy VX € S :
f(X) =T [X, 53]

) pD (X)
Above we derived a new objective function LY"P(f). Given that terms {7, K, G, F}
satisfy the declared above conditions, minima f* of LV"P will be T {X , %} . Properties of

{]\7 v MP, MV, MP } follow from aforementioned conditions. This is summarized by below
theorem, where instead of G' we enforce the corresponding requirements over { MY, M”}. See

also Figure 4.2 for an illustrative example.

Theorem 4 (Convergence-Focused). Consider mappings T'(X, z), MY (X, s) and M (X, s).

Assume:

1. T(X, z) is strictly increasing and continuous w.r.t. z € R, with its inverse denoted by

27

R(X,s).

2. The convergence interval K = {T(X,z)|z € Rxg} (image of R~o under T) is X-

invariant.
3. MY(X,s) and MP (X, s) are continuous and positive at s € K, satisfying % =
R(X,s).

4. Range of F is K.

Denote MV (X, s) and MP (X, s) to be antiderivatives of MV (X, s) and MP (X, s) at s € K,
and construct the corresponding functional LV"". Then, the minima f* = arginf ;c » LY (f)

will satisfy VX € SU"P . f*(X) =T [X7 %]

Continuity of {MY, MP”} in condition 3 is sufficient for existence of antiderivatives
{M v M P1. Tt is a little too strong criteria for integrability, yet it is more convenient to
verify in practice. This leads to differentiability of MYV, which in turn implies continuity and
differentiability of G positiveness of MY in condition 3 implies G to be strictly increasing on
K. Conditions 2 and 4 restate assumptions over K and F. Therefore, the sufficient conditions
over {T,K, G, F} follow from the above list, which leads to the required f*.

Given any required convergence 7', the above theorem can be applied to propose valid
magnitudes { MV, MP}. This basically comes to requiring magnitude functions to be continuous
and positive on K, with their ratio being inverse of 7. Once such pair of functions is obtained,
the loss LY"? with corresponding optima, and more importantly its gradient, can be easily
constructed. Observe that knowledge of {MV, M} is not necessary neither for condition
verification nor for the optimization of LV"P,

Further, given any LY"" with corresponding { MY, M "}, its convergence and sufficient

conditions can be verified via Theorem 5.

Theorem 5 (Magnitudes-Focused). Consider a functional LV"P with MV (X, s) and MP (X, s)

whose derivatives are MY (X, s) and M” (X, s). Denote R(X, s) to be the ratio %Sgg and

. A
define a convergence interval as K = (Spin, Smaz)- Assume:

1. R(X,s):R" x K — Ry is continuous, strictly increasing and bijective w.r.t. domain

s € K and codomain R, for any X € R™
2. MY(X,s)and MP (X, s) are continuous and positive at s € K.
3. Range of F is K.

Then, the minima f* = arginf .z LY"P(f) will satisfy VX € SY"P : f*(X) =T {X, %},
where T = R~

Condition sets in Theorem 4 and Theorem 5 are identical. Condition 1 of Theorem 5 is
required for T'(X, z) to be strictly increasing, continuous and well-defined for each z € R~. K

can be any interval as long as conditions of Theorem 5 are satisfied, yet typically it is a preimage

28

{s € R|IR(X,s) € Ryp} of Ry under R. See examples in Section 5.1. Likewise, observe
again that knowledge of PSO primitives {M v MP } is not required.

Below we will use Theorem 4 to derive valid { MY, M "} for any considered 7', and Theorem
5 to derive T for any considered { MY, MP}. Further, part 1 of Theorem 1 follows trivially
from the above statements. Moreover, due to symmetry between up and down terms we can also
have T and R to be strictly decreasing functions given MY (X, s) and M” (X, s) are negative
at s € K. Furthermore, many objective functions satisfy the above theorems and thus can
be recovered via PSO framework. Estimation methods for which the sufficient conditions do
not hold include a hinge loss from the binary classification domain as also other threshold
losses [93]. Yet, these losses can be shown to be included within PSO non-differentiable case in

Section 4.1.1, whose analysis we leave for a future work.

4.1.3 Unlimited Range Conditions

Criteria 4 of Theorem 4 and 3 of Theorem 5 can be replaced by additional conditions over
{MVY, MP}. These derived below conditions are very often satisfied, which allows us to not
restrict /s range in practice.

Recalling that K is an open interval (Spn, Smaz), consider following sets K~ = {s|s <
Smin} and KT = {s|s > s,,q, }. Observe that if s,,,;;, = —oc then K™ is an empty set, and if
Smaz = 00 - KT is empty. Further, K, K~ and KT are disjoint sets.

To reduce limitation over J’s range, it is enough to demand the inner optimization problem
in Eq. (4.6) to be strictly decreasing on K~ and strictly increasing on K*. To this purpose, first
we require { MY, M "} to be well-defined on the entire real line s € R. This can be achieved by
restricting MV (X, s) and M (X, s) to be differentiable on s € R - it is sufficient for MY (X, s)
and M P (X, s) to be well-defined on R. Alternatively, we may and will require MY (X, s) and
MP (X, s) to be continuous at any s € R. This slightly stronger condition will ensure that
{MV, MP} are well-defined and that the antiderivatives {MY, MP} exist on R. Moreover,
such condition is imposed over { MY, M "}, allowing to neglect properties of {M v MP }.

Further, in case K™ is not empty, we require —z - MY(X,s) + MP(X, s) to be strictly
increasing for any s € K* and any z € R.q. Given that MY(X,s) and MP(X,s) are
differentiable at s € K U K™ (which also implies their continuity at S,,4s), this requirement
holds iff Vs € K*,2 € Ryg : MP(X,s) > z- MY(X,s). Verifying all possible cases, the
above criteria is satisfied iff: [VS e Kt : [MY(X,s) =0V MP(X,s) > 0] A [MY(X,s) <
0V MP(X,s) > O]} This can be compactly written as Vs € Kt : MY (X, s) < MP(X,s)V
MY(X,s)- MP(X,s) <0, where the second condition implies that magnitudes MY and M"
can not have the same sign within K.

Similar derivation for K~ will lead to demand the inner problem to be strictly decreasing
for any s € K~ and any z € R.q. In turn, this leads to criteria Vs € K~ : MY(X,s) >
MP(X,s)VMY(X,s) - MP(X,s) < 0. Below we summarize conditions under which no

restrictions are required over JF’s range.

29

Theorem 6 (Unconstrained Function Range). Consider the convergence interval K = (Spin, Smaz)-

Assume:

1. MY(X,s)and MP"(X,s) are continuous on the entire real line s € R, and do not have

the same sign outside of K.
2. Forany s < spin: MY(X,s) > MP(X,s).
3. Forany s > Spmaz: MY (X,s) < MP(X,s).

Then, the condition 4 of Theorem 4 and the condition 3 of Theorem 5 can be removed.

Intuitively, conditions for K* (and similarly for K™) can be interpreted as requiring up

force Fy (X) to be weaker than down force F’(X) for any ratio ggg{;

height fg(X') got too high and exceeded the convergence interval K. In Section 5 we will see

> 0, once the surface

that almost all PSO estimators satisfy Theorem 6.

4.2 Disjoint Support Optima

42.1 AreaSU\?

Consider the loss term LY\P(f) corresponding to the area SUV\”, where PY(X) > 0 and
PP (X) = 0. We are going to prove the below theorem (identical to part 2 of Theorem 1). The
motivation behind this theorem is that in many PSO instances M satisfies one of its conditions.
In such case the theorem can be applied to understand the PSO convergence behavior in the
region SY\”. Moreover, this theorem further supports the PSO framework’s perspective, where

virtual forces are pushing the model surface towards the physical equilibrium.

Theorem 7. Define an arbitrary space F of functions from SV\P to R, with h € F being its
element. Then, depending on properties of a function MY, f* = arginf jcz LV\P(f) must
satisfy:

1. IfVseR: MY(X,s) >0, then f*(X) = oo.
2. IfVs e R: MY(X,s) <O, then f*(X) = —oc.

3. IfVseR: MY(X,s) =0, then f*(X) can be arbitrary.

4. IfVseR:
=0, s=h(X)
MY(X,s) = >0, s<h(X) (4.8)
<0, s>h(X)

then f*(X) = h(X).
5. Otherwise, additional analysis is required.

30

Proof. The inner problem solved by inf ;e x LY\ (f) for each X € SY\" is:

s* = arginf —z - MU(X, s), (4.9)
seR

where z € Rsg. Given MY(X,s) is differentiable, a derivative of the inner cost is —z -
MV (X, s). If the inner cost is a strictly decreasing function of s, Vs € R : MY(X, s) > 0, then
the infimum is infyeg —z - MY (X, s) = —oo and s* = oo - the inner cost will be lower for the
bigger value of s. This leads to the entry 1 of the theorem. Similarly, if the cost is a strictly
increasing function, Vs € R : MY(X,s) < 0, then the infimum is achieved at s* = —oo,
yielding the entry 2.

IfVs € R: MY(X,s) = 0, then the inner cost is constant. In such case the infimum is
obtained at any s € R, hence the corresponding f*(X) can be arbitrary (the entry 3).

Further, denote s’ = h(X). Conditions of the entry 4 imply that the inner cost in Eq. (4.9)
is strictly decreasing at s < s’ and strictly increasing at s > s’. Since it is also continuous
(consequence of being differentiable), its infimum must be at s* = s’. Thus, we have the entry
4: f*(X) =5 =h(X).

Otherwise, if MY (X, s) does not satisfy any of the theorem’s properties (1) — (4), a further
analysis of this particular magnitude function in the context of LV\" needs to be done.

|

422 AreaS”\Y
Consider the loss term L”\Y(f) corresponding to the area S”\Y, where PY(X) = 0 and
PP (X) > 0. The below theorem explains PSO convergence in this area.

Theorem 8. Define an arbitrary space F of functions from SP\U to R, with h € F being its
element. Then, depending on properties of a function M”, f* = arginf jc z L°\Y(f) must
satisfy:

1. IfVs e R: MP(X,s) >0, then f*(X) = —ooc.
2. IfVs e R: MP(X,s) <0, then f*(X) = oo.

3. IfVseR: MP(X,s) =0, then f*(X) can be arbitrary.

4. IfVseR:
=0, s=h(X)
MP(X,5) = ¢ >0, s>h(X) (4.10)
<0, s<h(X)

then f*(X) = h(X).
5. Otherwise, additional analysis is required.

The proof of Theorem 8 is symmetric to the proof of Theorem 7 and hence omitted.

31

32

CHAPTER 5

Instances of PSO

Many statistical methods exist whose loss and gradient have PSO forms depicted in Eq. (3.3)
and Eq. (3.5) for some choice of densities PV and P”, and of functions M v, MP , MY and MP,
and therefore being instances of the PSO algorithm family. Typically, these methods defined
via their loss which involves the pair of primitives {MV[X, s], MP[X, s]}. Yet, in practice it
. . o U _ OMY(X,s) asp _ OMP(X,s)

is enough to know their derivatives { MY [X, s] = =5 ==, M"[X, s] = =5~} for the
gradient-based optimization (see Algorithm 3.1). Therefore, PSO formulation focuses directly

on { MY, MP”}, with each PSO instance being defined by a particular choice of this pair.

Moreover, most of the existing PSO instances and subgroups actually require MYV and MP
to be analytically known, while PSO composition eliminates such demand. In fact, many pairs
{MV, MP} explored in this thesis do not have closed-form known antiderivatives { MY, M}

Thus, PSO enriches the arsenal of available probabilistic methods.

In Tables 5.1-5.5 we show multiple PSO instances. We categorize all losses into two main
categories - density estimation losses in Tables 5.1-5.2 and ratio density estimation losses in
Tables 5.3-5.5. In the former class of losses we are interested to infer density P from its
available data samples, while P? represents some auxiliary distribution with analytically known
pdf function P (X') whose samples are used to create the opposite force £’ (X); this force will
balance the force Fyj (X') from PY’s samples. Further, in the latter class we concerned to learn a
density ratio, or some function of it, between two unknown densities PV and P? by using the

available samples from both distributions.

In the tables we present the PSO loss of each method, if analytically known, and the
corresponding pair { MY, MP}. We also indicate to what the surface f(X) will converge
assuming that PSO balance state in Eq. (3.2) was obtained. Derivation of this convergence
appears below. Importantly, it describes the optimal PSO solution only within the area SY"” C
R™. For X in SY\P or SP\Y, the convergence can be explained via theorems 7 and 8 respectively.
Yet, in most of the thesis we will limit our discussion to the convergence within the mutual

support, implicitly assuming SY = S”.

33

Method Final fy(X) and K/ References | Loss | MV (-) and MP"(-)

R:[10,61]

: —Ex.pv fo(X) - P°(X) 4 Ex.po %[fe(X)r
MY, MP: PP(X), fo(X)

DeepPDF F: PY(X),K=R-g

I

PSO-LDE F:logP’(X),K=R
(Log Density R: Introduced and thoroughly analyzed in this thesis,
Estimators) see Section 8.2

L: unknown

MY MDZ PD(X) exp fo(X)

bl

[lexp fo (X)) +[PP (X)]7] « [lexp fo (X)) +[PP (X)]7]

1
@

where « is a hyper-parameter

PSO-MAX F:logP?’(X),K=R
R: This thesis, see Section 13.2.1
L: unknown
MUY, MP: exp [— max [fp(X) — logPP(X), 0]],

exp [min [fp(X) — log PP (X), 0]]

NCE F:logP’(X),K=R
(Noise R:[39,126];
Contrastive [84,105];
Estimation) [83]
[40]
X X)]+PP(x X X)|+PP (X
L: EXNPU lOg = p['éi;[}g]&)] () + EXNIPD log & p[fHI(PD)(];-_) ()
MU MD' PD(X) EXp[fG(X)]

" exp[fa (D[FPP(X) explfa (X)[HPP(X)

IS F: logP’(X),K=R
(Importance ~ R: [105]

£

i —Expv fo(X) +Ex pp oxplfo(X)]

Sampling) FD(X)

I

MU, MP: 1’ exp|fo (X))

PP (X)

Table 5.1: PSO Instances For Density Estimation, Part 1

34

Method Final fy(X) and K/ References | Loss | MV (-) and MP"(-)

Polynomial F:logPY(X),K=R
R: [105]
ex X exp[2- fo (X
L: _EXNIP’U Ig[ng)(()) +EX~IPD % [E%(@?g]z)]
. exp[fo(X)] exp[2-fo (X))
MY, MP: Z5555 TP
Inverse F:logP’(X),K=R
Polynomial R: [105]
. 1_[PPOOP2 PP(X)
L Exrv 2 5o o) ~ Ex~r2 Sl (]
U p. _[PP(X))? PP (X)
M, M S 75 (50) xplfa]
Inverse E:logP’(X),K=R
Importance R: [105]
. . PP (X)
Samphng L: EXN[P’U exp[fo(X)] + EXNIPD f9 (X)
. _PP(XY)
M7, M7 ey |
Root F: VPU(X),K =Ry
Density R: This thesis
Estimation L: —Ex pv fo(X) - -P?(X)+Ex.pp d—_h | fe(X))PHE
MY, MP:PP(X) | fo(X)|* - sign[fo(X)]
PDF F: log [[PY «PV](X)], K =R
Convolution R: This thesis
Estimation L: —Ey sv fo(X) +Ex.pp explfo(X)]

PP (X)
MU, MP: 1’ exp[fo (X)]

PD(X)
where * is a convolution operator and
PY(X) = PY(X) * PY(X) serves as up density,
whose sample X ~ PY can be obtained via X = XV + v
with XV ~ PY(X) and v ~ PY(X), see Section 12

Table 5.2: PSO Instances For Density Estimation, Part 2

35

Method Final fo(X) and K/ References | Loss | M (-) and M"(-)
”Unit” Loss F: Kantorovich potential [142],
only if the smoothness of fy(X) is heavily restricted
R: see Section 10.3
L: —Ex pv fo(X) +Expp fo(X)
MY, MP”: 1,1
EBGAN E: fo(X)=mat {X :PY(X) <P?(X)}, and fy(X) = 0 otherwise
Critic R: [153], see Section 7.6
L: Ex pv fo(X) + Ex.pp max[m — fo(X),0]
MY, MP: -1, —cut_at [X, fo(X),m]
where the considered model fy(X) is constrained to have non-negative outputs
uLSIF F: 2p53, K = Rsg
R: [56,129,150];
[88,138]
2
L: —Eyx pv fo(X) + Expo 5[fo(X)]
MY, MP: 1, fp(X)
KLIEP F: ff;g((X o, K =R
R: [130,131,138]
L: _EXNIF’U log fo(X) + Ex.po[fo(X) — 1]
MY, MP: .1
"~ fo(X)?
. . PUX) —
Classical E WPD(}(), = (0, 1)
GAN Critic R: [32]
L: —Ex. pv log Jo(X) — Expo log [1 - fe(X)]
U D. 1
M, M fe()’ 1=fo(X)
*for fop(X) = sigmoid(hg(X)) this loss is identical to Logistic Loss in Table 5.4
. PUX) —
(Noise-Data R: This thesis
Mixture L - EXN]P)U f@() +]EXN]P]W f@ (X)2
Ratio) MY, MP: 1,2fp(X)
where PM (X)) = 2PV (X) + 3PP (X) serves as down density,
instead of density P (X)
. PU(X) _
NDMLR F: log FUX)+ PO (X K=R<g
(Noise-Data R: This thesis
Mixture L: —Ex pv fo(X) + Ex.pm 2exp[fo(X)]
Log-Ratio) MY, MP: 1, 2exp|fo(X)]

where PM (X)) = 3PV (X) +
instead of density P (X)

3PP (X) serves as down density,

Table 5.3: PSO Instances For Density Ratio Estimation, Part 1

36

Method Final fp(X) and K/ References | Loss | MY (-) and M?™(-)

: . PY(X)
Classical F: log FUX)1PD(X)’ K=R,

GAN Critic R: This thesis

on log-scale L: Ey, pv exp[fo (X))

1
I EX~PD 108 Tl (X]

U D.
MY, MP: or) Toemlfy 0]
U
Power F: ngg, K=Rso
Divergence R: [80, 130]
Ratio L: —Ex.pv 280 4 By pp o0
Estimation MUY, MD: f (X)L, fo(X)>
U
Reversed F: gD((g, K =Rso
KL R: [138]
Li Ex-pv gty + Exopo 08 fo(X)
U D
MY, MP: e 7o)
U
Balanced E: ngg, K =R
Density R: This thesis
Ratio L —Ey_pulog [fo(X) + 1] + Expo fo(X) — log [fo(X) + 1

. 1 fo(X)
MY, MP: oy 0

Log-density log X)) K =R

E [PD()

Ratio R: This thesis
L: —Ex pv fo(X) + Ex, pp exp[fo(X)]
MY, MP: 1, exp[fo(X)]

U _mD

Square E: W, K= (-1,1)

Loss R: [80]
L: By pu 5[1 — fo(X)]> + Expo 3[1 + fo(X))?
MU, MP: 1 — fg() 1 +f9(X)

- . PU(X) _
Logistic F: log PO(X)’ K=R
Loss R: [80]

L: Ey, pv log [11+ exp[—fg(Xl)]] + Ex.pp log [1 + exp[fo(X)]]

MY, M”: i (X e[(X)L

Table 5.4: PSO Instances For Density Ratio Estimation, Part 2

37

Method Final fy(X) and K/ References [Loss | MV (-) and M"(-)
Exponential E: 3 1] £ 83 K=R
Loss R: [80]

L: By pv exp[—fo(X)] + Ex pp exp[f5(X)]

MY, MP: exp[—fo(X)], exp[fp(X)]

U PP]

LSGAN F: W, K = (min [a, b] , max [a, b])
Critic R: [76]

L: Expv 5fo(X) — 8> + Expp 3[fo(X) — a]?

MY, MP:b— fo(X), fo(X) —

Kullback-Leibler F: 1+ log PDEQ’ K=R
Divergence R: [94]

L: —Ex.pv fo(X) + Expp exp[fo(X) — 1]

MY, MP: 1, exp[fo(X) — 1]

D

Reverse KL E: 5088 , K=R,g
Divergence R: [94]

L: —Ey pv fe(l)+ Ex. pp[—1 —log[— fo(X)]]

D.
R 713
: : .1, PYX)-PP(X) _

Lipschitz E: 3 PO PD (%) K=R
Continuity R: [154]
Objective L: —Expv [fo(X) = VX +1) +Exeo [fo(X) + V(X7 1]

MUY, MP: 1 — fo(X) 1 fo(X)

V fo(X)2+1 * V fo(X)2+1

LDAR E: arctan log IPDEX%’ K=(-%,%)
(Log-density R: This thesis
Atan-Ratio) L: unknown

MV. MP- 1 1

’ * expltan fo (X)]+1’ exp[— tan fp(X)]+1
LDTR F: tanh log PDEX§ K=(-1,1)
(Log-density R: This thesis
3

Tanh-Ratio) L:Ex.pv - [1— fo(X)]2 + EXNIP’D 5[+ fo(X))2

MY, MP: \/1—f9 \/1+f9

Table 5.5: PSO Instances For Density Ratio Estimation, Part 3

38

5.1 Deriving Convergence of PSO Instance

Given a PSO instance with a particular {PY, PP, MV, M "}, the convergence within S""” can
be derived by solving PSO balance state PY(X) - MV [X, f*(X)] = PP(X) - MP [X, f*(X)].

Example 1: From Table 5.1 we can see that IS method has MV [X, f(X)] = 1and M" [X, f(X

e}%{%” . Given that samples within the loss have densities XV ~ PY(X) and X? ~ PP(X),

we can substitute the sample densities and the magnitude functions { M"Y, M "} into Eq. (3.2) to
get:
PY(X) _ exp[f*(X)]/PP(X)

55 k = '(X) = logP¥(X), 5.1)

where we use an equality between density ratio of the samples and ratio of magnitude functions
to derive the final f*(X). Thus, in case of IS approach, the surface will converge to the log-
density log PY(X).

More formally, we can derive PSO convergence according to definitions of Theorem 5, using
magnitude ratio R and its inverse 1. The theorem allows us additionally to verify sufficient
conditions required by PSO framework. Furthermore, we can decide whether the restriction of

JF’s range is necessarily by testing criteria of Theorem 6.

Example 2: Consider the “Polynomial” method in Table 5.2, with MY [X, f(X)] = e’gg{%”

ex b ex
and M” [X, f(X)] = W. Then, we have %U&{}cég% = Pp[[,{%)} and hence R(X, s) =

ik Further, consider the convergence interval K to be entire R. Both conditions 1 and 2 of

exp s
PD(X
Theorem 5 are satisfied - R is continuous, strictly increasing and bijective w.r.t. domain R and

codomain R+, and both magnitudes are continuous and positive on the entire R. Additionally,
JF’s range need not to be restricted since K = R. Further, R has a simple form and its invert
is merely T'(X, z) = logIP?(X) + log z. The above T" and R are inverse of each other w.r.t.
the second argument, which can be easily verified. Next, we can calculate PSO convergence
as f¥(X) =T {X, ?;Zgﬂ = log P?(X) + log ﬁggg = log PY(X). Hence, "Polynomial”
method converges to log PV (X).

Example 3: Consider the LDAR method in Table 5.5, with MV [X, f(X)] = m

MP(X,f(X)) _ exp[tan f(X)]+1

_ 1
and M” [X, f(X)] = St O[T Then, MUK FX)) = exp[tan FOOIFT and hence
R(X,s) = %. Function R(X, s) is not bijective w.r.t. s € R - it has multiple

positive increasing copies on each interval (7k — 7,7k + 7). Hence, it does not satisfy the

necessary conditions. Yet, if we restrict it to a domain (7k — 5, 7k + §) for any k € Z, then
T T

272
satisfied. Moreover, Theorem 6 is not applicable here since magnitudes are not defined at points

Theorem 5 will hold. Particularly, if we choose K = () then all theorem’s conditions are

s € {§k}. Therefore, we are required to limit range of F to be K. The inverse of R for the
PU(X)
PP(X)"

considered K is 7'(X, z) = arctan log z. Hence, LDAR converges to arctan log

39

)=

5.2 Deriving New PSO Instance

In order to apply PSO for learning any function of X and %@

can be derived via Theorem 4. Denote the required PSO convergence by a transformation

T(X,z) :R"xR = Rs.t. f(X)=T [X, %&” is the function we want to learn. Then

. . . D . .
according to the theorem, any pair { MY, M} whose ratio R = %—U satisfies R = T~ (i.e.
inverses between K and R+ (), will produce the required convergence, given that theorem’s

, the appropriate PSO instance

conditions hold. Further, if conditions of Theorem 6 likewise hold, then no range restriction

over f is needed.

Therefore, to learn any function T [X , %}, first we obtain R(X, s) by finding an

inverse of T'(X, z) w.r.t. z. Any valid pair of magnitudes satisfying %58?3 = R[X,s]
will produce the desired convergence. For example, we can use a straightforward choice
MP [X,s] = R[X,s]and MV [X, s] = 1 in order to converge to the aimed target. Such choice
corresponds to minimizing f-divergence [92,94], see Section 6 for details. Yet, typically these
magnitude functions will be sub-optimal if for example M P is an unbounded function. When
this is the case, we can derive a new pair of bounded magnitude functions by multiplying the

old pair by the same factor ¢ [X, s] (see also Section 7.2).

_ PUX)-PP(X)

Example 4: Consider a scenario where we would like to infer f*(X) = FU(X) B0 (X)° sim-

ilarly to ”Square Loss” method in Table 5.4. Treating only points X € S”, we can rewrite
PUX)

our objective as f*(X) =];55;; and hence the required PSO convergence is given by
PD(X)

T(X,z) = Zi Further, its inverse function is given by R(X, s) = 1t£. Therefore, magnitude

%5&(3 = 1££ One choice for such magnitudes is MY [X,s] =1 — s

and MP” [X, s] =1+ s, just like in the ”Square Loss” method [80]. Note that the convergence

functions must satisfy

interval of this PSO instance is K = (—1, 1) which is X -invariant. Further, T is strictly increas-
ing and continuous at z € R and { MY, M”} are continuous and positive at s € K, hence
satisfying the conditions of Theorem 4. Moreover, { MY, M P} are actually continuous on entire
s € R, withVs < —1: MY(X,s) > M”(X,s)and Vs > 1: MY(X,s) < MP"(X,s). Since
MV and M” do not have the same sign outside of K, conditions of Theorem 6 are likewise
satisfied and the F’s range can be the entire R. Furthermore, other variants with the same PSO

balance state can be easily constructed. For instance, we can use MV [X, f(X)] = Dl(;(fi}();)))

and MP [X, f(X)] = gy with D(X, (X)) 2 [1 = f(X)[+ |1 + f(X)| instead. Such
normalization by function D(-) does not change the convergence, yet it produces bounded magni-
tude functions that are typically more stable during the optimization. All the required conditions
are satisfied also by these normalized magnitudes. Additionally, recall that we considered only
points within support of P?(X). Outside of this support, any X € SU'\” will push the model sur-
face f(X) according to the rules implied by MY; note also that MY changes signs at f(X) = 1,
with force always directed toward the height 4(X) = 1. Therefore, at points {X € SV\P}

the convergence will be f*(X) = 1, which is also a corollary of the condition 4 in Theorem

40

Description Target Function 7(X,z2) R(X,s) K

Density-Ratio Estimation 52 8% z s R<g
Log-Density-Ratio Estimation log ng; log z exp s R
Density Estimation PY(X) PP (X) -z 2asel Rso
Log-Density Estimation log PY(X) logP?(X) + log 2 % R

Table 5.6: Common target functions, their corresponding 7" and R mappings, and the convergence interval K. Note that for density
estimation methods (2 last cases) the auxiliary pdf PP (X) is known analytically.

7. Finally at points outside of both supports there is no optimization performed, and hence
theoretically nothing moves there - no constraints are applied on the surface f in these areas.
Yet, in practice f(X) at X ¢ SY-? will be affected by pushes at the training points, according to
the elasticity properties of the model expressed via kernel gg (X, X”) (see Section 7.5 for details).

In Table 5.6 we present transformations 7" and R for inference of several common target
functions. As shown, if PP (X) is analytically known, Theorem 4 can be used to also infer any
function of density PV (X), by multiplying z argument by P?(X) inside T". Thus, we can apply
the theorem to derive a new PSO instances for pdf estimation, and to mechanically recover many
already existing such techniques. In Section 8.2 we will investigate new methods provided by

the theorem for the estimation of log-density log PV (X).

Remark 9. The inverse relation R = T~ and properties of R and T described in theorems
4 and 5 imply that antiderivatives R [X, s] 2 Jo, R(X, t)dt and T[X, 22 Jo R(X, t)dt are
Legendre-Fenchel transforms of each other. Such a connection reminds the relation between
Langrangian and Hamiltonian mechanics, and opens a bridge between control and learning
theories. A detailed exploration of this connection is an additional interesting direction for

future research.

Further, density of up and down sample points within PSO loss can be changed from the
described above choice PV and IP?, to infer other target functions. For example, in NDMR
method from Table 5.3 instead of P”(X) we sample 3PV (X) + $PP(X) to construct training
dataset of down points (denoted by { X} in Eq. (3.1)). That is, the updated down density is
mixture of two original densities with equal weights. Then, by substituting sample densities
and appropriate magnitude functions { MV [X, f(X)] = 1, M" [X, f(X)] = 2f(X)} into the
balance state equilibrium in Eq. (3.2) we will get:

P7(X) _ 2f(X)

IPU(X) +ipP(X) 1

PY(X)

T PU(X) +PP(X) 62

= f(X)

The NDMR infers the same target function as the Classical GAN Ceritic loss from Table 5.3,
and can be used as its alternative. Therefore, an additional degree of freedom is acquired by
considering different sampling strategies in PSO framework. Similar ideas will allow us to also

infer conditional density functions, as shown in Section 9.

41

Im Im

Re Re Re

(b) (0)

Figure 5.1: (a) Correspondence between different quadrants of a complex plane and different parts of ¢ [X, s]. The quadrant I is
where ¢ must be for any s € K. Additionally, if ¢ is continuous w.r.t. s € R and if it is located in the quadrant IV at s € K™ and in
the quadrant IT at s € K™, then we are allowed to reduce restrictions over the function range. Further, the quadrant I1I is associated

U
with “negative” PSO whose magnitudes have negative outputs and that can learn any decreasing target function 7’ [X , ETEXX;} .

(b)-(c) ¢ [X, s] for two PSO instances is depicted, (b) "Square Loss” from Table 5.4 and (c) “Classical GAN Critic Loss” from
Table 5.3. Colors red, blue and yellow represent parts of cat s € K—, s € K and s € KT respectively. As seen, in case of (b)
the requirements are satisfied and hence there is no need to restrict the range of functions within . In contrast, in (c) the curve
¢ [X, s] parametrized by s is not even continuous, hence F’s range must be K.

5.3 PSO Feasibility Verification and Polar Parametrization

Sometimes it may be cumbersome to test if given { MY, M "} satisfy all required conditions
over sets K—, K and K*. Below we propose representing magnitudes within a complex plane,
and use the corresponding polar parametrization. The produced representation yields a graphical
visualization of PSO instance which permits for easier feasibility analysis.

For this purpose, define PSO complex-valued function as ¢ [X, s] & MV [X, s]+MP [X, s]-
© whose real part is up magnitude, and imaginary part - down magnitude. Further, denote by ¢,
and ¢, the angle and the radius of ¢ defined as ¢, [X, s] = atan2(M [X,s], MV [X, s]) and
e [X, 8] = \/ MU [X,s]* + MP[X, s]?. Conditions from theorems 5 and 6 can be translated

into conditions over ¢ [X, s] as following.

Lemma 10 (Complex Plane Feasibility). Consider PSO instance that is described by a complex-
valued function c[X, s] : R" x R — C and some convergence interval K = (Smin, Smaz)-
Assume:

1. c[X, s] is continuous at any s € K, with ¢, [X,s] > 0and 0 < ¢, [X,s] < .

2. c, X, s] is strictly increasing and bijective w.r.t. domain s € K and codomain (0, 7).

Then, given that the range of F is K, the minima f* = arginf;cr Lpso(f) will satisfy

VX eSS fX(X)=T [X, g#é”, where T [X, 2] & ¢! [X, atan(z)]. Further, F’s range

can be entire R if the following conditions hold:
1. ¢[X,s] is continuous on s € R, with ¢, [X, s] > 0.
2.VseK :3n<c (X, s) <2
3 VseKt: 2 <c, [X,s]<m

Proof. The necessary positivity of magnitudes over s € K from Theorem 5 implies Vs € K :

[0 < c,[X,s] < F]V[er[X, s] > 0]. Further, conditions of Theorem 6 are equivalent to require

42

one-to-one Magnitude Ratio R [X, f(X)] one-to-many

7 == R=

- one-to-many
PSO Convergence T' [X, ﬁb%] PSO Magnitude Pair { MV, MP}

Figure 5.2: Schematic relationship between PSO mappings of Theorem 4 and Theorem 5. 7" and R are inverse functions, with
one-to-one relation between them. R is ratio of { MY, M P}, with infinitely many choices of the latter producing the same ratio.
For this reason, many pairs of magnitude functions will yield the same PSO convergence 7"

Vs € K™ [%7‘(‘ <cy X, s] < 277] Ve [X,s] >0l and Vs € KT : [T <c/[X,s] <7|V
3
]
PSO family mentioned in Section 4.1.2, which can be formulated by switching between up and
PU(X)}

down terms of PSO family and which allows to learn any decreasing function T’ {X s BO(X)

[er [X, s] > 0]. Likewise, observe that the range of angles (, 57) is allocated by “negative”

See also the schematic illustration in Figure 5.1a.

Further, continuity of ¢[X, s] (over K or over entire R) is equivalent to continuity of

magnitudes enforced by theorems 5 and 6. Likewise, it leads to continuity of ¢, [X, s].

Moreover, given that ¢[X,s] at s € K is located within the quadrant I of a complex
plane, its angle can be rewritten as ¢, [X,s] = atan (%) = atan (R[X, s]), with
R[X,s| = tanc,[X,s] and T[X,z] = R™'[X,2] = ¢! [X,atan(z)] where c¢,' is an
inverse of ¢, w.r.t. second argument. Hence, continuity of ¢, (implied by continuity of c) yields

continuity of R at s € K, which is required by Theorem 5.

Finally, strictly increasing property of ¢, is equivalent to the same property of R since they
are related via strictly increasing tan(-) and atan(-). Similarly, bijectivity is also preserved,

with codomain changed from R to (0, 5) due to limited range of atan(-).

The above lemma summarizes conditions required by PSO framework. As noted in Section
4.1.2, this condition set is overly restrictive and some of its parts may be relaxed. Particularly,
we speculate that continuity may be replaced by continuity almost everywhere, and “increasing”

(without “strictly”’) may be sufficient. We shall address such condition relaxation in future work.

To verify feasibility of any PSO instance, ¢ [X, s] can be drawn as a curve within a convex
plane where conditions of the above lemma can be checked. In Figures 5.1b and 5.1c we
show example of this curve for ”"Square Loss” from Table 5.4 and ”Classical GAN Critic Loss”
from Table 5.3 respectively. From the first diagram it is visible that the curve satisfies lemma’s
conditions, which allows us to not restrict /s range when optimizing via ”Square Loss”. In the
second diagram conditions do not hold, leading to the conclusion that ’Classical GAN Ceritic

Loss” may be optimized only over F whose range is exactly K.

43

5.4 PSO Subsets

Given any two densities PV and PP, all PSO instances can be represented as a set of all feasible
magnitude pairs C = {[MY, MP] : feasible(MY, MP)}, where feasible(-) is a logical
indicator that specifies whether the arguments satisfy conditions of Theorem 5 (for any set
K) or not. Below we systematically modulate the set C into subgroups, providing an useful
terminology for the later analysis.

The relation of PSO mappings is presented in Figure 5.2. As observed, many different
PSO instances have the same approximated target function. We will use this property to
divide the set C of all feasible PSO instances into disjoint subsets, according to the estimation
convergence. Considering any target function with the corresponding mapping 7', we denote
by C[T] & {[MY,MP] : [MY,MP] € CV %—5 = T~!} all feasible PSO instances that
converge to 7. The subset C[T'] is referred below as 1”s PSO consistent magnitude set - PSO-
CM set of T" for shortness. Further, in this thesis we focus on two specific PSO subsets with
T(X,z) = PP°(X) - zand T(X, z) = logP”(X) + log 2 that infer PY(X) and log P (X),
respectively. For compactness, we denote the former as A and the latter as B. Likewise, below
we will term two pairs of magnitude functions as PSO consistent if they belong to the same
subset C[T] (i.e. if their magnitude ratio is the same).

Given a specific PSO task at hand, represented by the required convergence 7', it is necessary
to choose the most optimal member of C[T'] for the sequential optimization process. In Sections
7 and 8 we briefly discuss how to choose the most optimal PSO instance from PSO-CM set of

any given 7', based on the properties of magnitude functions.

5.5 PSO Methods Summary

The entire exposition of this section was based on a relation in Eq. (3.2) that sums up the
main principle of PSO - up and down point-wise forces must be equal at the optimization
equilibrium. In Tables 5.1-5.5 we refer to relevant works in case the specific PSO losses were
already discovered in previous scientific studies. The previously discovered ones were all based
on various sophisticated mathematical laws and theories, yet they all could be also derived in a
simple unified way using PSO concept and Theorem 4. Additionally, besides the previously
discovered methods, in Tables 5.1-5.5 we introduce several new losses for inference of different
stochastic modalities of the data, as the demonstration of usage and usefulness of the general
PSO formulation. In Section 6 we reveal that PSO framework has a tight relation with Bregman
and " f” divergencies. Furthermore, in Section 10.1 we prove that the cross-entropy losses are
also instances of PSO. Likewise, in Section 10.2 we derive Maximum Likelihood Estimation
(MLE) from PSO functional.

44

CHAPTER 6

PSO, Bregman and ” /> Divergencies

Below we define PSO divergence and show its connection to Bregman divergence [18,30] and

f-divergence [2], that are associated with many existing statistical methods.

6.1 PSO Divergence

Minimization of Lpgso(f) corresponds also to minimization of:

f(X)
Dpso(f*, f) £ Leso(f)—Lpso(f*) = - 11>U/ MY(X, t)di+ E i)MD(X Jt)dt
6.1
where f*(X) =T {X , %é” is the optimal solution characterized by Theorem 5. Since f*

2, 9

is unique minima (given that theorem’s
Lpso(f*), we have the following properties: Dpso(f*, f) > 0and Dpgo(f*, f) =0 —
f* = f. Thus, Dpgo can be used as a “distance” between f and f* and we name it PSO

sufficient” conditions hold) and since Lpgo(f) >

divergence. Yet, note that Dpgp does not measure a distance between any two functions;
instead it evaluates distance between any f and the optimal solution of the specific PSO instance,
derived from the corresponding {PY,P?, MY, MP} via PSO balance state.

6.2 Bregman Divergence

Define F to be a convex set of non-negative functions from R" to R>. Bregman divergence

for every ¢, p € F is defined as Dy (g, p) = 1(g) — $(p) — [Vqth(a(X)) - [a(X) — p(X)] dX,
where (1) is a continuously-differentiable, strictly convex functional over u € F, and V,,

is the differentiation w.r.t. ¢. When ¢ (x) has a form ¢(u) = [@(u(X))dX with a strictly
convex function ¢ : R — R, the divergence is referred to as U-divergence [26] or sometimes as

separable Bregman divergence [35]. In such case Dy, (g, p) has the form:
Dy(q,p) = /so [¢(X)] = ¢ [p(X)] — ¢ [p(X)] - [a(X) — p(X)] dX. (6.2)

45

The above modality is non-negative for all ¢,p € F and is zero if and only if ¢ = p, hence
it specifies a “distance” between ¢ and p. For this reason, D,(q,p) is widely used in the
optimization min, D (¢, p) where q usually represents an unknown density of available i.i.d.
samples and p is a model which is optimized to approximate g. For example, when ¢(s) =
s-log s, we obtain the generalized KL divergence Dy (q,p) = [¢(X) - [log¢(X) — 1] —¢(X)-
log p(X) + p(X)dX [137]. It can be further reduced to MLE objective — Ex.q(x) log p(X)
in case p is normalized, as is shown in Section 10.2.

Further, the term 1 () £ [¢ [1(X)] dX is called an entropy of y, and dy, (g, p) = —(p) —
[¢ [p(X)] - [¢(X) — p(X)]dX is referred to as a cross-entropy between ¢ and p. Since
Dy(q,p) = dy(q,p) — dy(q, q), usually the actual optimization being solved is min,, d,(q, p)

where the cross-entropy objective is approximated via Monte-Carlo integration.

Claim 11. Consider a strictly convex and twice differentiable function @ and two densities PV

and PP that satisfy S C SP. Likewise, define magnitudes { MV [X, s] = ¢ (s), M" [X,s] =

;gl(/)(;)) } and a space of non-negative functions F. Then PSO functional and PSO divergence

are equal to U-cross-entropy (up to an additive constant) and U-divergence defined by o,

respectively:
1. VfeF:Lpso(f)=d,(P",f)
2. Vf € F:Dpso(PY, f) = Dy(PY, f)

Proof. First, primitives corresponding to the above magnitude functions are {MV [X, s] =

o' () + cu, MP [X, s] = W{;;)f;;@)] + ¢p}, where ¢, and ¢, are additive constants. Denote

er = cp — cp. Introducing above expressions into L pgo defined in Eq. (3.3) will lead to:

VfEFs Lpsolf) = [—p (X)) [FOOMF) = BU(X)) dX ber = dp (P, f)ber.

(6.3)
Further, according to Table 5.6 the minimizer f* of Lpgso(f) for a given {MY, MP"} is
PY(X). Therefore, Eq. (6.1) leads to Dpso(f*, f) £ Lpso(f) — Lpso(f*) = d,(PY, f) —
do(BY, %) = do(BY, f) — do(BY, BY) = Dy(BY, f).

Function ¢ has to be twice differentiable in order to solve min,, d,(q, p) via gradient-based
optimization - derivative of d,, (g, p) w.r.t. p involves ¢”. Hence, this property is typically satis-
fied by all methods that minimize Bregman divergence. Furthermore, if " (s) is a continuous
function then the specified magnitudes are feasible w.r.t. Theorem 5. Otherwise, we can verify
a more general set of conditions at the end of Section 4.1.1 which is satisfied for the claim’s
setting.

|

From the above we can conclude that definitions of Bregman and PSO divergencies coincide
when the former is limited to U-divergence and the latter is limited to magnitudes that satisfy
%5&(3 = PD? w7+ Such PSO subset has balance state at f*(X) = PY(X) and is denoted
in Section 5.4 as A. It contains all PSO instances for the density estimation, not including

46

log-density estimation methods in subset B. Further, since Lpso(f) = d,(PY, f), a family of
algorithms that minimize U-divergence and PSO subset A of density estimators are equivalent.
However, in general PSO divergence is different from Bregman as it can also be used to measure
a “distance” between any PSO solution f*, including even negative functions such as log-
(see Section 5), and any f € JF without the

density log PY(X) and log-density-ratio log ff,fg 88

non-negative constraint over J.

6.3 f-Divergence

Define ¢ and p to be probability densities so that q is absolutely continuous w.r.t. p. Then,
f-divergence between ¢ and p is defined as Dy(q,p) = [p(X p(X;)dX, where ¢ : R — R
is a convex and lower semicontinuous function s.t. qb() =0. Th1s divergence family contains
many important special cases, such as KL divergence (for ¢(z) = z - log z) and Jensen-Shannon
divergence (for ¢(2) = —(z + 1) - log 12 + 2 - log 2).

In [92] authors proved that it is lower—bounded as:

where ¢° is the convex-conjugate function of ¢: ¢°(s) £ sup,ep{z - s — #(2)}. The above
X)

expression becomes an equality when ¢’ ()) belongs to a considered function space F. In

such case, the supremum is obtained via f ()=¢' (m) Therefore, the above lower bound
is widely used in the optimization max ¢ Jy(f, ¢, p) to approximate Dy (g, p) [92], and to learn
any function of q [94]

Claim 12. Consider a strictly convex and differentiable function ¢ s.t. ¢(1) = 0, its convex
conjugate ¢¢, and two densities PV and PP that satisfy SY C SP. Likewise, define PSO
primitives {MV [X,s] = s, MP [X, s] = ¢°(s)} and assume that ¢’(]P,D (i((;) is contained in a
Sfunction space F. Then PSO functional and f-divergence have the following connection:

1. VfeF:Lpso(f) =—Js(f,P”,P”) and
U
[=argmingcr Lpso(f) = argmax ez Jo(f,P7, P?) = ¢/(£DE§)

2. VfeF: Dy P°)=—Lpso(f*) > —Lpso(f)

Proof. First, introducing the given { MY, M™} into Eq. (3.3) leads to Lpgo(f) = —Js(f, PV, PP).

Further, since {MV [X,s] = 1, M? [X,s] = ¢“(s)} we have %U&(8] = = ¢“(s). Denote

R[X,s] = %U&(ﬁ ¢“'(s) and observe that its inverse is 7' [X, z] = ¢'(z) due properties

of LF transform. Applying Theorem 5, we conclude f*(X) = ¢/ (P D) Finally, since we
assumed f* € F, we also have Dy (P, P”) = Jy(f*, P, P") = —Lpso(f*).

The required by claim strict convexity and differentiability of function ¢ are necessary in
order to recover the estimation convergence, as was also noted in Section 5 of [92]. Likewise,

these properties ensure that derivatives ¢’ and ¢’ are well-defined. Further, above magnitudes

47

PP(X) -z

MU

Figure 6.1: Schematic relation between PSO and its two subgroups related in Claim 11 and Claim 12. All PSO instances within
C can be indexed by the convergence T', where each C[T'] can be further indexed by function MY (given T and MY, MP is
derived as MP [X,s] = T~1[X,s] - MY [X, s]). Thus, all elements of C can be viewed as a table indexed by T" and MV
The column corresponding to T'[X, z] = PP (X)) - z encapsulates PSO methods referred by Claim 11 that minimize a separable
Bregman divergence, and the row corresponding to MY [X, s] = 1 - methods from Claim 12 that approximate f-divergence. The

column-row intersection is obtained at MV [X,s] = 1, MP [X,s] = P%m and T [X, 2] = PP(X) - 2.

satisfy the requirements of PSO framework since the PSO derivation in Section 4.1.1 agrees
with derivation in [92] when the mapping G considered in our proof is equal to G(X, s) = s.
Finally, observe that given the above pair of {MY, M}, the primitives M7 and M™ can be
recovered up to an additive constant. This constant does not affect the outcome of PSO inference
since the optima f* of PSO functional stays unchanged. Yet, it changes the output of Lpso(f)
and thus for arbitrary antiderivatives { M7, M} the identity Dy(PY,PP) = —Lpso(f*) will
not be satisfied. To recover the correct additive constant, we can use information produced by
¢(1) = 0. Specifically, for the considered above setting the “proper” antiderivative MP of MP
is the one that satisfies M [X,s'] = s’ where s’ £ ¢/(1).
[

Hence, in light of the above connection PSO framework can be seen as an estimation of
a negative f-divergence between PV and P”, —D4(PY,P”). Likewise, PSO is identical to an
estimation framework of [94] when the former is limited to have magnitudes {M" [X, s] =
1, M" [X,s] = ¢“(s)}. Considering the terminology of Section 5.4, such set of magnitude
functions can be obtained by retrieving from each PSO subset C[T'] an particular magnitude
pair with MV = 1 and M” = T—!, with all collected pairs being equivalent to the estimation
family of [94], as shown in Figure 6.1. Due to such limitation this algorithm family is a strict
subgroup of PSO.

Furthermore, the formulation of this framework in Eq. (6.4) can be generalized as:

. ¢
min— E GIX.J(X)]+ E_¢°[X.GX. /0], 65)
where f is replaced by a transformation G(X, s) : R™ x R — R over the inner model f, and
where ¢° is the convex-conjugate of ¢(X, z) : R” xR — R that was extended to accept two argu-
ments. Consequently, (G can be selected to obtain any required convergence f* = G~ 1O ¢'® %—LU,
, where ® defines the composition via a second argument g © h <= ¢g(X, h(-)). Such extension
parametrized by a pair {¢°, G} becomes identical to PSO parametrized by a pair {MY, M},

48

as is evident from our derivation in Section 4.1.1. Particularly, the parametrization { MY, M"}
can be recovered from {¢¢, G} via MU [X, s] = G[X, s] and MP [X,s] = ¢ [X, G [X, ¢]].

In the backward direction, {¢¢, G} can be recovered from { MY, MP} as following. Denote
the corresponding derivatives by { MY, M P}, and their ratio by R[X,s]. Further, denote
s*[X] £ T[X,1] where T is an inverse of R w.r.t. second argument. Then, {¢°,G} can
be obtained via G [X,s] = MY [X,s] and ¢°[X,s] = M” [X,G~'[X,s]] + a[X], with
alX] 2 MV (X, s [X]] — MP [X, s* [X]]. Note that the additive X -dependent component
a[X] ensures ¢¢[X,s'] = s’ at ' = ¢/ [X, 1], which produces the condition ¢ [X,1] = 0
required by the definition of f-divergence. Thus, for the above “’properly” normalized ¢ the
expression in Eq. (6.5) is equal to —D,(PY, PP), where we extend f-divergence to have a form!
Dy(g,p) = [p(X) - ¢ | X, 23] dX.

Moreover, the relation between parametrizations {¢¢, G} and { MY, M "} allows us to com-
pute Dy (PY,P”) from PSO loss Lpso(f) even in case of arbitrary antiderivatives {MV, MP}
that were not necessarily “properly” normalized. Specifically, Dy(PY,P”) can be recovered
from Lpgo(f*) = minser Lpso(f) via:

Dy(P",P") = ~Lpso(f*) =B, B=_E alX]. (6.6)
Furthermore, if {}MY, M} depend only on their second argument, which is often the case, then
T [X, 2] is also only a function of z and the additive constant 3 = o = MV [T (1)]—MP [T (1)]
does not require the expected value computation.

The extension in Eq. (6.5) requires a remark about novelty and usefulness of PSO compared
to works in [92,94]. First, note that the generalization in Eq. (6.5) was not proposed by
any study, to the best of our knowledge, although the original paper [94] was considering a
transformation G [f(X)] to control the domain of particular ¢¢. Likewise, we note that the
implied by f-divergence framework restriction MY [X, s| = 1 over up magnitude inevitably
causes M P [X, s] to be an unbounded function. Such unboundedness property causes instability
during optimization as discussed and empirically shown in sections 7.2 and 13 respectively. In
contrast, PSO formulation allows to easily construct bounded magnitudes for any desired target
function by removing the aforementioned restriction (see Section 7.2 for details).

Further, there are three main points of difference between two estimation procedures. PSO
is defined via {MY, MP}, permitting {MY, MP} to not have an analytical form which in
turn increases the number of feasible estimators. This allows us to propose novel techniques
not considered before, such as PSO-LDE in Section 8.2 which is shown in Section 13 to be
superior over other state-of-the-art baselines. Further, using G [X, f(X)] instead of G [f(X)]
is important to allow more freedom in selecting the required convergence f*. Particularly,
employing PSO to learn the density PV (X) is possible only under this two-argument setting.
Finally, PSO allows for a better intuition which is not available for the f-divergence formulation

'This extended modality can be shown to satisfy the non-negativity Dg(q,p) > 0 and the identification
Dy(q,p) = 0 < ¢q = p, required by the statistical divergence definition. We leave the proof of that for future work
since it is not the main focus of this thesis.

49

in [94], and can further be used to analyze convergence outside of the mutual support SV"”.

6.4 Divergence Relation Summary

Due to above links PSO loss can be rewritten as Lpso(f) = Dpso(f*, f) — Dy(PY,P") — B,
where PSO divergence Dpso(f*, f) can be considered as an extension of separable Bregman
divergence and where Dy (PY,P”) is f-divergence defined via some ¢. Further, minimization
of Lpso(f) is same as the minimization of PSO divergence between f* and f. Finally, at the

convergence f = f*, Dpgo(f*, f*) becomes zero and L pso(f*) is equal to —Dy(PY,PP)—f.

50

CHAPTER 7

Properties of PSO Estimators

In above sections we saw that PSO principles are omnipresent within many statistical techniques.
In this section we will investigate how these principles work in practice, by extending our
analysis beyond the described above variational equilibrium. Particularly, we will study the
consistency and the convergence of PSO, as also the actual equilibrium obtained via GD
optimization. Furthermore, we will describe the model kernel impact on a learning task and
emphasize the extreme similarity between PSO actual dynamics and the physical illustration in
Figure 3.1. Likewise, we will propose several techniques to improve the practical stability of
PSO algorithms.

7.1 Consistency and Asymptotic Normality

PSO solution fy- is obtained by solving miny,c Lpso(fs), and hence PSO belongs to the
family of extremum estimators [3]. Members of this family are known to be consistent and
asymptotically normal estimators under appropriate regularity conditions. Below we restate the
corresponding theorems.

Herein, we will reduce the scope to PSO instances whose up and down densities have an
identical support. This is required to avoid the special PSO cases for which fy~ has convergence
at infinity outside of the mutual support (see theorems 7 and 8). Although it is possible to evade
such convergence by considering F whose functions’ output is lower and upper bounded (see
Section 7.6), we sidestep this by assuming S¥ = S”, for simplicity.

The empirical PSO loss over NV samples from PV and N” samples from P” has a form:
U D
Lpso (fo) = ZMU 7 Jo(XD)) ZMD P (XD,

. . ~NU ND . .
with its gradient Vo Lpg5' (fp) being defined in Eq. (3.1).
Theorem 13 (Consistency). Assume:

51

1. Parameter space © is a compact set.
2. Lpso(fy) (defined in Eq. (3.3)) is continuous on 6 € ©.

3. 319" € ©,¥X € SUP L PY(X) - MV [X, for (X)] = PP(X) - MP [X, for (X)].

4. supgeeo ﬁgngD(fg) — Lpso(f@)’ 2,0 along with min(NV, N?) — oo.

A ~NU D A
Define 0 yu yp = argmingcg L]}\,[S’ON (fo). Then Onuv b converges in probability to 0% along
with min(NY, N?) — oo, é\NU’ND 2 9.

The above assumptions are typically taken by many studies to claim the estimation consis-
tency. Assumption 3 ensures that there is only single vector 8* for which PSO balance state is
satisfied. Hence it ensures that L pso(fy) is uniquely minimized at 6%, according to Theorem 1.
Assumption 4 is the uniform convergence of empirical loss towards its population form along
with min(NY, N?) — oo. The above consistency statement and its proof appear as theorem
2.11in [90].

Theorem 13 ensures the estimation consistency of PSO under technical conditions over
space ©. However, some of these conditions (e.g. compactness of ©) are not satisfied by NNs.
Another way, taken by [57,92], is to use a complexity metric defined directly over the space F,
such as the bracketing entropy. We shall leave this more sophisticated consistency derivation for
future work.

For asymptotic normality we will apply the following statements where we use notations
To(X, X') 2 Vofo(X) - Vafo(X)T, N & NV 4 NP, 7 2 NT pur(X, 5) & OM0Xs) g

2 N
MP(X,s) & OMIXs),

Lemma 14 (Hessian). Assume 30* € O s.t. VX € SU"P : PY(X) - MY [X, fo«(X)] =
PP(X) - MP X, fo«(X)]. Denote PSO convergence as fg«(X) =T {X, g#éﬂ = f*(X),
according to Theorem 5. Then the Hessian H of population PSO loss at 0* has a form:

H = V@GLPSO(fQ*) = _XrIvEPU MY [Xv f*(X)]IG*(Xa X)+Xr1\[j:PD M>! [Xa f*(X)]IG*(X’X)
(7.2)

Lemma 15 (Gradient Variance). Under the same setting, the variance of
#NU ND * > NU ND 1 .
VolLlpgy (fe) at 0 has a form Var {V@LPSO (fe*)} = +J where:

T+1 - N
7= B MUK OO T (X, X))+
1) E MY P T (X, X)) -
—(TJFTI)QXEPU MY X, f(X)]- M2 (XD fH(X)] - Zoe (X, XT). (73)
X'~PP

#H and J have several additional forms that appear in Appendix A along with the lemmas’

proofs.

52

Theorem 16 (Asymptotic Normality). Given assumptions and definitions of Theorem 13, as-

sume additionally:

1. 0" € int(©).

2. ﬁgg’OND (fo) is twice continuously differentiable in a neighborhood of 6*.

3. VooLpso(fe) is continuous in 6.

4. Both J and # are non-singular matrices.

5. Each entry of Voo Lpso(fg) and of J is uniformly bounded by an integrable function.
6. T > 0 is a finite and fixed scalar.

Then \/N - |:9ANU7ND - 9*} converges in distribution to N'(0, H =1 T H 1) along with N — oco.

Proof of the above theorem is in Appendix B. Thus, we can see that for large sample sizes
the parametric estimation error /NU + NP . [é NUND — 9*} is normal with zero mean and
covariance matrix ¥ = # 172 ~!. Further, it is possible to simplify an expression for ¥
when considering { MY, M} of a specific PSO instance. Observe also that none of the above

theorems and lemmas require the analytical knowledge of {M v MP }.

7.2 Bounded vs Unbounded Magnitude Functions

Any considered functions { MV, M P} will produce PSO balance state at the convergence, given
that they satisfy conditions of Theorem 5. Further, as was shown in Section 5, there is infinite
number of possible magnitudes within C[T'] that will lead to the same convergence 7T'. Thus, we
need analytical tools to establish the superiority of one magnitude function pair over another.
While this is an advanced estimation topic from robust statistics and is beyond this thesis’s
scope, herein we describe one desired property for these functions to have - boundedness.

In Tables 5.1-5.5 we can see many choices of { MY, M”}, with both bounded (e.g. NCE
in Table 5.1) and unbounded (e.g. IS in Table 5.1) outputs. Further, note that IS method has
a magnitude function M” [X, fo(X)] = % with outputs that can be extremely high
or low, depending on the difference [fp(X) — logP”(X)]. From Eq. (3.1) we can likewise
see that the gradient contribution of the down term in PSO loss is M” [X, fo(X)] - Vg fo(X).
Thus, in case fp(X) > logP”(X), high values from M ”(-) will produce gradients with
large norm. Such large norm causes instability during the optimization, known as exploding
gradients problem in DL community. Intuitively, when we make a large step inside §-space, the
consequences can be unpredictable, especially for highly non-linear models such as modern
NNs.

Therefore, in practice the loss with bounded gradient is preferred. Such conclusion was also
empirically supported in context of unnormalized density estimation [105]. Further, while it

is possible to solve this issue by for example gradient clipping and by decreasing the learning

53

rate [102], such solutions also slow down the entire learning process. PSO framework allows to
achieve the desired gradient boundedness by bounding magnitude functions’ outputs via the

following lemma.

Lemma 17 (PSO Consistent Modification). Consider any PSO instance [MY, M”] € C with
the corresponding convergence interval K on which criteria of Theorem 5 hold. Define D(X, s) :
R™ x K — R o be a continuous and positive function on s € K for any X € SV"P. Then,

[MY, MP] and [M]Vl[) | are PSO consistent (i.e. have identical convergence).

The proof is trivial, by noting that the ratio of both pairs is preserved which places them
into the same PSO subset C[T]. The feasibility of the second pair is a result of the first pair’s
feasibility and of the fact that a devision by D does not change the sign and continuity of
magnitude functions.

To produce bounded magnitudes, consider any pair of functions { MV [X,s], M" [X, s]}
with some desired PSO convergence 7. In case these are unbounded functions, a new pair of

bounded functions can be constructed as

MV [X,s] MP X, s]

Mlﬂ)unded [X’ S] = Mb’;unded [Xv 5] =

[MY X, s] [+ [MP[X, 8] | |MY X, s] |+ [MP X,]|

(7.4)

It is clear from their structure that the new functions’ outputs are in [—1, 1|. Furthermore, their

PSO convergence will be identical to the one of the original pair, due to Lemma 17. Similarly,
we can replace the absolute value also by other norms.

Magnitudes of many popular estimation methods (e.g. NCE, logistic loss, cross-entropy) are

already bounded, making them more stable compared to unbounded variants. This may explain

their wide adaptation in Machine Learning community. In Section 8.2 we will use the above

transformation to develop a new family of robust log-pdf estimators.

7.3 Statistics of Surface Change

Herein we will analyze statistical properties of fy’s evolution during the optimization. To this
end, define the differential dfy,(X) = f,,,(X) — fo,(X) as a change of fp(X) after t-th GD

iteration. Its first-order Taylor approximation is:

Afo(X) ~ —5 - Vo fo(X)T - VoLNge" (fo) =
NU
-]\}U ZMU z‘vaG(Xz'Uﬂ g@(X XU —7ZMD fg XD)]'QO(XaXiD))
=1

(7.5)

where ¢ is the learning rate, value of 6 is the one before GD iteration, and V ﬁgg’OND (fo) is the
loss gradient. When the considered model is NN, the above first-order dynamics are typically
a very good approximation of the real dfy(X) [54,63]. Further, when fy belongs to RKHS,

54

the above approximation becomes an identity. Therefore, below we will treat Eq. (7.5) as an

equality, neglecting the fact that this is only the approximation.

Theorem 18 (Differential Statistics). Denote F,(X) = PV(X) - MY [X, fo(X)] — PP(X) -
MP X, fo(X)] to be a difference of two point-wise forces Fjj and Fj defined in Section 3,
Fy)(X) = FJ(X) — F(X). Additionally, define Gy to be the integral operator [Gou|(-) =
J g0(-, X)u(X)dX. Then, considering training points as random i.i.d. realizations from the

corresponding densities PV and P”, the expected value and the covariance of dfy(X) at any

fixed 0 are:

B0 = 8- | B, [MY (X, ()] - 00X, X) -

= B M7 X fo(X)] ga(X. X’)H - 5-/99(X',X)-F9(X’)dX’ = 6. [GoFy)(X),
(7.6)

Cov [dfy(X), dfs(X)] = 6% - Vo fo(X)" - Var [VoLisss"" (fo)] - Vofo(X'), (D)

with Var [V(;I:gSUbND (f@)} being proportional to W.

Proof of the above theorem together with the explicit form of Var {VgligSU’OND (fg)] appears
in Appendix C. The theorem provides insights about stochastic dynamics of the surface fy
caused by point-wise forces Fjj'(X) and Fy’(X). Eq. (7.6) is an integral transform of the total
force Fy(X'), which can also be seen as a point-wise error. That is, on the average dfy(X)
changes proportionally to the convolution of [Fy (X') — F(X')] w.r.t. the kernel go(X’, X).
When F}j is larger than F’, after both being convolved via gy, then on the average fy(.X) is
pushed up, and vice versa. When convolutions of Fj’ and Fj’ are equal around the point X,
fo(X) stays constant, again on the average. Further, the variance of dfy(X) depends on the
alignment between Vg fp(X) and the eigenvectors of Var [V@ ﬁggéND (fg):| that correspond to
the largest eigenvalues (the directions in -space to which PSO loss mostly propagates), and in
addition can be reduced by increasing the size of training datasets.

Neglecting higher moments of random variable dfy(X), this differential can be expressed as
the sum dfy(X) = ¢ - [GgFy](X) + wp(X) where wy is a zero-mean indexed-by-X stochastic
process with the covariance function defined in Eq. (7.7). Such evolution implies that fy(X)
will change on average towards the height where the convoluted PSO equilibrium [GoF|(-) =
0 & GoFy = GoFy is satisfied:

/ 9o(X, X') - FY(X')dX' = / 90(X, X') - FP(X)dX', (7.8)

while wy’s variance will cause it to vibrate around such target height. Likewise, informally ¢
in Eq. (7.7) has a role of configuration parameter that controls the diapason around the target
height where the current estimation fy(X) is vibrating. Further, sequential tuning/decaying of

the learning rate ¢ will decrease this vibration amplitude (distance between the function that

55

satisfies Eq. (7.8) and the current model).

Furthermore, considering a large training dataset regime where wy’s effect is insignificant,
and replacing 6 by the iteration time ¢, dynamics of the model can be written as dfy(X) =
ft+1(X) = fi(X) =6 - [GeFJ(X), or as fer1 = fi + 0 - G+ F,. Here, F} represents a negative
functional derivative - the steepest descent direction of loss L pso in the function space. Further,
G¢ is GD operator that stretches and shrinks F; according to the alignment of the latter with
eigenfunctions of the model kernel. Hence, it serves as a metric over the function space, defining

what directions are “’fast” to move in and in which directions it is ’slow”.

7.4 Convoluted PSO Balance State

Above we observed that in fact GD optimization will lead to the convoluted PSO equilibrium.
This can also be derived from the first-order-conditions argument as follows. Assume that at
the convergence of PSO algorithm VgﬁgSUbND (fo) = 0 is satisfied, with € containing final
parameter values. Multiplying it by Vg fp(X)? will lead to:

ND
Z MY XY, Fo(XE0] - 00X, XY) = 2 SO MP XD, fo(XP)] - o(X, XP). (79)
i=1
According to the weak law of large numbers the above equality converges in probability (under
appropriate regularity conditions) to Eq. (7.8) as batch sizes NV and N” increase.

Further, considering the asymptotic equilibrium [GyF}](-) = 0, if the §-dependent operator
Gl is injective then we also have Fy(-) = 0 which leads to Fy’ = F}’ and to the variational PSO
balance state in Eq. (3.2). Yet, in general case during the optimization I will project into the
null-space of Gy, with Iy # 0. Moreover, even for injective Gy it may take prohibitively many
GD iterations in order to obtain the convoluted PSO equilibrium in Eq. (7.8), depending on
the conditional number of Giy. Hence, at the end of a typical optimization F), is expected to be
outside of (orthogonal to) G¢’s high-spectrum space (i.e. a space spanned by Gg’s eigenfunctions
related to its highest eigenvalues), and to be within G¢’s null-space or its low-spectrum space
(associated with the lowest eigenvalues).

Since the low-spectrum is affiliated with high-frequency functions [116], I, # 0 will resem-
ble some sort of a noise function. That is, during GD optimization the Fourier transform Fg &)
of F,)(X) is losing its energy around the origin, yet it almost does not change at frequencies
& whose norm is large. See [63] for the empirical evidence of the above conclusions and for
additional analysis of G’s role in a least-squares optimization.

The above described behavior implicitly introduces a bias into PSO solution. Namely, when
a function space F with particular gg and Gy is chosen, this decision will affect our learning task
exactly via the above relation to GGy’s null-space. The deeper analysis is required to answer the
following questions: How closely are two equilibriums in Eq. (7.8) and Eq. (7.9)? What is the
impact of batch sizes NV and N, and what can we say about PSO solution when these batches

are finite/small? How gg’s properties, specifically its eigenvalues and eigenfunctions, will effect

56

the PSO solution? What is the rate of converge towards Gg’s null-space? And how these aspects
behave in a setting of stochastic mini-batch optimization? These advanced questions share their
key concepts with the topics of RKHS estimation and Deep Learning theory, and deserve their
own avenue. Therefore, we leave most of them out of this thesis’s scope and shall address them

as part of future research. Further, below we analyze a specific property of gy - its bandwidth.

7.5 Model Expressiveness and Smoothness vs Kernel Bandwidth

The model kernel gg(X, X') expresses the impact over fy(X) when we optimize at a data point
X'. Intuitively, under the physical perspective (see Section 3) PSO algorithm can be viewed as
pushing (up and down) at the training points with some wand whose end’s shape is described by
the above kernel. Here we will show that the flexibility of the surface fy strongly depends on
99(X, X')’s bandwidth (i.e. on flatness of the pushing wand’s end).

For this purpose we will define a notion of the model relative kernel:

X, X’
70‘9()(7)(/) é 99())

—_ 7.10
99(X7X)’ ()

which can be interpreted as a relative side-influence over fy(X) from X', scaled w.r.t. the
self-influence gg(X, X') of X. Further, assume that the model relative kernel is bounded as:

d(X,X")

min

d(X,X")

max

0 < exp {— } <re(X,X') <exp {— } <1, (7.11)
where d(X, X') is any function that satisfies the triangle inequality d(X, X') < d(X, X") +
d(X', X") (e.g. metric or pseudometric over R™), and where h,,,;, and hy,q, can be considered
as lower and upper bounds on ry(X, X’)’s bandwidth. Below, we will explore how A, and
himas effect the smoothness of fy. Note, that in case go(X, X) is identical for any X, the below
analysis can be performed w.r.t. properties of gg instead of ry. However, in case fy is NN, the
NTK gg can not be bounded as in Eq. (7.11), yet its scaled version 7y clearly manifests such
bounded-bandwidth properties. That is, 79(X, X’) of NN typically decreases when the distance
between X and X' increases (see Section 11), exhibiting some implicit bandwidth induced
by a NN architecture. Moreover, while the magnitude of gg can be quiet different for various
NN models and architectures, the normalized rg is on the same scale, allowing to compare the
smoothness properties of particular models. Likewise, Eq. (7.11) is satisfied by many popular
kernels used for RKHS construction, such as Gaussian and Laplacian kernels, making the below

analysis relevant also for kernel models.
Theorem 19 (Spike Convergence). Assume:
. . ANU ND
1. PSO algorithm converged, with VgL pgy' (fg) = 0.
2. {MVY, MP} are non-negative functions.

3. MV [X', s] is continuous and strictly decreasing w.r.t. s, at VX' € SY.

57

(b)

Figure 7.1: Model flexibility vs influence decay rate (bandwidth) of gradient similarity gg. Assume for simplicity VX :
go (X, X) = ~ for some constant . Considering Eq. (7.5), the differential at X is a weighted average of terms belonging to the
training points around X, where gg (X, -) serves as a weighting coefficient for each term. Further, consider gradient similarity to
have a local-support. Its influence decay can be seen to express an influence area around each point X outside of which the gradient
similarity gg (X, -) becomes very small and negligible, on average. Above we illustrate two possible scenarios where the influence
area is (a) large and (b) small. Red points represent training points, from both PV and PP Further, blue and green regions around
points X and X’ = X + A express the neighborhoods around the points where gradient similarity has large values. Note that in
context of NNs these regions in general are not centered at X (or X’) and are not symmetric, yet exhibit a particular influence
decay rate (see Section 11 and Appendix H for the empirical evaluation of gg). The training points in each such region around
some point X can be considered as support training points of X that will influence its surface height. As observed from plots,
when the influence decay rate is low (i.e. large influence area, see plot (a)) the differentials of X and X' will be very similar since
most of the support training points stay the same for both X and X"’. In contrast, when the influence decay rate is high (see plot
(b)), the differentials at X and X’ will be very different since most of the support training points for both X and X’ are not the
same. Hence, the differential as a function of X changes significantly for a step A within the input space when the decay rate is
high, and vice versa. Furthermore, when the differential dfy(X') changes only slightly for different points, the overall update of the
surface height at each point is similar/identical to other points. Such surface is pushed up/down as one physical rigid body, making
fo(X) "inelastic.” Moreover, when the influence decay rate is significantly high, the point X may have only a single support (up
or down) training point and fg (X)) will be pushed only in a single direction (up or down) yielding the spike near X. Finally, in
case the influence area of X will not contain any training point, fo(X') will stay constant along the entire optimization.

Denote by (MV)~! [X', 2] the inverse function of MV w.r.t. second argument. Further, consider

any training sample from PV and denote it by X. Then the following is satisfied:

L fo(X) > (MY) [X, o] where o = N9 SN MP [XP | fo(XP)] - exp [—C“XXD)}

hmaz

2. (MY)7L[X, 2] is strictly decreasing w.r.t. z, with (MY)™1[X,a] — oo when a — 0.

Proof of the above theorem is in Appendix D. From it we can see that for smaller « the
surface at any up training point X converges to some very high height, where fy(X) can
be arbitrary big. This can happen when X is faraway from all down samples { X }{Vj (.e.
causing d(X, X”) to have a large output), or when A4 is very small (i.e. 7 has a very narrow
bandwidth). In these cases we will have up spikes at locations {Xf}fg. Similarly, when 00
is very small, there will be down spikes at locations { X" }Z]\g - the corresponding theorem is
symmetric to Theorem 19 and thus is omitted. Hence, the above theorem states that a very
narrow bandwidth of ¢ will cause at the convergence up and down spikes within the surface fy,
which can be interpreted as an overfitting behavior of PSO algorithm (see Section 12 for the
empirical demonstration). Note that the theorem’s assumptions are not very restrictive, with
many PSO instances satisfying them such as PSO-LDE, NCE and logistic loss (see Section 5).
Providing a more general theorem with less assumptions (specifically reducing the assumption

3) we shall leave for future work.

58

Theorem 20 (Change Difference). Consider the differential dfy defined in Eq. (7.5). For any
two points X, and Xo, their change difference is bounded as:

NU
|ldfo(X1) — dfo(X2)| < 0 - go(X1, X1) - L D OIMY XY, fo(X| - vg [X1, X2, X[+

U
N i=1

D
1 N
t N5 Zl |MP[XF, fo(XP)]] - ve [Xl,Xz,XiD]], (7.12)

where
190(X1, X1) — go(X2, X2)|

g0(X1, X1) ’

vo [X1, Xo, X] = €[X1, X2, X] + (7.13)

€[X1,X0,X] 21 —exp|—

d(Xl,Xg)} - exp {— max [d(X17X)7d(X27X)]:|

(7.14)

min min

Proof of the above theorem is in Appendix E. In the above relation we can see that € is
smaller for a smaller distance d(X7, X2). Likewise, € — 0 along with h,,;, — oo. Neglecting
the second term in vp’s definition (go(X1, X1) and gg(Xo, X2) are typically very similar for
any two close-by points X; and X3), vy has analogous trends. Therefore, the upper bound
in Eq. (7.12) is smaller when two points are nearby or when h,,;;, is large. From this we can
conclude that fp(X1) and fy(X2) are evolving in a similar manner for the above specified
setting. Particularly, for h,,;;, — oo (and if the second term of vy is relatively small) the entire
surface fy will change almost identically at each point, intuitively resembling a rigid geometric
body that moves up and down without changing its internal shape.

To conclude, when we decide which function space F to use for PSO optimization, this
decision is equivalent to choosing the model kernel gy with the most desired properties. The
effect of gy’s bandwidth on the optimization is described by the above theorems, whose intuitive
summary is given in Figure 7.1. In particular, when a bandwidth of the (relative) kernel is
too narrow - there will be spikes at the training points, and when this bandwidth is too wide -
the converged surface will be overly smoothed. These two extreme scenarios are also known
as overfitting and underfitting, and the kernel bandwidth can be considered as a flexibility
parameter of the surface fy. Furthermore, the above exposition agrees with existing works for
RKHS models [107] where the kernel bandwidth is known to affect the estimation bias-variance
trade-off.

7.6 Infinite Height Problem and its Solutions

In this section we study main stability issues encountered due to a mismatch between supports
of PV and P”. From part 2 of Theorem 1 we see that there are settings under which fy(X)
will go to infinity at X outside of mutual support SY"?. In Figure 7.2 a simple experiment is

shown that supports this conclusion empirically, where fy(X) at X € SY\? is increasing during

59

x10% 102 x107°
6 3

2 1 1 X1 2 1 X1

(c) (d)

(a)

Figure 7.2: Tllustration of PSO behavior in areas outside of the mutual support SY"P. We inferred 2D Uniform distribution
PU via PU (X) = exp fp(X) by using PSO-LDE with o = i (see Table 5.1 and Section 8.2). The applied NN architecture is
block-diagonal with 6 layers, number of blocks Np = 50 and block size Sz = 64 (see Section 11.1). We plot PV (X) at different
optimization times ¢: (a) ¢ = 100, (b) t = 200, (c) ¢ = 10000 and (d) ¢ = 100000. The support SU of PV is [—1, 1] for both
dimensions. The chosen down density PP is defined with S being identical to SV, minus the circle of radius 0.3 around the
origin (0, 0). In its entire support P is distributed uniformly. Thus, in this setup the zero-centered circle is outside of SY"P -
we have samples X ZU there but no samples X iD . For this reason, there is only the up force FQU that is present in the circle area,
pushing the surface there indefinitely up. This can be observed from how the centered spire rises along the optimization time.

the entire learning process. Observe that while GD optimization obtains the convoluted PSO
equilibrium in Eq. (7.8) instead of the variational PSO balance state in Eq. (3.2), the conclusions
of Theorem 1 still remain valid in practice.

Similarly, the above described infinite height problem can happen at X € SY"? where
PY(X) PP (X)
PD(X) PU(X)
log PP (X)] is large). Such relative support mismatch can cause instability as following. During

one of the ratios and

is too small, yet is not entirely zero (i.e. |logP"(X)—

the sampling process, at areas where PV (X') and P? (X)) are very different, we can obtain many
samples from one density yet almost no samples from the other. Taking Theorem 19 into the
account, any training point X that is isolated from samples of the opposite force (i.e. when
d(X,-) is large) will enforce a spike at fy(X). Moreover, when combined with the narrow
kernel bandwidth, such spike behavior will be even more extreme with fy(X) being pushed to
the infinite height (see Section 12 for the empirical illustration).

Hence, in both of the above cases fy will go to +o0 at various locations. Meaning of this is
lack of the optimization convergence. Furthermore, too large fy’ outputs may cause arithmetic
underflow and overflow instabilities when computing the loss gradient, and hence will lead to a
divergence of the learning task.

In case PV and P” are relatively similar distributions and when gy’s bandwidth is wide
enough, the above problem of infinite height will not occur in practice. For other cases, there

are two possible strategies to avoid the optimization divergence.

Indicator Magnitudes The above problem can be easily fixed by multiplying any given

magnitude MY (or M ") with the following function:

reverse_at [X, fo(X), o] = —h i fe(X) >0 (or fo(X) <) (7.15)

1, otherwise

The reverse_at(-) will change sign of near magnitude term when fy(X) at the training point
X passes the threshold height ¢. This in turn will change a direction of the force, making it to
oscillate the surface fy(X) around ¢ (similarly to part 2-d of Theorem 1). Such behavior will

60

(b)

Figure 7.3: Impact illustration of the function cut_at [X, fo(X), ¢]. (a) We inferred 2D Normal distribution via PV (X) =
exp fo(X) by using PSO-LDE with o = i (see Table 5.1 and Section 8.2). The applied NN architecture is block-diagonal with 6
layers, number of blocks Np = 50 and block size S = 64 (see Section 11.1). (b) We performed the same learning algorithm
as in (a), but with modified up magnitude function MV [X, fo(X)] = MV [X, fo(X)] - cut_at [X, fo(X), —3], where cut_at
is defined in Eq. (7.16). This function deactivates up pushes for points with fg(X) > —3 (and exp fg(X) > 0.0498), thus the
surface fy(X) at height above threshold -3 is only pushed by down force and hence is enforced to converge to the threshold. Yet,
note that at points where the converged model satisfies fg(X) < —3 the convergence is the same as in (a).

happen only at the problematic” areas where fp(X) got too high/low. In other ”safe” areas the
function reverse_at(-) will not have any impact. Hence, applying reverse_at(-) next to both
MV and M™ will enforce the surface height at all X to be between some minimal and maximal

thresholds, improving in this way the optimization stability.

The alternative to the above function is:

cut-at [X. f5(X). o] = 0, if fo(X) >¢ (or fo(X) <) (7.16)

1, otherwise

In contrast to reverse_at(-), once the surface fp(X) at some training point X passed the
threshold height ¢, the corresponding gradient term of X (either up or down) is withdrawn
from the total gradient VgﬁgSU’OND (fo) in Eq. (3.1), entirely deactivating the influence of X
on the learning task. Thus, the surface fy is not pushed anymore in areas where its height got
too high/low; yet, it is still pushed at samples of the opposite force. Such force composition
will constrain the surface height at unbalanced areas to converge to the threshold height ¢,
similarly to reverse_at(-). Further, unlike reverse_at(-), once any particular training point X
got disabled by cut_at(-), it also does not have a side-influence (via go(X, X)) on the surface at
other points. Likewise, it stops affecting the value of 6, leading to a higher movement freedom
within 0-space. Empirically we observed cut_at(-) to result in overall higher approximation
accuracy compared to reverse_at(-). The optimization outcome of cut_at(-) usage is illustrated

in Figure 7.3.

Restriction over Functions’ Range Alternatively, we can enforce all functions within the
considered function space F to have any desired range A = [H,in, Hpmaz|. The constants

Hpin and Hyp, o, will represents the minimal and maximal surface heights respectively. For

61

example, this can be accomplished by using the model:

—_

Fo(X) = 5 - (Hnaa — i - tanhllg(X)] + 5 - s + Hoial,— (717)

=5
where hg represents an inner model that may have unbounded outputs. Since tanh(-) is bounded
to have values in [—1, 1], it is easy to verify that the above model can return only values between
H,in and H,,q,. Thus, using such model will eliminate the divergence of the surface to an
infinite height. Likewise, other bounded functions can be used instead of tanh(-) such as erf(-),
sigmoid(+), arctan(-) and many others.

While the impact of both above strategies is intuitive and simple - prevention of fy from
being pushed beyond pre-defined thresholds, the rigorous math proof is more difficult to obtain.
First strategy induces estimators within PSO non-differentiable family presented in Section
4.1.1 - the setting that is not analyzed by this work. Second strategy leads to PSO functionals
minimized over a function space, whose range may not contain the entire convergence interval
K. A detailed analysis of the above special cases is left for future work since they are not the

main focus of this thesis.

62

CHAPTER 8

Density Estimation via PSO

Till now we discussed a general formulation of PSO, where the presented analysis addressed
properties of any PSO instance. In this section we focus in more detail on groups of PSO
instances that can be applied for the density estimation problem, denoted above as A and IB. In
particular, in Section 8.1 we shortly describe our previous work on density estimation, while
in Section 8.2 we explore new PSO approaches to infer density on a logarithmic scale, with

bounded magnitude functions that lead to the enhanced optimization performance.

8.1 DeepPDF

Here we briefly describe the density estimation approach, DeepPDF, introduced in [61], as a
particular instance of the PSO paradigm. The density estimation problem involves learning a
pdf function PY(X) from a dataset of i.i.d. samples { X }. For this purpose, the proposed pdf

loss was defined as:

1
Ly (6) = = XE:PU fo(X) - PP(X) + XEEIP’D 2

Ho) 8.1)

with corresponding magnitude functions MV [X, fo(X)] = PP(X) and M? [X, fo(X)] =
fo(X). PP is an arbitrary density with a known pdf function which can be easily sampled.

The above loss is a specific instance of PSO with balance state achieved when the surface
fo(X) converges to PV (X)) point-wise VX € SY"? (see Theorem 5), with the corresponding
convergence interval being K = R-(. Since conditions of Theorem 6 hold, no restriction
over JF’s range is required. Moreover, according to the condition 3 in Theorem 7 upon the
convergence fy(X) at X € SY\P can be arbitrary - MV is zero in the area SY\” and hence
the force Fj' is disabled. Due to similar Theorem 8, at X € S”\Y the optimal solution must
satisfy fy(X) = 0. Therefore, any candidate for P? with SY C S” will lead to the convergence
VX € SUP ¢ fo(X) = PY(X). Outside of the support union SV~ a convergence can be
arbitrary, depending of the model kernel, which is true for any PSO method.

Concluding from the above, selected P” must satisfy S” C S”. In our experiments we

63

typically use a Uniform distribution for down density P” (yet in practice any density can be
applied). The minimum and maximum for each dimension of P?’s support are assigned to
minimum and maximum of the same dimension from the available PV’s data points. Thus, the
available samples { X[} define n-dimensional hyperrectangle in R™ as support of P”, with
PY’s support being its subset. Inside this hyperrectangle the surface is pushed by Fj/ and
Fjp. Note that if borders of this support hyperrectangle can not be computed a priori (e.g.
active learning), the reverse_at(-) and cut_at(-) functions can be used to prevent a possible
optimization divergence as described in Section 7.6.

After training is finished, the converged fy(X) may have slightly negative values at points
{X € SP\U} being that during optimization the oscillation around height zero is stochastic in
nature. Moreover, surface values outside of the hyperrectangle may be anything since the fy(X)
was not optimized there. In order to deal with these possible inconsistencies, we can use the

following proxy function as our estimation of target PV (X):

_ {o, if fo(X) < 0or PP(X) =0 62

fo(X) = .
fo(X), otherwise

which produces the desirable convergence VX € R™ : fp(X) = PV(X).
In [61] we demonstrated that the above DeepPDF method with fy parametrized by NN
outperforms the kernel density estimation (KDE) in an inference accuracy, and is significantly

faster at the query stage when the number of training points is large.

8.2 PSO-LDE - Density Estimation on Logarithmic Scale

Typically, the output from a multidimensional density PY(X) will tend to be extra small,
where higher data dimension causes smaller pdf values. Representing very small numbers in
a computer system may cause underflow and precision-loss problems. To overcome this, in
general it is recommended to represent such small numbers at a logarithmic scale. Furthermore,
the estimation of log-pdf is highly useful. For example, in context of robotics it can represent
log-likelihood of sensor measurement and can be directly applied to infer an unobservable
state of robot [62]. Likewise, once log-pdf log PV (X) is learned its average for data samples
approximates the entropy of PY, which can further be used for robot planning [60].

Here we derive several estimator families from PSO subgroup B that infers logarithm
of a pdf, log PY(X), as its target function. Although some members of these families were
already reported before (e.g. NCE, [39]), the general formulation of these families was not
considered previously. Further, presented below PSO instances with the convergence log PV (X))
can be separated into two groups - instances with unbounded and bounded magnitude functions
{MV,MP}. As was discussed in Section 7.2 and as will be shown in Section 13, the latter
group yields a better optimization stability and also produces a higher accuracy.

According to Table 5.6, PSO convergence of the subgroup B is described by T'[X, z] =

log z + log PP (X)), with its inverse being R [X, s] = P%(F)?) . Further, according to Theorem 4

64

Loss Version Loss/ MY(-) and M"(-)

1 L: —Ex. pv fo(X) - PP(X) +Ex _po exp(fo(X))

MY, MP: PP(X), exp(fo(X))
2 L: —Ex pv fo(X) +Expp %

MY, MP: 1, 25fe))

D
3 L: EXNIPU ejsgc% +EX~[P’D f9()
PP (X)

MY, M®: oacay 1

4 LB 2-exp[}- (logBP(X) — fy(X))}+

+Ex. pp 2-exp [% (fo(X) —logPP(X }
MU,MD:eXp[(logPP(X) — fo(X))}
exp [§ - (fo(X) — log P?(X))]

5 L: —EXN]pUexp(()) (X)+EX~IP’D2 exp(2 f@())
MY, MP: PP(X) - exp(fo(X)), exp(2 - fo(X))

Table 8.1: Several PSO Instances that converge to fg(X) = log PV (X)

the convergence interval is K = R. Then, any pair of continuous positive functions { MY M"}

that satisfies:
MP(X, fo(X)) _ exp fo(X) (8.3)
MU(X, fo(X)) PP(X) '

will produce fp(X) = logPY(X) at the convergence.

Unbounded Magnitudes To produce new PSO instances with the above equilibrium, infinitely
many choices over { MY, M”} can be taken. In Table 8.1 we show several such alterna-
tives. Note that according to PSO we can merely move any term ¢(X, s) from MY (X, s) into
MP(X,s) as 6] + —y» and vice versa. Such modification will not change the PSO balance state

and therefore allows for the exploration of various magnitudes that lead to the same convergence.

Remark 21. Although we can see an obvious similarity and a relation between magnitudes in
Table 8.1 (they all have the same ratio M (-)/MV(-)), the corresponding losses have a much
smaller resemblance. Without applying PSO rules, it would be hard to deduce that they all

approximate the same target function.

The Table 8.1 with acquired losses serves as a demonstration for simplicity of applying PSO
concepts to forge new methods for the log-density estimation. However, produced losses have
unbounded magnitude functions, and are not very stable during the real optimization, as will be
shown in our experiments. The first loss in Table 8.1 can lead to precision problems since its
magnitudes return (very) small outputs from P (X') and exp(fp(X)). Further, MY of the third
loss has devision by output from the current model exp(fy(X)) which is time-varying and can

produce values arbitrarily close to zero. Likewise, methods 4 and 5 hold similar problems.

65

0
Samples from pY
Samples from PP

-50

c-150

1(X;6)

-200

-250

300 -250 200 -150 -100 -50 0
log PY(X)

(b)

Figure 8.1: (a) NCE magnitudes as functions of a difference d [X, fo(X)] £ fo(X) — log PP (X). (b) Log density estimation
via NCE for 20D data, where PV is standard Normal 20D distribution and P” is minimal Uniform 20D distribution that covers
all samples from PV. Blue points are sampled from PV, while red points - from P”. The x axes represent log PV (X)) for each
sample, y axes - the surface height fy(X) after the optimization was finished. Diagonal line represents fo(X) = log PV (X),
where we would see all points in case of perfect model inference. The black horizontal line represents log PP (X) = —49 which
is constant for the Uniform density. As can be seen, these two densities have a relative support mismatch - the sampled points from
both densities are obviously located mostly in different space neighborhoods; this can be concluded from values of log PV (X)) that
are very different for both point populations. Further, points with relatively small \J\ (around the horizontal line) have a small

U
]]}Pi yo) Ef(i there is bounded and both points XYV and X P are sampled from these areas. In contrast,

we can see that in areas where |cZ| > ¢ for some positive constant € we have samples only from one of the densities. Further, points
with d > 0 (above the horizontal line) are pushed up till a some threshold where the surface height is stuck due to up magnitude
MV (-) going to zero (see also Figure (a)). Additionally, points with d < 0 (below the horizontal line) are pushed down till their
magnitude M P (-) also becomes zero. Note that below points are pushed further from the horizontal line than the above points.
This is because the above points are near the origin (mean of Normal distribution) which is a less flexible area; it is side-influenced
from all directions by surrounding down samples via gg, which prevents it from getting too high. On opposite, the below points are
located far from the origin center on the edges of the considered point space. In these areas there are almost no samples from PY
and thus the surface is much more easily pushed down. Clearly, the PSO estimation task for the above choice of up and down
densities can not yield a high accuracy, unless gy is a priori chosen in data-dependent manner (not considered in this thesis). Yet,
we can see that NCE does not push the surface to =co at the unbalanced areas.

estimation error since the ratio

Bounded Magnitudes Considering the above point, the PSO instances in Table 8.1 are sub-
optimal. Instead, we want to find PSO losses with bounded M ”(-) and MY (-). Further, the

required relation in Eq. (8.3) between two magnitudes can be seen as:

MP X, fo(X)]

MO, fo(X)] =expd[X, fo(X)], (8.4)

d[X, fo(X)] £ fo(X) —log P”(X). (8.5)

d[X, fo(X)] is a logarithm difference between the model surface and log-pdf of down density,

which will play an essential role in magnitude functions below.

According to Section 7.2 and Lemma 17, from Eq. (8.4) we can produce the following

family of PSO instances:

MP [X, fH(X)] o epr@(X)

. P
MY IX fy(X)) = ~ DX (X))

X, fo(X)] (8.6

where the denominator function D [X, fg(X)] > 0 takes the responsibility to normalize output
of magnitude functions to be in some range [0, €]. Moreover, choice of D [X, fp(X)] does not
affect the PSO balance state; it is reduced when the above magnitudes are introduced into
Eq. (8.3).

66

To bound functions MP”(-) and MY(-) in Eq. (8.6), D [X, fo(X)] can take infinitely
many forms. One such form, that was implicitly applied by NCE technique [39, 126], is
DX, fo(X)] = exp fo(X) + PP(X) (see also Table 5.1). Such choice of normalization
enforces outputs of both magnitude functions in Eq. (8.6) to be between 0 and 1. Moreover,
NCE magnitudes can be seen as functions of a logarithm difference d [X, f5(X)] in Eq. (8.5),
MV (d) = sigmoid(—d[X, fo(X)]) and MP(d) = sigmoid(d[X, fo(X)]). Thus, an output
of magnitude functions at point X € R" entirely depends on this logarithm difference at X.
Furthermore, the up magnitude reduces to zero for a large positive d and the down magnitude
reduces to zero for a large negative d (see also Figure 8.1a).

Such property, produced by bounding magnitudes, is highly helpful and intuitively can be
viewed as an elastic springy constraint over the surface fy; it prevents infinite height problem
described in Section 7.6, even when up and down densities are very different and when their

support does not match. In neighborhoods where we sample many points from PV but almost
PU(X)
PD(X) -
within PSO loss, as proved by Theorem 19. Yet, as it pushed higher, d for these neighborhoods

no points from P (ratio is large), the surface is pushed indefinitely up through up term

becomes larger and thus the up magnitude MV (d) goes quickly to zero. Therefore, when at a
specific point X the surface fp(X) was pushed up too far from log P” (X), the up magnitude
at this point becomes almost zero hence deactivating the up force Fyy' (X) at this X. The same
logic also applies to down force F’(X) - in NCE this force is deactivated at points where fj(X)
was pushed down too far from log P” (X).

Critically, since fy(X) approximates log PV (X), d [X, fo(X)] can also be viewed as an esti-
PY(X)

PP(X)"
as follows. At points where logarithm difference log PV (X) — log P?(X) is in some dynam-

mation of log

Therefore, the above exposition of NCE dynamics can be also summarized

ical active range [—¢, ¢] for positive €, the up and down forces will be active and will reach
the equilibrium with fp(X) = logP”(X). At points where [logPY(X) — log P”(X)] >

€ & fﬁgg% > expe, the surface will be pushed up to height . And at points where
[logPY(X) — logP?(X)] < —¢ & PPX) L1 the surface will be pushed down to

PP(X)
height —e. Once the surface at some point X passes above the height € or below the height —¢,

expe’

the NCE loss stops pushing it due to (near) zero magnitude component. Yet, the side-influence
induced by model kernel go(X, X') from non-zero magnitude areas can still affect the surface
height at X. The above NCE behavior is illustrated in Figure 8.1b where 20D log-density

estimation is performed via NCE for Gaussian distribution PY and Uniform distribution P?.

Remark 22. Note that the scalar € represents a sensitivity threshold, where pushes at points
withd > & < |MV(-)| < sigmoid(—¢) or at points with d < —¢ < |MP(-)| < sigmoid(—¢)
have a neglectable effect on the surface due to their small magnitude component. Such sensitivity
is different for various functional spaces fy € F, for some spaces a small change of 6 can only
insignificantly affect the surface fo(X), while causing huge impact in others. Hence, the value
of € depends on specific choice of F and of magnitude functions MV (-) and M ().

The above described relationship between NCE magnitude functions and ratio gg#ég is
very beneficial in the context of density estimation, since it produces high accuracy for points

67

with bounded density ratio | log PV (X)— log P”(X)| < ¢ and it is not sensitive to instabilities
of areas where |log PY(X)— log P”(X)| > e. Thus, even for very different densities PV and
PP the optimization process is still very stable. Further, in our experiments we observed NCE
to be much more accurate than unbounded losses in Table 8.1.

Moreover, such dynamics are not limited only to the loss of NCE, and can actually be
enforced through other PSO variants. Herein, we introduce a novel general algorithm family
for PSO log density estimators (PSO-LDE) that takes a normalized form in Eq. (8.6). The
denominator function is defined as D%gp ; pg [X, fo(X)] £ [[exp fo(X)]* + [PP(X)]%] «
with a being family’s hyper-parameter. Particularly, each member of PSO-LDE has bounded

magnitude functions:

-

M (X, fo(X)] = e, T = |exp [a-d[X, fo(X)]| +1] . 8D
[[exp fo(X)]* + [P (X)]*]=

ME (X, fo(X)] = oD Jo(X) = [exp [~a-d[x. ()] +1]

[lexpfo(X)]* + [PP(X)]]

1
a

(8.8)

In Figure 8.2 the above magnitude functions are plotted w.r.t. logarithm difference d, for
different values of . As can be observed, « controls the smoothness and the rate of a magnitude
decay to zero. Specifically, for smaller oo magnitudes go faster to zero, which implies that
the aforementioned active range [—¢, ¢] is narrower. Thus, small « introduce some elasticity
constraints over fp that induce smoothness of the converged model. We argue that these
smoother dynamics of smaller o values allow for a more stable optimization and a more accurate
convergence, similarly to the robustness of redescending M-estimators [124]. Yet, we leave the
theoretical analysis of this affect for future work. In Section 13 we will empirically investigate
the impact of o on the performance of density estimation, where we will see that @ = % typically
has a better performance.

Additionally, the formulation of PSO-LDE in Egs. (8.7)-(8.8) can be exploited to overcome
possible underflow and overflow issues. In a typically used single-precision floating-point format
the function exp(-) can only be computed for values in the range [—81, 81]. Hence, there is
an upper bound for values of |d [X, fo(X)] | above which MY (X, fo(X)) and MP (X, fo(X))
can not be computed in practice. Yet, we can set the hyper-parameter « to be small enough to

overcome this numerical limitation.

Remark 23. Note that NCE is a member of the above PSO-LDE family for « = 1. Further, the
analytic loss for magnitudes in Egs. (8.7)-(8.8) is unknown for general a. Yet, the gradient of

this loss can be easily calculated.

To summarize, by replacing pdf loss in Eq. (8.1) with PSO-LDE we succeeded to increase
approximation accuracy of density estimation. We show these results in Section 13. Furthermore,
unlike typical density estimators, for both DeepPDF and PSO-LDE cases the total integral of

the density estimator is not explicitly constrained to 1, yet was empirically observed to be very

68

—Mp(d),a = 0.25

)
Mp(d),a=0.4 Ho5
_MD(d)va =1
7MD(d)7o‘ =5
: : 0
10 20 30

Figure 8.2: PSO-LDE magnitudes as functions of a difference d £ fp (X) — log PP (X)) for different values of a hyper-parameter
a.

close to it. This implies that the proposed herein methods produce an approximately normalized
density model. For many applications such approximate normalization is suitable. For example,
in the estimation of a measurement likelihood model for Bayesian state inference in robotics [62]

the model is required only to be proportional to the real measurement likelihood.

69

70

CHAPTER 9

Conditional Density Estimation

In this section we show how to utilize PSO balance state to infer conditional (ratio) density
functions.
9.1 Conditional Density Estimation

Herein we will focus on problem of conditional density estimation, where i.i.d. samples of pairs

{X7,Y."} are given as:

(columns of X) (columns of Y')

X7 Yy

y ’ , where X/ € R"™ Y;” ¢ R"™. 9.1)
X3 Yy

Again, we use U to refer to up force in PSO framework as will be described below. For any
dataset D, the generation process of its samples is governed by the following unknown data
densities: P5y (X,Y), P5(X) and P§. (Y). Specifically, in Eq. (9.1) rows under X" columns
will be distributed by marginal pdf P% (X'), rows under YV columns - by marginal pdf P, (Y),
and entire rows of D will have the joint density P% (X,Y") (see also Table 9.1 for list of
main notations). Likewise, these densities induce the conditional likelihoods IP’%‘Y(X |Y) and

Py, +(Y|X), which can be formulated via Bayes theorem:

P?(Y(Xﬂ Y)

P?(Y (X, Y)
Py (Y) '

Py (Y]X) = 9.2)

Depending on the task at hand, conditional pdf P%‘Y(X |Y) can produce valuable information
about given data.

The simple way to infer IPl)’(ly(X |Y) is by first approximating separately the P% (X, Y)

71

Notation Description

XY ~P%(X) ng-dimensional random variable with marginal pdf P%

YU ~P{Y(Y) ny,-dimensional random variable with marginal pdf Py,

(XY, VY] n-dimensional random variable with joint pdf P% (X,Y"),
at samples of which we push the model surface up

n=mng+mn, jointdimension of random variable [XV, Y]

P%)y (X]Y) conditional probability density function of X = X" given Y =YV
XP ~ PP nz-dimensional random variable with pdf P”
[XP,YP] n-dimensional random variable with joint pdf P? (X)) - P{.(Y),

at samples of which we push the model surface down

Table 9.1: Main Notations for Conditional Density Estimators

and P{(Y') from data samples (e.g. by using DeepPDF or PSO-LDE), and further applying
Bayes theorem in Eq. (9.2). Yet, such method is not computationally efficient and typically is
also not optimal, since approximation errors of both functions can produce even bigger error in

the combined function.

A different technique, based on PSO principles, can be performed as follows. Consider a
model (PSO surface) fp(X,Y) : R* — R with n = n, + n,, where the concatenated input
[X, Y] can be seen as the surface support. Define an arbitrary density P” over R"* with a known
pdf function which can be easily sampled (e.g. Uniform). Density P” will serve as a down
force to balance samples from PP, and thus is required to cover the support of P% . Further,

v(X,Y) will serve as up density in PSO framework, and its sample batch { X7, Y,V }'| will
contain all rows from D. As well, we will use P” (X)) - P{,(Y") as down density. Corresponding
samples { X2, Y"}Y) will be sampled in two steps. {Y;”}¥"] are taken from D under YV
columns; { X” }f\f{ are sampled from P (X).

Considering the above setup, we can apply PSO to push fp(X,Y") via up and down forces.
The optimization gradient will be identical to Eq. (3.1) where X" and X” are substituted by
{XFP,Y"} and {X,Y;”} respectively. For any particular { MY, MP} the associated PSO

balance state will be:

MP XY, fo(X,Y)] Yy (XY) Py (X[Y)

MUY, Jo(X, V)] _ BP(X) PR(Y) | BP(X)

(9.3)

where we can observe IP’%Y(X |Y"), which we aim to learn. Similarly to Section 5, below we

formulate PSO subgroup for the conditional density estimation (or any function of it).

Theorem 24 (Conditional Density Estimation). Denote the required PSO convergence by a
transformation T(X,Y,z) : R" xR — Rst. fo(X,)Y) =T [X, Y, }P’SJ(‘Y(X|Y)} is the
function we want to learn. Denote its inverse function w.r.t. z as T~ (X,Y, s). Then, any pair
{M"Y, MP} satisfying:

MP(X,Y,s) T YX,Y,s)

MU(X,Y.s) BO(X) O

will produce the required convergence.

72

The proof is trivial by noting that:

MY (X)) _ o Py (XIY)
MU(X7Y7f9(X7Y)) B PD(X)
= TU XY, fo(X,Y)) = PLp (X]Y) (9.5)

T_l(X7Y7 f@(Xv Y)) = PD(X) ’

where we used both Eq. (9.3) and Eq. (9.4). From properties of inverse functions it follows:
T[X Y, PYy (XIY)] =T [X, ¥, T7H XY, o(X, V)] = fo(X,Y). ©9.6)

Further, the sufficient conditions over mappings T, MY and M ” are omitted since they already

appear in Theorem 4.

Example 5: Consider a scenario where we would like to infer f5(X,Y) = quy (X1]Y). Thus,
the PSO convergence is described by T'(X,Y, z) = z. Its inverse is T~ ! (X, Y, s) = s. Hence,
magnitude functions must satisfy %5&{5}2%3; = flgl())({}gf)). One choice for such magnitudes
is MU [X,Y, fo(X,Y)] = PP(X) and MP [X, Y, fo(X,Y)] = fo(X,Y), defined in Table 9.2

as ”Conditional Density Estimation”.

Example 6: Consider a scenario where we would like to infer fo(X,Y) = log Py (X 1Y),
which can be essential for high-dimensional data. The PSO convergence is described by
T(X,Y,z) = log z, and its inverse is 71 (X, Y, s) = exp s. Hence, magnitude functions must

satisfy %5&(5]{:&(3; = ex%jg(())((),Y) . One choice for such magnitudesis MV [X,Y, fo(X,Y)]

PP (X) _ Jo(X,Y) : »
W and MD [X, K fg (X, Y)] = %, defined in Table 9.2 as "PSO-LDE

Conditional Form”. The denominator D (XY, fo(X,Y)) = [[exp fo(X,Y)]* + [IP)D(X)]C“]é

serves as a normalization to enforce magnitudes to be bounded functions, similarly to PSO-LDE

method in Section 8.2.

Thus, we can estimate the conditional density, or any function of it, in a one-step algorithm
by applying PSO procedure with up and down densities defined above. This again emphasizes
the simplicity and usability of PSO formulation. Further, note that it is also possible to reuse
sample Y;” as Y;”, since within the down term this sample will still be independent of X” and its
density is still the marginal P{.(Y"). Such reuse is popular for example in NCE methods [83,84]

in context of language modeling.

The above examples and several other options are listed in Table 9.2. Similarly to a case of
the ordinary density estimation, also in the conditional case there are numerous PSO instances
with the same target function P ;- (X |Y") (or log Py (X |Y)). Analyses of these techniques

and search for the most ”optimal” can be an interesting direction for future research.

73

Method Final fg(X)/ References | Loss | MV (-) and MP"(-)
Conditional F: PY(X|Y)
Density R: This thesis
Estimation L: —Eix yiopy (xv) fo(X,Y) - PD(§()+
T Eix y)opp (x) Y (v) 5 [fe(X7 Y)}
MY, MP: PP(X), fo(X,Y)
Conditional E: logPY(X1Y)
Log-density R: This thesis
. . X XY
Estimation L: — E[X,Y]NP%Y(X,Y) fg (X, Y) + E[X,Y}N]P)D(X){Pg) %(()())}
MU, MDI 1’ eXPIF[DfDO((?gY)]
NCE F: log P (X|Y)
Conditional R: [83,84]
. exp[fo (X, Y)]+PP (X
Form L Bpxyjry, xor) log g5 (%Y‘}} : ; .
+E[X,Y]~IPD(X)-IP§{(Y) log EXp[fe(]pb(;]S ()
U AfD. PP (X) explfo (X, Y)]
M= M S PP slfs (XY (X)
PSO-LDE E: logPY(XY)
Conditional R: This thesis
Form L: unknown
MU, MP: PD(X) — exp fo(X,Y) .
[lexp fo (X, Y)]*+[PP(X)]*] & [[exp fo(X,Y)]*+[PP (X)]*] &
.) PY .y (X1Y)
Conditional F: Py (XIV) PO (XTT) °
GAN Critic where P7(XY') is density of generator h, parametrized by ¢
R: [81]
L: —Eix yjopy, (xv) l0g fo(X, Y) -
- E[X,Y}~P£(X|Y)-IP§{(Y) log {1 — Jo(X, Y)}
U D. 1 1
M7 M”: 7oy (X))
I :) PSy (XIY)
Likelihood-Ratio E log W,

with

where PZ(XY') is density of generator h parametrized by ¢

Logistic Loss R: This thesis
L: By yipy, (x.v) 1og [1+ exp[—fo (X, Y)]]+
+ Epxyjopp (x)y)pY (v) 108 [1+ exp[fo(X, Y]]

U D. 1 1
MY, M”: exp[fo(X,Y)]+1 > exp[—fo(X,Y)]+1

Table 9.2: PSO Instances For Conditional Density (Ratio) Estimation, see Sections 9.1 and 9.2 for a detailed exposition of
conditional PSO

74

9.2 Relation to Conditional GANs

Furthermore, a similar idea was also presented in the context of GANs, where a conditional
generation of data (e.g. images given labels) was explored. Below we show its connection to
PSO framework.

Denote the dataset D as in Eq. (9.1), where real sample pairs { X, Y;”} are distributed
according to unknown P%- (X, Y"). In Conditional GAN (cGAN) [76] the generator produces
fake samples from the generator’s conditional density P (X [Y"), where we again use notations U
and D to refer to PSO forces, as is described below. Density Py (X |Y') is an implicit distribution
of fake samples that are returned by the generator hy(v,Y’) from the latent space v € R",
where the label Y was a priori sampled from P{,(Y'); ¢ is a generator’s parametrization. Further,
the critic sees pairs [X, Y| coming from D and from the generator, and tries to decide where the
pair is originated from. This is done by estimating a statistical divergence between Pg(‘Y(X 1Y)
implicitly defined by D, and between PZ(X[Y) implicitly defined by hy. Moreover, the

. S PY(XTY) .
divergence estimation is typically done by first inferring the ratio % (or some function
¢

of this ratio).

The proposed by [76] algorithm is identical to PSO procedure, when P%. (X, Y) serves
as up density, and P72 (X[Y) - P} (Y') - as down density. The up sample batch { X/, Y;U}fg
will contain all rows from D. Further, samples {X7?, Y;"}N' from down density will be
sampled in three steps. {Y;D}f\g are taken from D under YV columns; {UZ}Z]\LL; are sampled
from generator’s base distribution; {X?}'] are generator’s outputs for inputs {Y;?, v; },.
Extending the setup of Section 9.1 to the above sampling procedure, any particular { MY M}

will produce PSO balance state:

MV[X)Y, fo(X,Y)] PRXIY)-PY(Y) PR(X|Y)’

.7

where the conditional ratio shows up. Similarly to the conditional density estimation, below we

formulate PSO subgroup for inference of this ratio (or any function of it).

Theorem 25 (Conditional Ratio Estimation). Denote the required PSO convergence by a

. PEy (XY .
transformation T(X,Y,z) : R" xR — R st fp(X,)Y) =T [X,Y |] is the

T PD(X]Y)
function we want to learn. Denote its inverse function w.r.t. z as T~ (X,Y, s). Then, any pair
{MVY, MP} satisfying:

MP(X,Y, s)

1
W—T (X,Y)s), 9.8)

will produce the required convergence.

75

The proof is trivial by noting that:

MD(X7Y7f9(X7Y)) . IP)?(|Y(X|Y)
MUXY, fo(X)Y)) — PR(X]Y)

T_l(Xa Y, f@(X7 Y)) =

PRy (X1Y)

= T YX,Y, fo(X,Y)) = PEX]Y)

9.9)

From properties of inverse functions the Theorem follows.

The cGAN method aimed to infer Py (XIY)
IP’)U(‘Y(X|Y)+]P’£(X\Y)

vergence between real and fake distributions. This is associated with PSO convergence

to measure Jensen-Shannon di-

T(X,Y,z) = ;%7 and the corresponding inverse T~'(X,Y,s) = 2. According to The-

orem 25 the magnitudes must satisfy:

MP(X,Y, fo(X,Y)) fo(X,Y)

— : (9.10)
MU(X?Y7f9(X7Y)) 1_f9(X7Y)
with the specific choice { MY (X, Y, fo(X,Y)) = m,MD(X, Y, fo(X,Y)) = %}

selected by the critic loss in [76].

Hence, we can see that cGAN critic loss is a particular instance of PSO, when the sampling
procedure of up and down samples is as described above. Further, two main problems of the
classical cGAN critic are the not-logarithmic scale of the target function and unboundedness of
magnitude functions (for a general model f»(X,Y)). In Table 9.2 we propose a “’Likelihood-

Py (X]Y)

PP(X|Y)
. . Lo . .
choice to be more stable during the optimization which will lead to a better accuracy. Moreover,

Ratio with Logistic Loss” to learn log whose magnitudes are bounded. We argue such
for specific case when cGAN critic fy(X,Y") is parameterized as sigmoid(hg(X,Y")) with
ho(X,Y) being the inner model, cGAN critic loss can be shown to be reduced to the above

logistic loss. Thus, with such parametrization the inner NN hg (X, Y) within cGAN critic will
PSy (X]Y)

converge to log BT

76

CHAPTER 10

Additional Applications and Relations of PSO

Framework

In this section we demonstrate how PSO principles can be exploited beyond the (conditional)
pdf inference problem. Particularly, we relate PSO and cross-entropy loss, showing the latter to
be a specific instance of the former. We also outline relation between PSO and MLE by deriving
the latter from PSO functional. Further, we analyze PSO instance with unit magnitude functions
and describe its connection to CD method [46]. Additionally, we show how to use PSO for
learning mutual information from available data samples, and how to employ it in the solution

of occupancy mapping.

10.1 Cross-Entropy as Instance of PSO

In this section we will show that the binary cross-entropy loss combined with a sigmoid non-
linearity, typical in binary classification problems, is instance of PSO. Further, in Appendix F we
extend this setup also to a more general case of softmax cross-entropy. Similarly to a binary
stgmotd cross-entropy, a multi-class softmax cross-entropy is shown to be a PSO instance,
extended to models with multi-dimensional outputs. Thus, the optimization of multi-class
softmax cross-entropy can be seen as pushes of dynamical forces over C' different surfaces
{fo(X);}_, - the outputs of the model f5(X) € R per each class.

To prove the above point, we derive the binary cross-entropy loss using PSO principles.
Define training dataset of pairs {X;, Y;}¥., where X; € R" is data point of an arbitrary
dimension n (e.g. image) and Y] is its label - the discrete number that takes values from {0, 1}.
Denote by N; and Ny the number of samples with labels 1 and O respectively. Further, assume
each sample pair to be i.i.d. sampled from an unknown density P(X,Y) = P(X) - P(Y|X).

Our task is to enforce the output of o(fp(X)), the sigmoid non-linearity over inner model

77

fo(X), to converge to unknown conditional P(Y" = 1|X). Such convergence is equivalent to

PX,Y =1
-1 :logi(2)zlog

fo(X) = —log P(X,Y =0)

P(Y = 1|X)

To apply PSO, we consider P(X|Y" = 1) as up density PV and P(X|Y = 0) as down density
PP. Sample batches { X7}, and { X/}, from both can be obtained by fetching X; with

appropriate label Y;. Then the required convergence is described by 7'(X, z) = log 5858 - 2,
with f*(X) = T(X, %). Further, the 7”s inverse is R(X,s) = % - exp s, and
: . - o MP[X,fo(X P(Y=0)-exp fo(X .
according to Theorem 4 magnitudes must satisfy MU% Xﬁzg XH = X E?();:ﬁ)f *X) One possible
choice is:
P(Y =1 P(Y =0) -ex X
M IX, X)) = O =D ey, gy (x0) = DO =0 OB)

T 1t exp fp(X)’ 1+ exp f5(X)

where the denominator 1+ exp fg(X) serves as a normalization factor that enforces { MY, M "}

to be between 0 and 1. Further, the above magnitude functions have known antiderivatives:

MY X, fo(X)] = B(Y = 1)dog[o(fo(X))], M [X, fo(X)] = =P(Y = 0)-log [1 — o (f(X))]

(10.3)
that produce the following PSO functional:
L =— E P(Y =1)1 X))]- E P(Y =0)-log[1 — X))].
psolf) == B B =Dlglo(fp(X)]- | E P =0Mog[t~o(/s(X))
(10.4)

Finally, considering 5+ and 4 as estimators of P(Y = 1) and P(Y = 0) respectively, the

empirical version of the above loss is:

Ny No
Lrso(f) = —— S log[o(fo(XO))] — = 30 log [1 — o (fo(XP))] =

Ny N Noi= N
N
= 2 [V loa o (fo(X)] +[1 - Vil log [1 — o(fo(X2))]], (105)
=1

where we combine two sums of the first row into a single sum after introducing indicators Y;
and 1 — Y.

The second row is known in Machine Learning community as the binary cross-entropy loss.
Therefore, we can conclude that PSO instance with magnitudes in Eq. (10.2) corresponds to
cross-entropy when P(X|Y = 1) and P(X|Y = 0) serve as up and down densities respectively.
See a similar derivation for multi-class cross-entropy in Appendix F. Therefore, convergence
and stability properties of PSO are also shared by the supervised classification domain which

further motivates PSO analysis.

78

10.2 Relation to Maximum Likelihood Estimation

Below we establish the relation between MLE and PSO procedures, by deriving MLE approach
from principles of PSO. Consider a batch of i.i.d. samples { X }{\;‘{ sampled from density PY,
whose pdf we aim to estimate. Define an auxiliary distribution P? with analytically known pdf
PP (X)) that satisfies S” C S”, and define PSO functional as:

_ f(X)
LPSO(f) - 7X£Ij:IP7U [1 + 10g f(X)] + XfI?PD]P)D(X) (106)
that is induced by the following magnitude functions:
1 1
MY X, f(X)] = ——, MP[X, f(X)]= . 10.7
(X, f(X)] FX) [X, f(X)] Po(X) (10.7)

Define the hypothesis class F with functions that are positive on S so that log f(X) is properly
defined for all f € F and X € S”. Then, the optimal f* = argmin e » Lpso(f) will satisfy
PSO balance state in Eq. (3.2) which yields f*(X) = PY(X).

Furthermore, in case F is a space of positive functions whose total integral is equal to 1 (i.e.

probability measure space), the above loss can be reduced to:

Leso(f) = [=P“(X)- [1+1og f(X)] + f(X)dX == B logf(X), (108)

where we apply an equality [PY(X)dX = [f(X)dX since f is normalized. Note that limiting
F to be a probability measure space does not affect the balance state of PSO since the optimal
solution f* is also a probability measure. Further, considering the physical perspective of PSO
such choice of F has an implicit regularization affect, removing a need for the down force Fy’
in order to achieve the force equilibrium over the surface f(X).

The loss in Eq. (10.8) and its empirical variant Lpgo(f) ~ —ﬁ Zf\g log f(XY) define
the standard MLE procedure. Therefore, we can conclude that PSO with magnitudes defined in
Eq. (10.7) corresponds to MLE when the data distribution PV is absolutely continuous w.r.t. P?
and when each f € F is a normalized function. Likewise, such relation can also be explained

by the connection between PSO and Kullback-Leibler (KL) divergencies described in Section 6.

10.3 PSO with Unit Magnitudes and Contrastive Divergence

The PSO instance with unit magnitudes MV [X, fo(X)] = MP [X, fo(X)] = 1 can be fre-
quently met in Machine Learning (ML) literature. For example, Integral Probability Metrics
(IPMs) [87], contrastive divergence (CD) [46], Maximum Mean Discrepancy (MMD) [34]
and critic of the Wasserstein GAN [6] all rely on this loss to measure some distance between

densities PV and P”. In this section we will explore this unit loss

Lunit(fo) = — fo(X)+ E fo(X) (10.9)

X~PYU X~PD

79

in a context of the proposed PSO framework.

By following the derivation from Section 4.1, the inner minimization problem solved by

inf fe 7 Lynit(f) for each X is:

s = arginf [-PY(X) + P”(X)] - s. (10.10)
s€R

Since it is linear in s, the optima s* will be either +o00 (if PY(X) > PP(X)) or —oo (if
PY(X) < PP(X)). Using physical system perspective, we can say that given a flexible enough
surface fp(X) (e.g. typical NN) the straight forward optimization via unit loss in Eq. (10.9) will
diverge since forces Fj (X) = PY(X) and Fj’(X) = P”(X) are actually independent of # and
cannot adapt to each other. That is, balance state Fjj (X) = Fy’(X) can not be achieved by the
unit loss. Thus, the model is pushed to +-co at various input points, up to the surface flexibility.
During such optimization, training will eventually fail due to numerical instability that involves
too large/small numbers. Furthermore, this point can be easily verified in practice by training
NN with loss in Eq. (10.9).

CD One way to enforce the convergence of unit loss is by adapting/changing density P?
towards PV along the optimization. Indeed, this is the main idea behind the CD method
presented in [46] and further improved in [91] and [73]. In CD, the down density P?(X) in
Eq. (10.9) represents the current model distribution Py(X) £ exp[fs(X)]/ [exp[fo(X")]dX",
PP = P,. At each iteration, {XpP }Z]\f{ are sampled from]f”g(X) by Gibbs sampling [46], Monte
Carlo with Langevin dynamics [51], Hybrid Monte Carlo sampling [91], or Stein Variational
Gradient Descent (SVGD) [72,73]. Thus, in CD algorithm forces Fj(X) = PY(X) and
FP(X) = Py(X) are adapted to each other via their frequency components PV and P instead
of their magnitude components MV [X, fo(X)] and MP” [X, fo(X)]. The dynamics of such
optimization will converge to the equilibrium only when PV (X)) = Py(X) which will also lead
to exp[fo(X)] oc PY(X).

WGAN We additionally consider the relation between PSO concepts and Wasserstein GAN [6]
(WGAN) which has been recently proposed and is considered nowadays to be state-of-the-art.
Apparently, the critic’s loss in WGAN is exactly Eq. (10.9). It pushes the surface fy(X) up at
points sampled from the real data distribution PV, and pushes down at points sampled from the
generator density P2, which is an implicit distribution of fake samples returned by a generator
from the latent space, with ¢ being a generator parametrization.

The critic’s loss of WGAN was chosen as proxy to force critic’s output to approximate Earth
Mover (Wasserstein) distance between PV and Pg . Specifically, the unit loss is a dual form of
Wasserstein distance under the constraint that fg(X) is 1-Lipschitz continuous. Intuitively, the
critic network will return high values for samples coming from PV, and low values for samples
coming from Pg, thus it learns to deduce if its input is sampled from PV or from Pg . Once

critic’s optimization stage ends, the generator of WGAN optimizes its weights ¢ in order to

80

increase fy(X)’s output for samples coming from P'7 via the loss

G [
Liygan(®) = XEEP(? fo(X). (10.11)

The described above infinity” divergence of unit loss and 1-Lipschitz constraint may
explain why the authors needed to clip NN weights to stabilize the approach’s learning. In [6]
after each iteration the NN weights are constrained to be between [—c, | for some constant c.
Likely, such handling reduces the flexibility of a surface fy(X), thus preventing it from getting
too high/low output values. Such conclusion about the reduced flexibility is also supported
by [36].

Further, in [36] authors prove that 1-Lipschitz constraint of WGAN implies that the surface
Ofe(X

0X

7)\ g=¢=|| = 1. Instead of weight

clipping, they proposed to combine the unit loss with a X -gradient penalty term that forces this

has gradient (w.r.t. X') with norm at most 1 everywhere,

gradient norm to be close to 1. The effect of such regularization can be explained as follows.
Considering the PSO principles, the optimal surface for the unit loss has areas of 400 and —oo,
thus requiring sharp slopes between these areas. The gradient penalty term constrains these
slopes to be around 1, hence it prevents the surface from getting too high/low, solving in this way
the “infinity” oscillations. Overall, by using weight clipping and other regularization techniques
like gradient penalty [36], WGAN is in general highly successful in data generation task. Thus,
we can see that basically unstable PSO instance with unit magnitudes can be stabilized by a

surface flexibility restriction via appropriate regularization terms within the loss.

MMD Finally, MMD algorithm [34] exploits the unit loss in Eq. (10.9) to test if two separate
datasets are generated from the same distribution. Authors express this loss over RKHS function
with a bounded RKHS norm, thus implicitly constraining the model smoothness and eliminating

the infinite height problem.

Remark 26. As was observed empirically on 20D data, even the prolonged GD optimization
via the above unit loss in Eq. (10.9) leaves the randomly initialized NN surface fo(X) almost
unchanged for the case when PV = PP, This is due to the implicit force balance produced by the
identical densities. In contrast, when densities are different the optimization diverges very fast,
after only a few thousands of iterations. Also, the optimization gradient during these iterations
is typically smaller for the same density scenario than for the different densities. Similarly to
MMD method, such behavior can be exploited for example to test if samples from two datasets

have the same density or not, by performing the optimization and seeing if it diverges.

Overall, all of the above PSO instances with unit magnitudes, except for CD, handle the
instabilities of unit loss by restricting the flexibility of the model fy(X'). Thus, a typical strategy
is to enforce K -Lipschitz constraint. Yet, in context of DL it is still unclear if and how it is
possible to enforce a model to be exact K -Lipschitz, even though there are several techniques
recently proposed for this goal [36,82, 104, 154].

81

10.4 Mutual Information Estimation

Mutual information (MI) between two random multi-variable distributions represents correlation
between their samples, and is highly useful in the Machine Learning domain [13]. Here we
shortly describe possible techniques to learn MI from data, based on PSO principles.

Consider two random variables X € R™* and Y € R™ with marginal densities Py and Py.
Additionally, denote by Pxy their joint distribution. The MI between X and Y is defined as:

Pxy(X,Y)
PX(X)'PY(Y).

I(X,Y) //IPXY (X,Y) - V(X,Y)dXdY, V(X,Y)2 log (10.12)
If log-ratio V (X, Y) is known/learned in some way, and if we have samples {X?, Y} | from

joint density P xy, we can approximate MI via a sample approximation:

N

I(X,Y)~ ;;V(Xi,}/i). (10.13)
Further, V(X,Y’) can be easily learned by one of PSO instances in Tables 5.1-5.5 for
logarithm density-ratio estimation as follows. Consider a model fp(X,Y) : R — R, with
n = ng + ny. Additionally, we will use Pxy (X,Y") as up density in PSO framework, and
Px(X) - Py(Y) - as down density. To obtain sample from up density, we can pick random
pair from available dataset { X%, Y} similarly to conditional density estimation in Section
9.1. Further, samples from down density can be acquired by picking X* and Y from dataset

independently.
Considering the above sampling procedure, we can apply PSO to push fy(X,Y") via up and
down forces, using the corresponding magnitude functions. For any particular { MY, M P} the

associated PSO balance state will be:

MP [X7Y7f9(X7Y)] _ ny(X,Y)
MY [Xa Y, f9(X7 Y)] B PX(X) IP)Y(Yv)

(10.14)

Hence, to produce the convergence fy(X,Y) = V(X,Y), the appropriate choice of magnitudes

must satisfy % =

ratio R must be equal to exp s, according to Table 5.6.

For example, MV [X,Y, fo(X,Y)] = exp[fg()lgy)}ﬂ and M” (XY, fo(X,Y)] = exp[_fe(l)(,y)]H

can be used (e.g. a variant of the logistic loss in Table 5.4), yet many other alternatives can also

exp s - to infer log-ratio between up and down densities the magnitude

be considered. Recently, similar ideas were also presented in [13].

10.5 Learning Probabilistic Occupancy Mapping

Problem Definition Statistical representation of space occupancy around the robot is manda-
tory for autonomous navigation. Borrowing the formulation from [121], training data for this
learning task can be acquired from lidar scans; the generated dataset is D = { X, Yz}f\il where
X; is the observed space location (2D or 3D) and Y; € {f,0} £ { free, occupied} is its occu-

82

pancy label. Laser hit points can be considered as samples X with Y = o, while samples with
Y = f can be sampled (i.e. uniformly) along the laser beam. The dataset D implies existence of
a joint distribution P(X,Y") from which it was sampled, and a typical objective is to estimate
P(Y|X) = P(X,Y)/P(X). Applying PSO for this task can be done similarly to learning a

(conditional) pdf in sections 8-9.

Yet, observe that the marginal P(X) represents a probability of location X being observed,
and the above objective is well-defined only in areas of obtained scans. Instead, we propose to
estimate a different objective J(X) = P(X) - [P(Y = o|X) — P(Y = f|X)] since it is defined
in any area of the map and produces valuable information about the environment. First, note
that its second term, likelihood difference, defines the sign of J(X') which can be interpreted as
which label of X is more likely. Further, when P(X') = 0, meaning that location X was not
observed during scan gathering, J(X) is also zero, allowing to decide when there is enough
information about X. Moreover, locations that were observed by multiple scans will have
higher P(X), and hence also |.J(X)|, which can be used as a measure of confidence about X’s
occupancy state. Furthermore, J(X) is continuous function of location X, allowing to avoid
a discretization of the map typically done by occupancy grid methods. Thus, below we show
how J(X) can be inferred via PSO. Yet, importantly, we emphasize J(X) is only one possible
candidate target, and PSO is definitely not limited to only this case.

PSO-based Solution To learn J(X), we extend PSO framework to setting of 3 different
forces applied over the model fy(X). For this purpose, we denote by S C R™ the subset of n-
dimensional space that we want to map. Here n can have value of 2 or 3, and .S can represent the
entire space of the considered indoor/outdoor environment (i.e. a navigated-through building).

Further, denote by €2 C S the space that was observed by any of the acquired lidar scans.

Each training sample X; € D also belongs to €2, since it is the observed location. Further,
we can consider D to be implicitly sampled from the joint P(X,Y), with X = {X;}¥ | and
Y = {Y;}}X, being distributed according to marginal probabilities P(X) and P(Y). Also,
as mentioned above P(X) can be interpreted as a likelihood of X being observed during
gathering of lidar scans, with VX ¢ 2 : P(X) = 0. Further, P(Y') can be inferred from)’ via
P(Y = f) = ¥ and P(Y = o) = &, with N* being number of samples ¥; = f and N° -

number of samples Y; = o.

Next, we construct two datasets X° = {X°}N° and Xf = {XF }ﬁ\fl, with first dataset
containing each location X; € D with Y; = o, and the second - the rest of the locations in
D. Note that according to the above considered implicit distributions X is distributed along
P(X]Y = o) = S22, and XT - along P(X|V = f) = Z550), with supports of both
distributions being contained within €. Finally, we construct one more dataset X = { X%} Z]\fl

with N points sampled from P¥(X) - a uniform distribution over the entire S.

Further, we propose to extend PSO in Eq. (3.1) to a 3-term form:

83

ZMO i fo(XD)] - Vo fo(X ZMf {)} Vo fo(XH)+
ZM“ XY, fo(XH)] - Vo fo(XH), (10.15)

with MO () = 2 PU(X), MF() = 325 PY(X), and MY(-) = fp(X). Note that M(")
and M¥(-) always return positive values. Therefore, Eq. (10.15) pushes fy(X) at occupied
locations X up and at unoccupied locations Xif - down, similarly to the original PSO equation.
Further, MY (-) is positive when fy(X) > 0 and is negative when fy(X) < 0. Hence, the
applied force at Xg" is always pushing the surface towards fp(X) = 0 (see also the forth

property of Theorem 7).

The convergence fy(X) = J(X) at the optimization equilibrium can be verified via PSO
balance state below. The equality of forces at X (i.e. Euler-Lagrange equation at X) is satisfied

when:

MO [X, fo(X)]-P(X|Y = 0) = M" [X, fo(X)]-P(X|Y = £) = MY [X, fo(X)]-B¥(X) = 0,
(10.16)
where each term represents a physical force - a product of corresponding magnitude function

and data density. After replacing each term with its definition, this equation turns to be:

N° P(X,Y = o) Nf P(X,Y = f) _
Nornt X By o) T Weswntt X Tprop X)) =0,
(10.17)
N° P(X,Y = o) N P(X,Y = f) _
NO+Nf ‘ P(Y:O) _NO+Nf) P(Y:f) —fg(X)—O, (1018)
P(X,Y =0) —P(X,Y =f) — fo(X) =0, (10.19)

Jo(X) = B(X,Y = 0) = P(X,Y = £) = P(X) - [B(Y = o|X) — B(Y = £|X)] = J(X).
(10.20)
Therefore, the described by Eq. (10.15) approach will converge to J(X).

Furthermore, we can find a "loss” form of the proposed PSO method in Eq. (10.15) since its
magnitude functions have analytical anti-derivatives. Specifically, Eq. (10.15) can be considered

as a gradient w.r.t. 6 of the following loss:

1 Y2 e 1 X Nt . .
L(9) = ~ e ; WW(XZQ) fo(XP) + NF Z WW(XH - fo(Xi)+
N“ Z [fg (XH)] . (10.21)

84

which in its turn is a sample approximation of:

L) = [~BXIY = 0) - -2 B0 - X0+

N
No + Nf

= [BX) | - [BOGY = 0) BOLY = D] - fo(X) + 5 (0P [=

FRX]Y = 1) BU(X) - Fo(X) 4 5 BUOX) - [fo(X)) dX =

_ ;/IP”(X) : {fg(X) — [P(X,Y =0) —P(X,Y = f)}rdX—
- %/IP’“(X) P(X,Y =0) - P(X,Y =£)]%dX. (10.22)
Taking into account that the last term is independent of fs, this loss can be replaced by:
L) = /P“(X) [fa(X) — J(X)]2dX. (10.23)

whose minimizer is obviously J(X).

Above we can observe that PSO allowed us to create a new probabilistic loss for statistical
occupancy mapping by only considering the various force terms in Eq. (10.15) and verifying
their convergence according to PSO balance state. Apparently, it is also possible to derive
the very same method by considering the loss L(#) in Eq. (10.23) in the first place. However,
from L(6)’s definition it is not obvious that it can be even computed/approximated, due to
unknown P(X,Y = o) and P(X,Y = f). In contrast, the physical paradigm of PSO leads to a
very simple and systematic solution. The empirical evaluation of the above method appears in
Section 13.6.

85

86

CHAPTER 1 1

NN Architecture

In this section we describe various design choices when constructing NN f,(X), and their
impact on density estimation task. The discussed below are various connectivity architectures,
activation functions and pre-conditioning techniques that helped us to improve overall learning
accuracy. Likewise, where possible we relate the design choice to corresponding properties

acquired by a model kernel gy (X, X”).
Algorithms DeepPDF (see Section 8.1) and log-density estimators in Section 8.2 typically

produce highly accurate density approximations in low dimensional cases. For example, in [61]
we showed that DeepPDF produces a better accuracy than KDE methods in 2D and 3D scenarios.
This likely can be accounted to the flexibility of NN - its universal ability to approximate any
function. As empirically observed in [63], the implicit model kernel go(X’, X) adapts to
better represent any learned target function. Further, its bandwidth, discussed in Section 7.5,
is typically different in various areas of the considered input space. This allows to prevent
overfitting in areas with small amount of training points, and to reduce underfitting in areas
where the amount of training data is huge. In contrast, KDE methods are typically limited
to a specific choice of a kernel and a bandwidth (yet variable-bandwidth KDE methods exist,
see [136]) that is applied to estimate the entire pdf surface with its many various details.

Yet, we also observed a considerable underfitting problem of the above PSO instances that
grows with larger data dimension and with higher frequency/variability contained within the
target function. Particularly, even in case where a high-dimensional training dataset is huge, for
a typical fully-connected (FC) NN architecture the produced estimation is far away from the
real data density, and often contains mode-collapses and other inference inconsistencies. We
argue that it is caused by too wide bandwidth of gg(X’, X) in FC architecture, which leads to a
growing estimation bias. Such conclusion is supported by Theorem 20 which stated that the
bandwidth of gg(X, X”) defines the flexibility of fy(X).

As was observed, in FC architecture gy’s bandwidth is growing considerably with the higher
data dimension, thus producing more side interference between the different training points and

decreasing the overall elasticity of the network. In its turn, this limits the accuracy produced

87

TTIT
T
J
=

(a) (b)

Figure 11.1: (a) Typical NN architecture used in [61]. Yellow blocks are FC layers with non-linearity, except for last layer which is
FC layer without activation function. Entire network can be seen as single transformation channel. (b) Proposed NN architecture
used in this thesis. Block-diagonal layers can be seen as set of independent transformation channels. This independence improves
network’s flexibility. Output vector of a first FC layer is sliced into Np separate vectors. Each small vector is used as input to
separate channel - FC sub-network. At the end outputs of all channels are concatenated and sent to the final FC layer. All FC layers
in this architecture (the yellow blocks) use non-linearity (typically Relu or Leaky-Relu), except for the final FC layer.

by PSO. Below we propose a new NN architecture that mitigates the bandwidth problem and
increases a flexibility of the surface. Further, in Section 13.2.3 we show that such architecture

extremely improves the estimation accuracy.

Remark 27. Note that in context of generative adversarial networks (GANs), whose critics are
also instances of PSO (see Tables 5.1-5.5), the convergence problems (e.g. mode-collapse and
non-convergence) were also reported. Typically, these problems are blamed on Nash equilibrium
between critic and generator networks which is hard to optimize. Yet, in our work we see that
such problems exist even without a two-player optimization. That is, even when only a specific
PSO instance (the critic in GAN’s context) is trained separately, it is typically underfitting

and has mode-collapses within the converged surface fo(X) where several separate "hills”

from target T {X , ﬁggﬂ are represented as one hill inside fg(X). Below we present several

techniques that allowed us to reduce these convergence problems.

11.1 Block-Diagonal Layers

A typical FC network (Figure 11.1a) can be seen as one channel transformation from point X
to its surface height fy(X). During the optimization, due to such NN structure almost every
parameter inside € is updated as a consequence of pushing/optimizing at any training point
X € R™ within PSO loss. Such high sharing of the weights between various regions of R"
creates a huge side-influence between them - a dot product between Vg fo(X) and Vg fo(X')
for faraway points X and X' is large. This in turn increases bandwidth of g4 and decreases the
flexibility of fy.

The above line of thought guided us to propose an alternative NN architecture where several
separate transformation channels are built into one network (see Figure 11.1b). As we will see
below, such architecture is identical to a simple FC network where each layer’s weight matrix
W; is block-diagonal.

Specifically, we propose to pass input X through a typical FC layer with output dimension
S, and split this output into a set of Np smaller vectors of size Sp = S/Np. Further, for each

88

Sp-sized vector we construct a channel: a subnetwork with [Nz, — 2] FC layers of the same size
Sp. Finally, the outputs of all channels are concatenated into vector of size .S and this vector is
sent to the final FC layer (see illustration in Figure 11.1b). All FC layers within this architecture

use non-linearity (typically Relu or Leaky-Relu), except for the last layer.

Exactly the same computational flow will be produced if we use the usual FC network from
Figure 11.1a with inner layers having block-diagonal weight matrices. Namely, we can build
the same simple network as in Figure 11.1a, with N, layers overall, where [N, — 2] inner FC
layers have block-diagonal weight matrices W; of size S x S. Each W; in its turn will contain

Np blocks at its diagonal, of Sp x Sp size each, with rest of the entries being constant zeros.

A straightforward implementation of block-diagonal (BD) layers by setting off-diagonal
entries to be constant zeros can be wasteful w.r.t. memory and computation resources. Instead,
we can use multi-dimensional tensors for a more efficient implementation as follows. Consider
output of the first FC layer as a tensor v with dimensions [B, S|, where B is a batch dimension
and S is an output dimension of the layer. We can reshape v to have dimensions [B, Np, Sg],
where the last dimension of v will contain small vectors u; of size Sp each, i.e. inputs for
independent channels. Further, each inner BD layer can be parametrized by a weight matrix W
with dimensions [Np, Sp, Sp] and bias vector b with dimensions [Nz, Sg]. The multiplication
between v and W, denoted as V', has to be done for each u; with an appropriate slice of weight
matrix, W7, :, :]. Moreover, it should be done for every instance of the batch. This can be done

via the following Einstein summation convention:

Sp
Vi, j, k] =Y Wlj,k,m]-[i,j,m], (11.1)

m=1

which produces tensor V' with size [B, N, Sg]. Further, bias can be added as:
Uli,:,:] = Vl]i,:,:] + b, (11.2)

where afterwards the tensor U is transformed by point-wise activation function o(-), finally
producing the output of BD layer U = o(U) of size [B, Ng, Sg].

We construct [Ny, — 2] such BD layers that represent N independent channels. Further,
the output of the last BD layer is reshaped back to have dimensions [B, S|, and is sent to the

final ordinary FC layer that returns a scalar.

Remark 28. The Einstein summation operation is typically offered by modern DL frameworks,
thus implementing the above BD layers is convenient and easy. Yet, their runtime is slower
relative to FC layers. We hope that in future versions of DL frameworks such BD layers would
be implemented efficiently on GPU level. Also, our code for this layer can be found in open
source library https://bit.1ly/2AMwyJT.

&9

https://bit.ly/2AMwyJT

5 s
15 x10 *10°

S

g(X',X,0)
w

0 -—M—»——— .
2
%0 5 15 % 5 10 15 % 15
d(Xx',X) d(Xx',X) d(X', X)
(a) (b) ()
7000
6000 6000
6000
5000 5000
5000
14000 14000
4000
3000 13000
3000
2000 000 2000
1000 4g09 1000
0 0 0
15 1 -1.5
d(X', X) r(X', X,0)
(d) (e)
4 4 4
1.5 x10 2510 10
2 2
2
— 15 15
N 15 |
o
B 1 ’ 1
0.5 05 05
0 0 - — 0
15 1 0.5 0 0.5 -1 1.5
(X', X,0)
()

Figure 11.2: Bandwidth of g (X', X) and the surface flexibility of FC and BD models. We infer 20D Columns distribution (see
Section 13.2) by using PSO-LDE with o« = % (see Table 5.1 and Section 8.2). Two networks were trained, FC and BD. The applied
FC architecture contains 4 FC layers of size 1024. The applied BD architecture has 6 layers, number of blocks Np = 50 and
block size Sp = 64. Values of gradient similarity gg(X’, X) and values of Euclidean distance d(X’, X) are plotted for (a) FC
network and (b) BD network. (c) Histogram of d(X"’, X') calculated between all sample pairs from dataset D. Further, a histogram
of obtained {rg(X;, X;)} and {d(X;, X;)} is plotted for (d) FC model and (f) BD model. Side views of these histograms are
depicted in (e) and (g). See more details in the main text.

11.1.1 Flexibility of BD vs FC

The above BD architecture allowed us to tremendously improve accuracy of density estimation
for high-dimensional data. This was achieved due to the enhanced flexibility of BD architecture

vs FC, as we empirically demonstrate below.

To this end, we analyze the bandwidth of go(X, X”) for each of the architectures as follows.
We perform a typical density estimation task via PSO-LDE method proposed in Section 8.2.
After training a model we sample D = {X;}3%0 testing points from the target density PV
and calculate their gradients Vy f5(X;). Further, we calculate Euclidean distance d(X;, X;) =
| X; — X;|| and gradient similarity go(X;, X;) between every two points within D, producing

w pairs of distance and similarity values (we consider only unique pairs here). These

90

values are plotted in Figures 11.2a-11.2b. As can be seen, gy(X’, X) values (y axis) of FC
network are much higher than these values in BD network. Likewise, there is strong correlation
between values of gradient similarity and Euclidean distance. In FC case, for d(X’, X) > 0
values of go(X’, X) are far away from being zeros, thus implying strong side-influence of
optimization pushes on surface fy(X) even between far away points. In contrast, for BD case
we can see that go(X’, X) is centered around zero for d(X’, X) > 0, hence side-influence
here is less significant. Furthermore, we stress that similar trends were achieved in all our

experiments, for various densities PV and P”.

Remark 29. The gap in Figures 11.2a-11.2b between points with d(X', X)) = 0 and rest of the
samples is explained as follows. At d(X', X)) = 0 all point pairs are of a form (X;, X;), with
overall 3000 such pairs. Rest of the samples are {(X;, X;)|i # j}. Furthermore, the histogram
of d(X', X) between points in D is illustrated in Figure 11.2¢c. As can be observed, d(X', X) is
distributed with Gaussian-like density centered around 8.6. Hence, the gap between the points
in Figures 11.2a-11.2b can be explained by a very low probability of two sampled points to be

close to each other when the considered space volume (here the subset of R?°) is huge.

Further, for each sample pair in D we also calculate the relative model kernel r¢(X;, X;)
defined in Eq. (7.10). When 7y is greater than 1, it implies that point X; has stronger impact
over fp(X;) than the point X itself, and vice versa. Hence, for each point X; the 79(Xj, -) can
be interpreted as a relative side-influence from other areas over fy(X;), scaled w.r.t. the self-
influence of X;. Such normalization allows us to see the actual side-influence impact between
two different points, since the value of go(X, X') by itself is meaningless and only achieves
significance when compared to the self-similarity go(X, X). Moreover, unlike go(X, X),
ro(X, X') of different models and NN architectures is on the same scale, allowing to compare
the side-influence level between different models.

For 9 - 108 calculated pairs of a relative side-influence ry(X;, X ;) and a Euclidean distance
d(X;, X;) we constructed a histogram in Figures 11.2d and 11.2f for FC and BD networks
respectively. Here, we can see the real difference between side-similarities of two models.
Within FC network we have a strong relative side-influence even between far away regions.
This side-influence interferes with the proper PSO optimization by introducing a bias, as was
explained in Section 7.5. In contrast, within BD model the relative side-influence between far
away regions stays very close to zero, implying that the surface height fy(X) at point X is
only pushed by training points that are relatively close to X. Furthermore, this increases the
flexibility of the surface, since with a less side-influence the surface is less constrained and can
be pushed at each specific neighborhood more freely.

Hence, we see empirically that the kernel bandwidth of BD NN is smaller than the bandwidth
of FC NN, which implies that BD surface is much more flexible than FC. Such flexibility also
improves the overall accuracy performance achieved by BD networks (see Section 13.2.3). The
exact mechanism responsible for such difference in the gradient similarity is currently unknown

and we shall investigate it in future work.

91

11.1.2 Relation between BD and FC - Additional Aspects

The multi-dimensional tensor implementation of BD layers in Eq. (11.1-11.2) allows to signif-
icantly reduce size of 6. For example, BD network applied in Figure 11.2 with 6 layers has
less than 10° weights (|0| = 902401), while the straightforward implementation would require
above 107 weights - 10 times more; the same size that appropriate FC network with 6 layers of
size 3200 would take. Further, the size of FC network used in Figure 11.2 is |0| = 2121729.
Yet, surprisingly the more compact BD network produces a narrower model kernel (and higher
approximation accuracy as will be shown in Section 13.2.3) than the more memory consuming
FC network.

Interestingly, BD layers are contained in the hypothesis class of FC layers, thus being
instance of the latter. Yet, a typical optimization of FC architecture will not impose weight
matrices to be block-diagonal, since the local minima of FC network typically has dense weight
matrices. However, as already stated, an optimized network with BD structure has a significantly
lower error compared to FC structure. This suggests that local minima of FC networks has
a much bigger error compared to the error of the global minima for such architecture, since
the global minima should be even smaller than the one achieved by BD network. Hence, this
implies that common statement about local and global errors of NN being close is not always

correct.

11.1.3 Similar Proposed Architectures

The BD model can be expressed as a sum of sub-models, each representing separate network
channel. Such design has a high resemblance to the products of experts (PoE) [45] where model
is constructed as sum (or product) of smaller models. Yet, in typical PoE each expert is trained
separately, while herein we represent our block-diagonal model as single computational graph
that is trained as whole by the classical backpropagation method.

In addition, we argue that also other DL. domains can benefit from a BD architecture, and
such investigation can be an interesting future work. In fact, separating network into several
independent channels is not new. The family of convolutional Inception models [132-134]
also applied the split-transform-merge paradigm, where each network block was separated
into a set of independent transformations (channels). These models succeeded to achieve high
accuracy at the image classification problem. Further, ResNeXt convolutional model in [149]
generalized this idea to produce NN computational blocks that contain C' independent identical
transformations, where C' is a cardinality parameter of NN. Authors showed that increasing
cardinality instead of width/number of layers can significantly improve the accuracy produced
by NN. In context of BD architecture, we have seen a similar trend where increasing number
of channels Np (which is parallel to C) allows to provide a better approximation of the target
function. We demonstrate this in our experiments in Section 13.

Further, a similar architecture was proposed also in [89] in the context of the classification,
although it was implemented in a different way. The main motivation of that work was to

condense a network size to improve the computational complexity of a NN. Authors showed

92

that by forcing weight matrices of FC layers to be block-diagonal a significant speedup in time
can be achieved with small loss in accuracy. In contrast, in our work we see that such NN
structure not only improves runtime and reduces number of weights, but also produces a higher

approximation performance.

11.2 NN Pre-Conditioning

It is a common practice in Machine Learning to pre-condition a learning algorithm by, for
example, whitening and uncorrelating data or performing any other transformation that improves
a condition number of the optimization. We also found that such techniques can be valuable
for the density estimation task. Specifically, the main considered by this thesis application of
PSO framework is to learn log PY (X). In our experiments we combine two pre-conditioning
methods within our NN fy(X): data normalization and NN height bias.
First, we normalize data to have zero mean and unit standard deviation for each dimension %
independently, via:
X, = i H (11.3)

0

where 1 and o are mean and standard deviation vectors calculated for all available data { X }{g
from the target density PY.

Second, we bias an initial surface fy(X) to coincide with logarithm of the chosen auxiliary
down density P” (X'). We assume that the target log PV (X) and log P”(X) reside on a similar
height on average. Thus, to accelerate the convergence we force the initial height of surface
fo(X) to be identical to log P”(X) as follows. First, as observed a typical initialization of
NN produces the initial surface fy(X) = 0 for all points X. Hence, in order to bias it to the
initial height log P” (X'), we only need to add this log-pdf function to the output of the last layer,
JE(X):

fo(X) = f§(X) + log P”(X). (11.4)

Moreover, such NN initialization enforces the logarithm difference d [X, fo(X)] £ fo(X)—
log PP (X)) from Eq. (8.5) to be approximately zero for all points X € R™ at beginning of the
optimization. Further, considering magnitudes of PSO-LDE in Egs. (8.7)-(8.8), for the above
initialization each of { MY, M2} will return 2= for any point X. Since both MY (X, fo(X))
and MP (X, fo(X)) have the same value at every point X € R", such NN bias produces a more
balanced PSO gradient (see Eq. (3.1)) at start of the training, which improves the optimization
numerical stability. Furthermore, as mentioned above in case the chosen P? is indeed close
to the target PV, the initial value of the surface fy(X) is also close to its final converged form;
this in turn increases the convergence rate of PSO-LDE. Further, recently a similar idea was
suggested in [65] specifically for NCE method (PSO-LDE with e = 1) in the context of discrete
density estimation for language modeling, where NN initialization according to outputs of the
noise density (parallel to P”(X) in our work) helped to improve the learned model accuracy.

We perform both techniques inside the computational graph of NN fy(X), by adding at

93

the beginning of graph the operation in Eq. (11.3), and at the end of graph - the operation in
Eq. (11.4).

11.3 Other NN Architecture Aspects

In our experiments we also explored two choices of non-linear activation function to use within
NN fp(X), Relu and Leaky Relu. We found that both have their advantages and disadvantages.
Relu reduces training time by 30% w.r.t. Leaky Relu, allegedly due to its implicit gradient
sparsity, and the converged surface looks more smooth. Yet, it often contains mode collapse
areas where several modes of PV are represented within fy(X) by a single "hill”. On the other
hand, Leaky-Relu sometimes produces artifacts near sharp edges within fy, that resembles
Gibbs phenomenon. Yet, it yields significantly less mode collapses.

We argue that these mode collapses are in general caused by the reduced model flexibility,
which in case of Relu is induced by more sparse gradients Vy fy(-) as follows. The implicit
gradient sparsity of Relu, i.e. zero-gradient afgiéix) = 0 for the most part of the weights
0; € 0 at all input points X € R", also reduces the effective dimension of subspace spanned
by Vg fo(-) evaluated at training points. Thus, the number of possible independent gradient
vectors at different points (i.e. the rank of the aforementioned subspace) is also reduced, which
increases (on average) the correlation go(X, X') £ Vjfo(X)T - Vo fy(X') between various
(even faraway) points X and X'. This increase can also be interpreted as an increase of the
kernel bandwidth, which will lead to expressiveness reduction of the model, according to Section
7.5.

Further, residual (skip) connections between different NN layers became very popular in
recent NN architectures [42, 132, 149]. Such connections allowed for using deeper neural
networks and for the acceleration of learning convergence. Yet, in our work we did not observe
any performance improvement from introducing skip connections into NN fg(X') with 8 or less
layers. Thus, in most part of our experiments we did not employ these shortcuts. The only part
where they were used is the Section 13.4 where networks with 14 layers were trained.

Additionally, the Batch Normalization (BN) [53] technique was shown in many DL works to
stabilize the training process and improve the overall approximation accuracy. However, in our
experiments on the density estimation we saw the opposite trend. That is, when BN is combined
with PSO density estimators, the outcome is usually worsen than without it.

Finally, dropout [128] is known to be an useful regularization method to fight the overfitting.
In our experiment we indeed observed the gg(X, X’)’s bandwidth increase along with an
increase in the dropout probability. Hence, dropout can be considered as a tool to increase
side-influence and bias of the estimation, and to reduce its variance. Further, the detailed

investigation of dropout impact over gg(X, X’) is outside of this thesis scope.

94

CHAPTER 12

Opverfitting of PSO

In this section we will illustrate one of the major challenges involved in training PSO in a small
dataset setting - the over-flexibility of model fy that induces overfirting. Likewise, herein we

will also discuss possible solutions to overcome this issue.

12.1 Problem Illustration

As was described in [61], the accuracy of the estimated density can be very low for a small
dataset setting, since the converged surface can be flat with several spikes at locations of available
training data points. This is due the fact that apparently we estimate the empirical density of
data which in case of sparse datasets can be represented as a flat surface with several peaks. If
the used model fy(X) is overly flexible and is not properly regularized, it can be indeed pushed
to such spiky form, as was proved by Theorem 19 and as we empirically demonstrate below.

According to Section 7.5, the flexibility of the surface fy can be expressed via properties of
the model kernel gy, such as its bandwidth. The kernel acts as a connector of various input space
areas, creating the side influence/force between these areas; it is balancing the overall physical
force at each input point, with its equilibrium described by the convoluted PSO balance state in
Eq. (7.8). Further, when the bandwidth of the model kernel is too narrow w.r.t. distance between
training points, the influence area of any training point X will be some small neighborhood
around X . Any input point X’ outside of all influence areas is basically not optimized during
the learning - fp(X’) will mostly not change during such optimization. Furthermore, the size of
available dataset also has its impact, since with more data the distance between training samples
decreases (on average) and the volume of overall influence area increases.

In Figure 12.1 the overfitting nature of NN surface is illustrated in an experiment where 2D
Gaussian distribution is inferred. When the same network is used and the number of samples is
decreasing, the outcome is the spiky surface at the end of the optimization.

Onwards, in Figure 12.2 we can see the experiment where a small dataset of a size 10000

is used for the same pdf inference, and where the number of used layers is decreased. As

95

|
a 0.05

0.05

0.2
~0.15-
S 041

R,
005

U

(2

Figure 12.1: Illustration of PSO overfirting when the training dataset is small. We infer 2D Normal distribution via PV (X) =
Section 8.2). The applied NN architecture is block-diagonal
64 (see Section 11.1). Number of up training points { X} is
10000 and (h) 1000. As observed, when using the same NN
architecture, that is when we do not reduce the flexibility level of the model, the smaller number of training points leads to the

exp fo(X) by using PSO-LDE with @ = 1 (see Table 5.1 and
with 6 layers, number of blocks Ng = 50 and block size Sp =
(a) 108, (b) 105, (c) 80000, (d) 60000, (e) 40000, (f) 20000, (g)

(h)

spiky approximation. In other words, the converged model will contain a peak around each training sample point.

96

(c) (d)

Figure 12.2: Illustration of decrease in PSO overfitting when the NN flexibility is reduced. We infer 2D Normal distribution
via PY (X) = exp fo(X), using only 10000 training samples { X" }. The applied loss is PSO-LDE with a = i (see Table 5.1
and Section 8.2). The applied NN architecture is block-diagonal with number of blocks N = 20 and block size Sp = 64 (see
Section 11.1). Number of layers within NN is (a) 5, (b) 4, (¢) 3 and (d) 2. As observed, when the number of layers is decreasing,
the converged model is more smooth, with less peaks around the training points.

(© (d)

Figure 12.3: Illustration of decrease in KDE (kernel density estimation) overfitting when the bandwidth h of applied Gaussian
kernel is increased. We infer 2D Normal distribution via KDE, using only 10000 training samples { X" }. Used kernel has h equal
to (a) 0.04, (b) 0.08, (c) 0.12 and (d) 0.2. As observed, when the bandwidth h is increasing, the converged model is more smooth,
with less peaks around the training points. Similar trend is observed for PSO in Figure 12.2.

observed, with less layers the spiky nature of the surface is decreasing due to the reduced NN
flexibility/capacity. Similar behavior is also observed in KDE method in Figure 12.3 where
the bandwidth of Gaussian kernel is increasing; we can see that the surface estimated via
KDE becomes more and more flexible for a smaller kernel bandwidth, similarly to what we
observed in Figure 12.2. Thus, both KDE and PSO exhibit a similar flexibility behavior when
the bandwidth of former is increased and when the layers depth of latter is reduced. Moreover,

97

3>:10‘ x10*

25
25
2
2
15
15
. 1
05 05
 — 0
15 1 05 0 05 1 15
(X', X,0)
(b)
25 x10* x10*
2
2
15 15
1 1
05 0.5
0 0
15 1 05 0 05 R 15
r(X', X,0)
(GY)

10000 9000
9000 8000
8000 7000
7000

6000
6000 {
| 15000
5000
4000 14000
3000 3000
2000 2000
1000 1000
0 0
15 1 05 0 05 -1 15
(X', X,0

4000

3500 3500

3000 3000

2500 2500

2000 2000
1500 1500
1000 1000
500 500

0

0.5 -0.5

0
r(X', X.0)

(h)

Figure 12.4: Illustration of NN flexibility and the corresponding bandwidth of gg (X, X”), for each model in Figure 12.2. We
calculate a relative model kernel 79 (X;, X ;) and a Euclidean distance d(X;, X;) for 9 - 10¢ point pairs and depict a histogram
of obtained {r¢(X;, X;)} and {d(X;, X;)} in left column. Likewise, a side view of this histogram is depicted in right column.
Number of layers within NN is (a)-(b) 5, (¢)-(d) 4, (e)-(f) 3 and (g)-(h) 2. See more details in the main text.

98

the reduction of layers in case of PSO produces a similar increase of go(X, X’)’s bandwidth as
we further show.

Particularly, in Figure 12.4 we present the bandwidth histogram of gy(X, X’) for each
trained model in Figure 12.2. We sample {X;}3%)° testing points from 2D Gaussian and
calculate relative side-influence 7¢(X;, X;) defined in Eq. (7.10) for each pair of points. Further,
for each pair we also compute the Euclidean distance d(X;, X).

For 9 - 10° pairs of a relative side-influence r¢(X;, X;) and a Euclidean distance d(X;, X;)
we construct a histogram in Figure 12.4. As observed, the relative side-influence is reduced
with d(X;, X;) - faraway points affect each other on much lower level. Further, we can see
in left column of Figure 12.4 a sleeve right from a vertical line d(X’, X) = 0 that implies
an existence of overall local-support structure of 79(X;, X;), and a presence of some implicit
kernel bandwidth. Likewise, we can also see a clear trend between 7¢(.X;, X;) and the number
of NN layers. For shallow networks (see Figures 12.4g-12.4h) the relative side-influence is
strong even for faraway regions. In contrast, in deeper networks (see Figures 12.4a-12.4b)
r9(Xi, X;) is centered around zero for a pair of faraway points, with some close by points
having non-zero side-influence. Hence, we can see the obvious relation between the network
depth, the bandwidth of model kernel and the model flexibility, which supports conclusions
made in Section 7.5.

Furthermore, since the impact of a kernel bandwidth is similar for PSO and KDE, we
can compare our conclusions with well-known properties of KDE methods. For instance,
optimality of the KDE bandwidth was already investigated in many works [24,43,95,125] and
is known to strongly depend on the number of training data samples. Hence, this implies that the
optimal/”’desired” bandwidth of gy(X, X’) also depends on the size of training dataset, which

agrees with statements of Section 7.5.

Remark 30. In Figure 12.4a we can see that the side-influence between most points is zero,
implying that gradients Vg fo(X;) at different points tend to be orthogonal for a highly flexible
model. This gradient orthogonality does not present at NN initialization, and there is some
mechanism that enforces it during NN training as shown in Appendix H. The nature of this

mechanism is currently unknown.

12.2 Possible Solutions

How big the training dataset should be and how to control NN flexibility to achieve the best
performance are still open research questions. Some insights can be taken from KDE domain,
yet we shall leave such analysis for future investigation. Further, the over-flexibility issue yields
a significant challenge for application of PSO density estimators on small datasets, as well as
also for other PSO instances. However, there are relatively simple regularization methods to
reduce such overfitting and to eliminate peaks from the converged surface fy.

The first method is to introduce a weight regularization term into the loss, such as L2

norm of §. This will enforce the weight vector to be inside a ball in the parameter space, thus

99

limiting the flexibility of the NN. Yet, it is unclear what is the exact impact of any specific
weight regularization method on the final surface and on properties of gg(X, X'), due to highly
non-linear nature of modern deep models. Typically, this regularization technique is used in
try-and-fail regime, where different norms of 6 and regularization coefficients are applied till a
good performance is achieved.

Another arguably more consistent method is data augmentation, which is highly popular in
Machine Learning. In context of PSO and its gradient in Eq. (3.1), we can consider to introduce

an additive noise into each sample X/ as:

XV =XVt (12.1)

where X7 is the original sample from the data density PV (X') and v is a random noise sampled
from some density PY(X) (e.g. Gaussian distribution). When using XZ-U instead of X/, we will
actually estimate the density of the random variable X Y which is the convolution between two
densities. Thus, for PSO-LDE the converged surface fy(X) will be:

for(X) =log ([P” * P*)(X)), (12.2)

where * defines the convolution operator.

Considering PV (X) to be Gaussian and recalling that it is a solution of the heat equation [12],
the above expression elucidates the effect of such data augmentation as a simple diffusion of the
surface that would be estimated for the original X . That is, assuming that f»(X) would get a
spiky form when approximating log PV (X), the updated target density function (and thus also
its approximation fy) undergoes diffusion in order to yield a smoother final surface. In case of
Gaussian noise, the smoothness depends on its covariance matrix. Yet, the other distributions
can be used to perform appropriate convolution and to achieve different diffusion effects. We
employ the above technique to improve an inference accuracy under a small training dataset

setting in Section 13.2.5.

Remark 31. Additionally, in context of image processing, a typical data augmentation involves
image flipping, resizing and introducing various photographic effects [103, 147]. Such methods
produce new samples X 7 that are still assumed to have the original density PV (X)), which can
be justified by our prior knowledge about the space of all possible images. Given this knowledge
is correct, the final estimation is still of PV (X) and not of its convolution (or any other operator)

with the noise.

100

CHAPTER 13

Experimental Evaluation of PSO Framework

Below we report several experimental scenarios that demonstrate the efficiency of the proposed
PSO algorithm family. Concretely, in Section 13.2 we apply PSO to infer a pdf of 20D Columns
distribution, where in sub-section 13.2.1 we compare between various PSO instances; in 13.2.2
we experiment with state-of-the-art baselines and compare their accuracy with PSO-LDE; in
13.2.3 we evaluate the pdf inference performance for different NN architectures; in 13.2.4 we
investigate the impact of a batch size on PSO performance; and in 13.2.5 we show how different
sizes of training dataset affect inference accuracy and explore different techniques to overcome
difficulties of a small dataset setting. Furthermore, in Section 13.3 we perform pdf inference
over a more challenging distribution Transformed Columns, in Section 13.4 we apply our pdf
estimation approach over 3D densities generated from pixel landscape of RGB images, and
in Section 13.5 we use PSO in robotics domain to infer joint density over robot poses and
acquired measurements. Further, in Section 13.6 we solve the occupancy mapping problem
via PSO-based technique. Additionally, in Appendix G we show that the first-order Taylor
approximation of the surface differential in Eq. (7.5) is actually very accurate in practice, and
in Appendix H we empirically explore dynamics of gg(X, X') and of its bandwidth during a

learning process.

Importantly, our main focus in this paper is to introduce a novel paradigm for inferring
various statistics of an arbitrary data in a highly accurate and consistent manner. To this end
and concretely in context of density estimation, we are required to demonstrate quantitatively
that the converged approximation Py(X) of the pdf function P(X) is indeed very close to its
target. Therefore, except for Section 13.5 we mostly avoid experiments on real datasets (e.g.
MNIST, [68]), since they lack information about the true pdf values of the samples. Instead, we
generate datasets for our experiments from analytically known pdf functions, which allows us to
evaluate the ground truth error between Py(X) and P(X). However, all selected pdf functions

are highly multi-modal and therefore are very challenging to infer.

Likewise, in this work we purposely consider vector datasets instead of image data, to

decouple our main approach from complexities coming with images and CNN models. Our

101

main goal is to solve general unsupervised learning, and we do not want it to be biased towards
spatial data. Moreover, vector data is mostly neglected in modern research and our method

together with the new BD architecture addresses this gap.

13.1 Learning Setup

All the pdf inference experiments were done using Adam optimizer [59], since Adam showed
better convergence rate compared to stochastic GD. Note that replacing GD with Adam does not
change the target function approximated by PSO estimation, although it changes the implicit
model kernel. That is, the variational PSO balance state in Eq. (3.2) stays the same while the
convoluted equilibrium described in Section 7.4 will change according to the model kernel
associated with Adam update rule.

The used Adam hyper-parameters are 3; = 0.75, B2 = 0.999 and ¢ = 1070, Each
experiment optimization is performed for 300000 iterations, which typically takes about one
hour to run on a GeForce GTX 1080 Ti GPU card. The batch size is NV = N” = 1000. During
each iteration next batch of up points { X7 }19%0 is retrieved from the training dataset of size
Npr, and next batch of down points { X P }1999 is sampled from down density P”. For Columns
distribution in Section 13.2 we use a Uniform distribution as P”. Next, the optimizer updates
the weights vector # according to the loss gradient in Eq. (3.1), where the magnitude functions
are specified by a particular PSO instance. The applied learning rate is 0.0035. We keep it
constant for first 40000 iterations and then exponentially decay it down to a minimum learning
rate of 3 - 10~°. Further, in all our models we use Leaky-Relu as a non-linearity activation
function. Additionally, weights are initialized via popular Xavier initialization [29]. Each
model is learned 5 times; we report its mean accuracy and the standard deviation. Further, PSO
implementation based on Tensorflow framework [135] can be accessed via open source library
https://bit.ly/2AMwyJT.

To evaluate performance and consistency of each learned model, we calculate three different
errors over testing dataset { X7} ,, where each point was sampled from PV and N is 10°.
First one is pdf squared error PSQR = % SN []P’U (XV) — Py (XlU)} 2, with Py (-) being the
pdf estimator produced by a specific model after an optimization convergence. Further, since
we deal with high-dimensional data, P.SQ R involves operations with very small numbers. To
prevent inaccuracies caused by the computer precision limit, the second used error is log-pdf
squared error LSQR = + SN [log PY(XY) — log Py (XZU)} 2. Since in this thesis we target
log P() in the first place, the LSQR error expresses a distance between the data log-pdf and
the learned NN surface fy(-). Moreover, LSQR is related to statistical divergence between PV
and Py (see more details in Appendix I).

Further, the above two errors require to know ground truth PV for their evaluation. Yet, in
real applications such ground truth is not available. As an alternative, we can approximate PSO
functional in Eq. (3.3) over testing dataset. As explained in Section 6.1, this loss is equal to PSO
divergence up to an additive constant, and thus can be used to measure a discrepancy between

the PSO-optimized model and the target function. However, for most of the below applied PSO

102

https://bit.ly/2AMwyJT

log PY(X)

(a) (b)
Figure 13.1: (a) Illustration of Columns distribution. Every slice of its pdf function P(z;,z;) =

PY(0,...,0,24,0,...,0,2;,0,...,0) in Eq. (13.1) contains 25 modes of different shape. Overall, this distribution
has 520 modes. (b) Logarithm of pdf slice in (a) that will be learned via NN surface.

instances L pgo(f) is not analytically known and hence can not be computed. To overcome this
problem and to measure model performance in real applications, we propose to use the loss of
IS method from Table 5.1, IS = —+ SN | fo(XY) + £ SN, exﬁgﬁ)(gf)] , where {XP}YV,
are i.i.d. samples from P”. As we will see, while IS is less accurate than the ground truth
errors, it still is a reliable indicator for choosing the best member from a set of learned models.
Additionally, during the optimization IS is correlated with the real error and if required can be

used to monitor current convergence and to allow an early stop evaluation.

Remark 32. Note that unlike typical density estimator evaluation, herein we do not use perfor-
mance metrics such as perplexity [55] and various kinds of f-divergences, or negative-likelihood
scores. This is because the PSO-learned models are only approximately normalized, while the
aforementioned metrics typically require strictly normalized models for their metric consistency.
Still, both PSQR and LSQR are mean squared errors between target and approximation
functions, and are similar to other performance metrics that are widely applied in regression

problems of Machine Learning domain.

13.2 PDF Estimation via PSO - Columns Distribution

In this Section we will infer a 20D Columns distribution from its sampled points, using various
PSO instances and network architectures. The target pdf here is PU(X) = P¢/™"3(X) and is

defined as:

20
PO (34, o) = [[o), (13.1)
=1

where p(-) is a 1D mixture distribution with 5 components {Uni form(—2.3, —1.7), N'(—1.0,
std = 0.2), N (0.0, std = 0.2), N (1.0, std = 0.2), Uni form(1.7,2.3)}; each component has
weight 0.2. This distribution has overall 520 ~ 9.5 - 103 modes, making the structure of its
entire pdf surface very challenging to learn. For the illustration see Figure 13.1a.

First, we evaluate the proposed density estimation methods under the setting of infinite

103

562107 0.068
0.066
0.064

BT 10° 10"

26.595

26.59 1

26.585

26.58 -

S

- 26.575

Total Integral
o
© o
(2} o
()] ~

26.57 1

26.565

26.56
1

(d)

Figure 13.2: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers, number of blocks Np = 50 and block size Sp = 64 (see Section 11.1). For different values of a hyper-parameter a, (a)
PSQR, (b) LSQR and (c) IS are reported, along with their empirical standard deviation. (d) Estimators of the total integral
TI = f Py (X)dX of learned models for each value of a.. For a specific learned model HE’g(X) this integral is estimated through
N Pe(x?)
i=1 PD(x D)
consistent, with 7T = T1 for N — co.

over N = 108 samples from down density PP . Note that such estimator is

importance sampling as T1 = Z

training dataset, with number of overall training points being Np7 = 10%. Later, in Section
13.2.5 we will investigate how a smaller dataset size affects the estimation accuracy, and propose

various techniques to overcome issues of sparse data scenario.

13.2.1 PSO Instances Evaluation

Here we perform pdf learning using different PSO instances, and compare their performance.
The applied NN architecture is block-diagonal from Section 11.1, with 6 layers, number of
blocks N = 50 and block size Sp = 64.

PSO-LDE and o First, we apply the PSO-LDE instances from Section 8.2, where we try
various values for the hyper-parameter «.. In Figure 13.2 we can see all three errors for different
a. All models produce highly accurate pdf estimation, with average LSQ R being around 0.057.
That is, the learned NN surface fp(X) is highly close to the target log PV (X). Further, we can
see that some « values (e.g. a = %) produce slightly better accuracy than others. This can
be explained by smoother magnitude dynamics with respect to logarithm difference d from
Eq. (8.5), that small values of « yield (see also Section 8.2). Note that here I.S error is not very
correlative with ground truth errors PSQR and LSQ R since the accuracy of all models is very

similar and 7.5 is not sensitive enough to capture the difference.

104

-20
Samples from PY
Samples from PP

%108
-30

-40

-60
-70
-8980 -70 -60 -50 -40 -30 -20
log PY(X)
(b)
32
o o 20 30
Jo5 g &)
o —110 28
0 0 26
0 1 2 3 0 1 2 3 0 1 2 3
step x10° step x10° step «10°
(c)

Figure 13.3: Learned pdf function of Columns distribution by PSO-LDE with o = i, where NN architecture is block-diagonal
with 6 layers, number of blocks Np = 50 and block size Sp = 64 (see Section 11.1). (a) Illustration of learned pdf function.
The depicted slice is P(z1, z2) = PU (z1,22,0,...,0), with z; and z2 forming a grid of points in first two dimensions of the
density’s support. As can be seen, all modes (within first two dimensions) and their appropriate shapes are recovered. (b) Illustration
of the learned surface fg(X). Blue points are sampled from PV, while red points - from PP, minimal 20D Uniform distribution
that covers all samples from PU. The z axis represents log PV (X)) for each sample, y axis represents the surface height fg(X)
after the optimization was finished. The diagonal line represents fg(X) = log PV (X), where we would see all points in case of
perfect model inference. The black horizontal line represents log PP (X) = —30.5 which is a constant for the Uniform density.
As can be seen, these two densities have a relative support mismatch - although their pdf values are not zero within the considered
point space, the sampled points from both densities are obviously located mostly in different space neighborhoods. This can be
concluded from values of log PV (X)) that are very different for both point populations. Further, we can see that there are errors
at both XV and X P locations, possibly due to high bias of the surface estimator fg(X) imposed by the model kernel gy (see
also Figure 13.4). (c) Testing errors as functions of the optimization iteration. All three errors can be used to monitor the learning
convergence. Further, IS error can be calculated without knowing the ground truth.

Further, we also estimate the total integral TI = [Py(X)dX for each learned model via
importance sampling. In Figure 13.2d we can see that the learned models are indeed very close
to be normalized, with the estimated total integral being on average 0.97 - very close to the
proper value 1. Note that in our experiments the model normalization was not enforced in any
explicit way, and PSO-LDE achieved it via an implicit force equilibrium.

Furthermore, in Figure 13.2d it is also shown that smaller values of « are more properly
normalized, which also correlates with the approximation error. Namely, in Figure 13.2a same
models with smaller « are shown to have a lower error. We argue that further approximation
improvement (e.g. via better NN architecture) will also increase the normalization quality of
produced models.

Moreover, in Figure 13.3a we can see a slice of the learned exp fy(X) for the first two

1

dimensions, where the applied PSO instance was PSO-LDE with a = ;. As observed, it is

1
highly close to the real pdf slice from Figure 13.1a. In particular, all modes and their shapes

(within this slice) were recovered during learning. Further, in Figure 13.3b we can observe the

105

learned surface height fp(X) and the ground truth height log PV (X) for test sample points from
PY and P”. As shown, there are approximation errors at both XV and X7, with down points
having bigger error than up points. As we will see below, these errors are correlated with the
norm of # gradient at each point.

Additionally, in Figure 13.3b we can see an asymmetry of error w.r.t. horizontal line
log P?(X) = —30.5, where points above this line (mostly blue points) have a NN height fy(X)
slightly lower than a target log PV (X'), and points below this line (mostly red points) have a
NN height fy(X) slightly higher than target log PV (X). This trend was observed in all our
experiments. Importantly, this error must be accounted to an estimation bias (in contrast to
an estimation variance), since the considered herein setting is of infinite dataset setting where
theoretically the variance is insignificant.

Further, we speculate that the reason for such bias can be explained as follows. The points
above this horizontal line have a positive logarithm difference d = fy(X) + 30.5 defined in
Eq. (8.5), d > 0, whereas points below this line have a negative d < 0. From the relation
between d and magnitude functions discussed in Section 8.2, we know that for “above” points the
up magnitude MV (-) is on average smaller than down magnitude M " (-) (see Figure 8.2). The
opposite trend can be observed within "below” points. There M ”(-) has smaller values relatively
to MY (-). Thus, the surface parts above this horizontal line have large down magnitudes, while
parts below the line have large up magnitudes, which in its turn creates a global side-influence
imposed via the model kernel. Finally, these global side influences generate this asymmetric
error with log PP (X) = —30.5 being the center of the pressure. Likewise, we argue that this
asymmetric tendency can be reduced by selecting PY and P? densities that are closer to each
other, as also enhancing NN architecture to be more flexible, with the side-influence between far
away regions being reduced to zero. In fact, we empirically observed that NN architectures with
bigger side-influence (e.g. FC networks) have a greater error asymmetry; the angle identified
in Figure 13.3b between a point cloud and line fy(X) = logPY(X) is bigger for a bigger
overall side-influence within the applied model (see also Figure 13.9b below). We leave a more
thorough investigation of this asymmetry nature for future research.

Further, the above asymmetry also clears out why all learned models in Figure 13.2d had the
total integral less than 1. Since this integral is calculated by taking exponential over the learned
fo(X), red points in Figure 13.3b almost do not have any impact on it, compared with the blue
points (red points’ exponential is much lower than exponential of blue points). Yet, blue points
have smaller exp fg(X) than their real pdf values PV (X). Therefore, the total integral comes
out to be slightly smaller than 1.

Also, in Figure 13.3c we can see all three errors along the optimization time; the IS is
shown to monotonically decrease, similarly to ground truth errors. Hence, in theory it can
be used in real applications where no ground truth is available, to monitor the optimization

convergence.

Point-wise Error Furthermore, we empirically observe a direct connection between point-wise

ground truth error and self gradient similarity go(X, X) (squared norm of gradient V fy(X)

106

> Samples from PY 25 > Samples from PY
60 > Samples from P°| ° Samples from PP

20
o
Za0 g 15
] =10
20
5
0 o L 0la . L
0 1 2 3 4 5 6 7 3 0 0.002 0.004 0006 0.008 0.01
C1 %107 Cg
(a) (b)
15
2
G 1
(2]
-
05
seda- L 0 Ep. L L
1 2 3 4 5 6 7 8 0 0.002 0004 0006 0.008 0.01
C, %10 2
(c) (d)
00055 o @5, o B 0
of C o o Samples from P
: ol AR
10 . B #° "5, 0o og,
fis i . oy © K
g g o .
Q]
10 5
10
10710 ‘ ‘ o ‘ ‘ ‘ . ‘
107 10 107 10° 10 c 10 102
1 2
(e) ®
x10°

(®

Figure 13.4: Relation between a point-wise error and a gradient norm. The pdf function of Columns distribution is learned by
PSO-LDE with o = %, where NN architecture is block-diagonal with 6 layers, number of blocks Np = 50 and block size
SB = 64 (see Section 11.1). (a)-(b) Relation between inverse-gradient-norm metrics C'; and C'2 and a point-wise error LSQR. As
can be seen, points with the smaller inverse-gradient-norm (that is, with a bigger norm of 6 gradient) have a greater approximation
error. See details in the main text. (c)-(d) Plots of (a)-(b) with only samples from PY density. (e)-(f) Plots of (a)-(b) with both =
and y axes scaled logarithmically. (g) Matrix G, with G;; = go(X;, X;).

at the point). To demonstrate this, we define two inverse-gradient-norm empirical metrics
as follows. First, after training was finished we sample 1000 points D = {X;}, where 500
are sampled from PV and 500 - from P”, and calculate their gradients Vg fy(X;). Next, we

compute the Gramian matrix G that contains all gradient similarities among the samples, with

107

Method PSQR LSQR 1S

PSO-LDE, 2.7-1002 +258-10723 0.057 +£0.004 26.58 + 0.01
averaged over all «

IS 1.79-1072 + 5. 1022 0.46 +0.14 26.84 + 0.07
PSO-MAX 3.04-10722 £ 1.55-10723 0.058 £ 0.002 26.57 + 0.001

Table 13.1: Performance comparison between various PSO instances

Gij = go(Xi, X;). Then, the first empirical metric C for sample Xj; is calculated as

1

1
GrXi) = Gi 9o(Xi, X))

(13.2)
The above C1(X;) is bigger if go(X, X) is smaller, and vice versa. The second metric C is
defined as
Co(Xi) = |67 . (133)
23

Since matrix G is almost diagonal (see Figure 13.4g), both C'; and C5 usually have a similar

trend.

In Figure 13.4 we can see that the above metrics C (XZZ) and C»(X;) are highly correlated
with point-wise LSQR(X;) = {log PY(X;) — log Py (XZ)} . That is, points with a bigger norm
of the gradient Vg fp(X) (bigger go(X, X)) have a bigger approximation error. One possible
explanation for this trend is that there exists an estimation bias, which is amplified by a bigger
gradient norm at the point. Further investigation is required to clarify this aspect. Concluding,
we empirically demonstrate that in the infinite data setting we can measure model uncertainty
(error) at query point X via a norm of its gradient. For a smaller dataset size the connection
between the gradient norm and the approximation error is less obvious, probably because there
we have another/additional factors that increase the approximation error (e.g. an estimation
variance). Also, note that herein we use metrics C and Cs that are opposite-proportional to the
gradient norm instead of using the gradient norm directly since the inverse relation is visually

much more substantial.

Additionally, in Figure 13.4 it is visible that on average samples from P” have a bigger
gradient norm than samples from PY. This can explain why in Figure 13.3b we have higher

error at samples from down density.

Other PSO Instances Further, several other PSO instances were executed to compare with
PSO-LDE. First is the IS method from Table 5.1. As was discussed in Section 8.2, its magnitude
functions are unbounded which may cause instability during the optimization. In Table 13.1 we

can see that indeed its performance is much inferior to PSO-LDE with bounded magnitudes.

Additionally, we used an instance of a normalized family defined in Eq. (8.6), which we

108

—M,@

0.9 M@

0.8
0.7
0.6
051
0.4+

0.3 /'

0.2t
0.1F
0 L L

Figure 13.5: PSO-MAX magnitudes as functions of a difference d [X, fo(X)] = fo(X) — log PP (X).

name PSO-MAX, with the following magnitude functions:

MY [X, fo(X)] = — [PDEE;];)(,);)Cp]~ O |- max |d[X, f5(X)],0]], (134
MP (X, fo(X)] = —— [Pi’((%‘jgg O = O [min [d[X, fo(X)],0]]. (135

In Figure 13.5 the above magnitudes are depicted as functions of a logarithm difference d where
we can see them to be also bounded. In fact, PSO-MAX is also an instance of PSO-LDE for a
limit o« — oo. Similarly to other instances of PSO-LDE, the bounded magnitudes of PSO-MAX
allow to achieve a high approximation accuracy, which gets very close to the performance of
PSO-LDE for finite values of « (see Table 13.1). Yet, PSO-MAX is slightly worse, suggesting
that very high values of « are sub-optimal for the task of pdf inference.

In overall, our experiments show that PSO instances with bounded magnitudes have superior
performance at pdf inference task. Further, PSO-LDE with o = % has better accuracy w.r.t. other
values of . Note that this implies PSO-LDE with o = i is being superior to NCE [39, 126],
which is PSO-LDE with @ = 1. Finally, in an infinite dataset setting and when using BD
network architecture, we can measure model uncertainty of a specific query point X via the self
gradient similarity go(X, X).

13.2.2 Baselines

In the above section we showed that particular instances of PSO-LDE perform better than the
NCE method (i.e. PSO-LDE with o« = 1). Likewise, in our previous work [61] we showed
on 2D and 3D data that PSO-based methods are much more accurate than kernel density
estimation (KDE) approach. Unfortunately, the KDE method does not scale well with higher
dimensions, with very few implementations handling data of arbitrary dimension. Instead, below
we evaluate score matching [50,52,119, 151], Masked Auto-encoder for Distribution Estimation
(MADE) [27] and Masked Autoregressive Flow (MAF) [100] as state-of-the-art baselines in the

context of density estimation.

109

Score Matching The originally introduced score matching approach [50] employed the
following loss over samples { X }2Y'| from the target density PU(X):

Lsn (0, {XiU}i = NU ZZ { (W) +% (%{ff;}))] , (13.6)

i=17=1

0fo(X]) o nq 2Se(X])
Xy A(X])?
n-dimensional sample X7 . Intuitively, we can see that this loss tries to construct a surface fp(X)

where are first and second derivatives of fy(X7) w.r.t. j-th entry of the

where each sample point will be a local minima - its first derivative is ’softly” enforced to be
8fo(X[)
X[

U
8;&([)]()1'2)) The inferred fy(X) of such optimization
i

converges to the data energy function, which is proportional to the real negative log-pdf with

2
zero via the minimization of a term () , whereas the second one is ”softly”” optimized

to be positive via maximization of (
some unknown partition constant, exp [— fg(X)] ~ PY(X). Further, note that to optimize a NN

model via Lgps(-), the typical GD-based back-propagation process will require to compute a
third derivative of fy(X), which is typically computationally unfeasible for large NN models.

Due to the last point, in [119, 151] it was proposed to use the following loss as a proxy:

2

1 & dfo(X)

U

Lsu (04X Y0 = 55 2 | —vi+0” (;X P (13.7)
=1

where v; is zero-centered i.i.d. noise that is typically sampled from ~ AN(0,02 - I). This
”denoising” loss was shown in [143] to converge to the same target of the score matching loss in
Eq. (13.6).

Furthermore, the above loss enforces fy(X) to converge to the data energy function. How-
ever, in this thesis we are interested to estimate the data log-pdf, which is proportional to the
negative data energy function. To infer the latter via score matching, we employ the following

sign change of the noise term:

1NU 2

2 9fo(X)

Lo (0, {X{ 1Y) = vit ot =% |X:XiU+v¢2

, (13.8)

NU

which has the same equilibrium as the loss in Eq. (13.7), yet with the negative sign. Namely, at
a convergence fy(X) will satisfy now exp [fp(X)] ~ PY(X). In our experiments we used this

version of score matching loss for the density estimation of 20D Columns distribution.

The employed learning setup of score matching is identical to PSO-LDE, with the loss
in Eq. (13.8) being applied in a mini-batch mode, where at each optimization iteration a
batch of samples { XY}V li was fetched from the training dataset and the new noise batch
{v -, was generated. The learning rate of Adam optimizer was 0.003. Note that this method
infers exp [fg(X)] which is only proportional to the real pdf with some unknown partition
constant. Therefore, in order to compute LSQ R of such model we also calculated its partition

via importance sampling. Specifically, for each learned model exp [fp(X)] its integral was

110

1.6F
141
Ci12r
g
(2]
410
0.8+
06 |
5 6 7 8 9 10 11
[%107
(b)

Samples from P!

Samples from P!
Samples from Uniform Density mples from

30

-40

1(X:6)
1(X:6)

50

60

70 e

80
80 70 60 -50 -40 -30 -20 -40 35

-30
log PY(X) log PY(X)

(d) (e

Figure 13.6: Learned pdf function of Columns distribution by score matching, where NN architecture is block-diagonal with 6
layers, number of blocks Ng = 50 and block size Sp = 64 (see Section 11.1). The employed activation function is tanh(). (a)
LSQR error (mean and standard deviation) for various values of a scaling hyper-parameter o; (b) Zoom of (a); (c) Illustration
of learned pdf function for best model with ¢ = 0.006. The depicted slice is P(x1,z2) = PV (x1,z2,0,...,0), with z; and
xo forming a grid of points in first two dimensions of the density’s support. As can be seen, the estimated pdf is over-smoothed
w.r.t. real pdf in Figure 13.1a. In contrast, PSO-LDE estimation in Figure 13.3a does not have this extra-smoothing nature. (d)
Illustration of the learned surface fo(X). Blue points are sampled from PV, while red points - from PP, minimal 20D Uniform
distribution that covers all samples from PU. The z axis represents log PV (X)) for each sample, y axis represents the surface
“normalized” height fo(X) = fo(X) — log (ﬁ) = log Py (X) after optimization was finished. The diagonal line represents
fo(X) = log PV (X), where we would see all points in case of perfect model inference. (e) Plot from (d) with only samples from
PYU. We can see that the produced surface is significantly less accurate than the one produced by PSO-LDE in Figures 13.3a-13.3b.

_ D
estimated through T'I = ng %

is the minimal 20D Uniform distribution that covers all samples from PY. Further, we used
Pp(X) = exp [fo(X) — log (ﬁ)} as the final estimation of data pdf.

Furthermore, we trained the score matching model for a range of o values. After the

over NP = 10® samples from density P”, which

explicit normalization of each trained model, in Figures 13.6a-13.6b we can see the LSQR
error for each value of a hyper-parameter o. Particularly, for 0 = 0.006 we got the smaller error
LSQR = 0.907 & 0.0075, which is still much inferior to the accuracy obtained by PSO-LDE.
Moreover, in Figure 13.6c we can see that the estimated surface is over-smoothed and does not
accurately approximate sharp edges of the target pdf. In contrast, PSO-LDE produces a very
close pdf estimation of an arbitrary shape, as was shown in Section 13.2.1. Likewise, comparing

Figures 13.6d and 13.3b we can see again that PSO-LDE yields a much better accuracy.

Masked Auto-encoder for Distribution Estimation This technique is based on the autore-
gressive property of density functions, P(z1,...,2,) = [[1= P(z;|x1, ..., z;—1), where each
conditional P(x;|x1,...,2;-1) is parameterized by NN. MADE constructs a network with
sequential FC layers, where the autoregressive property is preserved via masks applied on

activations of each layer [27]. Likewise, each conditional can be modeled as 1D density of

111

10%§ 055 | |
05f “
i
045 | |/
10} It
o« | x 041
g . Boas |
2 [="
10%F \ 03 f
N 025 |
— —
— 02t +
1071 L L L L L n n n n n
0 100 200 300 400 500 100 200 300 400 500
K k
(a) (b)

-20

Samples from PV
Samples from Uniform Density

Samples from PV

-80 -70 -60 -40 -30 -20 -40 -35 -25 -20

-50 -30
log PU(X) log PU(X)

(0 (d) (e)

Figure 13.7: Learned pdf function of Columns distribution by MADE, where NN architecture is fully-connected with 4 layers
of size 1024. The employed activation function is Relu. (a) LSQ R error (mean and standard deviation) for various values of a
k - a number of mixture components; (b) Zoom of (a); (c) Illustration of learned pdf function for the best model with £ = 512.
The depicted slice is P(x1,x2) = PV (z1, 2,0, . ..,0), with 21 and x2 forming a grid of points in first two dimensions of the
density’s support. As can be seen, the estimated pdf is over-spiky in areas where the real pdf in Figure 13.1a is flat. This is due to
an inability of MoG model to represent flat non-zero surfaces. In contrast, PSO-LDE estimation in Figure 13.3a does not have
this issue. (d) Illustration of the estimated pdf Py (X). Blue points are sampled from PV, while red points - from P, minimal
20D Uniform distribution that covers all samples from PU. The x axis represents log PV (X)) for each sample, y axis represents

fo(X) £ logPy(X) after optimization was finished. The diagonal line represents fg(X) = log PV (X), where we would see all
points in case of perfect model inference. () Plot from (d) with only samples from PY.

any known distribution family, with a typical choice being Gaussian or Mixture of Gaussians
(MoG).

In our experiments we used MoG with k& components to model each conditional, due to
the highly multi-modal nature of Columns distribution. Moreover, we evaluated MADE for
a range of various k, to see how the components number affects the technique’s performance.
Furthermore, the learning setup was similar to other experiments, with the only difference
that the applied NN architecture was FC, with 4 layers of size 1024 each, and the exploited
non-linearity was Relu.

In Figures 13.7a-13.7b the LSQ R error is shown for each value of k. We can clearly see
that with higher number of components the accuracy improves, where the best performance
was achieved by £ = 512 with LSQR = 0.2 £ 0.0141. Furthermore, in Figure 13.7c we
can see an estimated surface for the best learned model. As observed, most of the MoG
components are spent to represent flat peaks of the target density. Such outcome is natural
since for MoG to approximate flat areas the value of k£ has to go to infinity. Moreover, this
demonstrates the difference between parametric and non-parametric techniques. Due to an
explicit parametrization of each conditional, MADE can be considered as a member of the
former family, while PSO-LDE is definitely a member of the latter. Further, non-parametric
approaches are known to be more robust/flexible in general. In overall, we can see that PSO-LDE

outperforms MADE even for a large number of mixture components.

112

10’

LSQR
LSQR
S

100} R

0 100 200 300 400 500 100 200 300 400 500

@ (b)

Samples from PV Samples from PV

0
30| Samples from P

-70 -60 -50 -40 -30 -20 -40 -35 -30 -25 -20
log PY(X) log PU(X)

(© (@) (e)

Figure 13.8: Learned pdf function of Columns distribution by MAF, with 5 inner MADE bijections and MADE MoG as a base
density. (a) LSQ R error (mean and standard deviation) for various values of a k - a number of mixture components; (b) Zoom of (a);
(c) Illustration of learned pdf function for the best model with k = 256. The depicted slice is P(z1,z2) = PV (z1, 2,0, ...,0),
with 21 and x2 forming a grid of points in first two dimensions of the density’s support. The same over-spiky behavior can be
observed as in Figure 13.7c. (d) Illustration of the estimated pdf P (X) for the best model, constructed similarly to Figure 13.7d.
() Plot from (d) with only samples from PY.

Masked Autoregressive Flow Shortly MAF, this technique combines an NN architecture
of the previous MADE method with the idea of a normalizing flow [113] where a bijective
transformation A(-) is applied to transform a priori chosen base density into the target density.
Such bijective transformation allows to re-express the density of target data via an inverse of h(+)
and via the known pdf of a base density, and further to infer the target pdf via a standard MLE
loss. Moreover, the architecture of MADE can be seen as such bijective transformation, which
is specifically exploited by MAF method [100]. Particularly, several MADE transformations are
stuck together into one large bijective transformation, which allows for richer representation of
the inferred pdf. In our experiments we evaluated MAF method with 5 inner MADE bijections.

Furthermore, the original paper proposed two MAF types. First one, referred as MAF(-) in
the paper, uses multivariate normal distribution as a base density. During the evaluation this
type did not succeed to infer 20D Columns distribution at all, probably because of its inability

529 modes.

to handle distribution with

The second MAF type, referred as MAF MoG(-) in the paper, uses MADE MoG as a
base density in addition to the MADE-based bijective transformation. This type showed better
performance w.r.t. first type, and we used it as an another baseline. Likewise, note that also in
the original paper [100] this type was shown on average to be superior between the two.

Like in MADE experiments, also here we tested MAF MoG for different values of k -
mixture components number of the base density, parametrized by a separate MADE MoG model.
In Figures 13.8a-13.8b the LSQ R error is shown for each value of k. As in MADE case, also

here accuracy improves with a higher number of components. The top accuracy was achieved

113

by k = 256 with LSQR = 0.9 &+ 0.009. On average, MAF MoG showed the same trends
as MADE method, yet with some higher LSQ R error. Moreover, during the experiments it
was observed as a highly unstable technique, with thorough hyper-parameter tuning needed to
overcome numerical issues of this approach.

In overall, we observed that non-parametric PSO-LDE is superior to other state-of-the-art

baselines when dealing with highly multi-modal Columns distribution.

13.2.3 NN Architectures Evaluation

Here we compare performance of various NN architectures for the pdf estimation task.

FC Architecture We start with applying PSO-LDE with different values of o where the used
NN architecture is now fully-connected (FC), with 4 layers of size 1024. In Figure 13.9a we
show LSQ R for different o, where again we can see that o = % (and now also o = %) performs
better than other values of «. On average, LSQR error is around 2.5 which is significantly
higher than 0.057 for BD architecture. Note also that BD network, used in Section 13.2.1, is
twice smaller than FC network, containing only 902401 weights in BD vs 2121729 in FC, yet it
produced a significantly better performance.

Further, in Figure 13.9b we illustrated the learned surface fy(X) for a single FC model
with o = %. Compared with Figure 13.3b, we can see that FC architecture produces a much
less accurate NN surface. We address it to the fact that in BD network the gradient similarity
99(X, X’) has much smaller overall side-influence (bandwidth) and the induced bias compared
to the FC network, as was demonstrated in Section 11.1. Hence, BD models are more flexible
than FC and can be pushed closer to the target function log PV (X), producing more accurate
estimations.

Additionally, note the error asymmetry in Figure 13.9b which was already observed in
Figure 13.3b. Also here we can see that the entire cloud of points is rotated from zero error
line fp(X) = logPY(X) by some angle where the rotation axis is also around horizontal line
log PP (X) = —30.5. As explained in Section 13.2.1, according to our current hypotheses there
are global up and down side-influence forces that are responsible for this angle.

Further, to ensure that FC architecture can not produce any better results for the given
inference task, we also evaluate it for different values of Ny, and S - number of layers and size
of each layer respectively. In Figure 13.10 we see that N;, = 4 and S = 1408 achieve best
results for FC NN. Yet, the achieved performance is only LSQ R = 1.17, which is still nowhere
near the accuracy of BD architecture.

BD Architecture Further, we performed learning with a BD architecture, but with increasing
number of blocks Ng. For Np taking values between 20 and 200, in Figure 13.11 we can see
that with bigger Np there is improvement in approximation accuracy. This can be explained by
the fact that bigger Np produces bigger number of independent transformation channels inside

NN; with more such channels there is less parameter sharing and side-influence between far

114

Samples from pY
.20 Samples from PP

160) -80 -70 -60 -50 -40 -30 -20
p log PY(X)
(a) (b)

Figure 13.9: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is fully-connected with 4
layers of size 1024 (see Section 11.1). (a) For different values of a hyper-parameter e, LSQ R error is reported along with its
empirical standard deviation. (b) Illustration of the learned surface fg(X). Blue points are sampled from PV, while red points from
PP. The z axes represent log PV (X)) for each sample, y axes - the surface height fg (X) after optimization was finished. Diagonal
line represents fg(X) = logPY (X)), where we would see all points in case of perfect model inference. The black horizontal line
represents log PP (X)) = —30.5 which is constant for the Uniform density. As can be seen, there are high approximation errors at
both XV and X P locations. Compared with BD architecture in Figure 13.3b, on average the error is much higher for FC network.

4
4
12h \ 20 3
10} \
15 2
- L] .
8L \ o« + %\ P
& \ / z [| ~§
a \ / %] [\
6 \ / =10t | \ 500 1000 1500 2000
\ / | \
/
4+ -]
i 5t \
2 ~— S
I e e
0 I I I L L L L] [o) S— . . I I I . . I .
1 2 3 4 5 6 7 8 9 200 400 600 800 1000 1200 1400 1600 1800 2000
N, S
(a) (b)

Figure 13.10: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is fully-connected (see

Section 11.1). The applied loss is PSO-LDE with o = %. (a) For different number of layers Ny, LSQR error is reported, where a

size of each layer is S = 1024. (b) For different values of layer size S, LSQ R error is reported, where a number of layers is
Np =4.

away input regions - different regions on average rely on different transformation channels. As
a result, the NN becomes highly flexible. Further, in the setting of infinite dataset such high NN
flexibility is desirable, and leads to a higher approximation accuracy. In contrast, in Section
13.2.5 below we will see that for a smaller dataset size the relation between NN flexibility and
the accuracy is very different.

Likewise, we experiment with number of layers Ny, to see how the network depth of a BD
architecture affects the accuracy of pdf inference. In Figure 13.12 we see that deeper networks
allow us to further decrease LSQ R error to around 0.03. Also, we can see that at some point
increasing Ny, causes only a slight error improvement. Thus, increasing Ny, beyond that point
is not beneficial, since for a very small error reduction we will pay with higher computational
cost due to the increased size of 6.

Furthermore, in Figure 13.13 we evaluate BD performance for different sizes of blocks
Sp. Here we don’t see anymore a monotonic error decrease that we observed above for Np
and Np. The error is big for Sp below 32 or above 160. This probably can be explained as

follows. For a small block size Sp each independent channel has too narrow width that is not

115

3.4 x10°
32| Ns

pen
= ’ N =].757
4 . 1443841 Np = 125, 0 ’ 3158401
6] = 2256001 101 =
= Ny = 200,

0] = 1082881 | Np = 100, Ni = 150, = 3609601
2.2 | | | 6] = 1804801 | 6] = 2707201 | ‘

' 20 40 60 80 100 120 140 160 180 200

B

(a)

PSQR
n
oo
\

2.6
2.4+

0.075

0.07+- Ns

Np = 60,
6] = 1082881

LSQR

Ny = 100, Np = 150, Ny = 200,
0] = 1804801 - 6] = 3609601
Np = 125, ;
0.05 - 0] = 1443841 19| — 2256001 |6] = 3158401
20 40 60 80 100 NB120 140 160 180 200

0.055 -

(b)

26.568

26.566 |-

26.564 |-

26.562 -
(2]

26.56 |-
26.558 - Ng
26.556 |- Np = 80, Nj L 195, Ny = 175,
26.554 |0] = 1443841 16| = 2256001 |6] = 3158401

1 1 1 1 1 1 1

20 40 60 80 100 N 120 140 160 180 200
B

Np = 20,
6] = 360961

Np = 60, B
6| = 1082881 Np = 100, GNE 571‘28’ . Np = 200,
10 = 1804801 6] =[270720 0] = 3609601

(c)

Figure 13.11: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers and block size Sp = 64 (see Section 11.1). The number of blocks /N is changing. The applied loss is PSO-LDE with
a = %. For different values of Np, (a) PSQR (b) LSQR and (c) IS are reported. As observed, the bigger number of blocks
(e.g. independent channels) N improves the pdf inference.

116

21 6
2 x10 05 26.75 2 x10
0.4 26.7

o 26.65
£03 »

%o.2 26.6
0.5 0.1 26.55
0 0 26.5 0

(a)

-22
5x10 0.1

4 0.08

PSQR
w
LSQR
o
o
£

2 0.04

1 0.02
2

(b)

Figure 13.12: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with
number of blocks Np = 50 and block size Sp = 64 (see Section 11.1). The number of layers N, is changing from 3 to 10. The
applied loss is PSO-LDE with o = i. (a) For different values of N, we report PSQR, LSQR and I.S, and their empirical
standard deviation. Additionally, in the last column we depict the size of 6 for each value of Np,. (b) Zoom of (a).

Method PSQR LSQR IS

BD,v DT,v HB 248-107224+6.63-1072* 0.054 £0.0009 26.57 & 0.01

BD,XDT,v HB 249-107224+9.8-10"2* 0.055£0.0021 26.57 + 0.002
BD,v DT,XHB 251-10722+1.1-1072% 0.056 &+ 0.0026 26.57 + 0.002
BD,XDT,XHB 3-107224+4.79.10723 0.066 £ 0.011 26.57 £ 0.005

FC,v DT,v HB 5.56-10718+1.02-107'7 1.78£0.18 27.29 + 0.05
FC,XDT,v HB 1.2-1076+2.67-107'6 1.35+0.058 27.157 4+ 0.029
FC,v DT, XHB 7.9-1072'+2.37-1072' 2.38+0.3 27.52 4+ 0.08
FC,XDT,XHB 1.36-10712+3.10"12 2.5+0.23 27.54 + 0.08

Table 13.2: Performance comparison between various NN pre-conditioning ways. The pdf function of Columns distribution is
learned by PSO-LDE with o = %. The applied models are fully-connected (FC) with 4 layers of size 1024, and block-diagonal
(BD) with 6 layers, number of blocks N = 50 and block size Sp = 64 (see Section 11.1). Evaluated pre-conditioning techniques
are the data normalization in Eq. (11.3) (DT), and the height bias in Eq. (11.4) (HB).

enough to properly transfer the required signal from NN input to output. Yet, surprisingly it
still can achieve a very good approximation, yielding LSQ R error of 0.075 for S = 16 with
only 72001 weights, which is very impressive for such small network. Further, for a large block
size Sp each independent channel becomes too wide, with information from too many various
regions in R" passing through it. This in turn causes interference (side-influence) between
different regions and reduces overall NN flexibility, similarly to what is going on inside a regular
FC network.

NN Pre-conditioning Finally, we verified efficiency of pre-conditioning techniques proposed
in Section 11.2, namely the data normalization in Eq. (11.3) and the height bias in Eq. (11.4).
In Table 13.2 we see that both methods improve the estimation accuracy. Further, in case the

used model is FC, the LSQ R error improvement produced by the height bias is much more

117

-22 6
4 x10 0.09 26.59 g x10

3.5 0.08 26.58 6
& <]
3 s Qo.07 0 26.57 =4
o v}
25 0.06 26.56 2
2 0.05 26.55 0
0 100 200 0 100 200 0 100 200 O 100 200
Sp Sp Sp Sp
(@)
x10%
26 0.056
25 o«
0.054
224 %
03 0.052
22y 50 00 150 200 %0 50 100 150 200
Sn Sp
(b)

Figure 13.13: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers and number of blocks Np = 50 (see Section 11.1). The block size Sp is taking values {16, 32, 64, 96, 128, 160, 192}.
The applied loss is PSO-LDE with o« = i. (a) For different values of Sp we report PSQR, LSQR and 1.5, and their empirical
standard deviation. Additionally, in the last column we depict the size of 6 for each value of Sp. (b) Zoom of (a).

significant. Yet, for FC architecture it is unclear if the data normalization indeed helps.
Overall, our experiments combined with empirical observations from Section 11.1.1 show
that BD architecture has a smaller side-influence (small values of go(X, X’) for X # X')
and a higher flexibility than FC architecture. This in turn yields superior accuracy for BD vs
FC networks. Moreover, in an infinite dataset setting we can see that further increase of NN
flexibility by increasing Np or N, yields even a better approximation accuracy. The block size
Sp around 64 produces a better performance in general. Yet, its small values are very attractive
since they yield small networks with appropriate computational benefits, with relatively only a

little error increase.

13.2.4 Batch Size Impact

Herein we investigate the relation between PSO approximation error and a batch size of training
points. In particular, in PSO loss we have two terms, the up term which is a sum over batch
points {X{’}f\ﬂ and the down term which is a sum over batch points {X;” }Z]\g We will see

how values of NV and N” affect PSO performance.

Increasing both NV and N” First, we run a scenario where both batch sizes are the same,
NV = NP = N. We infer Columns distribution with different values of V, ranging from 10 to
6000. In Figures 13.14a-13.14b we can observe that LSQ R error is decreasing for bigger N,
which is expected since then the stochastic forces at each point X € R"™ are getting closer to the
averaged forces Fj(X) = PY(X) - MY [X, fp(X)] and F’(X) = PP (X) - M" [X, fo(X)].
In other words, the sampled approximation of PSO gradient in Eq. (3.5) becomes more accurate.

Moreover, we can observe that for the smaller batch size the actual PSO-LDE performance
is very poor, with LSQ R being around 26.3 for N = 10 and decreasing to 0.31 for N = 100.

The high accuracy, in range 0.03-0.05, is only achieved when we increase the number of batch

118

N=10
10"
5
0
F10
-
107
2 | N=2000 778 ‘ ‘ ‘ :
102 10 1000 2000 4000 6000
N N
(a) (b)
Ny=1000
0.055
o Ny=2000
G 0.05
(%] Ny=4000
-
0.045 | <6000
‘ Nr=6000 ‘ ‘ ‘ ‘
102 104 1000 2000 4000 6000
NU NU
() (d)
Np=10
; 0.055
10"t
Np=2000 Np=4000
. < 0.05 Np=6000
F 100+ %)
] -
0.045
107 ¢ =1000 Np=4000
‘ Np=2000 np=6000 0.04 +
102 104 1 : 20‘ 4 : :
Ny 000 00 Np 000 6000
(e) (®)
Ry 0.06 |
101t Ny 0.055 |
o 0.05
z o 0045
@ 1077 F 004}
- |
0.035 |
107"
0.03 |
10" 102 108 1000 2000 4000 6000
(g) (h)

Figure 13.14: Batch size evaluation. Columns distribution is estimated via PSO-LDE with o = X, where NN architecture is
block-diagonal with 6 layers, number of blocks N = 50 and block size S = 64 (see Section 11.1). (a)-(b) For different values
of a batch size N = NV = NP we report LSQR and its empirical standard deviation. Both the up batch size NV and the
down batch size NP are kept the same. (c)-(d) The NV receives different values while the NP is 1000. (e)-(f) The NP receives
different values while the NV is 1000. (g)-(h) All scenarios are plotted together in the same graph. Note that both z and y axes are
log-scaled. Right column is zoom-in of left column.

119

points to be above 1000. This implies that to reach a higher accuracy, PSO will require a higher
demand over the memory/computation resources. Therefore, the higher available resources,
expected from future GPU cards, will lead to a higher PSO accuracy.

Increasing only NV Further, we experiment with increasing/decreasing only one of the batch
sizes while the other stays constant. In Figures 13.14¢-13.14d a scenario is depicted where NV
is changing while N'” is 1000. Its error for small values of NV is smaller than in the previous
scenario, with LSQ R being around 11 for NV = 10 and decreasing to 0.11 for NV = 100.
Comparing with the previous experiment, we can see that even if NV is small, a high value of

NP (1000) improves the optimization performance.

Increasing only N? Furthermore, in Figures 13.14e-13.14f we depict the opposite scenario
where N'” is changing while NV is 1000. Unlike the experiment in Figures 13.14c-13.14d, here
the improvement of error for small values of N© w.r.t. the first experiment is not that significant.
For N? = 10 the error is 24.8 and for N” = 100 it is 0.19. Hence, the bigger number of up
points (NY = 1000) does not lead to a much higher accuracy if a number of down points N is
stll too small.

Finally, in Figures 13.14g-13.14h we plot all three experiments together. Note that all lines
cross at the same point, where all experiments were configured to have NV = N2 = 1000. We
can see that in case our resource budget is low (smaller values of z in Figure 13.14g), it is more
efficient to spend them to increase N°. Yet, for a high overall resource budget (higher values
of x in Figure 13.14g) both NV and N” affect the error similarly, and it is better to keep them
equal and increase them as much as possible.

13.2.5 Small Training Dataset

In this section we will learn 20D Columns distribution using only 100000 training sample points.
As we will see below, the density inference task via non-parametric PSO becomes much more

challenging when the size of the training dataset is limited.

Various Sizes of Dataset To infer the data pdf, here we applied PSO-LDE with o = %.
Further, we use BD NN architecture since it has superior approximation performance over FC
architecture. First, we perform the inference task using the same BD network as in Section
13.2.1, with 6 layers, Ng = 50 and Sp = 64, where the size of the entire weights vector is
16| = 902401. The Columns pdf is inferred using a various number Npp of overall training
points { X7 }i]iDlT. As can be observed from Figure 13.15a, LSQR error increases for a
smaller size Npr of the training dataset. From error 0.05 for Npr = 108 it gets to 0.062 for
Npr = 107, 0.67 for Npy = 10°, 91.2 for Npy = 10° and 8907 for Npyr = 10%. As we will
see below and as was already discussed in Section 12, one of the main reasons for such large
errors is a too flexible NN model, which in a small dataset setting can significantly damage the

performance of PSO-LDE, and PSO in general.

120

log PY(X)

Npr

(a) (b)

Figure 13.15: Evaluation of PSO-LDE for estimation of Columns distribution with different sizes Npr of the training dataset.
Used NN architecture is block-diagonal with 6 layers, number of blocks N = 50 and block size Sp = 64 (see Section 11.1).
Number of weights is |#| = 902401. Applied PSO instance is PSO-LDE with o« = %. (a) LSQR error as a function of the
training dataset size Npr, where both x and y axes are log-scaled. (b) Illustration of the learned log-pdf surface fg(X) for the
dataset size Npr = 10°. The depicted slice is log P(z1, z2) = fo([z1, 22,0, ...,0]), with x1 and 2 forming a grid of points
in first two dimensions of the density’s support. Note the resemblance similarity between this plot and the target surface in Figure
13.1b. Even though LSQ R error of this model in (a) is very high (= 91.2), the local structure within the converged surface is
close to the local structure of the target function. Unfortunately, its global structure is inconsistent and far away from the target.

Interestingly, although LSQR error is high for models with Npr = 10, in Figure 13.15b
we can see that the converged surface fy(X) visually highly resembles the real target log-pdf
in Figure 13.1b. We can see that main lines and forms of the target surface were learned by
fo(X), yet the overall global shape of NN surface is far away from the target. Furthermore, if
we calculate exp fg(X), we will get a surface that is very far from its target PV (X) since the

exponential will amplify small errors into large.

Further, in Figure 13.16 we can observe error curves for models learned in Figure 13.15a.
Both train and test errors are reported for all three error types, per a different dataset size Npr.
Train and test errors are very similar for big Np7 in Figures 13.16a-13.16b. Moreover, in Figure
13.16b we can see according to the LSQ R error (the middle column) that at the beginning error
decreases but after 10° steps it starts increasing, which suggests a possible overfitting to the
training dataset at Np7 = 105, Further, in Figures 13.16¢c-13.16d we can see that train and test
errors are more distinct from each other. Likewise, here PSQR and LS(Q R, both train and test,
are increasing almost from the start of the optimization. In contrast, in Figures 13.16c-13.16d in
case of 1.5 the train and test errors have different trends compared with each other. While the
test 1.5 is increasing, the train IS is decreasing. This is a typical behavior of the optimization
error that indicates strong overfitting of the model, here for Np7 = 10° and Npr = 10%. In
turn, this means that we apply a too rich model family - over-flexible NN which can be pushed
to form peaks around the training points, as was demonstrated in Section 12. Further, we can
detect such overfitting by comparing train and test 1.5 errors, which do not depend on ground
truth.

Note that train and test errors of PSQ R/LS() R have the same trend herein, unlike /.S. The
reason for this is that PSQR and LSQR express a real ground truth distance between NN

surface and the target function, whereas IS error is only a some rough estimation of it.

121

1 2 3

step x10° step x10° step 10
(a)
—Train
31
30
02
28
27
26
0 1
—Train
—Test
10*
2}
102
R 2 3
step x10° step x10° step x10°
(c)
o
2
S 10
&10'10
-20
107 1 1 2 3
step »10° step x10° step 10
()

Figure 13.16: Error curves during the optimization for models learned in Figure 13.15a, where various dataset sizes N pr were
evaluated. The error is reported for (a) Np7 = 107, (b) Npr = 105, (c) Npr = 10° and (d) Np7 = 10%. In each row we
report: PSQR - first column; LSQ R - middle column; I.S - last column. Each plot contains both train and test errors; the former
is evaluated over 103 up points from training dataset chosen as a batch for a specific optimization iteration, whereas the latter - over
10° up points from the testing dataset.

122

Np = 30, |6] = 291841

o
g
T
Np = 20, |0] = 194561
5 L L L L

5 10 15 20 25 30

Np = 10, |6] = 97281 6] = 27841
7r 6] = 167041

_ _ o
16+ B =5, || = 48641 86 0] = 53681
141 =70 0] = 83521
1ol = 111361 6] = 139201
12 L L 5 L L L L L L L]
10° 102 02 04 06 08 1 12 14 16 1.8
Ng |6 x10°
(a) (b)

Figure 13.17: Evaluation of PSO-LDE for estimation of Columns distribution with only Np7 = 10° training samples. Used NN
architecture is block-diagonal with block size Sp = 64 (see Section 11.1). Applied PSO instance is PSO-LDE with o = %. (a)
LSQR error for models with 4 layers and various values of the blocks number Ng. Size of weights vector 6 is depicted for each
model. (b) LSQ R error for models with 3 layers and various values of blocks number Np. Top - LSQ R is shown as a function
of Np; bottom - LSQR is shown as a function of the size |6|. As observed, too big and too small number of parameters, ||,
produces a less accurate pdf approximation in the small dataset setting.

Reduction of NN Flexibility to Tackle Overfitting Next, we perform the inference task using
BD network with only 4 layers, on the training dataset of size Npz = 10°. We learn models for
various numbers of blocks Np inside our network, being between 5 and 30. In Figure 13.17a we
can see that LSQ R error is still very high compared to the results of an infinite dataset setting in
Section 13.2.1: ~20 vs ~0.05. Yet, it is smaller than in Figure 13.15a, where we used 6 layers
instead of 4 and Np = 50. Moreover, we can see in Figure 13.17a that the error is reducing

with a smaller number of blocks Np and a smaller number of NN parameters |6)].

Further, we perform the same experiment where BD architecture has only 3 layers (first and
last are FC layers and in the middle there is BD layer). In Figure 13.17b we can observe that
for a too small/large value of N the LSQR is higher. That is, for a too big/small number of
weights in § we have a worse pdf approximation. This can be explained as follows. Small size
|6 implies NN with low flexibility which is not enough to closely approximate a target surface
log PY(X), thus producing underfitting. We observed similar results also in an infinite dataset
setting in Section 13.2.3, where bigger size of 6 yielded an even smaller error. Furthermore,
when |6 is too big, the NN surface becomes too flexible and causes overfitting. Such over-
flexibility is not appropriate for small dataset setting, since it allows to closely approximate a
peak around each training sample X (or X 7), where the produced spiky surface fp(X) will
obviously have a high approximation error, as was demonstrated in Section 12. In other words,
in contrast to common regression learning, in case of unsupervised PSO approaches the size
(and the flexibility) of NN should be adjusted according to the number of available training
points, otherwise the produced approximation error will be enormous. In contrast, in common
DL-based regression methods such over-flexible NN may cause overfitting to training samples
and increase the testing error, yet it will not affect the overall approximation performance as

destructively as in PSO.
Interestingly, the optimal size |f| in Figure 13.17b-bottom is around 100000 - the number

of available training points. It would be an important investigatory direction to find the exact

123

©
[=1
o
o

LSQR
S
o

LSQR

w
(=1
=]
oW A O N 0 ©

10 102 10° 107 102 107

(@) (b)

6.5 28.8

5 28.4

LSQR
IS

28.2

3.5 28

27.8

(c) (d)

Figure 13.18: Evaluation of PSO-LDE for estimation of Columns distribution with only Np7 = 10 training samples, using a
data augmentation noise. The used NN architecture is block-diagonal with block size Sp = 64 (see Section 11.1). Applied PSO
instance is PSO-LDE with o = i. Each up training point XY is sampled from the data density PV . Further, an additive 20D noise
v ~ N (0,02 - T) is sampled and added to X V. The PSO-LDE loss is applied on XU = XU 4 v instead of the original X V.
Number of overall PU’s samples is constant 10°; new samples of noise v are sampled at each optimization iteration. We learn
models using various values of o. (a) LSQR error as a function of o, for models with 6 layers and the blocks number Np = 50.
(b) LSQR error as a function of o, for models with 3 layers and the blocks number Np = 20. (¢) LSQR error and (d) IS
error as a function of the blocks number N, for models with 3 layers and o = 0.08. As can be seen, smaller size (up to some
threshold) of NN produces much higher accuracy in a limited training dataset setting. Also, the additive noise can yield an accuracy
improvement.

mathematical relation between the dataset size and properties of NN (e.g. its size, architecture

and gradient similarity) for the optimal inference. We shall leave it for future research.

Data Augmentation to Tackle Overfitting Additionally, we also apply the augmentation data
technique to smooth the converged surface fy(X), as was described in Section 12. Concretely,
we use samples of r.v. XU = XU + v as our up points, where we push the NN surface up.
The XY is sampled from the data density PV, while the additive 20D noise v is sampled from
~ N(0,02-T). At each optimization iteration the next batch of { X iU}fg is fetched from a priori
prepared training dataset of size 10°, and new noise instances {v° {V:Z are generated. Further,
{XU}N'is used as the batch of up points within PSO-LDE loss, where XU = XU + vf. Such
a method allows us to push the fy(X') up not only at the limited number of training points X7,
but also at other points in some ball neighborhood around each X, thus implicitly changing
the approximated function to be smoother and less spiky. Another perspective to look over it is
that we apply Gaussian diffusion over our NN surface, since adding Gaussian noise is identical
to replacing the target pdf PV (X)) with the convolution PV (X) * N'(0,02 - I).

124

In Figure 13.18a we can see results of such data augmentation for BD network with 6 layers
and 50 blocks, with Sp = 64. In such case the used model is over-flexible with too many
degrees of freedom, and the data augmentation is not helpful, with an overall error being similar
to the one obtained in Figure 13.15a. Yet, when the model size (and its flexibility) is reduced to
only 3 layers and 20 blocks, the performance trend becomes different. In Figure 13.18b we can
see that for particular values of the noise s.t.d. o (e.g. 0.08) the data augmentation technique
reduces LSQR error from 5.17 (see Figure 13.17b) to only 3.13.

Further, in Figures 13.18c-13.18d we can see again that there is an optimal NN size/flexibility
that produces the best performance, where a smaller NN suffers from underfitting and a larger
NN suffers from overfitting. Moreover, in Figure 13.18d we can see again that the empirical
error IS is correlated with the ground truth error LSQ R, although the former is less accurate
than the latter. Hence, 1.5 can be used in practice to select the best learned model.

Overall, in our experiments we observed both underfitting and overfitting cases of PSO
optimization. The first typically happens for large dataset size when NN is not flexible enough to
represent all the information contained within training samples. In contrast, the second typically
happens for small datasets when NN is over-flexible so that it can be pushed to have spikes
around the training points. Further, overfitting can be detected via IS test error. Finally, the data

augmentation reduces effect of overfitting.

13.3 PDF Estimation via PSO - Transformed Columns Distribution

In this section we will show that PSO is not limited only to isotropic densities (e.g. Columns
distribution from Section 13.2) where there is no correlation among different data dimensions,
and can be actually applied also to data with a complicated correlation structure between
various dimensions. Specifically, herein we infer a 20D Transformed Columns distribution,
PY(X) = PTrC¢tmns(X)), which is produced from isotropic Columns by multiplying a random
variable X ~ PC¢™ns (defined in Eq. (13.1)) by a dense invertible matrix A that enforces

correlation between different dimensions. Its pdf can be written as:

PTTClmns (X) _ 1

— PCZmns Al x 13.
abs [det A () (13.9)

where A appears in Appendix J. As we will see below, the obtained results for this more
sophisticated distribution have similar trends to results of Columns. Additionally, we will also
show how important is the choice of P”. Unconcerned reader may skip it to the next Section
13.4.

Uniform P” First, we evaluate PSO-LDE for different values of a on the density inference
task. The applied model is BD with 6 layers, number of blocks Np = 50 and block size
Sp = 64. The dataset size is Np7 = 108 and P? is Uniform. In Figures 13.19a-13.19b-13.19¢
we can see the corresponding errors for learned models. The errors are huge, implying that the

inference task failed. The reason for this is the relative support mismatch between Uniform and

125

335

31.5

Figure 13.19: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with
6 layers, number of blocks Ng = 50 and block size Sp = 64 (see Section 11.1). The down density PP is Uniform in the top
row (a)-(b)-(c), and Gaussian in the bottom row (d)-(e)-(f). For different values of a hyper-parameter «, (a)-(d) PSQR, (b)-(e)
LSQR and (c)-(f) IS are reported, along with their empirical standard deviation. As observed, when PP is Uniform, PSO-LDE
fails to learn the data density due to large relative support mismatch. On the other hand, when PP is Gaussian, the target surface is
accurately approximated.

Transformed Columns densities. After transformation by matrix A the samples from P77C!mns
are more widely spread out within the space R?°. The range of samples along each dimension is
now around [—10, 10] instead of the corresponding range [—2.3, 2.3] in Columns distribution.
Yet, the samples are mostly located in a small subspace of hyperrectangle R = [—10, 10]?°.
When we choose P” to be Uniform with R as its support, most of the samples X" and X* are
located in different areas of this huge hyperrectangle and cannot balance each other to reach
PSO equilibrium. Such relative support mismatch prevents proper learning of the data density

function.

Gaussian PP Next, instead of Uniform we used Gaussian distribution A/(p,) as our down
density P”. The mean vector is equal to the mean of samples from PY; the X is a diagonal
matrix whose non-zero values are empirical variances for each dimension of available up
samples. In Figures 13.19d-13.19e-13.19f we can observe that overall achieved accuracy is high,
yet it is worse than the results for Columns distribution. Such difference can be again explained
by a mismatch between PV and P” densities. While Columns and Uniform densities in Section

13.2 are relatively aligned to each other, the Transformed Columns and Gaussian distributions
PU(X)
PP (X)
becomes too big/small, causing PSO inaccuracies. Hence, we argue that a better choice of P?

have a bounded ratio

only around their mean point p. In far away regions such ratio

would further improve the accuracy.

Additionally, we can see that in case of Transformed Columns PSO-LDE with a = %

achieves the smallest error, with its LSQ R being 0.32 £ 0.02. Additionally, we evaluated the
Importance Sampling (IS) method from Table 5.1 and PSO-MAX defined in Eq. (13.4)-(13.5).

126

Method PSQR LSQR 1S

PSO-LDE, 1.6-10721 +£3.17-10722 0.442 +£0.095 26.44 + 0.05
averaged over all «

IS 9.3-10721 +£34-1072% 26.63+0.86 31.3+0.04
PSO-MAX 2.1-107214+£296-10722 0.54+0.088 26.52+0.03

Table 13.3: Performance comparison between various PSO instances for Transformed Columns density

Figure 13.20: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is FC with
4 layers of size 1024 (see Section 11.1). For different values of a hyper-parameter or, LSQR error is reported, along with its
empirical standard deviation. Again, the small values of a (around %) have a lower error.

In Table 13.3 we see that the performance of PSO-MAX is slightly worse than of PSO-LDE,
similarly to what was observed for Columns. Moreover, the IS fails entirely, producing a very
large error. Furthermore, in order to stabilize its learning process we were required to reduce the
learning rate from 0.0035 to 0.0001. Hence, here we can see again the superiority of bounded

magnitude functions over not bounded.

Various NN Architectures Additionally, we evaluated several different NN architectures
for Transformed Columns distribution, with P” being Gaussian. In Figure 13.20 we report the
performance for FC networks. As observed, the FC architecture has a higher error w.r.t. BD
architecture in Figure 13.19e. Moreover, PSO-LDE with o around % performs better.

Further, in Figure 13.21 we experiment with BD architecture for different values of the

-20 6
1 x10 1 26.7 8 x10
- 08 26.6 6
Jos5 Jose 0265 T4
o -
0.4 26.4 2
0 0.2 26.3 0
0 100 200 0 100 200 0 100 200 0 100 200
Sp Sp Sp Sp

Figure 13.21: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with 6
layers and number of blocks N = 50 (see Section 11.1). The block size Sp is taking values {16, 32, 64,96, 128,160, 192}.
The applied loss is PSO-LDE with o = % For different values of Sp we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of 8 for each value of Sg.

127

6 x10°
07} sl
06} 4
e}
4 =3
05}
2+
04F
1t
03l ‘ ‘ ‘ ‘ ‘ ‘ ‘ ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Ng N
B
(a) (b)

Figure 13.22: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with 6
layers and block size Sp = 16 (see Section 11.1). The number of blocks /N is changing. The applied loss is PSO-LDE with
a = é For different values of N, (a) LSQR error and (b) the number of weights |6 are reported.

block size Sp. Similarly to what was observed in Section 13.2.3 for Columns distribution, also

here a too small/large block size has worsen accuracy.

We also perform additional experiments for BD architecture where this time we use small
blocks, with Sp = 16. In Figure 13.22 we see that for such networks the bigger number
of blocks per layer Np, that is the bigger number of transformation channels, yields better
performance. However, we also observe the drop in an accuracy when the number of these
channels grows considerably (above 250). Furthermore, no matter how big is N g, the models
with small blocks (Sp = 16) in Figure 13.22 produced inferior results w.r.t. model with big
blocks (Sp = 64, see Figure 13.19¢ for a = %).

Further, we evaluated the same small-block network for a different number of layers Np,
with Sp = 16 and Np = 250. In Figure 13.23 we can see that when N, grows from 2 to 6, the
overall performance is getting better. Yet, for a larger number of layers the performance trend is
inconsistent. When N7, is between 7 and 11, some values of N, are better than other, with no
evident improvement pattern for large Ny,. Moreover, for N, = 12 the error grows significantly.
More so, we empirically observed that 2 out of 5 runs of this setting totally failed due to the zero
loss gradient. Thus, the most likely conclusion for this setting is that for a too deep networks the
signal from input fails to reach its end, which is a known issue in DL domain. Also, from our
experiments it follows that learning still can succeed, depending on the initialization of network
weights.

Furthermore, along with the above inconsistency that can occur for too deep networks, for
N1, = 9in Figure 13.23 we still received our best results on Transformed Columns dataset, with
the mean LSQ R being 0.204. This leads to the conclusion that even when BD network uses
blocks of a small size (Sp = 16), it still can produce a superior performance if it is deep enough.
Besides, the zero-gradient issue may be tackled by adding shortcut connections between various
layers [42].

Overall, in our experiments we saw that when PV and IP? are not properly aligned (i.e. far
from each other), PSO fails entirely. Further, PSO-LDE with values of o around % was observed
to perform better, which is an another superiority evidence for small values of . Moreover,

IS with unbounded magnitude functions could not be applied at all for faraway densities. BD

128

1 x107%° ‘ x10°
100 %6
34

50 %) 32
30

PSQR
<
6]
LSQR

6]
o N A O

: 26
2 4 6 8 1012 2 4 6 8 1012 2 4 6 8 1012 2 4 6 8 1012

Ny, Ng N, Ng
(a)

29

28.5¢

28+

IS

275+

27+

26.5¢

(b)

Figure 13.23: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with
number of blocks N = 250 and block size Sp = 16 (see Section 11.1). The number of layers N, is changing from 2 to 12.
The applied loss is PSO-LDE with o = % (a) For different values of Ny, we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of 8 for each value of Ny,. (b) Zoom of (a).

architecture showed again a significantly higher accuracy over FC networks. Block size Sp = 96
produced a better inference. Finally, for BD networks with small blocks (Sp = 16) the bigger
number of blocks Np and the bigger number of layers Nz, improve an accuracy. However, at

some point the increase in both can cause the performance drop.

13.4 PDF Estimation via PSO - 3D Image-based Densities

In order to further evaluate the presented herein PSO-LDE density estimation approach, we use
intricate 3D densities that are based on image surfaces. More specifically, we consider a given
RGB image I as a function F(z, y, ¢) from R? to R where x, y and c represent width, height
and color channel of [respectively. For simplicity we define the range for each input scalar
variable from [z, y, c] to be [0, 1], with F' : [0, 1]> — [0, 1]. We use grid of values from an image
I to appropriately interpolate outputs of the function F'(X) at any input point X € [0, 1]* C R3,
In our experiments we used a linear interpolation.

Further, we use F’ as pdf function which we sample to create a dataset for our PSO-LDE
experiments. Yet, the function F', interpolated from image I, is not a valid pdf function since its
integral can be any positive number. Thus, we normalize it by its total integral to get a normalized
function F' which we use as an intricate 3D pdf function for further density estimation evaluation.

Next, we sample the density F' via rejection sampling method and gather a dataset of size 107

129

\ \ /
W i

(e)

Figure 13.24: (a),(c),(e) Image-based densities and (b),(d),(f) their approximations - Part 1.

130

(e) ®

Figure 13.25: (a),(c),(e) Image-based densities and (b),(d),(f) their approximations - Part 2.

131

per each image-based density. Furthermore, we approximate the target surface log F'(X) via
PSO-LDE only from these sampled points.

Note that log F' has a very sophisticated structure since used images have a very high
contrast and nearby pixels typically have significantly different values. This makes log F' a
highly non-linear function, which cannot be easily approximated by typical parametric density
estimation techniques. Yet, as we will see below, due to the approximation power of DL, which
is exploited in full by PSO, and due to a high flexibility of the proposed BD architecture, the
non-parametric PSO-LDE allows us to accurately estimate even such complex distributions.
Importantly, we emphasize that the evaluated distributions in this section have their support
in R3, and are not some very high-dimensional densities over image data that can be often
encountered in DL domain.

We use PSO-LDE with o = i in order to learn the target log F'. The applied NN architecture
is block-diagonal with a number of blocks Np = 15, a block size Sp = 64 and a number of
layers N, = 14 (see Section 11.1). In order to tackle the problem of vanishing gradients in
such a deep model, we introduced shortcut connections into our network, where each layer
has a form u; = h;(u;—1;6;) + u;—1 with u; and h;(-; 6;) being respectively the output and the
applied transformation function of i-th BD layer within the BD network. Note that in this thesis
we use such shortcuts only for the experiments of this section. Furthermore, after training is
finished, we convert the inferred F' back into an image format, producing an inferred image I'.

In Figures 13.24 and 13.25 we show inferred images for several input images. As can
be seen, there is high resemblance between both input I and inferred I’. That is, PSO-LDE
succeeded to accurately infer densities even with a very complicated surface. Note that each
image-based density was inferred by using identical hyper-parameters, that are the same as in
the rest of our experiments (except for NN structure where shortcuts were applied). Additional
parameter-tuning per a specific input image will most probably improve the produced herein

results.

13.5 PDF Estimation via PSO - Joint Over Poses and CNN Features

Here we consider the joint density estimation task in context of robotics domain, over data
considered in [62]. Specifically, we learn the joint P(Z, X') where robot pose X € R* has the
form {x,y, pitch,yaw} and Z € R0 is a set of CNN features observed at X. The inferred
dataset was generated from Unreal Engine [139] where we sampled uniformly poses { X},
retrieved a camera measurement I; at each X;, computed CNN logits f; for each I; using
Inception-v3 [134], and finally retrieved 10 pre-specified features from f; to construct Z;. A
Gaussian parametric estimation of this particular P(Z, X') was reported to have a relatively poor
accuracy due to the intricate structure of ground truth distribution [62].

The technical setup for this task is very similar to the one described in Section 13.1, with
few differences. Overall size of training and testing datasets was 100000 and 70000 respectively.
BD architecture was used to represent fy(X), with N, = 8, Ng = 100 and Sp = 64,

and with Elu non-linearity activation function. Further, here we use negative log-likelihood

132

-11.5

NLLikl
0

-125

0.2 0.4 0.6 0.8 1
«

Figure 13.26: Evaluation of PSO-LDE for density estimation of CNN features. For different values of hyper-parameter o, N LLikl
is reported, along with the empirical standard deviation.
NLLikl = —% fil log Py(Z;, X;) as our performance metric, since we do not have access
to ground truth pdf required to compute LSQR; {Z;, Xi}fil are N = 70000 testing samples.
First we apply the same baselines from Section 13.2.2. The achieved N L Likl by score
matching, MADE and MAF is, respectively, —7.056 £ 0.23, —11.55 £ 0.085 and —12.076 +
0.01. Like previously, the score matching model was explicitly normalized via importance
sampling. Furthermore, we inferred the considered model also via Gaussian-Mixture-Model
with & components (GMM-k). The achieved N L Likl was —6.74 + 0.06 and —10.01 + 0.03
for GMM-50 and GMM-300 respectively.

Further, PSO-LDE with various « was applied. The above learned GMM was chosen as
down distribution in this scenario. We separate 3 - 10° learning iterations into two stages, 80000
and 220000, where during the first stage GMM-50 was used as P”, and during the second stage
- GMM-300. Likewise, during the first stage we kept the learning rate constant 0.0035, and the
applied batch size was Ny = Np = 600. For second stage the learning rate was 1le — 5 and the
batch size - Ny = Np = 100. Such a 2-stage process empirically showed better performance.

Importantly, N L Likl measures a statistical discrepancy only when the estimated model
is properly normalized. Yet, as was seen above, PSO-LDE models are only approximately
normalized. Hence, in order to compute N LLikl for Py(Z, X) inferred via PSO-LDE, we
can use its normalized form Py(Z, X) = Py(Z, X)/T1, with its total integral T'T being calcu-
lated/approximated via importance sampling. Yet, such normalization destroys approximation
power of PSO-LDE model, since as observed empirically, while Py can have a large T'1,
it is still very close to the ground truth pdf on local scale. A better normalization method,
for which PSO-LDE is less sensitive, is to represent the normalized version of Pg(Z, X)
as Py o(Z,X) = min [c : PGMM(Z,X),PQ(Z,X)}, where C' > 0 is tuned so that TT of
]f”g,c(Z , X)) is equal to 1, and where Pg s is the GMM-300 that was used as down density.
Such normalization can be considered as sort of a prior over joint P(Z, X) that requires inferred
]fbg’c(Z , X)) to be close to Pgasas. In our experiments we used this form to compute N L Likl for
PSO-LDE methods. Importantly, such normalization is only required for comparison with other
baselines, since the comparison of normalized and unnormalized models is a very challenging

task in its own [78].

In Figure 13.26 we can see N LLikl for various o. Best performance was achieved by
a = 0.35, with NLLikl = —12.7 £ 0.046, which is significantly better than all state-of-the-art
baselines. Furthermore, similarly to Figure 13.2a also here we observe that PSO-LDE with

small « (here around @ = 0.35) has a better accuracy w.r.t. NCE (i.e. « = 1) that achieved

133

o

ﬁ - l ‘ﬂ‘l
(a) (b) (c)

Figure 13.27: Probabilistic occupancy mapping scenario 1. (a) Environment with black obstacles and 3 lidar scans (in green).
Laser hit points are in red. (b) NN output fo(X), approximating J(X). (¢c) Zoomed-in map parts.

(a) (b)

Figure 13.28: Probabilistic occupancy mapping scenario 2. (a) Environment with black obstacles and white free space. (b) NN
output fg(X), approximating J(X).

NLLikl = —-12.3 +£0.1.

13.6 Probabilistic Occupancy Mapping

Finally, we deploy PSO to model a statistical occupancy map, according to the setup in Section
10.5. Here, we consider two scenarios. In the first, we have a room with 3 lidar scans, see Figure
13.27a. Points { X{} are sampled uniformly from each scan cone (in green), whereas { X?} are
taken to be laser hits (in red). At the convergence PSO produced fy(X) in Figure 13.27b, which
provides a continuous occupancy information about the environment. Specifically, the learned
model returns zero for unobserved areas, depicting an information lack there. In areas of scans
it returns positive values for occupied areas, and negative values - for unoccupied. Moreover,
the magnitude of values is larger for areas that were observed twice, which we can use as a
confidence measure of our knowledge when we plan autonomous navigation through the area.
In the second scenario a larger area with more details, taken from [8], is considered, see
Figure 13.28. Here we assume that the entire environment was observed, with points { Xf}
being uniformly sampled from the entire white area of Figure 13.28a, and { X} being uniformly
sampled on the boundary between white and black regions. In Figure 13.28b we can see that the
learned occupancy model produces very accurate information about the real environment.
Overall, in the above simplistic scenarios we showed that PSO can accurately infer a

continuous probabilistic occupancy map. In future work we shall compare the proposed method

134

to other alternatives in this domain [96, 111, 121].
The technical setup for the above learning task was very similar to the one described in

Section 13.1, with few differences.

Scenario 1 Overall size of training dataset was N° = 7347 and Nf = 3.5.10%. Note that
”free” locations are sampled uniformly from scanned areas, and we can construct a dataset of
these points as large as we want. FC architecture was used to represent fy(X), with 8 layers of
size 256 each, and with Elu non-linearity activation function. Optimization was performed for
300000 iterations, and took around 30 minutes to run on a GeForce GTX 1080 Ti GPU card.
Size of mini batches was 300.

Scenario 2 Overall size of training dataset was N° = 674563 and Nf = 4.3 . 105. FC
architecture was used to represent fp(X), with 10 layers of size 256 each, and with Elu non-
linearity activation function. Optimization was performed for 300000 iterations, and took around
one hour to run on a GeForce GTX 1080 Ti GPU card. Size of mini batches was 1000.

135

136

CHAPTER 14

Neural Spectrum Alignment

Understanding expressiveness and generalization of deep models is essential for robust per-
formance of NNs and PSO methods. Recently, the optimization analysis for a general NN
architecture was related to the model kernel gg(X, X') £ Vyfo(X)7 - Vo fo(X') [54], which
we also related to PSO performance in sections 3 and 7. Properties of this gradient similarity
kernel, a.k.a. NTK, govern NN expressivity level, generalization and convergence rate. Un-
der various considered conditions [54, 71], this NN kernel converges to its steady state and
is invariant along the entire optimization, which significantly facilitates the analyses of DL
theory [7,11,15,41,54,71].

Yet, in a typical realistic setting the gradient similarity kernel is far from being constant, as
we empirically demonstrate in this chapter. Moreover, its spectrum undergoes a very specific
change during training, aligning itself towards the target function that is learned by NN. This
kernel adaptation in its turn improves the optimization convergence rate, by decreasing a norm of
the target function within the corresponding RKHS [7]. Furthermore, these gradient similarity
dynamics can also explain the expressive superiority of deep NNs over more shallow models.
Hence, we argue that understanding the gradient similarity of NNs beyond its time-invariant
regime is a must for full comprehension of NN expressiveness power.

To encourage the onward theoretical research of the kernel, herein we report several strong
empirical phenomena and trends of its dynamics. To the best of our knowledge, these trends
neither were yet reported nor they can be explained by DL theory developed so far. We argue
that accounting for the presented below phenomena can lead to a more complete learning theory
of complex hierarchical models like modern NNs.

To this end, in this chapter we perform an empirical investigation of FC NN, its gradient
similarity kernel and the corresponding Gramian at training data points during the entire period

of a typical learning process. Our main empirical contributions below are:

* We show that Gramian serves as a NN memory, with its fop eigenvectors changing to
align with the learned target function. This improves the optimization performance since

the convergence rate along kernel top eigenvectors is typically higher.

137

* During the entire optimization NN output is located inside a sub-space spanned by these

top eigenvectors, making the eigenvectors to be a basis functions of NN.

* Deeper NNs demonstrate a stronger alignment, which may explain their expressive
superiority. In contrast, shallow wide NNs with a similar number of parameters achieve a

significantly lower alignment level and a worse optimization performance.

* We show additional trends in kernel dynamics as a consequence of learning rate decay.
Specifically, after each decay the information about the target function, that is gathered
inside fop eigenvectors, is spread to a bigger number of fop eigenvectors. Likewise, kernel
eigenvalues grow after each learning rate drop, and an eigenvalue-learning-rate product is

kept around the same value for the entire optimization.

» Experiments over various FC architectures and real-world datasets are performed. Like-
wise, several supervised and unsupervised learning algorithms and number of popular
optimizers were evaluated. All experiments showed the mentioned above spectrum

alignment.

This chapter is structured as follows. In Section 14.1 we define necessary notations for
first-order NN dynamics. In Section 14.2 we relate gradient similarity with Fisher information
matrix (FIM) of NN and in Section 14.3 we provide more insight about NN dynamics on L2
loss example. In Section 14.4 the work related to NTK and kernel alignment is described, and in
Section 14.5 we present our main empirical study. Later, the experiment outcome is summarized
in Section 14.6. Further, additional derivations placed in the Appendix. Finally, more visual

illustrations of NN spectrum and additional experiments can be found in [63].

14.1 Notations for Alignment Experiment

Consider a NN fy(X) : R™ — R with a parameter vector 6, a typical sample loss ¢ and an
empirical loss L, training samples D = [X ={X'eR}N,, V={YVic R}fil] and the loss
gradient Vg L:

N N

L(6,D) = % ; (XY (XD, VeL(6, D) = % ; ¢ [X0Y, fo(X9)] Vo fal(XF).

(14.1)

The above formulation can be extended to include unsupervised PSO methods by eliminating

labels Y from the equations, and introducing down samples { X }fvj instead. Further, tech-

niques with a model fy(X) returning multidimensional outputs are out of scope for this thesis,
to simplify the formulation.

Consider a GD optimization with learning rate §, where parameters change at each discrete

optimization time ¢ as df, £ 0141 — 0, = =9 - VyL(0y, D). Further, a model output change at

138

any X according to first-order Taylor approximation is:

1
Ao (X) 2 foros (X) = Jo,(X) = d] - [Fofa, (X)ds

5 N . o .
~ Vofo ()T - dbr = = 3" (X, X7 - € [XLY7 o, (X)), (142)
=1

where 05 = (1 — s)0; + s0;41 and fol Vo fo,(X)ds is a gradient averaged over the straight line
between 6; and 6, ;1. Further, g;(X, X') £ Vg fo,(X)T - Vg fo,(X') is a gradient similarity -
the dot-product of gradients at two different input points also known as NTK [54], and where
VXYY fo (XD & Vi, 0 [XYY fo (X))

In this section we mainly focus on optimization dynamics of fy at training points. To
this end, define a vector f; € RY with i-th entry being fj,(X?). According to Eq. (14.2) the

discrete-time evolution of fy at testing and training points follows:

_— _)
(X, X) -y, dfi = foor— fim —— - G-y, (14.3)

dfy, (X) % N

_N . gt
where G; 2 g;(X,X) isa N x N Gramian with entries G4(i, j) = g;(X?, X7) and m; € RY
is a vector with the i-th entry being ¢/ [X*, Y, fp,(X")] . Likewise, denote eigenvalues of G,
£ M and \! ;. £ b, Further, notate the

sorted in decreasing order, by { A}V, with \! Lo
associated orthonormal eigenvectors by {o¢}¥ ;. Note that {\!}}¥ | and {©!}Y; also represent
estimations of eigenvalues and eigenfunctions of the kernel g;(X, X’) (see Appendix K for more
details). Below we will refer to large and small eigenvalues and their associated eigenvectors by
top and bottom terms respectively.

Eq. (14.3) describes the first-order dynamics of GD learning, where m; is a functional
derivative of any considered loss L, and the global optimization convergence is typically
associated with it becoming a zero vector, due to Euler-Lagrange equation of L. Further, G}

translates a movement in f-space into a movement in a space of functions defined on X.

14.2 Relation to Fisher Information Matrix

NN Gramian can be written as G; = A?At where A; is || x N Jacobian matrix with i-th column
being Vg fg, (X?). Moreover, F; = A; A is known as the empirical FIM of NN! [58,97,101]
that approximates the second moment of model gradients %Ft ~Ex {V@ fo,(X)Vofo, (X)T} .
Since F; is dual of G, both matrices share same non-zero eigenvalues {\! # 0}. Furthermore,

for each ! the respectful eigenvector ! of F; is associated with appropriate ! - they are left

and right singular vectors of A; respectively. Moreover, change of ; along the direction &}
causes a change to f; along 0! (see Appendix M for the proof). Therefore, spectrums of G; and

F; describe principal directions in function space and #-space respectively, according to which

'In some papers [117] FIM is also referred to as a Hessian of NN, due to the tight relation between F; and the
Hessian of the loss. See Appendix L for more details

139

f¢ and 6, are changing during the optimization. Based on the above, in Section 14.4 we relate

some known properties of F} towards G;.

14.3 Analysis of L2 Loss For Constant Gramian

To get more insight into Eq. (14.3), we will consider L2 loss with ¢ [X", Y, fo(X")] =
% [f.g(Xi) — Yi]2. In such a case we have m; = f; — §, with ¢ being a vector of labels.
Assuming (G, to be fixed along the optimization (see Section 14.4 for justification), NN dynam-

ics can be written as (see the Appendix N for a proper derivation):

N t
ﬁ:ﬁ)—; [1— [1—;&}] < Ui, o > Uj, (14.4)
N 5 t
My = ; [1 — N&] < 03,0 > . (14.5)

Further, dynamics of fp, (X)) at testing point X appear in the Appendix O since they are not the
main focus of this thesis. Under the stability condition § < %, the above equations can be
viewed as a transmission of a signal from g = fy — ¥ into our model f; - at each iteration
my is decreased along each {v; : \; # 0} since tlglolo {1 — %)\Z}t = (. Furthermore, the same
information decreased from m; in Eq. (14.5) is appended to f; in Eq. (14.4).

Hence, in case of L2 loss and for a constant Gramian matrix, conceptually GD transmits
information packets from the residual 7, into our model f; along each axis ©v;. Further,
st 21-1— %)\i’ governs a speed of information flow along v;. Importantly, note that for a
high learning rate (i.e. § = %) the information flow is slow for directions v; with both very
large and very small eigenvalues);, since in former the term 1 — %)\i is close to —1 whereas in
latter - to 1. Yet, along with the learning rate decay, performed during a typical optimization,
st for very large); is increased. However, the speed along a direction with small); is further
decreasing with the decay of . As well, in case \,,;;, > 0, at the convergence ¢ — oo we
will get from Eq. (14.4)-Eq. (14.5) the global minima convergence: foo = fo — mo = y and
Moo = 0.

Under the above setting, there are two important key observations. First, due to the restriction
over J in practice the information flow along small \; can be prohibitively slow in case a
conditional number ’}w’jﬁ is very large. This implies that for a faster convergence it is desirable
for NN to have many eigenvalues as close as possible to its A4, since this will increase a
number of directions in the function space where information flow is fast. Second, if mg (or y
if fo ~ 0) is contained entirely within fop eigenvectors, small eigenvalues will not affect the
convergence rate at all. Hence, the higher alignment between mg (or) and fop eigenvectors
may dramatically improve overall convergence rate. The above conclusions and their extensions
towards the testing loss are proved in formal manner in [7,99] for two-layer NNs. Further,
the generalization is also shown to be dependent on the above alignment. In Section 14.5 we

support these conclusions experimentally.

140

14.4 Work Related to Model Kernel

First-order NN dynamics can be understood by solving the system in Eq. (14.3). However, its
solution is highly challenging due to two main reasons - non-linearity of m; w.r.t. f; (except for
the L2 loss) and intricate and yet not fully known time-dependence of Gramian G;. Although
gradient similarity g;(X, X") and corresponding G; achieved a lot of recent attention in DL
community [54,71], their properties are still investigated mostly only for limits under which
Gt becomes time-constant. The first work in this direction was done in [54] where ¢:(X, X')
was proven to converge to Neural Tangent Kernel (NTK) in infinite width limit. Similarly,
in [71] G was shown to accurately explain NN dynamics when 6, is nearby 6y during the entire
optimization. The considered case of constant Gramian facilitates solution of Eq. (14.3), as
demonstrated in Section 14.3, which otherwise remains intractable. Moreover, GD over NN with
constant Gramian/kernel is identical to kernel methods where optimization is solved via kernel
gradient descent [54], and hence theoretical insights from kernel learning can be extrapolated
towards NNs.

Yet, in practical-sized NNs the spectrum of G} is neither constant nor it is similar to its
initialization. Recent several studies explored its adaptive dynamics [23, 145, 148], although
most of the work was done for single or two layer NNs. Further, in [25,49] mathematical
expressions for NTK dynamics were developed for a general NN architecture. Likewise, in the
Appendix P we derive similar dynamics for the Gramian G;. Yet, the above derivations produce
intricate equations and it is not straightforward to explain the actual behavior of G; along the
optimization, revealed in this thesis. Particularly, in Section 14.5 we empirically demonstrate
that fop spectrum of G; is dramatically affected by the learning task at hand, aligning itself
with the target function. To the best of our knowledge, the presented NN kernel trends were not
investigated in such detail before.

Further, many works explore properties of FIM F; both theoretically and empirically
[37,58,99,117]. Specifically, most of these works come to conclusion that in typical NN an
absolute majority of FIM eigenvalues are close to zero, with only small part of them being
significantly strong. According to Section 14.2 the same is also true about eigenvalues of
G'. Furthermore, in [7,99] authors showed for networks with a single hidden layer that NN
learnability strongly depends on alignment between labels vector i and top eigenvectors of GY.
Intuitively, it can be explained by fast convergence rate along v; with large A\; vs impractically
slow one along directions with small)\;, as was shortly described in Section 14.3. Due to
most of the eigenvalues being very small, the alignment between y and rop eigenvectors of
G defines the optimization performance. Moreover, in [99] authors also noted the increased
aforementioned alignment comparing NN at start and end of the training. This observation was
shortly made for ResNet convolutional NN architecture, and in Section 14.5 we empirically
investigate this alignment for FC architecture, in comprehensive manner for various training
tasks.

Furthermore, the picture of information flow from Section 14.3 also explains what target

functions are more “easy” to learn. The top eigenvectors of (5; typically contain low-frequency

141

signal, which was discussed in [7] and proved in [11] for data uniformly distributed on a hyper-
sphere. In its turn, this explains why low-frequency target functions are learned significantly
faster as reported in [7, 110, 152]. Combined with early stopping such behavior is used by DL
community as a regularization to prevent fitting high-frequency signal affiliated with noise; this
can also be considered as an instance of commonly known Landweber iteration algorithm [66].
We support findings of [11] also in our experiments below, additionally revealing that for a gen-
eral case the eigenvectors/eigenfunctions of the gradient similarity are not spherical harmonics
considered in [11].

Finally, in context of kernel methods a lot of effort was done to learn the kernels themselves
[31,141,144,146]. The standard 2-stage procedure is to first learn the kernel and latter combine
it with the original kernel algorithm, where the first stage can involve search for a kernel whose
kernel matrix is strongly aligned with the label vector y [31, 144], and the second is to solve
a data fitting task (e.g. L2 regression problem) over RKHS defined by the new kernel. Such
2-stage adaptive-kernel methods demonstrated an improved accuracy and robustness compared
to techniques with pre-defined kernel [31, 141, 146]. In our experiments we show that NNs
exhibit a similar alignment of g;(X, X’) during the optimization, and hence can be viewed as

an adaptive-kernel method where both kernel learning and data fitting proceed in parallel.

14.5 Experiments

In this section we empirically study Gramian dynamics along the optimization process. Our
main goal here is to illustrate the alignment nature of the gradient similarity kernel and verify
various deductions made in Section 14.3 under a constant-Gramian setting for a real learning
case. To do so in detailed and intuitive manner, we focus our experiments on 2D dataset where
visualization of kernel eigenfunctions is possible. We perform a simple regression optimization
of FC network via GD, where a learning setup? is similar to common conventions applied by
DL practitioners. All empirical conclusions are also validated for high-dimensional real-world
data, which can be found in [63].

Setup To provide a better intuition, we specifically consider a regression of the target function
y(X) with X € [0,1]2> C R? depicted in Figure 14.1a. We approximate this function with
Leaky-Relu FC network via L2 loss, using N = 10000 training points sampled uniformly
from [0, 1]2 (see Figure 14.1c). Training dataset is normalized to an empirical mean 0 and a
standard deviation 1. NN contains 6 layers with 256 neurons each, with |¢| = 264193, that was
initialized via Xavier initialization [29]. Such large NN size was chosen to specifically satisfy
an over-parametrized regime |0| > N, typically met in DL community. Further, learning rate §
starts at 0.25 and is decayed twice each 10° iterations, with the total optimization duration being
6 - 10°. At convergence fy(X) gets very close to its target, see Figure 14.1b. Additionally, in
Figure 14.1d we show that first-order dynamics in Eq. (14.3) describe around 90 percent of the

change in NN output along the optimization, leaving another 10 for higher-order Taylor terms.

Related code can be accessed via a repository https://bit.1ly/2kGVHhG

142

https://bit.ly/2kGVHhG

=0.2 — b¢
£ L n
Mo
YRR At 10-1 - —
v

1.00] [
3 o
‘gO.SB i

” 1072 ;

0 200000 400000 600000 0 200000 400000 600000
t t

(d) (e)

=}

(b)

Figure 14.1: (a) Mona Lisa target function for a regression task. (b) NN fy(X) at convergence. (¢) 10* sampled training points.
(d) Accuracy of first order dynamics in Eq. (14.3). Depicted is errory = ”dﬂt d‘{t I where df; = — %f -Gt - My is the first-order
approximation of a real differential dft £ ﬁ+1 — ft; cos (i) is cosine of an angle between dft and dft. As observed, Eq. (14.3)
explains roughly 90% of NN change. (e) Learning rate d; and its upper stability boundary N along the optimization. We

empirically observe a relation AL, . o %

1073 — i=1000
i=3000

o ——
N
S

o

G 200000 400000 600000
t

(@ (b) (©) (@)

200000 400000 600000
t

000 400000 600000 0 200000 400000 600000
t t

Figure 14.2: (a) Eigenvalues {)\f} Z]\; , for different ¢. (b) Individual eigenvalues along ¢. As observed, eigenvalues monotonically
grow along ¢, with growing boost at times of the learning rate drop. (c) The information flow speed st discussed in Section 14.3 for

several top eigenvectors. For first 8 eigenvectors, roughly, this speed is increased at learning rate drop. (d) 3¢ (I3)\t along time ¢, for
various .

Further, we compute G; and its spectrum along the optimization, and thoroughly analyze them

below.

Eigenvalues In Figures 14.2a-14.2b it is shown that each eigenvalue is monotonically increas-
ing along ¢t. Moreover, at learning rate decay there is an especial boost in its growth. Since %XE
also defines a speed of movement in #-space along one of FIM eigenvectors (see Section 14.2),
such behavior of eigenvalues suggests an existence of mechanism that keeps a roughly constant
movement speed of 6 within RI?l. To do that, when &, is reduced, this mechanism is responsible
for increase of {\! } Y, as a compensation. This is also supported by Figure 14.2d where each
@)\t is balancing, roughly, around the same value along the entire optimization. Furthermore,
in Figure 14.1e it is clearly observed that an evolution of \!, . stabilizes® only when it reaches

value of %, further supporting the above hypothesis.

PE—
Z¢:1<Uf7¢>2

[EHE

angle oy ((Z), k) between an arbitrary vector ¢ and its projection to the sub-space of R™ spanned

Neural Spectrum Alignment Notate by cos [at (g{g, k)] = the cosine of an

by {0t} . Further, E;(¢, k) = cos [at (q@, k:)] can be considered as a relative energy of @,

the percentage of its energy HQEHZ located inside span ({ﬁf ?:1)- In our experiments we will

3Trend Ay — 5 was consistent in FC NNs for a wide range of initial learning rates, number of layers and
neurons, and various datasets (see [63]), making it an interesting venue for a future theoretical investigation

143

Lofe—=———1 5 — | — 0 — s — 60
0.05 — 10 0.99] 1/ — - 90 10 1.00) & —— 90
> | 20 7 —— | — 120 e — | — 120
So.90] |V — 50 5098 ¢ — 200 — 50§44 - 200
ﬁ055 i 100 &4y T e—— | — 400 —— 100 & L | 400
85 I\ —— 1000 — 1000) — 1000 —— 1000
0.80 VA e N 4000 0.96 4000 0.80 VAN 4000 (.96 4000
G 200000 400000 600000 0 200000 400000 600000 G 200000 400000 600000 G 200000 400000 600000
t t t t
(a) (b)
1
N % 1.00 vw T = [— 10000 e
. 075 120 0.75 \ 10 0.9975 90
— -3 — 200 B ‘ 2o I — 120
" 3 \ 3 |
X N 1000 Fo.s0f |] — 400 30.50 1 50 So90s0 "k — 200
\ —— 4000 & W —— 1000 &) — 100 &) \u h | — 200
1251 Y 0.25 I8! —— 2000 0.25 [—— 1000 0.9925 W ,‘N —— 1000
0.00 AR e y 4000 000 ;o VWAL 4000 w N 4000
. _ . |
G 200000 400000 600000 0-007 5560000 400000 600000 G 200000 400000 600000 0:990075—"555000 400000 600000
t t t t
(© (d
L0l =T — B
— — 1.00
095 l 10
> i |20
e |\ e e 50 2
30.90] | .08
& \ — 100 &
0.85{ | e | —— 1000 —— 1000
4000 0.96 4000
08075260000 400000 600000 G 200000 400000 600000
t t
(e)

Figure 14.3: (a) For different k, relative energy of the label vector ¥ in top k eigenvectors of G't, E+(7, k), along the optimization
time t. (b) Relative energy of NN output, F¢(ft, k). (c) Relative energy of the residual, E (¢, k). (d) Relative energy of the

differential df; = — % -Gy -y, Er(dft, k). (e) Relative energy of NN output, F (_f”t, k), with both G and f}¢** computed
at 10* testing points. Dashed vertical lines depict time ¢ at which learning rate § was decayed (see Figure 14.1e).

use E;(¢, k) as an alignment metric between ¢ and {©¢}¥_,. Further, we evaluate alignment of

G with g instead of 7 since fo is approximately zero in the considered FC networks.

In Figure 14.3a we depict relative energy of the label vector y in top k eigenvectors of
Gy, E(y, k). As observed, 20 top eigenvectors of G contain 90 percent of y for almost all ¢.
Similarly, 200 top eigenvectors of GGy contain roughly 98 percent of y, with rest of eigenvectors
being practically orthogonal w.r.t. 3. That is, Gi; aligns its fop spectrum towards the ground truth
target function ¢ almost immediately after starting of training, which improves the convergence
rate since the information flow is fast along fop eigenvectors as discussed in Section 14.3 and
proved in [7,99].

Further, we can see that for & < 400 the relative energy F;(y, k) is decreasing after each
decay of 4, yet for £ > 400 it keeps growing along the entire optimization. Hence, the rop
eigenvectors of GG; can be seen as NN memory that is learned/tuned toward representing the
target y, while after each learning rate drop the learned information is spread more evenly among

a higher number of different rop eigenvectors.

Likewise, in Figure 14.3b we can see that NN outputs vector f; is located entirely in a few
hundreds of top eigenvectors. In case we consider G; to be constant, such behavior can be
explained by Eq. (14.3) since each increment of f, dfy, is also located almost entirely within top
60 eigenvectors of Gy (e.g. see E;(df;, 60) in Figure 14.3d). Yet, for a general NN with a time-
dependent kernel the theoretical justification for the above empirical observation is currently
missing. Further, similar relation is observed also at points outside of X' (see Figure 14.3e),
leading to the empirical conclusion that zop eigenfunctions of gradient similarity g:(X, X') are
the basis functions of NN fy(X).

144

10° ‘ — t=20000
— t=600000

~ 101

A o

A i,
im*? lﬁ i ”mm
V10-3 Al "

o
.
Ll

104

5000 10000
i

(a)

(c) (d)

Figure 14.4: (a) Spectral projections of the residual m¢, < ﬁf, me >2, at t = 20000 and ¢ = 600000; (b) and (c) Fourier
Transform of m; at ¢ = 20000 and ¢ = 600000 respectively. The high frequency is observed to be dominant in (c). (d) a linear

combination ft,k £ 25:1 < ﬁf, fr > ﬁf of first k = {10, 100, 200, 500} eigenvectors at ¢ = 600000. Each vector ﬁ,k was

interpolated from training points { X ¢} | to entire [0, 1]? via a linear interpolation.

Residual Dynamics Further, a projection of the residual m; onto fop eigenvectors, shown
in Figure 14.3c, is decreasing along ¢, supporting Eq. (14.5). Particularly, we can see that at
t = 600000 only 10% of m;’s energy is located inside top 4000 eigenvectors, and thus at the
optimization end 90% of its energy is inside bottom eigenvectors. Moreover, in Figure 14.4a we
can observe that the projection of m; along bottom 5000 eigenvectors almost does not change
during the entire optimization. This may be caused by two main reasons - the slow convergence
rate associated with bottom eigenvectors and a single-precision floating-point (float32) format
used in our simulation. The latter can prevent the information flow along the botfom spectrum
due to the numerical precision limit. No matter the case, we empirically observe that the
information located in the bottom spectrum of GGy was not learned, even for a relatively long
optimization process (i.e. 600000 iterations). Furthermore, since this spectrum part is also
associated with high-frequency information [11], m; at ¢ = 600000 comprises mostly the noise,
which is also evident from Figures 14.4b-14.4c.

Moreover, we can also observe in Figure 14.3¢c a special drop of E;(my, k) at times of §
decrease. This can be explained by the fact that a lot of m;’s energy is located inside first
several {0!} (see Fy(mmy,5) in Figure 14.3c). When learning rate is decreased, the information
flow speed s! 21-11- %Aﬂ, discussed in Section 14.3, is actually increasing for a few top
eigenvectors (see Figure 14.2c). That is, terms %/\f, being very close to 2 before §’s decay, are
getting close to 1 after, as seen in Figure 14.2d. In its turn this accelerates the information flow
along these first {fo}, as described in Eq. (14.4)-(14.5), leading also to a special descend of
E;(my, k) and of the training loss in Figure 14.7b.

Eigenvectors We further explore {0!} in a more illustrative manner, to produce a better
intuition about their nature. In Figure 14.4d a linear combination of several fop eigenvectors at
t = 600000 is presented, showing that with only 100 vectors we can accurately approximate the
NN output.

Furthermore, in Figure 14.5 several eigenvectors are interpolated to entire [0, 1]2. We can
see that top {©!} obtained visual similarity with various parts of Mona Lisa image and indeed
can be seen as basis functions of fy(X') depicted in Figure 14.1b. Likewise, we also demonstrate
the Fourier Transform of each ©}. As observed, the frequency of the contained information is

higher for smaller eigenvalues, supporting conclusions of [11]. More eigenvectors are depicted

145

-0.01

-0.02

0.005

0.000

-0.005

-0.010 i
-0.015

-0.020

-0.025

a0

Figure 14.5: Eigenvectors of Gramian G at t = 600000. First two rows: from left-to-right, 6 first eigenvectors and their Fourier
Transforms (see the Appendix Q for details). Last two rows: 10-th, 100-th, 500-th, 1000-th, 2000-th and 4000-th eigenvectors, and
their Fourier Transforms. As observed, a frequency of signal inside of each eigenvector increases when moving from large to small
eigenvalue.

0.035 i . - ’ ~

0.030 \ .

0.025 ’ -

0.020 !

0.015 ’ - ’

0.010 .

0.005

0.000

~0.005
0.06 .
0.04 X
0.02 -
0.00 ’
-0.02
~0.04

i

Figure 14.6: First line: from left-to-right, 6 first eigenvectors of Gramian G+ at t = 20000. Second line: 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors.

146

— —— 10° 20 256w, 1= 1025 20 250w, 1= 1025
] 4L 256W, o] = 132609 § — aL 256w, o] = 132609
__ ; —— 6L, 256W, 6] = 264193 —— 6L, 256W, 6] = 264193
5095 i T élo*1 My, é@;ﬁiigx gm—l ot T seooon - 200001
g —— 2L, 256W, |6] = 1025 < _ = P
I 4L, 256W, (6] = 132609 T, k]
0.90 —— 6L, 256W, |6] = 264193 =10 \\,R H H = 102 ‘\A H H H H
—— 2L, 33000W, [6] = 132001 . N
—— 2L, 66000W, |6] = 264001 e N —
0 200000 400000 600000 0 200000 400000 600000 0 200000 400000 600000
t t t
(a) (b) (©

(d)

Figure 14.7: (a) For NNs with a different number of layers and of neurons, relative energy of the label vector y in top 400

eigenvectors of G¢, F¢(y,400), along the optimization time ¢; (b) training loss and (c) testing loss of these models. L and W stand

for number of layers and number of neurons respectively. (d) For different , relative energy of 17?00000 in spectrum of G20000,

FE20000 (171.600000, k), as a function of k, with horizontal axes being log-scaled. As seen, 10 first fop eigenvectors at final time
t = 600000 are located also in the fop spectrum of G'20000, hence the fop Gramian spectrum was preserved along the optimization.
Yet, bottom eigenvectors are significantly less stable.

in [63].

Likewise, in Figure 14.6 same eigenvectors are displayed at ¢ = 20000. At this time the
visual similarity between each one of first eigenvectors and the target function in Figure 14.1a is
much stronger. This can be explained by the fact that the information about the target function
within G} is spread from first few towards higher number of top eigenvectors after each learning
rate drop, as was described above. Hence, before the first drop at ¢ = 100000 this information

is mostly gathered within first few {0!} (see also E;(y, 10) in Figure 14.3a).

Alignment and NN Depth / Width Here we further study how a width and a depth of NN
affect the alignment between Gy and the ground truth signal 3. To this purpose, we performed
the optimization under the identical setup, yet with NNs containing various numbers of layers
and neurons. In Figure 14.7a we can see that in deeper NN top eigenvectors of G aligned more
towards ¥ - the relative energy F(y, 400) is higher for a larger depth. This implies that more
layers, and the higher level of non-linearity produced by them, yield a better alignment between
G and . In its turn this allows NN to better approximate a given target function, as shown in
Figures 14.7b-14.7¢c, making it more expressive for a given task. Moreover, in evaluated 2-layer

NNs, with an increase of neurons and parameters the alignment rises only marginally.

Spectrum Preservation Next, we examine how stable are eigenvectors of G along t. For this
we explore the relative energy of Ggooooo’s eigenvectors, final eigenvectors of the optimization,
within spectrum of Gagggg. Note that we compare spectrums at ¢ = 600000 and ¢t = 20000 to
skip first several thousands of iterations since during this bootstrap period the change of G is

highly notable.

600000
¢ , k

600000
: }. As

In Figure 14.7d we depict Fa000 (v) as a function of &, for various {0}

147

observed, 10 first top eigenvectors of Ggooogo are also located in the fop spectrum of Gagogg -

600000
‘ , k

i) is almost 1 for even relatively small k. Hence, the rop Gramian

the function Ea000(0
spectrum was preserved, roughly, along the performed optimization. Further, eigenvectors of
smaller eigenvalues (i.e. with higher indexes ¢) are significantly less stable, with large amount
of their energy widely spread inside bottom eigenvectors of (Gapg00. Moreover, we can see a

clear trend that with higher 7 the associated eigenvector is less preserved.

Scope of Analysis The above empirical analysis was repeated under numerous different
settings and can be found in [63]. We evaluated various FC architectures, with and without
shortcuts between the layers and including various activation functions. Likewise, optimizers
GD, stochastic GD and Adam were tested on problems of regression (L2 loss) and density
estimation (NCE [39]). Additionally, various high-dimensional real-world datasets were tested,
including MNIST and CIFAR100. All experiments exhibit the same alignment nature of kernel

towards the learned target function.

14.6 Summary

In this chapter we empirically revealed that during GD top eigenfunctions of gradient similarity
kernel change to align with the target function y(X) learned by NN f»(X), and hence can
be considered as a NN memory tuned during the optimization to better represent y(X). This
alignment is significantly higher for deeper NNs, whereas a NN width has only a minor effect
on it. Moreover, the same fop eigenfunctions represent a neural spectrum - the fy(X) is a linear
combination of these eigenfunctions during the optimization. As well, we showed various trends
of the kernel dynamics as a result of the learning rate decay, accounting for which we argue may
lead to a further progress in DL theory. The considered herein optimization scenarios include
various supervised and unsupervised losses over various high-dimensional datasets, optimized
via several different optimizers. Several variants of FC architecture were evaluated.

The above revealed behavior leads to several implications. First, our empirical study suggests
that the high approximation power of deep models is produced by the above alignment capability
of the gradient similarity, since the learning along its top eigenfunctions is considerably faster.
Furthermore, it also implies that the family of functions that a NN can approximate (in reasonable
time) is limited to functions within the fop spectrum of the kernel. Recently, it was proved
in [7,11,99]. Thus, it leads to the next main question - how the NN architecture and optimization
hyper-parameters affect this spectrum, and what is their optimal configuration for learning a
given function y(X). Moreover, NN dynamics behavior beyond first-order Taylor expansion is

still unexplored. We shall leave it for a future research.

148

CHAPTER 15

Conclusions and Future Work

In this thesis we contributed a new algorithm family, Probabilistic Surface Optimization (PSO),
that allows to learn numerous different statistical functions of given data, including (conditional)
density estimation and ratios between two unknown pdfs of two given datasets. In our work we
found a new perspective to view a model as a representation of a virtual physical surface, which
is pushed by the PSO algorithm up and down via gradient descent (GD) optimization updates.
Further, the equilibrium at each point, that is, when up and down forces are point-wise equal,
ensures that the converged surface satisfies PSO balance state, where the ratio of the frequency
components is equal to the opposite ratio of the analytical components. In Section 5 we saw that
such formulation yields infinitely many estimation approaches to learn almost any function of the
density ratio. Moreover, it generalizes numerous existing works, like energy and unnormalized
models as also critics of GAN approaches. Likewise, we showed that f-divergence and Bregman
divergence based techniques (e.g. the cross-entropy loss from the image classification domain)

are also instances of PSO, applying the same physical forces over the model surface.

We provided a thorough analysis of the PSO functional implicitly employed during the
optimization, describing its equilibrium for a wide diapason of settings. Furthermore, we derived
the sufficient conditions over PSO magnitude functions under which the equilibrium is stable.
We likewise related PSO to Legendre-Fenchel transform, demonstrating that its convergence is
an inverse of the magnitude ratio, with their primitives being convex-conjugate of each other.
This resembles the relationship between Langrangian and Hamiltonian mechanics, opening

interesting future directions to connect control and learning theories.

Furthermore, we systematically modulated the set of all PSO instances into various sub-
groups, providing a useful terminology for a future PSO study. Additionally, along this paper we
described several possible parameterizations of PSO family, with each having its own benefits.
Concretely, PSO can be represented/parametrized via a pair of magnitudes { MV, M} which
leads to the geometrical/physical force perspective. Such angle brings many insights and is the
central focus of this work. Likewise, we can parametrize PSO by {M v MP } that leads to the

PSO functional, which may be viewed as an energy of the optimized physical system. Further,

149

the polar parametrization {c,, ¢} in Section 5.3 permits for an easier feasibility verification.
Lastly, {¢¢, G} described in Section 6.3 allows to connect PSO methods with f-divergence
between up and down densities.

Moreover, the main goal behind this work is to introduce a novel universal way in forging
new statistical techniques and corresponding objective functions. Due to simplicity and intuitive-
ness of the presented PSO principles, this new framework allows for an easy derivation of new
statistical approaches, which, in turn, is highly useful in many different domains. Depending on
the target function required by a specific application, a data analyst can select suitable magnitude
functions according to the PSO balance state, and simply employ them inside the general
PSO loss. Along this thesis we demonstrated a step-by-step derivation of several such new
approaches.

Likewise, herein we investigated the reason for high resemblance between the statistical
model inference and physics over virtual surfaces. We showed that during the optimization, a
change of model output at any point (the height change of the virtual surface at the point) is
equal to the model kernel (a.k.a. NTK, [54]) between this point and the optimized training point.
Following from this, the optimization can be viewed as pushes at training points performed
via some employed sticks, whose shape is described by the kernel. We analyzed this kernel’s
properties (e.g. the shape of the pushing sticks) and their impact over the convergence of PSO al-
gorithm. Specifically, we showed that its bandwidth corresponds to the flexibility/expressiveness
of the model - with a narrower kernel it is possible to push the surface towards various target
forms, making it more elastic.

Further, the bandwidth of the model kernel can be viewed as a hyper-parameter that controls
the estimation bias-variance tradeoff. We empirically investigated both underfitting and overfit-
ting scenarios that can occur in PSO. In our experiments we showed that the wide bandwidth
is correlated with a sub-optimal optimization performance in case of a large training dataset.
Moreover, if it is too narrow and in case of a small training dataset, the surface converges to
peaks around the training points and also produce a poor target approximation. Thus, the optimal
kernel bandwidth depends on the number of available training points, which agrees with existing
analysis of KDE methods.

Furthermore, we showed that the model kernel serves as a metric over function space during
PSO estimation procedure, which agrees with already existing NTK literature [54]. Namely, its
eigenfunctions associated with largest eigenvalues define directions inside the space of functions
where propagation/movement is fast, and vice versa. Moreover, our empirical analysis of NTK
during the learning process showed a particular dynamics pattern where top eigenfunctions are
aligned towards the target function. Such surprising behavior allows to easily propagate towards
the global minima of the optimization and is overall extremely beneficial, which may explain
why NN-based models typically produce more accurate results compared to RKHS-based
models whose kernel is constant.

Lastly, we applied PSO to learn data log-density, proposing several new PSO instances for
this purpose, including PSO log density estimators (PSO-LDE). Additionally, we presented a

new NN block-diagonal architecture that allowed us to significantly reduce the bandwidth of

150

the model kernel and to extremely increase an approximation accuracy. In our experiments we
showed how the above methods can be used to perform precise pdf inference of multi-modal
20D data, getting a superior accuracy over other state-of-the-art baselines. Importantly, in an
infinite dataset setting we also empirically revealed a connection between the point-wise error

and gradient norm at the point, which in theory can be used for measuring a model uncertainty.

15.1 Future Research Directions

Along this thesis we remarked many possible research directions to further enhance PSO
estimation techniques. The current solution is still very new and many of its aspects require
additional attention and further study. Below is the list of research topics that shall be addressed

in the future:

* Formulation of PSO framework as an arbitrary flow: Currently our approach is based on
an existence of PSO functional which is minimized during the optimization, and therefore
PSO can be viewed as a gradient flow of this functional. Yet, we can extend it to a flow
which does not correspond to any objective function. This will allow us to reduce some
of the “’sufficient” conditions over magnitude functions that were derived in Section 4.1.
Likewise, it can lead to even a more general estimation framework with a higher practical

applicability, and to extensive theoretical implications.

* Search for best density estimator: In the context of density estimation, currently we learn
multiple models for different values of PSO-LDE hyper-parameter o and choose the one
with the highest performance metric. Yet, such brute-force procedure is computationally
very expensive. It is important to understand the exact connection between « and the
produced log-pdf estimation, and also to provide a more intelligent way to choose «
based on properties of the given data. Likewise, a more thorough exploration of all PSO

instances for log-pdf inference is required.

* Robust statistics: The above topic can be extended to a search for the most optimal PSO
instance of any considered target function. Since PSO framework allows us to generate an
infinite number of various PSO instances to approximate a specific function, the natural
question to ask is which one should we pick. The answer is currently unclear, and the
goal here is to categorize different instances by their statistic robustness properties and to
find the optimal one. This topic also includes questions of what is the optimality and how

the most optimal PSO instance is related to properties of the model kernel.

* Model kernel impact: Although we analyzed the effect of some kernel properties, the entire
and full understating of the kernel impact is still missing. It is important to understand
the precise relation between an accuracy of PSO estimators and various properties of the
model kernel. This topic also includes the analysis of PSO convergence rates (w.r.t. a
number of GD iterations), generalization bounds (w.r.t. a number of training points), and

the impact of gg(X, X') in small dataset regime.

151

* Model kernel beyond GD: The above topics and the corresponding analysis must be
extended beyond a simple full-batch GD optimization. In practice a mini-batch setting
combined with various optimizers (e.g. Adam [59]) is common. Therefore, to fully
understand the real learning process and its properties, it is important to extend the idea
of the model kernel from GD optimizer towards other optimizers, and also to account for

difference between “mini” and “full” batch regimes.

 Control properties of the kernel via NN architecture: Once we answer the above questions
and once we know what are the most desired properties for kernel to have, the next natural
endeavor is to construct a model with such kernel. Hence, we want to understand how to
control gg(X, X') via NN design. Although this topic was partly addressed in this thesis
(the BD architecture allowed us to reduce kernel bandwidth and to improve estimation
accuracy), it is still very far from being solved. A promising direction to solve this topic
is to first understand why NTK alignment happens, which may produce us with a set of
tools to adjust/control gg(X, X'). Research in this direction may guide us to better NN

architectures and new methods to control the bias-variance tradeoff.

* Better model regularization: One of the most difficult issues to handle when applying
PSO in practice is its overfitting behavior. As was shown in Section 12, when the applied
model is overly flexible, the practical outcome will be the spikes at the training points.
Furthermore, this behavior is even more extreme in high-dimensional small dataset setting.
Here our goal is to propose efficient and theoretically-motivated regularization methods

that reduce the above over-flexibility problem.

152

APPENDIX A

Proof of Lemmas 14 and 15

A.1 Lemma 14

Consider the setting of Section 7.1. Further, notate the model Hessian as Hg(X) = Vg fo(X).
Using the gradient of Lpso(fy) defined in Eq. (3.5), the second derivative of Lpgo(fg) w.r.t. 6

1S:

V@nggo(fg) = _XINE[PU [MU/ [X, f@(X)] -I@(X,X) + MY [X, fg(X)] HQ(X)] +
b B (MY X, (X)) To(X. X) + MO (X, fo(X)] - Ho(X)] =

== B MY[X [o(X))-To(X.X) = E MY [X, fo(X)] - Ha(X)+

+ B MY ()] To(X, X) + B MPLX, fo(X)]- Ho(X). (AD)

Likewise, at 6* we also have:

— XEEPUMU (X, for (X)] - Ho+(X) +XEPD MP X, for(X)] - Hox(X) =

= _XLEIPU MY X, f5(X)] - Ho«(X) + XPPD MP X, f1(X)] - He«(X) =

I/[—PU(X)'MU (X, f1(X)] + PP(X) - M7 [X, fY(X)]] - Hox (X)dX =0, (A.2)

where the last row is true because f* satisfies PSO balance state.

Therefore, we have

H = VooLpso(for) =
=—-_E MU/[X,fg*(X)]Ig*<X,X)—|— E MD/[X7f9*(X)]IH*(XaX):

X~PU X~PD
= _XrI\Ej:IP’U MY [X7f*(X>] IH*(XvX) +X£]?’PDMD/ [Xv f*(X)] 'IG*(X7X)' (AS)

153

Observe also that only Zy« terms depend on the parameter vector 6*.

Additionally, A has an another form:

MY X, (X))

T B

H = - Tp (X, X), (A.4)

where T'(X, z) = aTgf’Z) is a first derivative of the considered PSO convergence 7'(X, z).

This can be derived as follows.

MD

First, since T and R = aT are inverse functions, derivative of R can be computed via

derivative of T as:
OR(X,s) 1

ds T/(X,R(X,s))

(A.5)

Observe that due to PSO balance state R(X, f*(X)) = %(f{% we have

OR(X, s)
Js

1 1
T'(X,R(X, f*(X))) (X IPU(X))' (A.6)

s=f*(X)

Next, the expression inside integral of Eq. (A.3) is:

—PY(X) - MY [X, f*(X)] + PP(X) - MP' [X, f*(X)] =
=PP(X) - M"[X, f(X)] - [—ﬁDg; +]\zéw [g

M [X, f*(X)] D’[S

MU[X7f*(X)] I{ 7f*(X)

MP' X, f*(X)] - MY [X, (X)) -
MV (X, f*(X)]°

—MP X, (X)) MY (X, (X))

= PP MY X, (X)) |

=P7(X) - MY [X, f(X)] -

=PP(X) - MY X, f*(X)] - M= e =

OR(X,) PP(X) - MY X, f(X)]

ls=r+) =
05 T'(X, goic))

=P7(X) - MY [X, f*(X)] - (A7)

Hence:

PP(X) - MY [X, f*(X)]
= / o ,ﬁ‘fﬁgﬁxi) Ty (X, X)dX, (A.8)

from which Eq. (A.4) follows.

154

A.2 Lemma 15

Consider the empirical PSO gradient VgligSU’OND (fo) as defined in Eq. (3.1). Its uncentered

variance is then:

E [wﬁﬁ;j’oND(fe) : Veﬁgg’oND(fe)T] =
NU
= i 2 B [MY X e [T)] oY X)) +
1 M

+ o O B[MP X2 Ao(XD) - M [XF fo(XP)] - To(XF XD -

ij=1

1,j=1
1 NU ND
s 0 B [MY XY, (X0 M [XP fo(XP)] - To(XY, XP)]
i=1j=1
1 NU NP
— s 20 LB [MUIXE, fo(XE)] MP [XP, fo(XP)] - To(XP, XD)] =
i=1j=1

NU
= i LB MY XL fo (0] MY (XY X0 To(X X)) +
i=1

ND
+ s O E M (X2, X)) M (X, X)) TaXP L XP) +
=1
NU
+ e 20 B [MP XY (X0 MY [XF Fo (X)) TulXE X)) +
z,ij#:jl
1 M
+ e 2 B[MPIXP (XP)) - MY [P (X)) To(XP, X)) -
Z;;];é:jl
1 NU NP
~ o 2 2 E [MU (X3, fo(X)] - MP [Xf,fe(Xf)} -Ie(X;f,XJP)} —
i=1j=1
1 NU NP
- o 2 E [MU (X3, fo(X)] - MP [Xf,fe(Xf’)} -Ie(Xf,ng)} . (A9)
i=1j=1

Denote:

2 E MUIX, fo(X)]-Vefo(X), @82 E
pp = B MULX fo(X)]-Vofo(X), g = B

PD

MP X, fo(X)] - Vo fo(X). (A.10)

155

According to Eq. (A.9), we have:

{VeLpso (fo) - Volpso (fo) }:

- % VB [MUIX (X0 To(X, 0] + % CE L [MPIX 5(X) - Ty (X, X)) +
+ va i - (ag)" + N]DV; Lap - (ap)T = i - ()T — i - ()T =
]\}{ IEU[MU[X,fg(P Ty(X, X)| - i - ()| +
+N1[X L [MP X S () To(X. X)) — if - T}+
+ g - (ag)" + g - (7g)" — g - (ué’)T g - (ng)". (AL

Further, the outer product of VgligSU’OND(fo)’s expected value E [VgﬁgSU’ON D(fe)] =
—fig + g is:
/\NU7ND A NU,ND T _ _ _ _
E[Volpss (f0)|-E[Volbss' (fo)] = ib-(a) +08 - (§)" — b -(a§)" —ig-(§)",
(A.12)
and hence:

Var [VoL 3" ()] = 5z | B, [MY (X A0 - To(X, 0] — i - ()T +

+1{ E |MP[X, fo(X)]* - To(X, X)| = i - ()" |-

ND (A.13)

Next, using relations NV = — 7N and N b= +1 N, we can write the above variance as:

Var [VoLse” (fo)] = L [711 E, (MY X, fo(X) - Ty(X, X)) +
Flr1] E[MPIX S0P Z(X, X)] - T2)T~ [+ 11 - (6)T

(A.14)

Further, due to the identical support assumption S” = S” we also have fip. = fig.:

> NU ND _ _
E [V9LPSO (fe*)} = —figs + figr =

== E MULX {0 Vofe-(X) + E MY [X, f(X)]- Vo for (X) =

=/[-PU(X)'MU (X, O]+ PP(X) - MP[X, f5(X)]] - Vo fo- (X)dX =0, (A.15)

where the last row is true because f* satisfies PSO balance state. Hence, the following is also

true:
pge - (ag)" = fig- - (g)" = ig- - (pg)" = pg- - (ag)" (A.16)

Therefore, Var [ng}gg’oND (fg)} (Eq. (A.14)) at 6* is Var [VgﬁgngD (fe*)} = %j with:

T+1 U x
J=""= E [MIX.J(XP Ty (X,X)] +
+(r+1) E [MP [X, (X)) - T~ (X, X)| -
ST B e 00] M X PO Tk (XX, (AT
X'~pP

where we applied identity from Eq. (A.16). Observe that only Zy+ terms depend on the parameter
(t+1)?

vector 6*. Likewise, the term next to “——- is actually fif. - (i§.)”, and it can be substituted by
either of {fig. - ()" g - ()™ g - ()™}
]

157

158

APPENDIX B

Proof of Theorem 16

First, we prove the stepping stone lemmas.

B.1 Lemmata

U . . .
Lemma 33. Denote N 2 NV + N” and 7 & %, and assume T to be a strictly positive, finite

and constant scalar. Then /N - VgL 3g' (for) % N(0,.7), convergence in distribution
along with N — oo, where [J is defined by Lemma 15.

Proof. Define:

S§ & Var MYLX, fo(X)]-Vofo(X) = E MY [X, fo(X) Zo(X, X)| ~ if - <u(; >T;

5§ & Va MPIX, fo(X)]-Vofo(X) = E [M" X, fo(X) Zo(X. X)] i - (if)""
(B.2)
where jig and ji5 are defined in Eq. (A.10).

Consider the average ﬁ ZZ]\Z MU XY, for(X7)] - Vo fo-(XF). It contains i.i.d. random
vectors with mean fig. and variance 3. . Using a multivariate Central Limit Theorem (CLT) on
the considered average, we have:

1 M

VNT [NU S MY XY, for (X)) - Vo for (XU) - /z;a] LNO.5). B3
=1

a

In similar manner, we also have:

1
VNP [NDZMD (X7, for (X)) - Vo for (X77) —ﬂg*] SN©O,38). (B

=1

b

159

Therefore, the linear combination also has a convergence in distribution:

T+ 1 A TH+1

G+ VTHL DS N0, YD), T2

S 4+ (r+1)-35, (BS)

where /7 and \/7 + 1 are finite constant scalars, and where the convergence happens along
with NV — oo and NP — oo. Note that this implies the convergence in N — oo, since the
latter leads to { NV — oo, N” — oo, min(NY, N”) — oo} due to 7 being fixed and finite.

Further, using relations NV = = +1 N and NP = il N, the above linear combination is
equal to:
T+1 _ 7 U U U —U
Sat VTl =VN |- ZM Vs for (X)) - Vofor (XU) + e+

ZMD 2. for(XP)] - Voo (XP) =] = VN - VoL pgs" (o), (B.6)

where we used fig. = fig. from Eq. (A.15). Thus, we have VN - Vgﬁgg’OND (fo+) LY N(0,).

Finally, we have:

+ 1 U —U U
S T L(INEPU [M X, for (X))? 'Ie*(X,X)} — g - ()" | +
+ (T + 1) ’ |:X£]?:IF’D [MD [X7 f@*(X)]Q I@*(XvX):| - ﬁg* ' (p‘g*)T . (BT
Using Eq. (A.16) we conclude J = 2.
[

B.2 Proof of Theorem

Define éNU’ND = arg mingcg f/gg(’)ND (fo) and 0* = argming.g Lpso(fy). Since assump-
tions of Theorem 13 are also the assumptions of Theorem 16, fy« satisfies PSO balance state
and that é\NU,ND 2, 9* when min(NV, NP) — oo.

Further, note that first order conditions (FOCs) are also satisfied nglgSUO (fa)=0.

NU,ND
Assuming that f/gngD (fo) is continuously differentiable w.r.t. 6, we can apply mean-value
theorem on FOCs:

/\NU’ND ANU’ND ANU,ND N *
Volpso (féNU,ND) =VoLpgy (for) +VeoLlpsy (fp)- [QNU,ND —0 } =0, (B.8)

where 6 is located on a line segment between 0 nu,np and 0*. Given the estimation consistency

éNUyND 2, 9%, the definition of § implies 6 = 6*.

160

The identity in Eq. (B.8) can be rewritten as:

—1 N
VN Volpsa' (for), (BY)

A % A NU,ND
VN[O xo =07 = = Vool pss' (f3)]
where we used a notation N £ NV 4+ N”. Using CLT in Lemma 33 we have:

VN - VoLNeN (fa) 2 N (0,). (B.10)

Next, Vggf/gg’oND (f7) has a form:

NU ND
~ NU ND 1 —~ 1 —~
VogLpsy (fp) = ~NU > VoMY (X[, f3(X])] + ~D > VoM [XP, f3(X]P)].
=1 =1
(B.11)
Using the uniform law of large numbers (LLN) and 6 5 6*, we get:
A , —
~o 2 Voo MY [XP, fi(X))] = B VaeM X, fo- (X)) (B.12)
i=1 ~
1 M .
ND Y VeeMP [XP, f3(XP)] & CE Voo M [X, fo-(X)], (B.13)

i=1

and hence

~NU nD —~ —~
Voolpso (fp) %~ E Voo X, fo- (X)) + E V" [X, for (X)] =

Ve |~ B3 (X fo (X)) + B, NP [X, - (0))| = VooLsolfor) = 7,

~

(B.14)
with # being defined by Lemma 14. Applying the Continuous Mapping Theorem, we get:
Vool pse (£)] TS (B.15)
Further, we apply Slutzky theorem on Egs. (B.10)-(B.15) to get:

~[Vaol Nl ()] VN VLN (o) S N (0,9) = N(0, 57 T H),
(B.16)
Note that min(NY, N?) — oo is required for the convergence (see Lemma 33). This limit is
identical to N — oo due to assumption that 7 is fixed and constant.

Therefore, we get:
VN - [éNquD - e*} LN, H \TH), (B.17)

where the convergence in distribution is achieved along with N — oc. Further, all the regulatory

assumptions of the theorem are required for application of CLT, LLN, and satisfaction of FOCs.

161

See theorem 3.1 in [90] for the more technical exposition.

162

APPENDIX C

Proof of Theorem 18

The proof for dfy(X)’s expected value is trivial. Its covariance is derived as following:

E [dfs(X) - dfo(X')] = 8 [Vofo(X)" - VoLpss (o) - VoLipss' (fo)T - Vofa(X')| =
=02 Vofo(X)" - E [VeiﬁngD(fe) ' Veﬁgg’oND(fe)T} -Vofo(X'), (C.1)

E [dfe(X)] = =0 - Vofo(X)" -E {Vef/gngD(fe)} , (C2)

Cov [dfg(X), dfg(X’)] =E [dfg(X) . dfg(X/)] —E[dfo(X)]-E [dfg(X')} =
= 0% Vo fo(X)T B (VoL Yo" (fo) - Vol pse' (f0)7] - Vofo(X')-

~NU nND ~NU nD T
— 0% Vofo(X)" - E [WL%@N (fe)} ‘E [Veng’oN (fe)} -Vofo(X') =
A U D A U D
= 62 Vo fo(X)T - [E Volpso (fo)-Volbss' (fo)'] -
~nNU ND ~NU nD T
—E [VeLgs’oN (fe)} ‘E [WL%(’DN (fa)}] Vofo(X') =
A U D

=2 Vo fy(X)T - Var [V L s (fo)] - Vofo(X'), (C3)
/\NU ND . LR
where Var [VQL pso (fg)] was proven to have a form in Eq. (A.14). Observe that it is

proportional to % where N = NV + NP,
[|

163

164

APPENDIX D

Proof of Theorem 19

Assume that first order conditions (FOCs) were satisfied, ng/gngD (fo) = 0. Then we have:

ND

ZMU D fo(X)] - Vafo(X)) = ND > MPIXP, fo(XP)] - Ve fo(XP). (D.1)
=1

Consider a specific P”’s training sample X = X7 with j € {1,..., N”}. Multiplying the
above expression by Vg fy(X)T, we get

NU
MY X, fo(X)] - 90(X, X) + > MY [X], fo(X])] - go(X, X[') =
ii%
N N
ZMD P f(XP)] - go(X, XP). (D.2)

Kernel gy is non-negative due to boundedness assumed in Eq. (7.11). Since MY is likewise

assumed to be non-negative, we obtain an inequality:

v NP

VX fo(X)] - go(X, X) < %ZMD D fo(X7)] - g0(X, X7). (D.3)

Next, we divide by go(X, X):

N NT
MY [X, fo(X ZMD Dy fo(XP)] - re(X, X)) <

UND

= ND ZMD 7, fo(X7)] - exp [_d(X’ X7)

hmaw

} =a, (D4

where in the last part we applied the assumed bounds over ry.

Denote the inverse function of MV [X, s] by (MY)~![X, z]. Since MV is assumed to be

165

strictly decreasing, then so is its inverse (MY)~!. Further, apply (MY)~! on both sides of
Eq. (D.4):
(M) X, MY X, fo(X)]] = fo(X) 2 (MY) 71 [X, o], (D.5)

where we reversed the inequality since the applied function is strictly decreasing.

Next, observe that 0 < a < oo due to the assumed non-negativity of M. Further, for
hmaz — 0 we also have a — 0 - for zero bandwidth a goes also to zero. Moreover, due to
its properties (MV)~![X, o] is strictly decreasing for a € [0, co]. Hence, (MY)~! [X,a] —
maxX,eo,00 (MY) ! [X,] along with v — 0.

Further note that the range of (MY)~! is the subset of values within R that f5(X) can have.
That is, (M7)~! and fj share their range. Assuming that this range is entire R or its positive
part R, extended to contain oo, we will have max, ¢y o] (M) ! [X, /] = oo.

To conclude, we have that f5(X) > (MY)~! [X, a], where for a — 0 this lower bound
behaves as (MY)~1 [X, a] — oo.

|

166

APPENDIX E

Proof of Theorem 20

First, we prove the stepping stone lemmas.

E.1 Lemmata

Lemma 34. Consider the relative model kernel ry defined in Eq. (7.10), and assume it to be
bounded as in Eq. (7.11). Then |rg(X1, X)—r9(X2, X)| < €[X1, Xo, X] withe [X1, X2, X] £
1 — exp [—ﬁd(xl, XQ)} - exp [—ﬁ max [d(X1, X), d(Xa, X)]]

Proof. Consider two scenarios: rg(X1, X) > rp(X2, X) and ro(X1, X) < rg(X2, X). In the

first case we have:

ro(X1, X) — (X, X)| = rg(X1, X) — rg(X2, X) < 1 — exp [— d(XQ,X>] <

min

<1—exp|—

min

mwn

d(Xl,Xz)] - exp [— d(Xl,X)} 2 ¢, (E.D)

where in the second row we used a triangle inequality d(X2, X) < d(X1, X2) + d(X1, X).
Similarly, in the second case r9(X1, X) < rg(X2, X) we will obtain:

[re(X1, X) — ro(Xo, X)| = 19(X2, X) — ro(X1,X) <

d(X1, Xg)] - exp [—

min

mwn

<1—exp [— d(XQ,X)} £ ¢y, (E2)
Next, we combine the two cases:

Iro(X1, X) — rg(Xo, X)| < max(cy,) =

mwn

—1—exp [— d(Xl,Xg)} exp [— max[d(Xl,X),d(Xg,X)]]. (E.3)

min

167

Lemma 35. Consider the relative model kernel ry defined in Eq. (7.10), and assume it to be

bounded as in Eq. (7.11). Then ‘g;{g((f)l()l) — g:{g((fz) < e1(X1, Xo) with:

U
1 N

51(X17X2):5 [NUZ|MU iU?fG(XiU)”'E[leX%XzU]_‘_
=1

Z\MD P ofa(XP)| - e[X1, X2, XP]|. (E4)

Proof. According to Eq. (7.5) we have:

Nlu S M [XE (X o, XY — ro(X, X0 -
=1

dfe(X1) dfe(X2)

=9
90(X1, X1) ge(X2,X2)

ZMD D fo(XP)] - [ro(X1, X[) = ro(Xa, XP)] | <
) ZyMU U fo(XD)| - ro(X1, XYY — ro(X, XP)| +
s *Z\MD P fo(XP)]| - ro(X1, XP) — ro(Xa, XP)| <
<6 —Z|MU UL fo(X| - e [X1, Xo, XY+
+4- —Z\MD P fo(XP)| - e[X1, X2, XP], (E.5)

where in the last part we applied Lemma 34.

Lemma 36. Consider the relative model kernel 1y defined in Eq. (7.10), and assume it to be

bounded as in Eq. (7.11). Then ‘ df%(X)‘ < g9 with:

1 M
2=10- [NUZ!MU U (XN 5 Z!MD Do fe(XDN|. (B0
=1

168

Proof.

dfe(X) |
90(X, X)|
1 M 1 ¥
— NUZMU (XY, fo(XP)] - ro(X, X7) ——ZMD (X7, fo(X7)] - rmo(X, X77)| <
=1 =1

S(S%,ZlMU X7, fo(XD)]| 10X, X) 45 *Z\MD 7 fo (XN ro(X, X7 <

<5fZIMU UL fo(X)|+6 - Z!MD D fo(XP)], BT

where in the last part we used 79 (X, X’) < 1.

E.2 Proof of Theorem
Observe that:

dfe(X1) — dfe(Xa) | _
90(X1,X1) go(X2, X2)

_ 1 , 90(X1, X1) — go(X2, X2)
g0(X1, X1) dfo(X1) = dfo(X2) — 70(X2, Xo) dfe(X2)|. (E.8)
Applying Lemma 35, we have:
‘dfa()ﬁ) ~ dfy(Xg) — LX) Z 900 X5)) < a0, X) -1 (X1, X
go(X2, X2)

(E.9)
Using the reverse triangle inequality ||z| — |y|| < |x — y| on left part of the above equation,

we get:

90(X1,X1) — go(X2, X2)

"dfa(Xl) — dfs(X2)| — 90(X2, Xo) - dfg(X2) ’ < go(X1, X1) - e1(X1, Xa).
(E.10)
Next, we check the above inequality under two possible scenarios:
1) |dfy(X1) = dfy(X5)| > #2020 CeX0) . qp, (X,)|: - Here we have:
X1,X1) —go(Xo, X
|dfg(X1) — dfe(X2)| < go(X1,X1) - e1(X1, X2) + 96(X1, X1) — go(X2, X3) ~df9(X2)‘.
9o(X2, Xo) E1D

2) [dfg(X1) — dfo(X2)| <
ially satisfied.

90 (X1 ())(29)9((2))(2’)(2) . df@(XQ)’: In such case Eq. (E.11) is triv-

169

Hence, Eq. (E.11) is satisfied always and therefore:

dfg(X2)
go(Xa, Xo)| —
< 99(X1, X1) - €1(X1, X2) + |go(X1, X1) — go(X2, X2)| - €2 = e3(X1, X2), (E.12)

|dfo(X1) — dfe(X2)| < go(X1, X1)-1(X1, X2)+]g99(X1, X1) — go(X2, X2)|-

where we applied Lemma 36.

Further, using definitions of £; and €5 we get:
e3(X1, X2) = go(X1, X1) - [NU S IMY XY, fo(X| - €[X1, Xo, X[+

ZIMD 75 Jo XD)]"G[X15X27Xf]]+

NU
+lg0(X1, X1) — go(X2, X2)|-6- []&U D oIMY XY, fo(X])] |+ Z|MD 7 fo XD)H] =
=1

NU
b S M X, o fe 1, 0, x4 1900 X 2 00)

= X1, X
599(1 1) [NUl - g@(XlaXl)

ND
+ LZ\MD (XD, fo(XP)]| - [6 (X1, Xo, XP] + l96(X1, X1) —gg(Xg,X2)|]

E.13
NP & go(X1, X1) =19

Define vy(X1, Xo, X) £ €[X1, Xo, X| + |99(X1’g)9((1)){19§(1))(2’x2)|. Then, the combination of
Eq. (E.12) and Eq. (E.13) will lead to:

[4fo(X1) = dfo(X2)] < 8- 90X, X1) - [Z|MU U I (XD vo(X1, X, XE)+
Z|MD P fo(XO] - ve(X1, X2, XP) | (E14)

170

APPENDIX F

Proof of Softmax Cross-Entropy being Instance
of PSO

Here we will derive the cross-entropy loss combined with a Softmax layer, typically used
in the image classification domain, via PSO principles, showing it to be another instance of
PSO. For this we define our training dataset as a set of pairs {X;, Y;}}¥.;, where X; € R"is a
data point of an arbitrary dimension n (e.g. image) and Y; is its label - a discrete number that
takes values from {1, ..., C} with C being the number of classes. Number of samples for each
class is denoted by { V1, ..., N¢}, with chzl N; = N. For the classification task we assume
that each sample pair is i.i.d. sampled from an unknown density P(X,Y) = P(X) - P(Y|X).
Our goal is to enforce the output of Softmax layer to converge to the unknown conditional
P(Y'|X). To this end, define a model f, that returns C' dimensional output f5(X) € R®, with
its j-th entry denoted by fg ;(X). Further, So ftmax transformation hg(X) is defined as:

__epfei(X) _ expfy(X)
Y1 exp for(X) llexp fo(X)], 7

hg ;(X) (F.1)
which yields properties hg ;(X) > 0 and }_; hg (X) = 1. We aim for hg ;(X) to converge
to P(Y = j|X) - the probability of X’s label to be j. Each fy ;(X) will be considered as an

independent surface in PSO framework, which we will push to the equilibrium where

P fo,X) ey ix F.2
T £ (X0, T =10 2

by optimizing the corresponding loss ng so(fe,5), with total minimized loss being defined as
Lpso(fe) = Z]C:1 L;D so(fe.j)- That is, the described below minimization of Lpgo(fp) will
consist of solving C' PSO problems in parallel.

PSO over fj ;(X) via LZDSO(J%J): Consider a typical PSO estimation, where P(X|Y = j)
serves as up density PV and P(X|Y # j) - as down density P”. Sample batch from P(X|Y = j)

171

is obtained by fetching samples with label Y = j; data points from P(X|Y" # j) will be the rest

of samples. Note also that the identity Eggj;% = Egﬁg; . 1%}(/;i|j|())() holds, due to below

derivation:
PX|Y £4) _ P(X,Y #£4) BY =j) _P(Y =j) SigPXY =k) _
PXIY =j) PX,Y=j)-PY#j) PY#j PXY=)
_MY:ﬁ'&ﬁﬂmxyzkﬂ_MXJEﬁ)_MY:ﬁ‘ P(X)
T BY #£)) P(X,Y =) TRY £)) [PXY =)

B(Y =j) 1-F(Y = jX)
BY#j) B(Y =jX)

(F.3)

Considering PSO balance state, we are looking for a pair of magnitudes { M}, M} that for

the below system:
MP X, fo(X)] P(X|Y =j)

=) (F.4)
MY [X, fo(X)] P(X]Y #)
. . . . MP[X 4] C
will produce a solution at Eq. (F.2). That is, denoting + X3 by R(X,s) : R" x R — R and
j b

using the identity in Eq. (F.3), we are looking for the transformation R s.t. the solution fy(X)

of:
PY #j) P =j|X)

. F.5
BY =j) 1-P(Y =j|X)’ >

RIX, fo(X)] =

will satisfy Eq. (F.2). Assuming that R has a form R [X, fo(X)] = R {%}, the above
1

is equivalent to find the transformation R(s) : R — R s.t. the solution s of a system:

B £) BY =jlX)
RO =y =3) T-p(v = jI%)

(F.6)

is P(Y = j|X). Thus, it can be easily identified as R(s) = %gg; - 1> From this we conclude

that R[X, fo(X)] = ggf;; o fefg‘f jéXXp) 7,00y and that magnitudes must satisfy:
. »J

MP X, fo(X)] _P(Y #35) exp fo,i(X) ED
MY X, fo(X)] PY =3) lexp fo(X)lly — exp fo (X)) '

Specifically, we will choose them to be:

_chzl,k;éj exp fo x(X)

lexp fo(X)|l; — exp fo,;(X)

M7 [X, fo(X)] =P(Y = j) llexp fo(X)I; =B =J) llexp fo(X)Iy
(F.8)
b _ N _exp fo (X
Mj [Xan(X)] —P(Y#]) Hexpr(X)Hl (F9)

where the denominator [lexp fy(X)||; serves as a normalization factor that enforces { M}, M}
to be between 0 and 1. Such normalization is only one from many possible, yet this choice will

eventually yield the popular softmax cross-entropy loss.

172

)

Using the above setting to define L?D so(fe.j), its gradient can be written as

VoLpso(fog)=—_ E_ MU[X, fo(X)]- Vofo,;(X)+

X~P(X[Y=j)
E MPIX, fo(X)]-Vofo;(X). (Rl
X~P(X|Y #£5) J [af@()] V@f@,y() (F.10)

Gradient-based optimization via the above expression will lead to Eq. (F.2). Also, in practice

P(Y = j) inside M} can be approximated as % and P(Y # j) inside M7 - as N;VNj)

PSO over multiple surfaces via Lpso(fp): Further, combining all losses together into
Lpso(fs) = X521 Lo (fa,;) will produce VoLpso(fa) = X521 VoLbgo (fo):

C

VoLpso(fo) = { M [X, fo(X)] - Vo fo;(X)+

= xR (XY=

MP X, fo(X)] - Vo fo;(X)|. (F.11)

E
X~P(X|Y#4)

The above expression is also the gradient of softmax cross-entropy, which can be shown as

follows. First, note that the second term can be rewritten as:
E MP X, fo(X)]-V (X)) =
xop(liy i) D (X, fo(X)] - Vo fo(X)

_ L exp foi(X) , _
_/IP’(X,Y#]) T PO Vo fo (X)dX

C
= _ gl oS X g _
_/ L%#P(X’Y_k) Toxp fo (X[~ V0foa(X)dX
C
2, P =k g oS Vo fo;(X). (F.12)

k=1k#j X~P(X|Y=k) [exp fo(X)]];

Then, Vo Lpso(fg) is equal to:

C

. St ki XD for(X)
Vol {_IF’ Y =j)-] : -Vofo.i(X)+
0 PSO(f@)]Zl (.7) XnP(X|Y =) ”eprG(X)||1 9f9,]()
exp fp j(X)
+ PY =k)- E ——20I g, f (X
k:zl;# () X~P(X|Y=k) |[exp fo(X)||; 0o5(X)
c c
D k=1,k+5 €XP fok(X)
P(Y ket . -V (X)+
=LV B T el)
+i[P(Y:j). E i M'V(aﬁak(}() (F.13)
=1 XnB(XY=i) 7 llexp fo(X)ll, AR

173

where the second equality can be verified by examining coefficients of each Vg fy ;(X) before

and after ”’=". Further:
c
, lexp fo(X)l; — exp fo,;(X)
VoL = — P(Y =7)- d AV (X)—
oLrsolf) ==L H =i) &[RRI oy ()

C
exp fo.r(X)
) Toxp fo L Vodor(X)|. (E14
k—§¢j‘|expf0(X)Hl o0for(X)|, (F.14)

with the expression in brackets being derivative of log ”eXp Jo4X) e 9.

exp fo(X)Il;
Concluding from above, L pgo(fg) with the above gradient can be written as:

C

Lpso(fo) = =Y _P(Y =3j)

Jj=1

C
:_/Z lIP’(X,Y:j)Jogepram dX =
j=1

exp fp ;(X)
3 E 1) - - 7R 7 —
X~P(X[Y=5) & llexp fo(X)|l;

lexp fo (X))l
_ oz xp for(X) g s
XY~BXY) O [lexp fo(X)|
with its empirical version being:
1 X exp foy, (X)
Lpso(fe) = —N;bg m (F.16)

The above loss is known in Machine Learning community as softmax cross-entropy loss.
1
in Eqgs. (F.8)-(F.9) corresponds to cross-entropy when P(X|Y = j) and P(X|Y # j) serve as

up and down densities respectively. Yet, according to the PSO principles the magnitudes in

Therefore, we can conclude that PSO over multiple surfaces { fy ;(X) with magnitudes

Egs. (F.8)-(F.9) are not the only choice for such convergence. In fact, we can change the norm
within the denominator of MY (-) and M”(-) to any L-p norm, since the denominator term is
eventually canceled out and since its actual role is to bound outputs of magnitude functions.
Similarly to what we observed in our experiments about the PSO-LDE (see Sections 8.2 and
13), different norms (the « value in context of PSO-LDE) can have smoother dynamics and
produce a smaller approximation error.

|

174

APPENDIX G

Differential approximation

In this section we will empirically justify our approximation in Eq. (7.5), where we assumed
that the surface differential, caused by GD update of weights 6, can be approximated via its

first-order Taylor expansion.

For this purpose we performed a single iteration of GD optimization and measured the real
and the estimated differentials at train and test points as following. First, points D = {X;}299°
were sampled from PY density, which is Columns distribution from Section 13.2, where X; € R™

with n = 20. Further, we performed a single GD iteration of the following loss:

1000 2000
L(0,D) = G.1
(0, 1000 Z fo(X 1000 210301 fo(X (G.1)

where fy(X) is a FC network depicted in Figure 11.1a, with overall 4 layers of size 1024 each.
Next, we measured the surface height f(X) at two points X4, and X;es: before and after GD
update, where Xy, qin, € D and Xyt ¢ D. We performed this procedure for a range of learning
rate values and thus obtained the real differential dfy(X) at Xyqin and Xies: as a function of 0
(see Figure G.1). Likewise, we calculated the approximated differential df (X) at Xrqin and

Xiest using first-order Taylor expansion as:

5 1000 2000

df (X) = 1000 " Vo fo(X [ZV@fe i_%lvofe(Xi)} =
1000 9000
~ 1000 {ZQG(Xin)— > ge(X,Xi)}, (G.2)
=1 i=1001

where 6 is taken at time before GD update.

In Figures G.1a and G.1b we can see the calculated differentials for both Xyq; and Xyest,
respectively. In both figures the real differential (blue line) and the estimated differential (red
line) become very close to each other for § < 0.01. Note that for the most part of a typical

optimization process ¢ satisfies this criteria.

175

0.1}
0.2}
0.3} 04l
0.4}
051

06} 02l
0.7y 025}
0.8}

0.9} [—Real giferental 0.3 " —Real differential

-1 || — Approximated differential | 0,95 L —Approximated diferenial

10°® 10 102 10

-0.05+

-0.15¢

<10
0

-0.06 - [—Real differential —Real differential
— Approximated differential | |—Approximated differential

0.07) ‘ ‘ |] oy ‘ ‘ ‘
10 10° s 107 10 10° 10° s 10 1073
(c) @
1 T T T T 1 T
0.0} [—Errorrato | os|
08} 08}
0.7} o oo7f
0.6+ ol 0.6F
05} 1 osl
0.4 B 0.4}
03} 4 oasf
0.2 1 o2l
0.1} 1 o
0 0 b I
10°® 10 s 102 10° 106 10 s 107 10°
(e) ®)

Figure G.1: Real and approximated differentials for the training point X¢,q4n (2)-(c)-(e) and the testing point X¢est (b)-(d)-(f).
(a)-(b) Real differential (blue line) vs approximated differential (red line), as a function of the learning rate J; (c)-(d) Zoom-in of
(a)-(b); (e)-(f) Error ratio, defined in Eq. (G.3).

Further, in Figures G.1e (for Xi4i) and G.1f (for Xy.5;) we can see the ratio:
ratio = |dfy(X) — df(X)| / |dfo(X)] (G3)

which expresses an error ‘dfg(X) —df (X)’ as the percentage from the real differential. As
can be seen, for both X4,.4i, and Xyes; the error ratio is very low for § < 0.01 (under 10% for
most part). Additionally, the error ratio slightly increases for a very small § (around 10~%). We
speculate this to be a precision artifact, since the calculation of an approximated differential
in Eq. (G.2) was done in a single-precision floating-point format (float32) and involved the

multiplication by a very small number §.

Additionally, we calculated the real and approximated differentials along the entire GD
optimization process of PSO-LDE, where the same NN architecture was used as in the first
experiment, and where the pdf inference was applied to Columns distribution from Section

13.2. Particularly, we trained a NN for 300000 iterations, while during each iteration we

176

0.2

— Approximation error 0.16
0.14
0.12

0.1
0.08
0.06 -
0.04
0.02

o 05 1 5 2 25 3 0 05 1 5 2 25 3

iteration x10° iteration x10°
(a) (b)
1.2 0.18

—Real differential 0.16 -
— Approximation error 0.14
0.8
0.6

0.4

0.2

0 05 1 15 2 25 3 0 05 1 5 2 25 3

iteration x10° iteration x10°
(© (d

Figure G.2: The real differential and the approximation error during the training of PSO-LDE for two different testing points X1
and Xs. (a)-(b) Results for X1. (c)-(d) Results for X2. (a)-(c) Blue line is an absolute value of the real differential at a specific
point for each iteration time, smoothed via a moving mean with the window size 300; red line is the absolute value of a difference
between the real differential and the approximated one, smoothed via a moving mean of the same window size. (b)-(d) Ratio
between two lines in (a)-(c), can be seen as a moving mean version of Eq. (G.3) - an error as the percentage of the real differential.

computed the real and the approximated differentials for a specific test point X. We performed
such simulation twice, for two different points and plotted their differentials in Figure G.2.
In the left column, the blue line is the absolute value of the real differential, |dfy(X)|, and
the red line is error ‘dfg (X) — df(X)
300. The right column shows the ratio between smoothed ‘df@ (X) —df(X)’ and smoothed
|dfo(X)], ‘dfg(X) —df (X)‘ / |dfe(X)|, which can be seen as the error percentage from the
real differential. As shown in Figures G.2b and G.2d, this error percentage is less than 15%

, both smoothed via moving mean with window size

and for most part of the training is even lower. This trend is the same for both verified points,
suggesting that the real differential indeed can be approximated very closely by the first-order
Taylor expansion. In overall, above we showed that most of the surface change can be explained
by the gradient similarity go(X, X') in Eq. (7.5).

177

178

APPENDIX H

Weights Uncorrelation and Gradient Similarity
Space

In this appendix we empirically demonstrate the relation between gradient similarity go(X, X') =
Vofo(X)T - Vgfe(X') and Euclidean distance d(X, X’), and show how this relation changes
along the optimization over NNs. Particularly, we observe empirically that during first sev-
eral thousand iterations of a typical optimization the trend is achieved where high values of
g9(X, X') are correlated with small values of d(X, X') - the model kernel of NN obtains a
local-support structure. Further, this trend is preserved during the rest part of the optimization.
This behavior can be seen as an another motivation for the kernel bandwidth analysis made in
Section 7.5 - the shape of ry(X, X') = % has some implicit particular bandwidth.
Global Evaluation We apply PSO-LDE with o = i on a BD model for the inference of
Columns distribution defined in Eq. (13.1), where at different optimization iterations we plot
output pairs of gg(X, X’) and d(X, X'). The plots are constructed similarly to Figure 11.2b.
Specifically, we sample 500 points DY = { X} and 500 points D” = { X} from PV and P”
respectively. For each sample from D = DY U D we calculate the gradient V fp(X). Further
we compute Euclidean distance and the gradient similarity between every two points within D,

w pairs of distance and similarity values. These values are plotted in Figure

producing
H.1.

Also, we compute a relative side-influence r¢(X, X'), defined in Eq. (7.10), for each pair of
points in D. In Figure H.2 we construct a histogram of 10® obtained pairs {r¢(X;, X;), d(X;, X;)}.

As seen from the above figures, during first iterations the gradient similarity obtains a form
where its values are monotonically decreasing with bigger Euclidean distance between the
points. During next optimization iterations the self similarity go(X, X) is growing by several
orders of magnitudes. At the same time the side-similarity go(X’, X) for X’ # X is growing
significantly slower and mostly stays centered around zero. In overall values of gg(X, X) are
much higher than values of gg(X’, X) for X’ # X, implying that the model kernel has mostly

a local influence/impact. Likewise, from Figure H.2 it is also clear that r¢(X, X') for faraway

179

00

e e———— 80|
— |
<15 g
N <
X 1 X 40
B (o))
© 20
0.5
0
% 2 4 6 8 10 12 14 20 2
d(X',X)
(a)

6 8 10 8
d(X',X) d(Xx',x)

(© (d)

“o 2 4 6 8 10 12 14

6 8
d(X',X) d(X',X)
(e) ®
6 x10°
4
bad
>
ok
=2 -2
0 2 6 8 10 12 14 0 2 4 6 8 10 12 14
d(X',X) d(X',X)
(® (h)

Figure H.1: Relation between values of gradient similarity go (X', X) and values of Euclidean distance d(X’, X'), along the
optimization time ¢ (iteration index). PSO-LDE with o = i is applied, where NN architecture is block-diagonal with 6 layers,
number of blocks Np = 50 and block size Sp = 64 (see Section 11.1). Each plot is constructed similarly to Figure 11.2b, see
the main text for more details. Outputs from both gg (X', X') and d(X’, X) are demonstrated at different times; (a) ¢ = 0, (b)
t =100, (c) t = 3200, (d) t = 3400, (e) t = 6000, (f) t = 100000 and (g) ¢ = 200000. (h) Zoom-in of (g). As can be seen, self
similarities gg (X, X), depicted at d(X’, X) = 0, are high and increase during the optimization. The side similarities gg (X', X)
for X’ # X, depicted at d(X’, X') > 0, are centered around zero at ¢ = 200000 and are significantly lower than self similarities.

180

5 10
d(X', X)

(@)

3000

2500

2000

1500

{1000

500

5 10
d(X',X)

(h)

3000

2500 2500

2500 2000

2000
2000
2000 1500

1500 1500

5o -
p

(X,

{1000

§ 1000 1000 1000

Figure H.2: Histograms of the relative gradient similarity rg(X’, X) and the Euclidean distance d(X’, X) at different optimiza-
tion times ¢, for the experiment in Figure H.1. At each time ¢ we calculate a relative side-influence 79 (X;, X;) and a Euclidean
distance d(X;, X;) for 108 point pairs and depict a histogram of obtained {rp(X;, X;)} and {d(X;, X;)}. The optimization
time is (a) t = 0, (b) t = 100, (c) ¢ = 3200, (d) t = 3400, (e) t = 4000, (f) t = 6000, (g) t = 10000, (h) ¢ = 29000, (i)
t = 100000, (j) t = 150000, (k) ¢ = 200000 and (1) ¢ = 300000. As observed, after ¢ = 10000 the relative gradient similarity
between far away regions is much smaller than 1, implying that there is a insignificant side-influence over height fo(X) at point X
from other points that are far away from X.

points X and X" is near-zero during the most part of the optimization process (i.e. after 10000
iterations in this experiment). Thus, the corresponding bandwidth of g can be bounded similarly
to Eq. (7.11).

Local Evaluation Additionally, we performed a local evaluation of the above relation between
gradient similarity and Euclidean distance. Particularly, after convergence we consider a path
within a 20D input space, that starts at S = [—1,...,—1] and ends at £ = [1,...,1]. We
evenly discretized this path into 1000 middle points with which we form an ordered point set
D ={5,...,E}, with | D| = 1000. Afterwards, we calculate gradients Vy fg(-) at each point
in D and construct the Gramian matrix G, with G;; = g¢(X;, X;). Note that the index of each
point expresses also its location within the chosen point path, and the index difference |i — j|

also represents Euclidean distance between points X; and X;. In Figure H.3a this matrix G is

181

400 1 2000 100 3000 200 3000 300
300
_ 1500 2000 2000
= 200
X 1000
5 100 1000 1000
=) 500
0 0 0
-100 0
500 1000 -0 500 1000 0 500 1000 0 500 1000
(b)
4 7
1500 00 400 500 1500 600 3000 00
<1000 300 1000 2000
X
= 500 200 0 1000
= 100
0 0
0 0
0 500 1000 0 500 1000 0 500 1000 0 500 1000
(c)
3000 800 1500 900 600 1000
<2000 1000 400
>
58 1000 200
X 500
0 0
0 500 1000 C0 500 1000 0 500 1000
(d)

Figure H.3: Local relation between values of gradient similarity gg(X’, X)) and values of Euclidean distance d(X"’, X') within
BD architecture. The applied PSO method and model architecture are same as in Figure H.1. After convergence, we calculate
gradient Vg fo (X)) along path within input space, [—1,...,—1] — [1, ..., 1], which is uniformly discretized via 1000 middle
points. Afterwards, (a) the Gramian matrix G is constructed, with G;; = g (X, X;) where X; and X; are i-th and j-th points
along the path. Note that the index difference |7 — j| also represents Euclidean distance between points X; and X ;. Further, i-th
row of G contains similarities gg (X, -) between point ¢ and rest of points. (a)-(c) 1-th, 100-th, ..., 900-th and 1000-th rows of G
are shown. Red line indicates i-th entry of i-th row where self similarity gg (X;, X;) is plotted. See more details in the main text.

182

depicted, and here it can be observed that G’s diagonal is very prominent. This again reasserts
that the gradient similarity kernel has some local support induced by the implicit bandwidth.
Moreover, each row r; inside G represents go(X;, -) - side similarity between the point
X; and the rest of points in D (i.e. the chosen path). Note that the ¢-th entry of r; represents
self-similarity gg(X;, X;), while other entries represent the side-similarity from path points
around X;. Further, indexes of these other entries are related to the distance between the points
and X, via the index difference |i — j|. Hence, first i — 1 entries of r; represent first i — 1
points within the chosen path D before the i-th point, whereas the last 1000 — 7 entries of r;
represent points at the end of the path. In Figures H.3b-H.3d 11 different rows of G are depicted,
where each row demonstrates gradient similarity around some path point X; as a function of the
second point index (and thus the distance between two points). Here we can see that go(X;, X))
typically has a peak at X; = X, and further smoothly decreases as we walk away from point
X; in any of the two path directions (towards .S or F). Thus, here we see that gradient similarity
has a bell-like behavior, returning high similarity for the same point and diminishing as the
distance between the points grows. Yet, these “bells” are not centered, with some rows (e.g.
400-th in Figure H.3c) having peaks outside of the i-th entry. Nevertheless, in context of PSO
such local behavior allows us to conclude that when any training point X is pushed by PSO loss,
the force impact on the model surface is local, centered around the pushed X.
Further, in Figure H.4 we also plot the normalized gradient similarity go(X;, X;) £
Volo(X)"ValolX;) _ (o [£[Vofo(Xi), Vof(X;)]] for the same setting as in Figure H.3.

Vo fo(Xa)ll-IVe fo (X)Il
Here, we can see that go(X;, X;), which is a cosine of the angle between ¢ gradients at points

X; and X, has a more symmetrical and centered behavior compared with gg(X;, X;). That
is, go(X;, -) has a peak when the second argument is equal to X, and it gradually decreases as
the distance between the second argument and X; increases. Moreover, the asymmetry that we
observed in case of gy(X;, X;) (400-th and 600-th rows in Figure H.3c) is actually caused by
the difference in a gradient norm at different points X; and X;. Specifically, in Figure H.3¢c we
can see that peak of 400-th row is pushed towards the beginning of the path D, where X4q¢ has
neighbors with higher norm ||V fo(X;)||. In go(X;, X;) each gradient is normalized to have a
unit norm, which eliminates the above asymmetry as observed in Figure H.4c. Hence, nearby
points with a large gradient norm may affect the gradient similarity at a specific point and make
it less symmetric/centered.

Note that in case the applied optimizer is GD, during the actual optimization the NN surface
is pushed according to the gg(X;, X;) and not go(X;, X;). Therefore, various local asymmetries
inside go(X;, X;) may affect the optimization optimality. However, Adam optimizer [59], used
in most of our experiments, with its adaptive moment estimation and normalization per each
weight implicitly transforms the actual “pushing” kernel of the optimization. We speculate that
in this case the actual information kernel is more similar to the normalized gradient similarity.
We shall leave a detailed investigation of the model kernel under Adam optimization update rule
for future work.

Overall, our experiments show that NN weights undergo some uncorrelation process during

the first few thousands of iterations, after which the gradient similarity obtains properties

183

1 1 1
)
%05 0.5 05 05
X
[e)]
0 0 0 0
0 500 1000 0 500 1000 0 500 1000 O 500 1000
(b)
’ 400 ’ 500 ’ 600 ’ 700
=
=05 0.5 0.5 0.5
X
()]
0 0 0 0
0 500 1000 0 500 1000 0 500 1000 O 500 1000
(c)
; 800 ; 900 ; 1000
08 08 08
; 06 06 06
X 0.4 0.4 0.4
o
0.2 0.2 0.2
0 0 0
02y 500 100020 500 1000 20 500 1000
(d)

Figure H.4: Normalized gradient results within BD architecture: same results from Figure H.3, with Gramian matrix being

- - ; T. .
normalized to G : G;; = Go(Xi, X;) = HVV: ;; G((XXZ))H : ”vae]; 99(();2)) T As observed, normalized gradient similarity go(X;, X;)

is more symmetrical along both directions of a chosen path D compared with the regular gradient similarity go(X;, X;) in Figure
H.3.

184

approximately similar to a local-support kernel function. Specifically, an opposite relation
is formed between the gradient similarity and Euclidean distance, where a higher distance
is associated with a smaller similarity. This uncorrelation can also be viewed as gradients
(w.r.t. 0) at different training points are becoming more and more linearly independent along
the optimization, which as a result increases angles between gradient vectors. Hence, these
gradients point to different directions inside the parameter space RI?!, decreasing the side-
influence between the training points. Furthermore, this uncorrelation process was observed
almost in each experiment, yet the radius of local support for the kernel gg(X’, X) (that is, how
fast gradient similarity is decreasing w.r.t. d(X, X")) is changing depending on the applied NN
architecture (e.g. FC vs BD) and on the specific inferred density PY.

185

186

APPENDIX I

LS R Divergence

Here we will prove that LSQ R evaluation metric, considered in this thesis, is an actual statistical

divergence. First, the log-pdf squared error (LSQR) divergence is defined as:
LSQR(P,Q) = [P(X) - o5 P(X) ~ log QX" X, L)

where P is the pdf over a compact support {2 C R"; QQ is normalized or unnormalized model
whose support is also €.

According to the definition of statistical divergences, LSQR must satisty VP, Q : LSQR(P, Q) >
0and LSQR(P,Q) = 0 < P = Q. Obviously, these two conditions are satisfied by Eq. (I.1).
Hence, LSQR(P, Q) is the statistical divergence.

Importantly, we emphasize that LSQ R(P, Q) measures a discrepancy between pdf P and
model (Q where the latter is allowed to be unnormalized. Therefore, it can be used to evaluate
PSO-based methods since they are only approximately normalized. However, such evaluation is
only possible when PP is known analytically.

Further, in this thesis LSQR is measured between the target density, defined as PV in the
thesis, and the pdf estimator Py produced by some method in the following way:

_ 1 XN _ 2
LSQR(P",Pg) = = > [log PV (X)) — log Py(X})] ", (1.2)

=1

where { X7}, are testing points, sampled from P, that were not involved in the estimation

process of Pg.

187

188

APPENDIX

Matrix A from definition of Transformed

Columns Distribution

Matrix A was randomly generated under the constraint of having a determinant 1, to keep the

volume of sampled points the same. Its generated entries are:

0.190704135
025415
0213837698
0229971825
0168709235
0238265575
0279579926
0220148935
0274834233
A — Jomwsmn

T [oa20en
024338834
ozs0131811
0232700446
0.199527977
0.175957009
0223633992
0215583387

H

0210225414
0220671036

0103706815
000972120677
0435

7026
0235126465
00770914534
014326338
0162797928
02672238
0105359473
0234983092
0057871
0243683991
00247039796
0203358735
0204598606
0114449497
0408554226
0212554612
042839288
00270987729

0257080085
425381258
00
0158420112
0178165495
03232505]
00586375005
0259200965
0135585987
0180777146
0413566391
0121589188
0160146528
00403096623
“D04s0S16851
00205901599
0300022911
0280443614

0319656

0239002756
0032

3

0
01653
02975

24115607

00223857003
00661545928
0100152086
0211398563
0348342082
019681974

0293340161
0.172073687
0187437781
0276454478
00651155785
0270830109
0309807805
0131333656
0366636519

0.174593297
0.176205746

00206220322
00732519109
014030724
028726862
0323673824

0
0155930129

00873374634
00365900702

0326658323
00578409285
0576178715

00876307509
22669508

253238692
0034606719
00372987005

0299408603

0200017067

316785766
017703815
0133325519

0216202087
042470829

0015486

00194560055
0272574082

0214595475
0251109479
027767391
0.
0191362905
0203103159
000557120199
0245874156

9822403

0274097732
0000156767089
000284534072

0107420472
0065131
0179

w16

a8
0352231138
0475002027
0132128709
0371463145
0136887538
00741237415
0236285794
0188027609
0118032949
025548108
0350703084
0237732868
00424724202
00563174345
0127438501
0183766314
0133474574

0145939799
0153534853
00710653564
0403451114
0129138946
0203895612
0187
0264686829
00122061209
0256054426

33788

0334468985
0346625601
014013065
0292134625
0011777
0307742364
0203397977
0179674304
0132302659
0186385408

021151047
0204111694
00507340489
00161522847
00173273685
038640015
019506691
0243602026
0331281502
0152660465
0161168411
02926042
00103113951
0189041139
0462819922
0223261613
00592004594
0028811214

0128351715
0oss27025

0290260037
029775682
0235684257
00193998935
0305472906
0193894524
0119455231
onmssis:
033605766
00502000912
0150742708
0243065097
0162178652
0344463408
0114596626
000822207356
0179237363
0126780371
00656208547
045209226

189

0109926743
0285308807
033391508
00455239109
0187205709
015340899
0202696444
0002458813
171768
034518

00165671389
0348108205
00992219866
0.182573652
0187819585
0.171003077
0275009961
0419167616
0.126841957
00s83508015

013214861
0
040609493
0162348247
00359566427
00919709633
0581504491
0241121126
0205618232
00711501608

28138

0232002107
0141543891
0012231234
000843615229
0289174359
020675015
00735710289

00954798128
00486758409
0321753008

00739138407
011072477
0.197930666
0108553457
0216262061
0150512414
0160227753
042330778
0213806315
0.128073093

021926384
037738745
0189306474
0103973847
0310962024
00593725006
00681467794

0.126317847
0471440044
0120986377

0173910764

322136609
0126312424
00428009211
0257608852
0135365515
001867544
0535961439
00785011303
0194760411
00330943339
00930990415
052808034
00974490092
0232062167
00974504318
00330201935
0112599645
0217766867

0158279581
00942833152
014620461
0354695129
0354871726
0182536036
01041
00604651676
0103513592
022229107
0235966926
0300702777
0282716476
0153969081
000676534358
00481290972
0340180897
0166833728
00828678102
919

03592

0138856972
106495
016419
015792775
0299579441
3159059
0128700751
0397344315
004102908492

o

0252021604
0210659524
002656679
0306277128

00920142117
0104883625
0415888833
0252145806
00392422

0150578462

0512741096
040791915
00672063429
0101384726
0157503981
017718635
0341221005
0273889032
0199964863
0.174804068
000475631985
0092200222
0142988577
002miss1e2
0361388813
0102561506
00050587545
0231007699
00871950404
0115873733

0804264111
0.14810246
0138970011
0360466001
0190573458
0198776911
004776047
0122122216
0203164108
0217786875
0172782694
00520266353
00084652753
030781733
0151993161
0524504092
00683927742
029173484

0210646005
0281505687

“D6s075432
0210848116
0121959537
00797850881
00280581785

0130192505
00956523695

000146202648

00657867077
0114727637

0148866241
0165078206
0179308874
0126023284
0133748076
00346260903
0320091983
0381428263
0459392024
0296303031

0.138203328
0152831
0150499483
0338497968
0281767192
0201342323
0105994479
0125711302
00601941311
0492946359
0300869538
00596683021
0106622196
0157587751
0307757495
0106458345
0246896636
0182896273
0242375288
0245563455

J.n

190

APPENDIX K

Relation between spectrums of ¢;(X, X’) and
its Gramian G,

Consider N dataset points X = {X* € Rd}f\;l sampled from an arbitrary probability density
function (pdf) P(X). Further, consider a kernel g;(X, X”) and the corresponding Gramian G
defined on X, with G¢(i, j) = g¢(X?, X7). Eigenvalues {\; } s, sorted in decreasing order, and
eigenfunctions {0 (+) }x of g¢(-, -) w.r.t. P(X) are defined as solutions of:

A (%) = [(X X') - 04 (X') - PX)X K1)

The integral in Eq. (K.1) can be approximated via a sampled approximation:

N
1 . .
/ gi(X, X') - 5y(X') - PX)AX 3 gu(X, X) - (X, (K.2)
i=1
with the RHS of the above expression converging to the LHS as N — oo due to the law of large
numbers.
Further, denote by 0 a N x 1 vector whose i-th entry is @, (X*). Combining Eq. (K.1) and
Eq. (K.2), U, can be written as:

~ B 1 B
A - U = NGt - Uk, (K.3)

where we can see Uy, to be eigenvector of G;. Therefore, eigenvectors {0y }x of G can be
considered as unbiased estimations of eigenfunctions {Ux(+)} at points in X. Note that the
above sampled approximations are expected to be less accurate for larger indexes k since the
corresponding ¥ () will contain more high-frequency oscillations.

Furthermore, from Eq. (K.3) it is clear that each vy is associated with the eigenvalue
A =N Xk of Gy. Hence, eigenvalues { A} of G can be considered as unbiased estimations
of eigenfunctions {\; }1, up to a multiplier N.

Likewise, U (X)) at an arbitrary point X can be estimated in a similar way, by combining

191

Eq. (K.1) and Eq. (K.2):

N

T~ 1 N _ _
Ak'vk(X)%NZQt(X,X)'Uk(X) = M Op(X) R g(X, &) -0, (K4
=1

where g;(X, X) is a row vector with g;(X, X)(;) = g:(X, X"). The above approximation is
used in the Appendix O to derive NN dynamics at testing points.

192

APPENDIX L

Relation between FIM and Hessian of the Loss

Hessian of a typical loss in Eq. (14.1) can be written as:

2 OL(6, D)

1 r, 1 S i i i i
Ht - 902 = NAtDtAt + N;ﬂ {X 7Y ,fet(X)] Ht(X)’ (Ll)

where A; is Jacobian matrix defined in Section 14.2, D; is a diagonal matrix with Dy(i,i) =

2 [3 7 [3 2
X ’gf;fet 69 and H(X) a9 §5§X> is the model Hessian.
)

Further, in case of L2 loss we will have D; = I and

1

H; N

N
ﬂ+%2ﬂkﬂ4mmﬂ4mﬁy (L.2)
i=1
Finally, considering final stages of the optimization, the residual ¢’ [X LY fe, (X Z)] =
fo,(X?) — Y is approximately zero and hence the second term of Eq. (L.2) RHS can be
neglected. Therefore, for L2 loss we will have H; ~ %Ft.
Beyond L2 loss, a connection between FIM and the loss Hessian was also observed for
the cross-entropy loss in [37]. Authors empirically observed that the loss gradient Vg L(6;, D)
converges very fast into a tiny subspace spanned by a few fop eigenvectors of H,. This suggests
that rop eigenvectors of H; and F; are tightly aligned and are spanning the same subspace of
R!%! also for cross-entropy case, as follows. Denote A;’s SVD as triplets { Aot ot £V:’1 of
ordered singular values, left and right singular vectors respectively, where N/ is a number of

non-zero singular values. Then, Vg L(6;, D) can be written as:

N/ N’
1 _ 1 PO _ 1 P _
VoL(0:, D) = NAt smy = N {Z \/)\ﬁ'wf : (Uf)T] sy = NZ\/)\? < Uf,mt > Wf~
i=1 =1
(L.3)
Due to typical extremely fast decay of A} w.r.t. 4, described along Chapter 14, Vo L(6;, D) in

the above expression can be roughly seen as a linear combination of only {@!} associated with

several fop {\!}. Noting that these are also the top eigenvectors of F}, we see that Vo L(6;, D) is

193

located in top-spectrum of F;. Further, taking into account the empirical observation from [37],

we can conclude from above that fop eigenvectors of F; and H; are tightly aligned.

194

APPENDIX M

Movement of 6 along FIM Eigenvector causes
Movement of NN Output along Gramian
Eigenvector

To understand the relation between FIM F}; and Gramian Gy more intuitively, here we show their
dual connection in terms of how the movement along FIM eigenvector @/ in §-space affects the
movement in the function space. Specifically, consider f; to be a vector of NN outputs at training
points at optimization time ¢, similarly to the formulation in Section 14.1. Further, consider

a movement of the model in #-space from current ; to a new location 6y = 0; + \/)\ﬁ . @f

in direction w! where (/! is used as a step size. Then the fy at the new location can be

approximated via first-order Taylor as:
for = fi + /M- AL - &, (M.1)

where A; is Jacobian matrix defined in Section 14.2. Moreover, considering the singular value
decomposition (SVD) of A;, we can see that fir — f; = A} - o}. That is, walking in the direction

@! in 6-space changes NN outputs only along ©f, according to first-order dynamics.

195

196

APPENDIX N

Dynamics of L2 Loss for a Fixed Gramian, at

Training Points

Consider Eq. (14.3) with a fixed Gramian GG whose eigenvalues and eigenvectors are {)\i}f\;l
and {v;} Y respectively. Define N’ to be a number of non-zero eigenvalues. Likewise, consider

the residual vector m; = f; — i whose first-order dynamics can be written as:

_ _ _ = ' = d _
dmtémtﬂ—thftJrl—ft:dft:—N‘G'mt =
5 Y 5 1
— th:{I—N-G}-mt — mt:Z{l—N)\z} <@i,m0>6i+m§,
i=1
(N.1)
where m§ is a projection of 1 to null-space of G, with G - m§ = 0.
Further, noting that:
/) t
t—1 N1 [1- &
mj=>_ 5 < 0, Mo > U; + tmg, (N.2)
7=0 i=1 NAZ

the f; can be then rewritten as:

T Y s N1-— {1_ %Al}t
fi= ot Y df = fo= 3Gy = fom 3G Y —
j=0 j=0 i=1 NN

< Ui, Mg > U; =

N 5 1t
:fO_Z [1— l:l—N)\¢:| < v, mg > U;. (N.3)

=1

197

198

APPENDIX O

Dynamics of L2 Loss for a Fixed Gramian, at
Testing Points

From Eq. (14.2) we can also derive dynamics of NN output at an arbitrary testing point X"

dfet(X,) = f6t+1(X,) - th(X/) = —%Q(X/,X) S My, (O0.1)

where g(X', X) £ Vg fp,(X')T - Ay is a row vector with g(X’, X) ;) = g(X’, X7). Moreover,
similarly to Eq. (N.3) we get:

6 , t—1
Jo,(X) = foo (X +de9] = foo(X') = (X",) - 3 =
7=0
5 N1 — [1—%/\Z‘r
= foo (X') = F9(X',. %) - Za—/\<@i,m0>@i+tmg . (0.2)

i=1 N7

In case G is invertible (i.e. A, > 0), the above expression can also be written as

t
fo,(X') = fo,(X') —g(X", 2)-G~L- [I - [I -5 G}] -1np; a very similar expression was
previously derived in [71]. Likewise, considering the stability condition ¢ < 1=, which is

required for a proper optimization convergence thm { — N)‘l} = 0, at time ¢ = oo we will
—00
have fo, (X') = fo,(X') — g(X', &) - G~ -mo
Furthermore, for a singular G' Eq. (0.2) can be simplified via two methods, using a gradient

at X' or eigenfunctions of the kernel g(-, -).

Simplification via Gradient Observe that for G = Al - A; to be time-invariant it is necessary
for gradients {Vy fp, (X 1)}11\41 at training points either to be constant along the optimization or
rotating together via some time-variant rotation matrix Ry, Vo fp,(X*) = Rt - Vg fo,(X*) and
A; = R; - Ag. Such rotational behavior will lead to the required time-independence of G =
AL -RT-Ry-Ag = AL - Ap. Similarly, for g(X’, X) to be time-invariant the gradient V f5, (X")

199

at the testing point must rotate with the same rotation Ry, Vi fy,(X') = Ry - Vg fo,(X').

Assuming the above gradient rotation, the row vector g(X’, X') can be written as:
9(X",X) = Vo fo,(X)T - Av = Vo foo (X)T - Rl - Re- Ao = Vi fo,(X)T - Ap. (03)

Next, consider Ay’s SVD as triplets {\//\7 , Wi @i}fvzll of ordered singular values, left and
right singular vectors respectively, and denote Vg fg,(X') = SN a; - v/A; - cD,; for a; £
<@;,Vg foo (X')>

Vi
and we can rewrite fp, (X) from Eq. (0.2) as (note that m§ is reduced since it is orthogonal to

{’L_}Z‘ :)‘i 75 0})

. Using SVD properties of Ay, we get an identity g(X’/, X) = 2N 1 a; - \i -0},

!/

fo (X') = fo(X') — % ll - {1 0)\ir

=1

N
= fou (X') —gl: ll— {1_;&}1&

=1

a; < Ui, Mg >=

1
VA

< U;, Mo >< W;, VQfgo(X/) >. (04

Likewise, under the stability condition § < /\Q—N, fo,(X') at time ¢ = oo can be expressed

as:

foo (X) = foo (X Z - < i, o >< @i, Vo fa, (X') > . (0.5)

Simplification via Kernel Eigenfunctions According to Eq. (K.4), a product g(X’, X) - 0;
can be approximated by \; - 0;(X”), with 0;(-) being an eigenfunction of g(-,-). Using this
approximation, Eq. (0.2) is reduced to:

: N S L 20
fgt(X)%fgo(X)—N- Z 5 <vi,m0>vi(X)—|—
=1 N

N
+t- Z i < U, mg > (X)] feo(X/)—Z

1) t o -
1— [1 — N)\i]] < 0, mo > Ui (X'),

A =0 i=1
(0.6)
which at time ¢ = co will converge to:
N/
Jooo (X') = foo (X) =D < v5,mp > 5i(X). (0.7)
i=1

Intuition Egq. (0.4) and Eq. (0.6) describe first-order dynamics of NN output at a testing point.
The intuition behind these expressions can be summarized as following. First, for standard
NN initialization fy,(X") is typically very close to be zero and can be neglected, leading to
mp ~ —y. Like in Eq. (N.3), the inner-product term < v;, mg >, independent of testing point
X', defines which part of the signal contained in my is learned along each spectral direction.

t
In general, {1 — %Ai} converges faster for large eigenvalues. Also, due to large \; being

200

typically associated with v; that contains a low-frequency signal, this leads to fast learning of
low-frequency information and slow (sometimes infinitely slow) learning of high-frequency
information. Further, the inner-product term < w;, Vg fg,(X’) > in Eq. (0.4) or the eigenfunc-
tion 0;(X") in Eq. (0.6), that are functions of X', determine amount of information along i-th
spectral direction that is transferred into fy, (X'), basically describing the generalization behind
Eq. (14.3) for a fixed Gramian G. Note that the convergence rate of fy, (X') towards fy_ (X’)
is governed by how close terms 1 — %Ai in Eq. (0.4) and Eq. (O.6) are to zero, similarly to the
convergence rate of a system in Eq. (N.3). Hence, we expect fy, to converge to its final state at

both training and testing points with a similar speed.

201

202

APPENDIX P

First-order Change of G;

Here we describe the first-order Taylor approximation of a change in GG; between sequential
iterations of GD optimization. We theorize that the thorough analysis of below expressions will
lead to the mathematical explanation required to understand evolution of G; as also to better
understanding of NN dynamics.

First, change of the Jacobian A;, defined in Section 14.2, can be described as:

J
dAt £ At+1 — At ~ —N : Wt, (Pl)
. i _ . A anQt(X)
where W is || x N matrix with i-th column being H;(X") - Ay - my, with Hy(X) = —55

being the model Hessian.

Hence, the change between G411 = A,Zrl - A1 and Gy = A%p - A; can be written as:

5 52
dGy & Gy = G = - AT w+ W] + 3 W W (P.2)

The last term can be neglected due to J‘E,—QZ being significantly smaller than %, which leads to:
A g T
AGy 2 G = Gim = [+ QT] (P3)

where Q; is N x N matrix whose i-th column is A7 - H;(X?) - Ay - my.
Recently, similar expressions were reported by [25] (specifically, see Eq. (100-102)) and
by [49].

203

204

APPENDIX Q

Computation Details of Fourier Transform

Here we provide more details on how Fourier Transform was calculated in our experiments.
Consider a function ¢(X) and N dataset points X = {X* € R4} sampled from an arbitrary
pdf P(X). Further, consider a N x 1 vector ¢ with entries (k) = ¢(X*). Given @, we
compute Fourier Transform ¢(¢) of a function (X)) at ¢ € R? as following:

2€) = [$(X) - exp[-2ri- < £, X >] - P(X)dX =

N
1 k - k N
~ Ng:lap(X) - exp [—2m~ <& X >} =37 g, (Q.1)

where £ is a N x 1 vector with entries £(k) = exp {—27”'- <& Xk >}. Note that the above
definition of Fourier Transform w.r.t. pdf P(X) is identical to the common formulation without
a term P(X) inside, since in our experiments data distribution is P(X) = 1 (see ”Setup” in
Section 14.5).

In all our experiments we compute ¢(£) for & taking values in [—40,40]2. Further, we
present a frequency component |H(£)| as an image.

To perform the above computation, we require sampled values ¢ of the analyzed function
©(X). In case this function is the eigenfunction of gradient similarity kernel, the eigenvector of
G approximates this eigenfunction’ values at the training points, as is shown in the Appendix
K. Hence, in this case the eigenvector of G} serves as a vector ¢ in Eq. (Q.1). Likewise, the
above calculation using the residual vector m; can be considered as a Fourier Transform of a
function 7(X) £ fp,(X) — y(X).

205

206

Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

(7]

[8]

[9]

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for boltzmann machines. Cognitive science, 9(1):147-169, 1985.

Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of diver-
gence of one distribution from another. Journal of the Royal Statistical Society:
Series B (Methodological), 28(1):131-142, 1966.

T Amemiya. Asymptotic properties of extremum estimators. Advanced economet-

rics, Harvard university press, 1985.

C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian

nonparametric problems. Annals of Statistics, 2:1152-1174, 1974.

Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. arXiv preprint arXiv:1901.08584, 2019.

Daniel Ashlock, Colin Lee, and Cameron McGuinness. Search-based procedural
generation of maze-like levels. IEEE Transactions on Computational Intelligence
and Al in Games, 3(3):260-273, 2011.

Adil M Bagirov, L Jin, N Karmitsa, A Al Nuaimat, and Napsu Sultanova. Sub-
gradient method for nonconvex nonsmooth optimization. Journal of Optimization
Theory and applications, 157(2):416-435, 2013.

Leemon Baird, David Smalenberger, and Shawn Ingkiriwang. One-step neural
network inversion with pdf learning and emulation. In 2005 IEEE International
Joint Conference on Neural Networks, IICNN’05, volume 2, pages 966-971. IEEE,
2005.

207

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence
rate of neural networks for learned functions of different frequencies. arXiv preprint
arXiv:1906.00425, 2019.

James Vere Beck, Kevin David Cole, A Haji-Sheikh, and B Litkouhi. Heat con-
duction using Green’s functions, volume 194. Hemisphere Publishing Corporation
London, 1992.

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R Devon Hjelm, and Aaron
Courville. Mine: mutual information neural estimation. arXiv preprint
arXiv:1801.04062, 2018.

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data
with multi-layer neural networks. In Advances in Neural Information Processing
Systems (NIPS), pages 400-406, 2000.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels.
arXiv preprint arXiv:1905.12173, 2019.

C.M. Bishop. Mixture density networks. Technical report, Aston University,
Birmingham, 1994.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-
young losses. Journal of Machine Learning Research, 21(35):1-69, 2020.

Lev M Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR

computational mathematics and mathematical physics, 7(3):200-217, 1967.
Caffe. caffe.berkeleyvision.org.

Gustavo Deco and Wilfried Brauer. Higher order statistical decorrelation without
information loss. In Advances in Neural Information Processing Systems (NIPS),
pages 247-254, 1995.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. arXiv preprint arXiv:1605.08803, 2016.

Xialiang Dou and Tengyuan Liang. Training neural networks as learning data-
adaptive kernels: Provable representation and approximation benefits. arXiv
preprint arXiv:1901.07114, 2019.

Tarn Duong and Martin L Hazelton. Cross-validation bandwidth matrices for mul-
tivariate kernel density estimation. Scandinavian Journal of Statistics, 32(3):485—
506, 2005.

208

caffe.berkeleyvision.org

[25]

[30]

[35]

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman
diagrams. arXiv preprint arXiv:1909.11304, 2019.

Shinto Eguchi. Information divergence geometry and the application to statistical
machine learning. In Information theory and statistical learning, pages 309-332.
Springer, 2009.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked
autoencoder for distribution estimation. In Intl. Conf. on Machine Learning (ICML),
pages 881-889, 2015.

Charles J Geyer and Elizabeth A Thompson. Constrained monte carlo maximum
likelihood for dependent data. Journal of the Royal Statistical Society. Series B
(Methodological), pages 657-699, 1992.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages 249-256, 2010.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American statistical Association, 102(477):359-378,
2007.

Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms. Journal
of machine learning research, 12(Jul):2211-2268, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in Neural Information Processing Systems (NIPS), pages 2672-2680,
2014.

Dilan Goriir and Carl Edward Rasmussen. Dirichlet process gaussian mixture mod-
els: Choice of the base distribution. Journal of Computer Science and Technology,
25(4):653-664, 2010.

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schélkopf, and
Alex J Smola. A kernel method for the two-sample-problem. In Advances in neural

information processing systems, pages 513-520, 2007.

Peter D Griinwald, A Philip Dawid, et al. Game theory, maximum entropy,
minimum discrepancy and robust bayesian decision theory. the Annals of Statistics,
32(4):1367-1433, 2004.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 5769-5779, 2017.

209

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a
tiny subspace. arXiv preprint arXiv:1812.04754, 2018.

Michael Gutmann and Jun-ichiro Hirayama. Bregman divergence as general frame-
work to estimate unnormalized statistical models. arXiv preprint arXiv:1202.3727,
2012.

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, pages
297-304, 2010.

Michael U Gutmann and Aapo Hyvérinen. Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image statistics. J. of
Machine Learning Research, 13(Feb):307-361, 2012.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Training dynamics of
deep networks using stochastic gradient descent via neural tangent kernel. arXiv
preprint arXiv:1905.13654, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, 2016.

Nils-Bastian Heidenreich, Anja Schindler, and Stefan Sperlich. Bandwidth se-
lection for kernel density estimation: a review of fully automatic selectors. AStA
Advances in Statistical Analysis, 97(4):403-433, 2013.

G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527-1554, 2006.

Geoffrey E Hinton. Products of experts. 1999.

Geoffrey E Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771-1800, 2002.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex

analysis. Springer Science & Business Media, 2012.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251-257, 1991.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and
neural tangent hierarchy. arXiv preprint arXiv:1909.08156, 2019.

Aapo Hyvirinen. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(Apr):695-709, 2005.

210

[51]

[58]

Aapo Hyvarinen. Connections between score matching, contrastive divergence, and
pseudolikelihood for continuous-valued variables. IEEE Transactions on neural
networks, 18(5):1529-1531, 2007.

Aapo Hyvirinen. Some extensions of score matching. Computational statistics &
data analysis, 51(5):2499-2512, 2007.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in Neural Information
Processing Systems (NIPS), pages 8571-8580, 2018.

Fred Jelinek, Robert L. Mercer, Lalit R Bahl, and James K Baker. Perplexity - a
measure of the difficulty of speech recognition tasks. The Journal of the Acoustical
Society of America, 62(S1):S63-S63, 1977.

Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares ap-
proach to direct importance estimation. Journal of Machine Learning Research,
10(Jul):1391-1445, 20009.

Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. Statistical analysis of
kernel-based least-squares density-ratio estimation. Machine Learning, 86(3):335—
367,2012.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of
fisher information in deep neural networks: mean field approach. arXiv preprint
arXiv:1806.01316, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

D. Kopitkov and V. Indelman. No belief propagation required: Belief space
planning in high-dimensional state spaces via factor graphs, matrix determinant
lemma and re-use of calculation. Intl. J. of Robotics Research, 36(10):1088—1130,
August 2017.

D. Kopitkov and V. Indelman. Deep PDF: Probabilistic surface optimization and
density estimation. arXiv preprint arXiv:1807.10728, 2018.

D. Kopitkov and V. Indelman. Robot localization through information recovered
from cnn classificators. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). IEEE, October 2018.

211

[63]

[64]

[65]

[60]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Dmitry Kopitkov and Vadim Indelman. Neural spectrum alignment: Empirical
study. arXiv preprint arXiv:1910.08720, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097-1105, 2012.

Matthieu Labeau and Alexandre Allauzen. Learning with noise-contrastive estima-
tion: Easing training by learning to scale. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 3090-3101, 2018.

Louis Landweber. An iteration formula for fredholm integral equations of the first
kind. American journal of mathematics, 73(3):615-624, 1951.

Hugo Larochelle and lain Murray. The neural autoregressive distribution estimator.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 29-37, 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November
1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on
energy-based learning. Predicting structured data, 1(0), 2006.

Christian Ledig, Lucas Theis, Ferenc Huszér, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
et al. Photo-realistic single image super-resolution using a generative adversarial

network. arXiv preprint, 2016.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as

linear models under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose
bayesian inference algorithm. In NIPS, pages 2378-2386, 2016.

Qiang Liu and Dilin Wang. Learning deep energy models: Contrastive divergence
vs. amortized mle. arXiv preprint arXiv:1707.00797, 2017.

Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in
nonconvex statistical estimation: Gradient descent converges linearly for phase re-
trieval, matrix completion, and blind deconvolution. Foundations of Computational
Mathematics, pages 1-182, 2019.

S. N. MacEachern and P. Muller. Estimating mixture of dirichlet process models.
Journal of Computational and Graphical Statistics, 7:223-238, 1998.

212

[76]

[77]

[87]

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In Intl.
Conf. on Computer Vision (ICCV), pages 2813-2821. IEEE, 2017.

Hamed Masnadi-Shirazi and Nuno Vasconcelos. On the design of loss functions
for classification: theory, robustness to outliers, and savageboost. In Advances in

neural information processing systems, pages 1049-1056, 2009.

Takeru Matsuda, Masatoshi Uehara, and Aapo Hyvarinen. Information criteria for

non-normalized models. arXiv preprint arXiv:1905.05976, 2019.

G.J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to
Clustering. Marcel Dekker, New York, 1988.

Aditya Menon and Cheng Soon Ong. Linking losses for density ratio and class-
probability estimation. In Intl. Conf. on Machine Learning (ICML), pages 304-313,
2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently
with noise-contrastive estimation. In Advances in Neural Information Processing
Systems (NIPS), pages 2265-2273, 2013.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural
probabilistic language models. arXiv preprint arXiv:1206.6426, 2012.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative
models. arXiv preprint arXiv:1610.03483, 2016.

Youssef Mroueh and Tom Sercu. Fisher gan. In Advances in Neural Information
Processing Systems (NIPS), pages 2510-2520, 2017.

Alfred Miiller. Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29(2):429-443, 1997.

Hyunha Nam and Masashi Sugiyama. Direct density ratio estimation with convo-
lutional neural networks with application in outlier detection. /EICE TRANSAC-
TIONS on Information and Systems, 98(5):1073-1079, 2015.

Amy Nesky and Quentin F Stout. Neural networks with block diagonal inner
product layers. In International Conference on Artificial Neural Networks, pages
51-61. Springer, 2018.

213

[90] KW Newey and D McFadden. Large sample estimation and hypothesis. Handbook
of Econometrics, 1V, Edited by RF Engle and DL McFadden, pages 21122245,
1994.

[91] Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning
deep energy models. In International Conference on Machine Learning, pages
1105-1112, 2011.

[92] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating
divergence functionals and the likelihood ratio by convex risk minimization. /EEE
Transactions on Information Theory, 56(11):5847-5861, 2010.

[93] XuanLong Nguyen, Martin J Wainwright, Michael I Jordan, et al. On surrogate
loss functions and f-divergences. The Annals of Statistics, 37(2):876-904, 2009.

[94] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative
neural samplers using variational divergence minimization. In Advances in Neural

Information Processing Systems, pages 271-279, 2016.

[95] Travis A O’Brien, Karthik Kashinath, Nicholas R Cavanaugh, William D Collins,
and John P O’Brien. A fast and objective multidimensional kernel density estima-
tion method: fastkde. Computational Statistics & Data Analysis, 101:148-160,
2016.

[96] Simon T O’Callaghan and Fabio T Ramos. Gaussian process occupancy maps for

dynamic environments. In Experimental Robotics, pages 791-805. Springer, 2016.

[97] Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks.
Information and Inference: A Journal of the IMA, 4(2):108-153, 2015.

[98] Thomas R Osborn. Fast teaching of boltzmann machines with local inhibition. In

International Neural Network Conference, pages 785—785. Springer, 1990.

[99] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generaliza-
tion guarantees for neural networks via harnessing the low-rank structure of the
jacobian. arXiv preprint arXiv:1906.05392, 2019.

[100] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive
flow for density estimation. In Advances in Neural Information Processing Systems
(NIPS), pages 2338-2347, 2017.

[101] Hyeyoung Park, S-I Amari, and Kenji Fukumizu. Adaptive natural gradient learning
algorithms for various stochastic models. Neural Networks, 13(7):755-764, 2000.

[102] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding
gradient problem. CoRR, abs/1211.5063, 2:417, 2012.

214

[103] Luis Perez and Jason Wang. The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[104] Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

wasserstein gans. arXiv preprint arXiv:1709.08894, 2017.

Miika Pihlaja, Michael Gutmann, and Aapo Hyvarinen. A family of computa-
tionally efficient and simple estimators for unnormalized statistical models. arXiv
preprint arXiv:1203.3506, 2012.

David Pollard. A user’s guide to measure theoretic probability, volume 8. Cam-
bridge University Press, 2002.

Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel

perspectives. Springer Science & Business Media, 2010.
PyTorch. pytorch.org.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A
Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural
networks. arXiv preprint arXiv:1806.08734, 2018.

Fabio Ramos and Lionel Ott. Hilbert maps: scalable continuous occupancy map-
ping with stochastic gradient descent. The International Journal of Robotics
Research, 35(14):1717-1730, 2016.

Mark D Reid and Robert C Williamson. Composite binary losses. The Journal of
Machine Learning Research, 11:2387-2422, 2010.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normal-
izing flows. arXiv preprint arXiv:1505.05770, 2015.

Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation
with deep density models. arXiv preprint arXiv:1302.5125, 2013.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.
Springer Science & Business Media, 2009.

Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence
rate of neural networks for learned functions of different frequencies. In Advances

in Neural Information Processing Systems, pages 4761-4771, 2019.

215

pytorch.org

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empir-
ical analysis of the hessian of over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems (NIPS), pages 2234-2242, 2016.

Saeed Saremi, Arash Mehrjou, Bernhard Scholkopf, and Aapo Hyvérinen. Deep
energy estimator networks. arXiv preprint arXiv:1805.08306, 2018.

David W Scott. Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons, 2015.

Ransalu Senanayake and Fabio Ramos. Building continuous occupancy maps with

moving robots. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jayaram Sethuraman and Ram C Tiwari. Convergence of dirichlet measures and
the interpretation of their parameter. In Statistical decision theory and related
topics 111, pages 305-315. Elsevier, 1982.

Yi Shen. Loss functions for binary classification and class probability estimation.
PhD thesis, University of Pennsylvania, 2005.

Georgy Shevlyakov, Stephan Morgenthaler, and Alexander Shurygin. Redescend-
ing m-estimators. Journal of Statistical Planning and Inference, 138(10):2906—
2917, 2008.

Bernard W Silverman. Density estimation for statistics and data analysis. Rout-
ledge, 2018.

Noah A Smith and Jason Eisner. Contrastive estimation: Training log-linear models
on unlabeled data. In Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 354-362. Association for Computational
Linguistics, 2005.

Paul Smolensky. Information processing in dynamical systems: Foundations
of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing, volume 1, pages 194-281. The MIT press, Cambridge,
MA, 1986.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation

in machine learning. Cambridge University Press, 2012.

216

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching
under the bregman divergence: a unified framework of density-ratio estimation.
Annals of the Institute of Statistical Mathematics, 64(5):1009-1044, 2012.

Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von
Biinau, and Motoaki Kawanabe. Direct importance estimation for covariate shift
adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699-746, 2008.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI volume 4, page 12, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Go-
ing deeper with convolutions. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages 2818-2826, 2016.

TensorFlow. www.tensorflow.org.

George R Terrell, David W Scott, et al. Variable kernel density estimation. The
Annals of Statistics, 20(3):1236-1265, 1992.

Masatoshi Uehara, Takeru Matsuda, and Fumiyasu Komaki. Analysis of noise
contrastive estimation from the perspective of asymptotic variance. arXiv preprint
arXiv:1808.07983, 2018.

Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka

Matsuo. b-gan: Unified framework of generative adversarial networks. 2016.
Unreal Engine. www.unrealengine.com.

Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural
autoregressive density-estimator. In Advances in Neural Information Processing
Systems (NIPS), pages 2175-2183, 2013.

Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 1065-1072, 2009.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &
Business Media, 2008.

217

www.tensorflow.org
www.unrealengine.com

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Pascal Vincent. A connection between score matching and denoising autoencoders.
Neural computation, 23(7):1661-1674, 2011.

Tinghua Wang, Dongyan Zhao, and Shengfeng Tian. An overview of kernel
alignment and its applications. Artificial Intelligence Review, 43(2):179-192, 2015.

Francis Williams, Matthew Trager, Claudio Silva, Daniele Panozzo, Denis Zorin,

and Joan Bruna. Gradient dynamics of shallow univariate relu networks. arXiv
preprint arXiv:1906.07842, 2019.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep
kernel learning. In Artificial Intelligence and Statistics, pages 370-378, 2016.

Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. Un-
derstanding data augmentation for classification: when to warp? arXiv preprint
arXiv:1609.08764, 2016.

Blake Woodworth, Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan
Srebro. Kernel and deep regimes in overparametrized models. arXiv preprint
arXiv:1906.05827, 2019.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Ag-
gregated residual transformations for deep neural networks. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 5987-5995. IEEE, 2017.

Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi
Sugiyama. Relative density-ratio estimation for robust distribution comparison. In

Advances in Neural Information Processing Systems (NIPS), pages 594-602, 2011.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured
energy based models for anomaly detection. In International Conference on
Machine Learning, pages 1100-1109, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adver-
sarial network. arXiv preprint arXiv:1609.03126, 2016.

Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan Zhang, Zhihua
Zhang, and Yong Yu. Understanding the effectiveness of lipschitz-continuity in

generative adversarial nets. arXiv preprint arXiv:1807.00751, 2018.

Royce KP Zia, Edward F Redish, and Susan R McKay. Making sense of the
legendre transform. American Journal of Physics, 77(7):614-622, 2009.

218

mvIn (objective functions) NPDVPPIIN NPXPNDL PWYN VIDV NYSNN NN NIvarn PSO
VAN T NOY TINDOTIDIN INNYND NN T DY RON ,NIND DTN MDD NN ROV
DPADN NN PN NN ,90N2 300 OTIP NIYNI NP NOV DIVTN DITHINI VI

DY DNIN NNN NMOIDNN DR NN PSO™N NN»TIo SV iPSONILIND MDND

NTNo DY IDVRIVINI DOIVE MAN NIVONNDD NYVTN NIYIS P IR PSO 1 18 2wn
DONIN ON THYIN HTINND TYY TPEDDVNND NPNYTY DRIND DX T MD NTIAYL .PODVVD
A1P2 PANY 1D NIYAN D DNNNN DY DOYMNN DMNDN MM OY AN NVYNN NNNN NN
,0007) ©T) DNNI VRN DY 0PN NV NRMNM PSSO SV ipsdmuaINng MDY NN U119

PN NPYO MYTN D977 WNND 0) NS

DMINNA NIPNN TPDIDL MODVVD PYa - MOANN JTIIN NWN NINad PSO Dmnw»n NN
TN DAWNM ,DINNNN Dpwnn "y 0y PSO NNavn-Nn DNMN NN .02 DY D»YTN
MOay JTMIND MANN MY 0) MO ,NOX MPdv .PSO— LDE DNonn moasn onand
,TN9IN DTN HY Y915 SNDVIN DY YNIN IR MPVN PN T MmN Masmn PSO moovman
MUIONNA 80 PSO 5¥ 090 MMON RN ,NNG DY .POIDNY SN0 RO NP 10 MIvoNm
175 TING 2P STINN DY 910N DAIVINN TWUND ,DMINTIN VYN INPI DPATH MAN Y2 PP

DN [, INY DAV TIYVY MINAY NPANY MNYT MNOPYIIIN DY qOIN DM DX ,q0ON3
NN LTIYYN PYT NN OMYNYn MAYYI NMN IDNNY DNDIOR OPIY HY MYTH MOV
¥ NPYONRTINTIT NMDAN TINDY N 1IWAR NYTN NV NNOVPYOIIN By va PSO—-LDE
9915 ,MANN MYWTN MWD DNV MAY INY NN PrTI 0170 02 HY DN 0NN
MRNND DX OMYTN DN .(noise contrastive estimation, NCE) wy1 num»y noayn

DY DM ONN

NTNON NONPA WD OTINN PYNO DMK DYPN PSO »T0IN W NN DIPIN DX ,)NDID
PSO-n pyr1 5y myswn nx oonnm WX .Neural Tangent Kernel (NTK)™> Dy npmyn
NUIPN NN TPEDDVNN TOIN TONN2 IMNNANN NN DAIPIN ,NPONN NPVD NIV O
OO OV NTTNON NPRYT 2230 MAT NN PADN TN NONPNS 2ADD N PYD DY qUNIN

OPMYN DTNON NNN OV INY N0 NHAND TNYA 2°N0 DMYY YR ,DPINY

ii

PNPN

DN IN MO JTOIN D ,MAIYA NPVDVVLD NPYYA 95100 2N DIND NN PMIANDN PIYY
MMINNI NVYI NYN NPYID MININD DY 2N VIV Ty, M2aN NNT ,NNYONN NPV ,NINPaN
JPIWYN/DOYTN YN NPOIN NYITY DN OINN 029 O0NINNAY 1YY ,NNNN Ty NP vian
OOYHN MTTN P2 XMIANDN SN HPUMOLIN X TPIT PPONY DYWITI DN NPPOINIA ,NNTD
TONN VIDTIN AN NN TIYND 2TD 12 YHNYND 10 TYNNL YN ,0IIN DY INO0IN ANND
0NV XMIANDN TIYYD MNIND N2 MDYN NN»P ,2u0 NNNI AYNNNA . NPN WNHIN

.02 O»Y TN DMINNA PININ 09y NPyad

POIVNS MIINN MY OY TPMININ TPANY NYI 1D NYAP TPODIDNINRD PPN NPNIND
OPOMP NXAP NN DY NITINN NN PPN 95 DY NN (fully —connected layers)
Y MODIANN MY NINKRD NVYYL 1D DY I OO0IDNN NP 2000 NN TNy Nn ,R™ Sv
NNINND QDN PPN NTNDY NAYANNI DRI IDINN 19T IRNY DN PP NPy NTNd
NYIANY MNYI SY NN DTND MIYANNDD MPIN NIMNS NP0 PXDIIVIN OWIN INMI

(GPUs) 97 D¥NND MyNNNa

DV ,NYTN NTNING MODVVD NTND NNITIS MIXD NN R MN NTAY DY IAPYN NN
NYMIANON NPON NYYa NINS NWwannn | Probabilistic Sur face Optimization (PSO)
NOD J9IND NPANY MNYA DY PPN MO NN DNID NIYANDY DMy NTND MYNHNNI MY
YT DY ANV ,NOYNN NAY ORIV OPIPS NOIYND NPMIANDNN NPONN NN RVan PSO
DIPINON DY MPNHDIVNIN NIRNN ONY MM 2T DY AT ,ORMNN NVPXPNN 55NN 8PN
TPSPDVIIND TONNA PNTY N NVYN 2D DN MR .(gradient descent, GD) v N
MMO2 VI > Yy 10 Dy 91 .t I N ©DVAN DYNINKN OPNTIPZIN MNON 1 TN NOWND
SV MNY NPMIANDN NYSPNAY DIONND NVYNND 79 NN NOND 091D DN DY DPINRIVIN
NPYINY NPVDXOVVD NVYIPN NMN NMPAN DY MNDAY YONY 2N MAN N , 021N

ONN MAaD

DONINTRON DOTIN MO ,MHNPP M7 NYMIANDN NPON M) D DXIN BN 002
NP NPT MDY P [(energy models) Y MIR 9T (unnormalized models)
MNY»N 9315 ,POI0IN MODIAN MW (generative adversarial networks, GANs)
INPISA T2y NIPNY KD DNYY TPD0IN NPHRYTIY 29 DY QN M 19IR2 PSO mnapy
DOV TIT2 MAT NPNPN NMNIYTN ML DY 12 Warn PSO 90102 .07ON1VI MM SY
N NNYTIS O DY A .INIDN NONXI ONIVINN NVYNN DY BP0 099D DNMIND VDY T DY

95M NPPOINTIIN NOTIND NOIIPHL PIDTYNR OXTNI 712N NDNIH NPNINA NYYI IPNNN

mmn

STNONYNA NTIN N’ADIN NHNN DY IO NTIN N

YTNNANDN NLYN DY YOO NDINIVIIN
MOANN ONIND TNIIYW)

IPNN DY NN

ANINN NOAPO MWATN OV YPON "D DOVWH
PODAY NOPIT

NPLINP ONT

INIYD MHNOL NON — MOV VIO YIN
2020 VPN no°N MYN X'avn

YTNNANDN NLYN DY YOO NDINIVIIN
MOANN ONIND TNIYW

NPLINP ONT

