
General Probabilistic Surface
Optimization and

Log Density Estimation

Dmitry Kopitkov

General Probabilistic Surface
Optimization and

Log Density Estimation

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Dmitry Kopitkov

Submitted to the Senate

of the Technion — Israel Institute of Technology

Cheshvan 5781 Haifa October 2020

This research was carried out under the supervision of Associate Prof. Vadim Indelman, in the

Faculty of Aerospace Engineering.

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Vadim Indelman for all the guidance, help, support

and research freedom I enjoyed through the years of my PhD’s studies. My research skills and

knowledge got elevated significantly all thanks to his high-standard demands and him driving

me to reach my limits.

I would also like to thank the people from Technion Autonomous Systems Program for

helping me getting over the bureaucracy of the university and for being supportive through

sometimes very uneasy moments during these years.

Finally, I thank deeply all my friends for having my back and being there for me this entire

time. You continued to believe in me even at my darkest days, and your help allowed me to

keep standing on my legs and to accomplish this research. You have my immense gratitude and

appreciation for all your support.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Tables

Abstract 1

Abbreviations and Notations 3

1 Introduction 5
1.1 Thesis Structure . 6

1.2 Thesis Contribution . 8

2 Related work 11
2.1 Unsupervised Probabilistic Inference . 11

2.2 Parametric vs Non-parametric Approaches . 13

2.3 Additional Density Estimation Techniques . 14

2.4 Relation to GANs . 15

2.5 Classification Domain . 16

3 Probabilistic Surface Optimization 17
3.1 Formulation . 17

3.2 Derivation . 18

3.3 PSO Balance State . 20

3.4 Virtual Surface Perspective . 20

4 PSO Functional 23
4.1 Mutual Support Optima . 23

4.1.1 PSO Non-Differentiable Case . 24

4.1.2 PSO Differentiable Case . 27

4.1.3 Unlimited Range Conditions . 29

4.2 Disjoint Support Optima . 30

4.2.1 Area SU\D . 30

4.2.2 Area SD\U . 31

5 Instances of PSO 33
5.1 Deriving Convergence of PSO Instance . 39

5.2 Deriving New PSO Instance . 40

5.3 PSO Feasibility Verification and Polar Parametrization 42

5.4 PSO Subsets . 44

5.5 PSO Methods Summary . 44

6 PSO, Bregman and ”f” Divergencies 45
6.1 PSO Divergence . 45

6.2 Bregman Divergence . 45

6.3 f -Divergence . 47

6.4 Divergence Relation Summary . 50

7 Properties of PSO Estimators 51
7.1 Consistency and Asymptotic Normality . 51

7.2 Bounded vs Unbounded Magnitude Functions 53

7.3 Statistics of Surface Change . 54

7.4 Convoluted PSO Balance State . 56

7.5 Model Expressiveness and Smoothness vs Kernel Bandwidth 57

7.6 Infinite Height Problem and its Solutions . 59

8 Density Estimation via PSO 63
8.1 DeepPDF . 63

8.2 PSO-LDE - Density Estimation on Logarithmic Scale 64

9 Conditional Density Estimation 71
9.1 Conditional Density Estimation . 71

9.2 Relation to Conditional GANs . 75

10 Additional Applications and Relations of PSO Framework 77
10.1 Cross-Entropy as Instance of PSO . 77

10.2 Relation to Maximum Likelihood Estimation 79

10.3 PSO with Unit Magnitudes and Contrastive Divergence 79

10.4 Mutual Information Estimation . 82

10.5 Learning Probabilistic Occupancy Mapping 82

11 NN Architecture 87
11.1 Block-Diagonal Layers . 88

11.1.1 Flexibility of BD vs FC . 90

11.1.2 Relation between BD and FC - Additional Aspects 92

11.1.3 Similar Proposed Architectures . 92

11.2 NN Pre-Conditioning . 93

11.3 Other NN Architecture Aspects . 94

12 Overfitting of PSO 95
12.1 Problem Illustration . 95

12.2 Possible Solutions . 99

13 Experimental Evaluation of PSO Framework 101
13.1 Learning Setup . 102

13.2 PDF Estimation via PSO - Columns Distribution 103

13.2.1 PSO Instances Evaluation . 104

13.2.2 Baselines . 109

13.2.3 NN Architectures Evaluation . 114

13.2.4 Batch Size Impact . 118

13.2.5 Small Training Dataset . 120

13.3 PDF Estimation via PSO - Transformed Columns Distribution 125

13.4 PDF Estimation via PSO - 3D Image-based Densities 129

13.5 PDF Estimation via PSO - Joint Over Poses and CNN Features 132

13.6 Probabilistic Occupancy Mapping . 134

14 Neural Spectrum Alignment 137
14.1 Notations for Alignment Experiment . 138

14.2 Relation to Fisher Information Matrix . 139

14.3 Analysis of L2 Loss For Constant Gramian 140

14.4 Work Related to Model Kernel . 141

14.5 Experiments . 142

14.6 Summary . 148

15 Conclusions and Future Work 149
15.1 Future Research Directions . 151

A Proof of Lemmas 14 and 15 153
A.1 Lemma 14 . 153

A.2 Lemma 15 . 155

B Proof of Theorem 16 159
B.1 Lemmata . 159

B.2 Proof of Theorem . 160

C Proof of Theorem 18 163

D Proof of Theorem 19 165

E Proof of Theorem 20 167
E.1 Lemmata . 167

E.2 Proof of Theorem . 169

F Proof of Softmax Cross-Entropy being Instance of PSO 171

G Differential approximation 175

H Weights Uncorrelation and Gradient Similarity Space 179

I LSQR Divergence 187

J Matrix A from definition of Transformed Columns Distribution 189

K Relation between spectrums of gt(X,X ′) and its Gramian Gt 191

L Relation between FIM and Hessian of the Loss 193

M Movement of θ along FIM Eigenvector causes Movement of NN Output along
Gramian Eigenvector 195

N Dynamics of L2 Loss for a Fixed Gramian, at Training Points 197

O Dynamics of L2 Loss for a Fixed Gramian, at Testing Points 199

P First-order Change of Gt 203

Q Computation Details of Fourier Transform 205

List of Tables

1 Thesis Main Notations . 4

5.1 PSO Instances For Density Estimation, Part 1 34

5.2 PSO Instances For Density Estimation, Part 2 35

5.3 PSO Instances For Density Ratio Estimation, Part 1 36

5.4 PSO Instances For Density Ratio Estimation, Part 2 37

5.5 PSO Instances For Density Ratio Estimation, Part 3 38

5.6 Common target functions, their corresponding T and R mappings, and the

convergence interval K. 41

8.1 Several PSO Instances that converge to fθ(X) = logPU(X) 65

9.1 Main Notations for Conditional Density Estimators 72

9.2 PSO Instances For Conditional Density (Ratio) Estimation. 74

13.1 Performance comparison between various PSO instances 108

13.2 Performance comparison between various NN pre-conditioning ways. 117

13.3 Performance comparison between various PSO instances for Transformed

Columns density . 127

Abstract

Probabilistic inference, such as density (ratio) estimation, is a fundamental and highly important

problem that needs to be solved in many different domains. Recently, a lot of research was

done to solve it by producing various objective functions optimized over neural network (NN)

models. Such Deep Learning (DL) based approaches include unnormalized and energy models,

as well as critics of Generative Adversarial Networks, where DL has shown top approximation

performance. In this thesis we contribute a novel algorithm family, which generalizes all above,

and allows us to infer different statistical modalities (e.g. data likelihood and ratio between

densities) from data samples. The proposed unsupervised technique, named Probabilistic

Surface Optimization (PSO), views a model as a flexible surface which can be pushed according

to loss-specific virtual stochastic forces, where a dynamical equilibrium is achieved when the

pointwise forces on the surface become equal. Concretely, the surface is pushed up and down

at points sampled from two different distributions. The averaged up and down forces become

functions of these two distribution densities and of force magnitudes defined by the loss of

a particular PSO instance. Upon convergence, the force equilibrium imposes an optimized

model to be equal to various statistical functions depending on the used magnitude functions.

Furthermore, this dynamical-statistical equilibrium is extremely intuitive and useful, providing

many implications and possible usages in probabilistic inference. We connect PSO to numerous

existing statistical works which are also PSO instances, and derive new PSO-based inference

methods as a demonstration of PSO exceptional usability. Likewise, based on the insights

coming from the virtual-force perspective we analyze PSO stability and propose new ways

to improve it. Finally, we present new instances of PSO, termed PSO-LDE, for data log-

density estimation and also provide a new NN block-diagonal architecture for increased surface

flexibility, which significantly improves estimation accuracy. Both PSO-LDE and the new

architecture are combined together as a new density estimation technique. In our experiments

we demonstrate this technique to be superior over state-of-the-art baselines in density estimation

tasks for multi-modal 20D data.

1

2

Abbreviations and Notations

PSO : Probabilistic Surface Optimization

PSO-LDE : PSO log density estimators

PSO-CM : PSO consistent magnitude set

pdf : probability density function

NN : Neural Network

CNN : Convolutional NN

FC : Fully-connected NN

BD : Block-diagonal NN

RKHS : Reproducing Kernel Hilbert Space

DL : Deep Learning

GD : Gradient Descent optimization

NTK : Neural Tangent Kernel

FIM : Fisher Information Matrix

MLE : Maximum Likelihood Estimation

KDE : Kernel Density Estimation

NCE : Noise Contrastive Estimation

GAN : Generative Adversarial Network model

cGAN : Conditional GAN model

MC : Monte Carlo sampling

CD : Contrastive Divergence

LF : Legendre-Fenchel transform

3

Notation Description

R>0, R≥0 and R<0 sets of real numbers; positive {x ∈ R|x > 0}, non-negative
{x ∈ R|x ≥ 0} and negative {x ∈ R|x < 0} respectively

F function space over which PSO is inferred
fθ(X) : Rn → R model fθ ∈ F , parametrized by θ (e.g. a neural network),

can be viewed as a surface with support in Rn whose
height is the output of fθ(X)

θ ∈ R|θ| model parameters (e.g. neural network weights vector)
X ∈ Rn input space of fθ(X), can be viewed as support of

model surface in space Rn+1

XU ∼ PU n-dimensional random variable with pdf PU , samples of which
are the locations where we push the model surface up

XD ∼ PD n-dimensional random variable with pdf PD, samples of which
are the locations where we push the model surface down

SU ⊂ Rn support of PU
SD ⊂ Rn support of PD
SU∪D ⊂ Rn support union of PU and PD
SU∩D ⊂ Rn support intersection of PU and PD
SU\D ⊂ Rn support of PU where PD(X) = 0
SD\U ⊂ Rn support of PD where PU(X) = 0
MU [X, fθ(X)] : Rn × R→ R force-magnitude function that amplifies an up push force

which we apply at XU

MD [X, fθ(X)] : Rn × R→ R force-magnitude function that amplifies a down push force
which we apply at XD

R [X, fθ(X)] : Rn × R→ R ratio function MD

MU

T
[
X, P

U (X)
PD(X)

]
: Rn × R→ R convergence function satisfying T ≡ R−1, describes

the modality that PSO optima f∗(X) approximates
K = (smin, smax) ⊆ R convergence interval defined as the range of T [X, z] w.r.t.

z ∈ R>0, represents a set of values f∗ can have, f∗(X) ∈ K
M̃U and M̃D antiderivatives of MU and MD (PSO primitives)
FU

θ (X) and FD

θ (X) point-wise up and down forces, that are applied (on average)
at any point X ∈ Rn

NU and ND batch sizes of samples from PU and from PD, that are used in
a single optimization iteration

LPSO : F → R population PSO functional
L̂N

U ,ND

PSO : F → R empirical PSO functional, approximates LPSO via training
points {XU

i }N
U

i=1 and {XD
i }N

D

i=1
gθ(X,X ′) model kernel that is responsible for generalization and

interpolation during the GD optimization
rθ(X,X ′) relative model kernel, a scaled version

rθ(X,X ′) = gθ(X,X ′)/gθ(X,X) of gθ(X,X ′) whose properties
can be used to analyze the bias-variance trade-off of PSO

Table 1: Thesis Main Notations

4

CHAPTER 1

Introduction

Probabilistic inference is the wide domain of extremely important statistical problems includ-

ing density (ratio) estimation, distribution transformation, density sampling and many more.

Solutions to these problems are extensively used in domains of robotics, computer image,

economics, and other scientific/industrial data mining cases. Particularly, in robotics we require

to manually/automatically infer a measurement model between sensor measurements and the

hidden state of the robot, which can further be used to estimate robot state during an on-line

scenario. Considering the above, solutions to probabilistic inference and their applications to

real-world problems are highly important for many scientific fields.

The universal approximation theory [48] states that an artificial neural network with fully-

connected layers can approximate any continuous function on compact subsets of Rn, making it

an universal approximation tool. Moreover, in the last decade methods based on Deep Learning

(DL) provided outstanding performance in areas of computer vision and reinforcement learning.

Furthermore, recently strong frameworks (e.g. [19, 108, 135]) were developed that allow fast

and sophisticated training of neural networks (NNs) using GPUs.

With the above motivation, in this thesis we contribute a novel unified paradigm, Probabilis-

tic Surface Optimization (PSO), that allows to solve various probabilistic inference problems

using DL, where we exploit the approximation power of NNs in full. PSO expresses the proba-

bilistic inference as a virtual physical system where the surface, represented by a function from

the optimized function space (e.g. NN), is pushed by forces that are outcomes of a Gradient

Descent (GD) optimization. We show that this surface is pushed during the optimization to

the target surface for which the averaged pointwise forces cancel each other. Further, by using

different virtual forces we can enforce the surface to converge to different probabilistic functions

of data, such as a data density, various density ratios, conditional densities and many other

useful statistical modalities.

We show that many existing probabilistic inference approaches, like unnormalized models,

GAN critics, energy models and cross-entropy based methods, already apply such PSO principles

implicitly, even though their underlying dynamics were not explored before through the prism

5

of virtual forces. Additionally, many novel and original methods can be forged in a simple way

by following the same fundamental rules of the virtual surface and the force balance. Moreover,

PSO framework permits the proposal and the practical usage of new objective functions that

can not be expressed in closed-form, by instead defining their Euler-Lagrange equation. This

allows introduction of new estimators that were not considered before. Furthermore, motivated

by usefulness and intuitiveness of the proposed PSO paradigm, we derive sufficient conditions

for its optimization stability and further analyze its convergence.

Importantly, we emphasize that PSO is not only a new interpretation that allows for sim-

plified and intuitive understanding of statistical learning. Instead, in this thesis we show that

optimization dynamics that the inferred model undergoes are indeed matching the picture of

a physical surface with particular forces applied on it. Moreover, such match allowed us to

understand the optimization stability of PSO instances in more detail and to suggest new ways

to improve it.

Further, we apply PSO framework to solve the density estimation task - a fundamental

statistical problem essential in many scientific fields and application domains. We analyze PSO

sub-family with the corresponding equilibrium, proposing a novel PSO log-density estimators

(PSO-LDE). These techniques, as also other PSO-based density estimation approaches presented

in this thesis, do not impose any explicit constraint over a total integral of the learned model,

allowing it to be entirely unnormalized. Yet, the implicit PSO force balance produces at the

convergence density approximations that are highly accurate and almost normalized, with total

integral being very close to 1.

Additionally, we examine several NN architectures for a better estimation performance, and

propose new block-diagonal layers that led us to significantly improved accuracy. PSO-LDE

approach combined with new NN architecture allowed us to learn multi-modal densities of 20D

continuous data with superior precision compared to other state-of-the-art methods, including

Noise Contrastive Estimation (NCE) [39, 126], which we demonstrate in our experiments.

Lastly, we relate the performance of PSO estimators to the model kernel also known in DL

community as Neural Tangent Kernel (NTK) [54]. We analyze its impact on PSO accuracy

and on bias-variance tradeoff, and further investigate its evolution during a typical optimization

process. The revealed alignment of this kernel towards the target function provides insights on

the learning dynamics of deep models which may lead in the future to a better understanding of

DL theory.

1.1 Thesis Structure

The thesis is organized into 15 chapters as follows.

Chapter 2 In this chapter we cover the work related to PSO framework. Since the topic of

this thesis is very wide and since PSO has tight relations with numerous existing works, here we

describe only the most related scientific literature.

6

Chapter 3 In this chapter we formulate PSO algorithm family, the main contribution of

this thesis. The proposed estimation procedure minimizes the novel PSO functional, whose

Euler-Lagrange equation allows to learn many statistical objective functions. As described, such

optimization resembles a physical system of forces applied over the virtual geometric body

which we call the model surface. Such physical system perspective brings with itself a strong

intuition and a conceptual simplicity, which makes PSO framework convenient and easy to use.

Chapter 4 In this chapter we use convex theory to derive sufficient optimality conditions over

various PSO components, under which the Euler-Lagrange equation represents a minimum of

PSO functional. Likewise, we derive PSO convergence in the neighborhoods where only one

physical force is present, which can be used to understand PSO dynamics outside of the mutual

support of involved densities.

Chapter 5 In this chapter we relate PSO framework to many other existing methods, showing

them to be its instances. Additionally, we show how to derive convergence of any considered

PSO instance and how to derive new PSO instances for inference of various statistical modalities.

Likewise, here we introduce the terminology to modulate PSO into various subgroups.

Chapter 6 In this chapter we define PSO divergence and outline its relation towards Bregman

divergence and f -divergence. Particularly, we show that estimators based on these divergences

are subsets of PSO estimation family.

Chapter 7 In this chapter numerous estimation properties are proved, including consistency

and asymptotic normality. Likewise, here we investigate the model kernel’s impact on the

optimization equilibrium.

Chapters 8-9 In these chapters we focus in more detail on application of PSO for (conditional)

density estimation. We introduce novel PSO-LDE estimators with bounded magnitude functions,

and likewise present their conditional form. Further, we relate conditional GAN (cGAN)

methods with PSO framework.

Chapter 10 In this chapter we show various additional PSO applications and relations. Partic-

ularly, we describe in detail the connection between PSO, cross-entropy, MLE, and contrastive

divergence [46]. Further, we describe the procedure for estimation of mutual information

between two random variables, and PSO-based solution for occupancy mapping in robotics

domain.

Chapter 11 In this chapter we investigate the NN design and its optimization influence.

Specifically, here we propose a new block-diagonal (BD) NN architecture as an alternative to the

fully-connected NN. We show that the new connectivity pattern, employed by BD NN, reduces

7

the bandwidth of the corresponding model kernel which can be used to reduce the estimation

bias of PSO.

Chapter 12 In this chapter we empirically illustrate the main practical issue of PSO algorithm

- PSO overfitting. Particularly, we show that in case of a small amount of training points and

a narrow bandwidth of the model kernel we may succeed in stretching the virtual surface to

have spikes at each training point. Such convergence is very undesirable and may be interpreted

as overfitting of the learning process. Further, here we describe several techniques that may

prevent this over-flexibility phenomena.

Chapter 13 In this chapter we experiment with various PSO instances and solve numerous

probabilistic inference tasks. Specifically, we apply PSO on the density estimation problem

and investigate the actual performance of different PSO instances in large and small dataset

size settings. Likewise, we compare the results with other state-of-the-art density estimation

methods that are not part of PSO, and show the superiority of PSO-based techniques.

Chapter 14 In this chapter we empirically investigate dynamics of the model kernel of NNs

during a typical optimization process, showing its extreme alignment towards the target function.

Such surprising behavior of deep models may explain their approximation power supremacy

compared to more shallow models. Further, in context of PSO this alignment improves the

overall inference accuracy, and may lead in the future to additional theoretical insights of PSO

dynamics.

Chapter 15 In this chapter we conclude the thesis and discuss its main contributions. We also

describe possible directions for future research. These include many important PSO aspects that

need to be solved in order to further enhance the estimation performance, such as an optimality

of various PSO instances and a study of interplay between magnitude functions and the model

kernel.

1.2 Thesis Contribution

The main contributions of this thesis are:

(a) We develop a Probabilistic Surface Optimization (PSO) that enforces any approximator

function to converge to a target statistical function which nullifies a point-wise virtual force.

(b) We derive sufficient optimality conditions under which the functional implied by PSO is

stable during the optimization.

(c) We show that many existing probabilistic and (un-)supervised learning techniques can be

seen as instances of PSO.

8

(d) We show how new probabilistic techniques can be derived in a simple way by using PSO

principles, and also propose several such new methods.

(e) We provide analysis of PSO convergence where we relate its performance towards properties

of the model kernel implicitly defined by the optimized function space.

(f) We use PSO to approximate a logarithm of the target density, proposing for this purpose

several hyper-parametric PSO subgroups and analyzing their properties.

(g) We present a new NN architecture with block-diagonal layers that allows for lower side-

influence (a smaller bandwidth of the corresponding model kernel) between various regions

of the input space and that leads to a higher NN flexibility and to more accurate density

estimation.

(h) We experiment with different continuous 20D densities, and accurately infer all of them

using the proposed PSO instances, thus demonstrating these instances’ robustness and top

performance. Further, we compare our methods with state-of-the-art baselines, showing the

superiority of former over latter.

(i) We show that the model kernel of NN serves as a NN memory, with its top eigenfunc-

tions changing to align with the learned target function. This improves the optimization

performance since the convergence rate along kernel top eigenfunctions is typically higher.

The following works were published/in submission process as part of this thesis:

• D. Kopitkov, V. Indelman. Robot Localization through Information Recovered From

CNN Classificators. International Conference on Intelligent Robots and Systems (IROS),

2018.

• D. Kopitkov, V. Indelman. Neural Spectrum Alignment: Empirical Study. International

Conference on Artificial Neural Networks (ICANN), 2020 (accepted).

• D. Kopitkov, V. Indelman. General Probabilistic Surface Optimization and its Variational

Equilibrium. Submitted to Journal of Machine Learning Research (JMLR).

Preprints in arXiv (still to be submitted):

• D. Kopitkov, V. Indelman. General Probabilistic Surface Optimization and Log Density

Estimation.

• D. Kopitkov, V. Indelman. Deep PDF: Probabilistic Surface Optimization and Density

Estimation.

9

10

CHAPTER 2

Related work

In this section we consider very different problems all of which involve reasoning about statistical

properties and probability density of a given data, which can be also solved by various instances

of PSO as is demonstrated in later sections. We describe studies done to solve these problems,

including both DL and not-DL based methods, and relate their key properties to attributes of

PSO.

2.1 Unsupervised Probabilistic Inference

Statistical estimation consists of learning various probabilistic modalities from acquired sample

realizations. For example, given a dataset we may want to infer the corresponding probability

density function (pdf). Similarly, given two datasets we may want to approximate the density

ratio between sample distributions. The usage of NNs for statistical estimation was studied

for several decades [14, 16, 44, 127, 140]. Furthermore, there is a huge amount of work that

treats statistical learning in a similar way to PSO, based on sample frequencies, the optimization

energies and their forces. Arguably, the first methods were Boltzman machines (BMs) and

Restricted Boltzman machines (RBMs) [1, 46, 98]. Similarly to PSO, RBMs can learn a

distribution over data samples using a physical equilibrium, and were proved to be very useful

for various ML tasks such as dimensionality reduction and feature learning. Yet, they were based

on a very basic NN architecture, containing only hidden and visible units, arguably because

of over-simplified formulation of the original BM. Moreover, the training procedure of these

methods, the contrastive divergence (CD) [46], applies computationally expensive Monte Carlo

(MC) sampling. In Section 10.3 we describe CD in detail and outline its exact relation to PSO

procedure, showing that the latter replaces the expensive MC by sampling auxiliary distribution

which is computationally cheap.

In [91] authors extended RBMs to Deep Energy Models (DEMs) that contained multiple

fully-connected layers, where during training each layer was trained separately via CD. Further,

in [151] Deep Structured Energy Based Models were proposed that used fully-connected,

11

convolutional and recurrent NN architectures for an anomaly detection of vector data, image

data and time-series data respectively. Moreover, in the latter work authors proposed to train

energy based models via a score matching method [50], which does not require MC sampling. A

similar training method was also recently applied in [119] for learning an energy function of data

- an unnormalized model that is proportional to the real density function. However, the produced

by score matching energy function is typically over-smoothed and entirely unnormalized, with

its total integral being arbitrarily far from 1 (see Section 13.2.2). In contrast, PSO based density

estimators (e.g. PSO-LDE) yield a model that is almost normalized, with its integral being very

close to 1 (see Section 13.2.1).

In [69] authors examined many statistical loss functions under the perspective of energy

model learning. Their overview of existing learning rules describes a typical optimization

procedure as a physical system of model pushes at various data samples in up and down

directions, producing the intuition very similar to the one promoted in this work. Although [69]

and our works were done in an independent manner with the former preceding the latter, both

acknowledged that many objective functions have two types of terms corresponding to two force

directions, that are responsible to enforce model to output desired energy levels for various

neighborhoods of the input space. Yet, unlike [69] we take one step further and derive the

precise way to control the involved forces, producing a formal framework for the generation

of infinitely many learning rules to infer an infinitely large number of target functions. The

proposed PSO approach is conceptually very intuitive, and permits unification of many various

methods under a single algorithm umbrella via a formal yet simple mathematical exposition.

This in its turn allows to address the investigation of different statistical techniques and their

properties as one mutual analysis study.

In context of pdf estimation, one of the most relevant works to presented in this thesis

PSO-LDE approach is NCE [39, 126], which formulates the inference problem via a binary

classification between original data samples and auxiliary noise samples. The derived loss allows

for an efficient (conditional) pdf inference and is widely adapted nowadays in the language

modeling domain [65,83,84]. Further, the proposed PSO-LDE can be viewed as a generalization

of NCE, where the latter is a specific member of the former for a hyper-parameter α = 1. Yet

importantly, both algorithms were derived based on different mathematical principles, and their

formulations do not exactly coincide.

Furthermore, the presented herein PSO family is not the first endeavor for unifying different

statistical techniques under a general algorithm umbrella. In [105] authors proposed a family of

unnormalized models to infer log-density, which is based on Maximum Likelihood Monte Carlo

estimation [28]. Their method infers both the energy function of the data and the appropriate

normalizing constant. Thus, the produced (log-)pdf estimation is approximately normalized.

Further, this work was extended in [38] where it was related to the separable Bregman divergence

and where various other statistical methods, including NCE, were shown to be instances of this

inference framework. In Section 6 we prove Bregman-based estimators to be contained inside

PSO estimation family, and thus both of the above frameworks are strict subsets of PSO.

Further, in [92] and [94] new techniques were proposed to infer various f -divergences

12

between two densities, based on M -estimation procedure and Fenchel conjugate [47]. Likewise,

the f-GAN framework in [94] was shown to include many of the already existing GAN methods.

In Section 6 we prove that estimation methods from [92] and critic objective functions from [94]

are also strict subsets of PSO.

The above listed methods, as also the PSO instances in Section 5, are all derived using

various math fields, yet they also could be easily derived via PSO balance state as is described

in this thesis. Further, the simplest way to show that PSO is a generalization and not just

another perspective that is identical to previous works is as follows. In most of the above

approaches optimization objective functions are required to have an analytically known closed

form, whereas in our framework knowledge of these functions is not even required. Instead, we

formulate the learning procedure via magnitude functions, the derivatives of various loss terms,

knowing which is enough to solve the corresponding minimization problem. Furthermore, the

magnitudes of PSO-LDE sub-family in Eq. (8.7)-(8.8) do not have a known antiderivative for the

general case of any α, with the corresponding PSO-LDE loss being unknown. Thus, PSO-LDE

(and therefore PSO) cannot be viewed as an instance of any previous statistical framework.

Additionally, the intuition and simplicity in viewing the optimization as merely point-wise

pushes over some virtual surface are very important for the investigation of PSO stability and

for its applicability in numerous different areas.

2.2 Parametric vs Non-parametric Approaches

The most traditional probabilistic problem, which is also one of the main focuses of this thesis,

is density approximation for an arbitrary data. Approaches for statistical density estimation may

be divided into two different branches - parametric and non-parametric. Parametric methods

assume data to come from a probability distribution of a specific family, and infer parameters

of that family, for example via minimizing the negative log-probability of data samples. Non-

parametric approaches are distribution-free in the sense that they do not take any assumption

over the data population a priori. Instead they infer the distribution density totally from data.

The main advantage of the parametric approaches is their statistical efficiency. Given

the assumption of a specific distribution family is correct, parametric methods will produce

more accurate density estimation for the same number of samples compared to non-parametric

techniques. However, in case the assumption is not entirely valid for a given population, the

estimation accuracy will be poor, making parametric methods not statistically robust. For

example, one of the most expressive distribution families is a Gaussian Mixture Model (GMM)

[79]. One of its structure parameters is the number of mixtures. Using a high number of

mixtures, it can represent multi-modal populations with a high accuracy. Yet, in case the real

unknown distribution has even higher number of modes, or sometimes even an infinite number,

the performance of a GMM will be low.

To handle the problem of unknown number of mixture components in parametric techniques,

Bayesian statistics can be applied to model a prior over parameters of the chosen family.

Models such as Dirichlet process mixture (DPM) and specifically Dirichlet process Gaussian

13

mixture model (DPGMM) [4,33,122] can represent an uncertainty about the learned distribution

parameters and as such can be viewed as infinite mixture models. Although these hierarchical

models are more statistically robust (expressive), they still require to manually select a base

distribution for DPM, limiting their robustness. Likewise, Bayesian inference applied in these

techniques is more theoretically intricate and computationally expensive [75].

On the other hand, non-parametric approaches can infer distributions of an (almost) arbitrary

form. Methods such as data histogram and kernel density estimation (KDE) [120, 125] use

frequencies of different points within data samples in order to conclude how a population

pdf looks like. In general, these methods require more samples and prone to the curse of

dimensionality, but also provide a more robust estimation by not taking any prior assumptions.

Observe that ”non-parametric” terminology does not imply lack of parametrization. Both

histogram and KDE require selection of (hyper) parameters - bin width for histogram and kernel

type/bandwidth for KDE.

In many cases a selection of optimal parameters requires the manual parameter search [125].

Although an automatic parameter deduction was proposed for KDE in several studies [24,43,95],

it is typically computationally expensive and its performance is not always optimal. Furthermore,

one of the major weaknesses of KDE is its time complexity during the query stage. Even the

most efficient KDE methods (e.g. [95]) require an above linear complexity (O(m logm)) in

the number of query points m. In contrast, PSO yields robust non-parametric algorithms that

optimize the NN model, which in its turn can be queried at any input point by a single forward

pass. Since this pass is independent of m, the query runtime of PSO is linear in m. When

the complexity of NN forward pass is lower than logm, PSO methods become a much faster

alternative. Moreover, existing KDE implementations do not scale well for data with a high

dimension, unlike PSO methods.

2.3 Additional Density Estimation Techniques

A unique work combining DL and non-parametric inference was done by Baird et al. [10]. The

authors represent a target pdf via Jacobian determinant of a bijective NN that has an implicit

property of non-negativity with the total integral being 1. Additionally, their pdf learning

algorithm has similarity to our pdf loss described in [61] and which is also shortly presented

in Section 8.1. Although the authors did not connect their approach to virtual physical forces

that are pushing a model surface, their algorithm can be seen as a simple instance of the more

general DeepPDF method that we contributed in our previous work.

Furthermore, the usage of Jacobian determinant and bijective NNs in [10] is just one in-

stance of DL algorithm family based on a nonlinear independent components analysis. Given

the transformation Gφ(·) typically implemented as a NN parametrized by φ, methods of this

family [20–22, 114] exploit the integration by substitution theorem that provides a mathemat-

ical connection between random X’s pdf P[X] and random Gφ(X)’s pdf P[Gφ(X)] through

Jacobian determinant of Gφ. In case we know P[X] of NN’s input X , we can calculate in

closed form the density P[Gφ(X)] of NN’s output and vice versa, which may be required in

14

different applications. However, for the substitution theorem to work the transformation Gφ(·)
should be invertible, requiring to restrict NN architecture of Gφ(·) which significantly limits NN

expressiveness. In contrast, the presented PSO-LDE approach does not require any restriction

over its NN architecture.

Further, another body of research in DL-based density estimation was explored in [27,

67, 140], where the autoregressive property of density functions was exploited. The described

methods NADE, RNADE and MADE decompose the joint distribution of a multivariate data into

a product of simple conditional densities where a specific variable ordering needs to be selected

for better performance. Although these approaches provide high statistical robustness, their

performance is still limited since every simple conditional density is approximated by a specific

distribution family thus introducing a bias into the estimation. Moreover, the provided solutions

are algorithmically complicated. In contrast, in this thesis we develop a novel statistically robust

and yet conceptually very simple algorithm for density estimation, PSO-LDE.

2.4 Relation to GANs

Recently, Generative Adversarial Networks (GANs) [32, 70, 109] became popular methods to

generate new data samples (e.g. photo-realistic images). GAN learns a generative model of

data samples, thus implicitly learning also the data distribution. The main idea behind these

methods is to have two NNs, a generator and a critic, competing with each other. The goal

of the generator NN is to create new samples statistically similar as much as possible to the

given dataset of examples; this is done by transformation of samples from a predefined prior

distribution z ∼ PZ which is typically a multivariate Gaussian. The responsibility of the critic

NN is then to decide which of the samples given to it is the real data example and which is the

fake. This is typically done by estimating the ratio between real and fake densities. The latter is

performed by minimizing a critic loss, where most popular critic losses [6, 36, 76, 85, 86, 153]

can be shown to be instances of PSO (see Section 5). Further, both critic and generator NNs are

trained in adversarial manner, forcing generator eventually to create very realistic data samples.

Another extension of GAN is Conditional GAN methods (cGANs). These methods use

additional labels provided for each example in the training dataset (e.g. ground-truth digit of

image from MNIST dataset), to generate new data samples conditioned on these labels. As an

outcome, in cGAN methods we can control to some degree the distribution of the generated

data, for example by conditioning the generation process on a specific data label (e.g. generate

an image of digit ”5”). Similarly, we can use such a conditional generative procedure in robotics

where we would like to generate future measurements conditioned on old observations/current

state belief. Moreover, cGAN critics are also members of PSO framework as is demonstrated in

Section 9.1.

Further, it is a known fact that optimizing GANs is very unstable and fragile, though

during the years different studies analyzed various instability issues and proposed techniques to

handle them [5]. In [109], the authors proposed the DCGAN approach that combines several

stabilization techniques such as the batch normalization and Relu non-linearity usage for a better

15

GAN convergence. Further improvement was done in [118] by using a parameter historical

average and statistical feature matching. Additionally, in [5] it was demonstrated that the main

reason for instability in training GANs is the density support difference between the original

and generated data. While this insight was supported by very intricate mathematical proofs,

we came to the same conclusion in Section 7 by simply applying equilibrium concepts of PSO.

As we show, if there are areas where only one of the densities is positive, the critic’s surface is

pushed by virtual forces to infinity, causing the optimization instability (see also Figure 7.2).

Moreover, in our analysis we detected another significant cause for estimation inaccuracy

- the strong implicit bias produced by the model kernel. In our experiments in Section 13 the

bandwidth of this kernel is shown to be one of the biggest factors for a high approximation error

in PSO. Moreover, in this thesis we show that there is a strong analogy between the model kernel

and the kernel applied in kernel density estimation (KDE) algorithms [120, 125]. Considering

KDE, low/high values of the kernel bandwidth can lead to both underfitting and overfitting,

depending on the number of training samples. We show the same to be correct also for PSO.

See more details in Sections 12 and 13.

2.5 Classification Domain

Considering supervised learning and the image classification domain, convolutional neural

networks (CNNs) produce discrete class conditional probabilities [64] for each image. The

typical optimization loss used by classification tasks is a categorical cross-entropy of data and

label pair, which can also be viewed as an instance of our discovered PSO family, as shown

in Section 10.1. In particular, the classification cross-entropy loss can be seen as a variant of

the PSO optimization, pushing in parallel multiple virtual surfaces connected by a softmax

transformation, that concurrently estimates multiple Bernoulli distributions. These distributions,

in their turn, represent one categorical distribution P(C|I) that models probability of each object

class C given a specific image I .

Beyond cross-entropy loss, many possible objective functions for Bayes optimal decision

rule inference exist [77, 112, 123]. These objectives have various forms and a different level of

statistical robustness, yet all of them enforce the optimized model to approximate P(C|I). PSO

framework promotes a similar relationship among its instances, by allowing the construction

of infinitely many estimators with the same equilibrium yet with some being more robust to

outliers than the others. Further, the recently proposed framework [17] of classification losses

extensively relies on notions of Fenchel duality, which is also employed in this thesis to derive

the sufficient conditions over PSO magnitudes.

16

CHAPTER 3

Probabilistic Surface Optimization

In this section we formulate the definition of Probabilistic Surface Optimization (PSO) algorithm

framework. While in previous work [61] we already explored a particular instance of PSO

specifically for the problem of density estimation, in Section 5 we will see that PSO is actually

a very general family of probabilistic inference algorithms that can solve various statistical tasks

and that include a great number of existing methods.

3.1 Formulation

Consider an input space X ∈ Rn and two densities PU and PD defined on it, with appropriate

pdfs PU(X) and PD(X) and with supports SU ⊂ Rn and SD ⊂ Rn; U and D denote the up

and down directions of forces under a physical perspective of the optimization (see below).

Denote by SU∩D, SU\D and SD\U sets {X : X ∈ SU ∨X ∈ SD}, {X : X ∈ SU ∨X /∈ SD} and

{X : X /∈ SU ∨X ∈ SD} respectively. Further, denote a model fθ(X) : Rn → R parametrized

by the vector θ (e.g. NN or a function in Reproducing Kernel Hilbert Space, RKHS). Likewise,

define two arbitrary functions MU(X, s) : Rn × R→ R and MD(X, s) : Rn × R→ R, which

we name magnitude functions; both functions must be continuous almost everywhere w.r.t.

argument s (see also Table 1 for list of main notations). We propose a novel PSO framework for

probabilistic inference, that performs a gradient-based iterative optimization θt+1 = θt − δ · dθ
with a learning rate δ where:

dθ = − 1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)] · ∇θfθ(XU
i) + 1

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · ∇θfθ(XD
i).

(3.1)

{XU
i }N

U

i=1 and {XD
i }N

D

i=1 are sample batches from PU and PD respectively. Each PSO instance is

defined by a particular choice of {PU ,PD,MU ,MD} that produces a different convergence of

fθ(X) by approximately satisfying PSO balance state (within a mutual support SU∩D):

PU(X)
PD(X) = MD [X, fθ∗(X)]

MU [X, fθ∗(X)] . (3.2)

17

Figure 3.1: Illustration of PSO principles. Model fθ(X) : Rn → R (in this thesis NN parametrized by θ) represents a virtual
surface that is pushed in opposite directions - up at pointsXU sampled from PU (X) and down at pointsXD sampled from PD(X).
Magnitude of each push is amplified by analytical function - MU [X, fθ(X)] when pushing at XU and MD [X, fθ(X)] when
pushing at XD , where both functions may have an almost arbitrary form, with only minor restrictions. During optimization via loss
gradient in Eq. (3.1) the up and down forces FUθ (X) = PU (X) ·MU [X, fθ(X)] and FDθ (X) = PD(X) ·MD [X, fθ(X)],
containing both frequency and analytical components, adapt to each other till point-wise balance state FUθ (X) = FDθ (X) is
achieved. Such convergence causes final fθ(X) to be a particular function of PU (X) and PD(X), and can be used for inferring
numerous statistical functions of arbitrary data (see Section 5).

Such optimization, outlined in Algorithm 3.1, will allow us to infer various statistical modalities

from available data, making PSO a very useful and general algorithm family.

3.2 Derivation

Consider PSO functional over a function f : Rn → R as:

LPSO(f) = − E
X∼PU

M̃U [X, f(X)] + E
X∼PD

M̃D [X, f(X)] (3.3)

where we define M̃U [X, s] ,
∫ s
s0
MU(X, t)dt and M̃D [X, s] ,

∫ s
s0
MD(X, t)dt to be an-

tiderivatives of MU(·) and MD(·) respectively; these functions, referred below as primitive

functions of PSO, are not necessarily known analytically. The above integral can be separated

into several terms related to SU∩D, SU\D and SD\U . A minima f∗ of LPSO(f) is described

below, characterizing f∗ within each of these areas.

Theorem 1 (Variational Characterization). Consider densities PU and PD and magnitudes

MU and MD. Define an arbitrary function h : SU\D → R. Then for f∗ to be minima of LPSO,

it must fulfill the following properties:

1. Mutual support: under ”sufficient” conditions over {MU ,MD} the f∗ must satisfy PSO

balance state ∀X ∈ SU∩D: PU(X) ·MU [X, f∗(X)] = PD(X) ·MD [X, f∗(X)].

2. Disjoint support: depending on properties of a function MU , it is necessary to satisfy

∀X ∈ SU\D:

(a) If ∀s ∈ R : MU(X, s) > 0, then f∗(X) =∞.

18

Algorithm 3.1 PSO estimation algorithm. Sample batches can be either identical or different
for all iterations, which corresponds to GD and stochastic GD respectively.
Inputs:
PU and PD : up and down densities
MU and MD : magnitude functions
θ : initial parameters of model fθ ∈ F
δ : learning rate

1 Outputs: fθ∗ : PSO solution that satisfies balance state in Eq. (3.2)

2 begin:
3 while Not converged do
4 Obtain samples {XU

i }N
U

i=1 from PU

5 Obtain samples {XD
i }N

D

i=1 from PD
6 Calculate dθ via Eq. (3.1)
7 θ = θ − δ · dθ
8 end
9 θ∗ = θ

10 end

(b) If ∀s ∈ R : MU(X, s) < 0, then f∗(X) = −∞.

(c) If ∀s ∈ R : MU(X, s) ≡ 0, then f∗(X) can be arbitrary.

(d) If ∀s ∈ R :

MU(X, s)→

= 0, s = h(X)

> 0, s < h(X)

< 0, s > h(X)

(3.4)

then f∗(X) = h(X).

(e) Otherwise, additional analysis is required.

The theorem’s proof, showing PSO balance state to be Euler-Lagrange equation ofLPSO(f),

is presented in Section 4. Sufficient conditions over {MU ,MD} are likewise derived there. Part

2 helps to understand dynamics in areas outside of the mutual support, and its analogue for SD\U

is stated in Section 4.2.2. Yet, below we will mostly rely on part 1, considering the optimization

in area SU∩D. Following from the above, finding a minima of LPSO will produce a function f

that satisfies Eq. (3.2).

To infer the above f∗, we consider a function space F , whose each element fθ can be

parametrized by θ, and solve the problem minfθ∈F LPSO(fθ). Assuming that F contains f∗, it

will be obtained as a minima of the above minimization. Further, in practice LPSO is optimized

via gradient-based optimization where gradient w.r.t. θ is:

∇θLPSO(fθ) = − E
X∼PU

MU [X, fθ(X)]·∇θfθ(X)+ E
X∼PD

MD [X, fθ(X)]·∇θfθ(X) (3.5)

with Eq. (3.1) being its sampled approximation. Considering a hypothesis class represented

by NN and the universal approximation theory [48], we assume that F is rich enough to learn

19

the optimal f∗ with high accuracy. Furthermore, in our experiments we show that in practice

NN-based PSO estimators approximate the PSO balance state in a very accurate manner.

Remark 2. PSO can be generalized into a functional gradient flow via the corresponding

functional derivative of LPSO(f) in Eq. (3.3). Yet, in this thesis we will focus on GD formulation

w.r.t. θ parametrization, outlined in Algorithm 3.1, leaving more theoretically sophisticated form

for future work. Algorithm 3.1 is easy to implement in practice, if for example fθ is represented

as NN. Furthermore, in case F is RKHS, this algorithm can be performed by only evaluating

RKHS’s kernel at training points, by applying the kernel trick. The corresponding optimization

algorithm is known as the kernel gradient descent. Further, in this thesis we consider loss

functions without an additional regularization term such as RKHS norm or weight decay, since

a typical GD optimization is known to implicitly produce a regularization effect [74]. Analysis

of PSO combined with the explicit regularization term is likewise left for future work.

3.3 PSO Balance State

Given that PU and PD have the same support, PSO will converge to PSO balance state in

Eq. (3.2). By ignoring possible singularities (due to an assumed identical support) we can

see that the converged surface fθ∗ will be such that the ratio of frequency components will be

opposite-proportional to the ratio of magnitude components. To derive a value of the converged

fθ∗ for a specific PSO instance, {MU ,MD} of that PSO instance, which typically involve fθ
inside them, must be substituted into Eq. (3.2) and then it needs to be solved for fθ. This

is equivalent to finding inverse T (X, z) of the ratio R(X, s) , MD(X,s)
MU (X,s) w.r.t. the second

argument, T ≡ R−1, with the convergence described as fθ∗(X) = T
[
X, P

U (X)
PD(X)

]
. Such

balance state can be used to mechanically recover many existing methods and to easily derive

new ones for inference of numerous statistical functions of data; in Section 5 we provide full

detail on this point. Furthermore, the above general formulation of PSO is surprisingly simple,

considering that it provides a strong intuition about its optimization dynamics as a physical

system, as explained below.

3.4 Virtual Surface Perspective

The main advantage of PSO is in its conceptual simplicity, revealed when viewed via a physical

perspective. Specifically, fθ(X) can be considered as a virtual surface in Rn+1 space, with its

support being Rn, see Figure 3.1. Further, according to the update rule of a gradient-descent

(GD) optimization and Eq. (3.1), any particular training point X updates θ during a single GD

update by∇θfθ(X) magnified by the output of a magnitude function (MU orMD). Furthermore,

considering the update of a simple form θt+1 = θt + ∇θfθt(X), it is easy to show that the

height of the surface at any other point X ′ changes according to a first-order Taylor expansion

as:

fθt+1(X ′)− fθt(X ′) ≈ ∇θfθt(X ′)T · ∇θfθt(X). (3.6)

20

Hence, by pushing (optimizing) a specific training point X , the surface at other points changes

according to the elasticity properties of the model expressed via a gradient similarity kernel

gθ(X,X ′) , ∇θfθ(X)T · ∇θfθ(X ′). It helps also to think that during the above update we

push at X with a virtual rod, appeared inside Figure 3.1 in form of green and red arrows, whose

head shape is described by gθ(X,X ′).

When optimizing over RKHS, the above expression turns to be identity and gθ(X,X ′)
collapses into the reproducing kernel1. For NNs, this model kernel is known as Neural Tangent

Kernel (NTK) [54]. As was empirically observed, NTK has a strong local behavior with its

outputs mostly being large only when points X and X ′ are close by. More insights about

NTK can be found in [23, 54, 63]. Further assuming for simplicity that gθ has zero-bandwidth

∀X 6= X ′ : gθ(X,X ′) ≡ 0 and that {MU ,MD} are non-negative functions, it follows then

that each XU
i in Eq. (3.1) pushes the surface at this point up by gθ(XU

i , X
U
i) magnified by

MU [XU
i , fθ(XU

i)], whereas each XD
i is pushing it down in a similar manner.

Considering a macro picture of such optimization, fθ(X) is pushed up at samples from

PU and down at samples from PD, with the up and down averaged point-wise forces being

F U
θ (X) , PU(X) ·MU [X, fθ(X)] and FD

θ (X) , PD(X) ·MD [X, fθ(X)] (gθ(X,X) term is

ignored since it is canceled out). Intuitively, such a physical process converges to a stable state

when point-wise forces become equal, F U
θ (X) = FD

θ (X). This is supported mathematically

by the part 1 of Theorem 1, with such equilibrium being named as PSO balance state. Yet,

it is important to note that this is only the variational equilibrium, which is obtained when

training datasets are infinitely large and when the bandwidth of kernel gθ is infinitely small. In

practice the outcome of GD optimization strongly depends on the actual amount of available

sample points and on various properties of gθ, with the model kernel serving as a metric over

the function space F . Thus, the actual equilibrium somewhat deviates from PSO balance state,

which we investigate in Section 7.

Additionally, the actual force direction at samples XU
i and XD

i depends on signs of

MU [XU
i , fθ(XU

i)] and MD [XU
i , fθ(XD

i)], and hence may be different for each instance of

PSO. Nonetheless, in most cases the considered magnitude functions are non-negative, and thus

support the above exposition exactly. Moreover, for negative magnitudes the above picture of

physical forces will still stay correct, after swapping between up and down terms.

The physical equilibrium can also explain dynamics outside of the mutual support SU∩D.

Considering the area SU\D ⊂ Rn where only samples XU
i are located, when MU has positive

outputs, the model surface is pushed indefinitely up, since there is no opposite force required

for the equilibrium. Likewise, when MU ’s outputs are negative - it is pushed indefinitely down.

Further, when magnitude function is zero, there are no pushes at all and hence the surface can

be anything. Finally, if the output of MU [X, fθ(X)] is changing signs depending on whether

fθ(X) is higher than h(X), then fθ(X) must be pushed towards h(X) to balance the forces.

Such intuition is supported mathematically by part 2 of Theorem 1. Observe that convergence at

infinity actually implies that PSO will not converge to the steady state for any number of GD

1In RKHS defined via a feature map φ(X) and a reproducing kernel k(X,X ′) = φ(X)T · φ(X ′), every
function has a form fθ(X) = φ(X)T · θ. Since∇θfθ(X) = φ(X), we obtain gθ(X,X ′) ≡ k(X,X ′).

21

iterations. Yet, it can be easily handled by for example limiting range of functions within the

considered F to some set [a, b] ⊂ R.

Remark 3. In this thesis we discuss PSO and its applications in context of only continuous

multi-dimensional data, while in theory the same principles can work also for discrete data.

The sampled points XU
i and XD

i will be located only at discrete locations of the surface fθ(X)
since the points are in Zn ⊂ Rn. Yet, the balance at each such point will still be governed by

the same up and down forces. Thus, we can apply similar PSO methods to also infer statistical

properties of discrete data.

22

CHAPTER 4

PSO Functional

Here we provide a detailed analysis of PSO functional LPSO(f), proving Theorem 1 and

deriving sufficient optimality conditions to ensure its optimization stability for any considered

pair of MU and MD. Examine LPSO’s decomposition:

LPSO(f) = LU∩D(f) + LU\D(f) + LD\U(f), (4.1)

LU∩D(f) ,
∫
SU∩D

−PU(X) · M̃U [X, f(X)] + PD(X) · M̃D [X, f(X)] dX

LU\D(f) , −
∫
SU\D

PU(X) · M̃U [X, f(X)] dX

LD\U(f) ,
∫
SD\U

PD(X) · M̃D [X, f(X)] dX.

(4.2)

In Section 4.1 we analyze LU∩D, specifically addressing non-differentiable functionals (Section

4.1.1), differentiable functionals (Section 4.1.2) and deriving extra conditions for unlimited

range of F (Section 4.1.3). Further, in Section 4.2 we analyze LU\D and LD\U , proving part 2

of Theorem 1.

4.1 Mutual Support Optima

Consider the loss term LU∩D(f) corresponding to the area SU∩D, where PU(X) > 0 and

PD(X) > 0. The Euler-Lagrange equation of this loss is −PU(X) ·MU [X, f(X)] + PD(X) ·
MD [X, f(X)] = 0, thus yielding the conclusion that LU∩D’s minimization must lead to the

convergence in Eq. (3.2). Yet, calculus of variations does not easily produce the sufficient

conditions that {MU ,MD} must satisfy for such steady state. Instead, below we will apply

notions of Legendre-Fenchel (LF) transform from the convex optimization theory.

23

(a) (b) (c) (d)

Figure 4.1: (a) Example of a convex function ϕ̃(z) defined on an interval (a, b), (b) its convex-conjugate ψ̃(s), (c) subderivative
∂ϕ̃(z) and (d) subderivative ∂ψ̃(s). The ∂ϕ̃(z) has jumps at points in (a, b) where ϕ̃(z) is non-differentiable, and is constant at
points where ϕ̃(z) is not strictly convex. Further, ∂ϕ̃(z) and ∂ψ̃(s) are inverse mappings between (a, b) and (c, d), with constant
regions in ∂ϕ̃(z) corresponding to jumps in ∂ψ̃(s), and vice versa. Additionally, any of the above four functions can be recovered
from any other, thus each of them is a different representation of the same information. Observe that a convex function ψ̃(s)
can be recovered from its subderivative ∂ψ̃(s) only up to an additive constant. Yet, this constant will not affect optima s∗ of the
considered below optimization mins∈(c,d) ψ̃(s)− z · s and hence can be ignored. Furthermore, codomains of ϕ̃(z) and of ψ̃(s)
do not play any role in our derivation.

4.1.1 PSO Non-Differentiable Case

The core concepts required for the below derivation are properties of convex functions and their

derivatives, and an inversion relation between (sub-)derivatives of two convex functions that

are also convex-conjugate of each other. Each convex function ϕ̃(z) on an interval (a, b) of

real-line can be represented by its derivative ϕ(z), with latter being increasing on (a, b) with

finitely many discontinuities (jumps). Each non-differentiable point z0 of ϕ̃ is expressed within

ϕ by a jump at z0, and at each point where ϕ̃ is not strictly convex the ϕ is locally constant.

Left-hand and right-hand derivatives ϕ̃D−(z) and ϕ̃D+(z) of ϕ̃

ϕ̃D−(z0) = lim
z→z−0

ϕ̃(z)− ϕ̃(z0)
z − z0

, ϕ̃D+(z0) = lim
z→z+

0

ϕ̃(z)− ϕ̃(z0)
z − z0

(4.3)

can be constructed from ϕ by treating its finitely many discontinuities as left-continuities

and right-continuities respectively. Further, ϕ̃’s subderivative at z is defined as ∂ϕ̃(z) =
[ϕ̃D−(z), ϕ̃D+(z)]. Note that ϕ̃ can be recovered from any one-sided derivative by integration

[106, see Appendix C], up to an additive constant which will not matter for our goals. Hence,

each one of ϕ̃, ϕ, ϕ̃D−, ϕ̃D+ and ∂ϕ̃ is just a different representation of the same information.

The LF transform ψ̃ of ϕ̃ (also known as convex-conjugate of ϕ̃) is a convex function

defined as ψ̃(s) , supz∈R{sz − ϕ̃(z)}. Subderivatives ∂ϕ̃ and ∂ψ̃ have the following useful

inverse relation [115, see Proposition 11.3]: ∂ψ̃(s) = {z : s ∈ ∂ϕ̃(z)}. Moreover, in case ϕ̃

and ψ̃ are strictly convex and differentiable, their derivatives ϕ and ψ are strictly increasing and

continuous, and actually are inverse functions between (a, b) and (c, d), with c , infz∈(a,b) ϕ(z)
and d , supz∈(a,b) ϕ(z). Further, since ∂ψ̃ can be recovered from ∂ϕ̃, it contains the same

information and is just one additional representation form. See illustration in Figure 4.1 and

refer to [155] for a more intuitive exposition.

The above inverse relation can be used in optimization by applying the Fenchel-Young

inequality: for any z ∈ (a, b) and s ∈ (c, d) we have ϕ̃(z) + ψ̃(s) − z · s ≥ 0, with equality

24

obtained iff s ∈ ∂ϕ̃(z). Thus, for any given z ∈ (a, b) the optima s∗ = arg mins∈(c,d) ψ̃(s)−z·s
must be within ∂ϕ̃(z). It is helpful to identify a role of each term within the above optimization

problem. The ψ̃ serves as part of the cost, ∂ϕ̃ defines the optima s∗, ∂ψ̃ is required to solve this

optimization in practice (i.e. via subgradient descent), and ψ̃ is not actually used. Thus, in order

to define properties we want s∗ to have and to perform the actual optimization, we only need to

know ∂ϕ̃ and ∂ψ̃, with the latter being easily recovered from the former. For this reason, given

an increasing function ϕ(z) with domain (a, b) and codomain (c,d), in practice it is sufficient to

know its inverse ψ(s) (or the corresponding subderivative ∂ψ̃) to solve the optimization and to

obtain the optima s∗ ∈ (c, d) s.t. s∗ = ϕ(z) (or s∗ ∈ ∂ϕ̃(z)). Convex functions ϕ̃ and ψ̃ can

be used symbolically for a math proof, yet their actual form is not required, which was also

noted in [112]. This idea may seem pointless since to find s∗ we can compute ϕ(z) in the first

place, yet it will help us in construction of a general optimization framework for probabilistic

inference.

In following statements we define several functions with two arguments, where the first

argument X can be considered as a ”spectator” and where all declared functional properties

are w.r.t. the second argument for any value of the first one. Define the required estimation

convergence by a transformation T (X, z) : Rn × R>0 → R. Given that T is increasing and

right-continuous (w.r.t. z ∈ R>0 at any X ∈ Rn), below we will derive a new objective

functional whose minima is f∗(X) = T
[
X, P

U (X)
PD(X)

]
and which will have a form of LU∩D.

Furthermore, this derivation will yield the sufficient conditions over PSO magnitudes.

Consider any fixed value of X ∈ Rn. Denote by K = (smin, smax) the effective conver-

gence interval, with smin = infz∈R>0 T (X, z) and smax = supz∈R>0 T (X, z); at the conver-

gence we will have f∗(X) ∈ K. Further, below we will assume that the effective interval K is

identical for any X , which is satisfied by all convergence transformations T considered in our

work. It can be viewed as an assumption that knowing value of X without knowing value of
PU (X)
PD(X) does not yield any information about the convergence T

[
X, P

U (X)
PD(X)

]
.

Due to its properties, T (X, z) : Rn × R>0 → K can be acknowledged as a right-hand

derivative of some convex function T̃ (X, z) (w.r.t. z). Denote by T̃D−(X, z), T̃D+(X, z) ≡
T (X, z) and ∂T̃ (X, z) left-hand derivative, right-hand derivative and subderivative of T̃ .

Next, define a mapping G(X, s) to be a strictly increasing and right-continuous function

on s ∈ K, with K̄ = {G [X, s] : s ∈ K} being an image of K under G. Set K̄ may depend

on value of X , although it will not affect below conclusions. We denote the left-inverse of

G(X, s) : Rn ×K→ K̄ as G−1(X, t) : Rn × K̄→ K s.t. ∀s ∈ K : G−1(X,G(X, s)) = s.

Define a mapping Φ(X, z) , G(X,T (X, z)) : Rn×R>0 → K̄ and note that it is increasing

(composition of two increasing functions is increasing) and right-continuous (right-continuity

of G preserves all limits required for right-continuity of Φ). Similarly to T , define Φ̃(X, z),

Φ̃D−(X, z) ≡ G(X, T̃D−(X, z)), Φ̃D+(X, z) ≡ G(X, T̃D+(X, z)) and ∂Φ̃(X, z) to be the

corresponding convex function, its left-hand derivative, right-hand derivative and subderivative

respectively.

Denote by Ψ̃(X, t) the LF transform of Φ̃(X, z) w.r.t. z. Its subderivative at any t ∈ K̄ is

∂Ψ̃(X, t) = {z : G−1(t) ∈ ∂T̃ (X, z)} ⊂ R>0. According to the Fenchel-Young inequality,

25

for any given z ∈ R>0 the optima t∗ of mint∈K̄ Ψ̃(X, t) − t · z must be within ∂Φ̃(X, z).

Further, this optimization can be rewritten as minG(X,s):s∈K Ψ̃(X,G(X, s))−G(X, s) · z with

its solution satisfying s∗ : G(X, s∗) ∈ ∂Φ̃(X, z), or:

s∗ = arg min
s∈K

−z ·G(X, s) + Ψ̃(X,G(X, s)), (4.4)

G(X, s∗) ∈ [Φ̃D−(X, z), Φ̃D+(X, z)]⇒ s∗ ∈ [T̃D−(X, z), T̃D+(X, z)]⇒ s∗ ∈ ∂T̃ (X, z) ⊂ K,
(4.5)

where we applied the left-inverse G−1. The above statements are true for any considered

X ∈ Rn, with the convergence interval K being independent of X’s value. Additionally, while

the above problem is not necessarily convex in s (actually it is easily proved to be quasiconvex),

it still has a well-defined minima s∗. Further, various methods can be applied if needed to solve

this nonconvex nonsmooth optimization using ∂Ψ̃ and various notions of G’s subdifferential [9].

Substituting z ≡ PU (X)
PD(X) , G(X, s) ≡ M̃U(X, s) and Ψ̃(X,G(X, s)) ≡ M̃D(X, s) we get:

s∗ = arg min
s∈K

−PU(X)
PD(X) · M̃

U(X, s) + M̃D(X, s) =

= arg inf
s∈K

−PU(X) · M̃U(X, s) + PD(X) · M̃D(X, s), (4.6)

where we replaced minimum with infimum for the latter use. Optima s∗ is equal to T
[
X, P

U (X)
PD(X)

]
if T is continuous at z = PU (X)

PD(X) , or must be within [T̃D−(X, P
U (X)

PD(X)), T̃D+(X, P
U (X)

PD(X))] other-

wise.

Next, denote F to be a function space with measurable functions f : SU∩D → K w.r.t.

a base measure dX . Then, the optimization problem inff∈F LU∩D(f) solves the problem in

Eq. (4.6) for f(X) at each X ∈ SU∩D:

inf
f∈F

LU∩D(f) =
∫
SU∩D

inf
f(X)

[
−PU(X) · M̃U [X, f(X)] + PD(X) · M̃D [X, f(X)]

]
dX,

(4.7)

where we can move infimum into the integral since f is measurable, the argument used also

in works [92, 94]. Thus, the solution f∗ = arg inff∈F LU∩D(f) must satisfy ∀X ∈ SU∩D :
f∗(X) ∈ ∂T̃

[
X, P

U (X)
PD(X)

]
, given that f∗ ∈ F .

Finally, we summarize all conditions that are sufficient for the above conclusion: function

T (X, z) is increasing and right-continuous w.r.t. z ∈ R>0, the convergence interval K is

X-invariant, G(X, s) (also aliased as M̃U(X, s)) is right-continuous and strictly increasing

w.r.t. s ∈ K, and F’s range is K. Given T , K, G and F have these properties, the entire above

derivation follows.

26

Figure 4.2: Summary of requirements over mappings T (X, z), R(X, s), MU (X, s) and MD(X, s). For any X ∈ Rn, T must
be strictly increasing and continuous on z ∈ R>0, with its image K = (smin, smax) marked by yellow. The inverse R of T is
likewise strictly increasing and continuous function from K to R>0. Further, MU and MD are any two functions that are positive
and continuous on K with MD

MU = R.

4.1.2 PSO Differentiable Case

More ”nice” results can be obtained if we assume additionally T (X, z) : Rn × R>0 → K
to be strictly increasing and continuous w.r.t. z ∈ R>0, and G(X, s) : Rn × K → K̄ to be

differentiable at s ∈ K. This is the main setting on which our work is focused.

In such case T is invertible. Denote its inverse as R(X, s) : Rn × K → R>0. The R is

strictly increasing and continuous w.r.t. s ∈ K, and satisfies ∀z ∈ R>0 : R [X,T [X, z]] = z

and ∀s ∈ K : T [X,R [X, s]] = s.

Further, the derivative of Φ̃(X, z) is Φ(X, z) = G(X,T (X, z)). The Φ is strictly increasing

and continuous w.r.t. z ∈ R>0, and thus Φ̃ is strictly convex and differentiable on R>0.

By LF transform’s rules the derivative Ψ(X, z) of Ψ̃ is an inverse of Φ̃’s derivative Φ(X, z),

and thus it can be expressed as Ψ(X, z) = R(X,G−1(X, z)). This leads to ∂Ψ̃(X,G(X,s))
∂s =

R(X, s) ·G′(X, s) where G′(X, s) , ∂G(X,s)
∂s is the derivative of G.

From above we can conclude that M̃U(X, s) ≡ G(X, s) and M̃D(X, s) ≡ Ψ̃(X,G(X, s))
are both differentiable at s ∈ K, with derivatives MU(X, s) = G′(X, s) and MD(X, s) =
R(X, s) ·G′(X, s) satisfying MD(X,s)

MU (X,s) = R(X, s). Functions MU and MD can be considered

as magnitudes of physical forces, as explained in Section 3.4. Also, MU(X, s) > 0 for

any s ∈ K due to properties of G. Observe that we likewise have R(X, s) > 0 for any

s ∈ K since R(X, s) ∈ R>0. This leads to MD(X, s) > 0 at any s ∈ K, which implies

M̃D(X, s) to be strictly increasing at s ∈ K (similarly to M̃U). Moreover, additionally taken

assumptions will enforce the solution f∗ = arg inff∈F LU∩D(f) to satisfy ∀X ∈ SU∩D :
f∗(X) = T

[
X, P

U (X)
PD(X)

]
.

Above we derived a new objective function LU∩D(f). Given that terms {T,K, G,F}
satisfy the declared above conditions, minima f∗ of LU∩D will be T

[
X, P

U (X)
PD(X)

]
. Properties of

{M̃U , M̃D,MU ,MD} follow from aforementioned conditions. This is summarized by below

theorem, where instead of G we enforce the corresponding requirements over {MU ,MD}. See

also Figure 4.2 for an illustrative example.

Theorem 4 (Convergence-Focused). Consider mappings T (X, z), MU(X, s) and MD(X, s).

Assume:

1. T (X, z) is strictly increasing and continuous w.r.t. z ∈ R>0, with its inverse denoted by

27

R(X, s).

2. The convergence interval K , {T (X, z)|z ∈ R>0} (image of R>0 under T) is X-

invariant.

3. MU(X, s) and MD(X, s) are continuous and positive at s ∈ K, satisfying MD(X,s)
MU (X,s) =

R(X, s).

4. Range of F is K.

Denote M̃U(X, s) and M̃D(X, s) to be antiderivatives of MU(X, s) and MD(X, s) at s ∈ K,

and construct the corresponding functional LU∩D. Then, the minima f∗ = arg inff∈F LU∩D(f)
will satisfy ∀X ∈ SU∩D : f∗(X) = T

[
X, P

U (X)
PD(X)

]
.

Continuity of {MU ,MD} in condition 3 is sufficient for existence of antiderivatives

{M̃U , M̃D}. It is a little too strong criteria for integrability, yet it is more convenient to

verify in practice. This leads to differentiability of M̃U , which in turn implies continuity and

differentiability of G; positiveness of MU in condition 3 implies G to be strictly increasing on

K. Conditions 2 and 4 restate assumptions over K and F . Therefore, the sufficient conditions

over {T,K, G,F} follow from the above list, which leads to the required f∗.

Given any required convergence T , the above theorem can be applied to propose valid

magnitudes {MU ,MD}. This basically comes to requiring magnitude functions to be continuous

and positive on K, with their ratio being inverse of T . Once such pair of functions is obtained,

the loss LU∩D with corresponding optima, and more importantly its gradient, can be easily

constructed. Observe that knowledge of {M̃U , M̃D} is not necessary neither for condition

verification nor for the optimization of LU∩D.

Further, given any LU∩D with corresponding {MU ,MD}, its convergence and sufficient

conditions can be verified via Theorem 5.

Theorem 5 (Magnitudes-Focused). Consider a functionalLU∩D with M̃U(X, s) and M̃D(X, s)
whose derivatives are MU(X, s) and MD(X, s). Denote R(X, s) to be the ratio MD(X,s)

MU (X,s) , and

define a convergence interval as K , (smin, smax). Assume:

1. R(X, s) : Rn ×K→ R>0 is continuous, strictly increasing and bijective w.r.t. domain

s ∈ K and codomain R>0, for any X ∈ Rn.

2. MU(X, s) and MD(X, s) are continuous and positive at s ∈ K.

3. Range of F is K.

Then, the minima f∗ = arg inff∈F LU∩D(f) will satisfy ∀X ∈ SU∩D : f∗(X) = T
[
X, P

U (X)
PD(X)

]
,

where T , R−1.

Condition sets in Theorem 4 and Theorem 5 are identical. Condition 1 of Theorem 5 is

required for T (X, z) to be strictly increasing, continuous and well-defined for each z ∈ R>0. K
can be any interval as long as conditions of Theorem 5 are satisfied, yet typically it is a preimage

28

{s ∈ R|R(X, s) ∈ R>0} of R>0 under R. See examples in Section 5.1. Likewise, observe

again that knowledge of PSO primitives {M̃U , M̃D} is not required.

Below we will use Theorem 4 to derive valid {MU ,MD} for any considered T , and Theorem

5 to derive T for any considered {MU ,MD}. Further, part 1 of Theorem 1 follows trivially

from the above statements. Moreover, due to symmetry between up and down terms we can also

have T and R to be strictly decreasing functions given MU(X, s) and MD(X, s) are negative

at s ∈ K. Furthermore, many objective functions satisfy the above theorems and thus can

be recovered via PSO framework. Estimation methods for which the sufficient conditions do

not hold include a hinge loss from the binary classification domain as also other threshold

losses [93]. Yet, these losses can be shown to be included within PSO non-differentiable case in

Section 4.1.1, whose analysis we leave for a future work.

4.1.3 Unlimited Range Conditions

Criteria 4 of Theorem 4 and 3 of Theorem 5 can be replaced by additional conditions over

{MU ,MD}. These derived below conditions are very often satisfied, which allows us to not

restrict F’s range in practice.

Recalling that K is an open interval (smin, smax), consider following sets K− = {s|s ≤
smin} and K+ = {s|s ≥ smax}. Observe that if smin = −∞ then K− is an empty set, and if

smax =∞ - K+ is empty. Further, K, K− and K+ are disjoint sets.

To reduce limitation over F ’s range, it is enough to demand the inner optimization problem

in Eq. (4.6) to be strictly decreasing on K− and strictly increasing on K+. To this purpose, first

we require {MU ,MD} to be well-defined on the entire real line s ∈ R. This can be achieved by

restricting M̃U(X, s) and M̃D(X, s) to be differentiable on s ∈ R - it is sufficient for MU(X, s)
and MD(X, s) to be well-defined on R. Alternatively, we may and will require MU(X, s) and

MD(X, s) to be continuous at any s ∈ R. This slightly stronger condition will ensure that

{MU ,MD} are well-defined and that the antiderivatives {M̃U , M̃D} exist on R. Moreover,

such condition is imposed over {MU ,MD}, allowing to neglect properties of {M̃U , M̃D}.
Further, in case K+ is not empty, we require −z · M̃U(X, s) + M̃D(X, s) to be strictly

increasing for any s ∈ K+ and any z ∈ R>0. Given that M̃U(X, s) and M̃D(X, s) are

differentiable at s ∈ K ∪ K+ (which also implies their continuity at smax), this requirement

holds iff ∀s ∈ K+, z ∈ R>0 : MD(X, s) > z ·MU(X, s). Verifying all possible cases, the

above criteria is satisfied iff:
[
∀s ∈ K+ : [MU(X, s) = 0 ∨MD(X, s) > 0] ∧ [MU(X, s) <

0 ∨MD(X, s) ≥ 0]
]
. This can be compactly written as ∀s ∈ K+ : MU(X, s) < MD(X, s) ∨

MU(X, s) ·MD(X, s) ≤ 0, where the second condition implies that magnitudes MU and MD

can not have the same sign within K+.

Similar derivation for K− will lead to demand the inner problem to be strictly decreasing

for any s ∈ K− and any z ∈ R>0. In turn, this leads to criteria ∀s ∈ K− : MU(X, s) >
MD(X, s) ∨MU(X, s) ·MD(X, s) ≤ 0. Below we summarize conditions under which no

restrictions are required over F’s range.

29

Theorem 6 (Unconstrained Function Range). Consider the convergence interval K = (smin, smax).

Assume:

1. MU(X, s) and MD(X, s) are continuous on the entire real line s ∈ R, and do not have

the same sign outside of K.

2. For any s ≤ smin: MU(X, s) > MD(X, s).

3. For any s ≥ smax: MU(X, s) < MD(X, s).

Then, the condition 4 of Theorem 4 and the condition 3 of Theorem 5 can be removed.

Intuitively, conditions for K+ (and similarly for K−) can be interpreted as requiring up

force F U
θ (X) to be weaker than down force FD

θ (X) for any ratio PU (X)
PD(X) > 0, once the surface

height fθ(X) got too high and exceeded the convergence interval K. In Section 5 we will see

that almost all PSO estimators satisfy Theorem 6.

4.2 Disjoint Support Optima

4.2.1 Area SU\D

Consider the loss term LU\D(f) corresponding to the area SU\D, where PU(X) > 0 and

PD(X) = 0. We are going to prove the below theorem (identical to part 2 of Theorem 1). The

motivation behind this theorem is that in many PSO instances MU satisfies one of its conditions.

In such case the theorem can be applied to understand the PSO convergence behavior in the

region SU\D. Moreover, this theorem further supports the PSO framework’s perspective, where

virtual forces are pushing the model surface towards the physical equilibrium.

Theorem 7. Define an arbitrary space F of functions from SU\D to R, with h ∈ F being its

element. Then, depending on properties of a function MU , f∗ = arg inff∈F LU\D(f) must

satisfy:

1. If ∀s ∈ R : MU(X, s) > 0, then f∗(X) =∞.

2. If ∀s ∈ R : MU(X, s) < 0, then f∗(X) = −∞.

3. If ∀s ∈ R : MU(X, s) ≡ 0, then f∗(X) can be arbitrary.

4. If ∀s ∈ R :

MU(X, s)→

= 0, s = h(X)

> 0, s < h(X)

< 0, s > h(X)

(4.8)

then f∗(X) = h(X).

5. Otherwise, additional analysis is required.

30

Proof. The inner problem solved by inff∈F LU\D(f) for each X ∈ SU\D is:

s∗ = arg inf
s∈R

−z · M̃U(X, s), (4.9)

where z ∈ R>0. Given M̃U(X, s) is differentiable, a derivative of the inner cost is −z ·
MU(X, s). If the inner cost is a strictly decreasing function of s, ∀s ∈ R : MU(X, s) > 0, then

the infimum is infs∈R−z · M̃U(X, s) = −∞ and s∗ =∞ - the inner cost will be lower for the

bigger value of s. This leads to the entry 1 of the theorem. Similarly, if the cost is a strictly

increasing function, ∀s ∈ R : MU(X, s) < 0, then the infimum is achieved at s∗ = −∞,

yielding the entry 2.

If ∀s ∈ R : MU(X, s) ≡ 0, then the inner cost is constant. In such case the infimum is

obtained at any s ∈ R, hence the corresponding f∗(X) can be arbitrary (the entry 3).

Further, denote s′ ≡ h(X). Conditions of the entry 4 imply that the inner cost in Eq. (4.9)

is strictly decreasing at s < s′ and strictly increasing at s > s′. Since it is also continuous

(consequence of being differentiable), its infimum must be at s∗ = s′. Thus, we have the entry

4: f∗(X) = s′ = h(X).

Otherwise, if MU(X, s) does not satisfy any of the theorem’s properties (1)− (4), a further

analysis of this particular magnitude function in the context of LU\D needs to be done.

�

4.2.2 Area SD\U

Consider the loss term LD\U(f) corresponding to the area SD\U , where PU(X) = 0 and

PD(X) > 0. The below theorem explains PSO convergence in this area.

Theorem 8. Define an arbitrary space F of functions from SD\U to R, with h ∈ F being its

element. Then, depending on properties of a function MD, f∗ = arg inff∈F LD\U(f) must

satisfy:

1. If ∀s ∈ R : MD(X, s) > 0, then f∗(X) = −∞.

2. If ∀s ∈ R : MD(X, s) < 0, then f∗(X) =∞.

3. If ∀s ∈ R : MD(X, s) ≡ 0, then f∗(X) can be arbitrary.

4. If ∀s ∈ R :

MD(X, s)→

= 0, s = h(X)

> 0, s > h(X)

< 0, s < h(X)

(4.10)

then f∗(X) = h(X).

5. Otherwise, additional analysis is required.

The proof of Theorem 8 is symmetric to the proof of Theorem 7 and hence omitted.

31

32

CHAPTER 5

Instances of PSO

Many statistical methods exist whose loss and gradient have PSO forms depicted in Eq. (3.3)

and Eq. (3.5) for some choice of densities PU and PD, and of functions M̃U , M̃D, MU and MD,

and therefore being instances of the PSO algorithm family. Typically, these methods defined

via their loss which involves the pair of primitives {M̃U [X, s], M̃D[X, s]}. Yet, in practice it

is enough to know their derivatives {MU [X, s] = ∂M̃U (X,s)
∂s ,MD[X, s] = ∂M̃D(X,s)

∂s } for the

gradient-based optimization (see Algorithm 3.1). Therefore, PSO formulation focuses directly

on {MU ,MD}, with each PSO instance being defined by a particular choice of this pair.

Moreover, most of the existing PSO instances and subgroups actually require M̃U and M̃D

to be analytically known, while PSO composition eliminates such demand. In fact, many pairs

{MU ,MD} explored in this thesis do not have closed-form known antiderivatives {M̃U , M̃D}.
Thus, PSO enriches the arsenal of available probabilistic methods.

In Tables 5.1-5.5 we show multiple PSO instances. We categorize all losses into two main

categories - density estimation losses in Tables 5.1-5.2 and ratio density estimation losses in

Tables 5.3-5.5. In the former class of losses we are interested to infer density PU from its

available data samples, while PD represents some auxiliary distribution with analytically known

pdf function PD(X) whose samples are used to create the opposite force FD
θ (X); this force will

balance the force F U
θ (X) from PU ’s samples. Further, in the latter class we concerned to learn a

density ratio, or some function of it, between two unknown densities PU and PD by using the

available samples from both distributions.

In the tables we present the PSO loss of each method, if analytically known, and the

corresponding pair {MU ,MD}. We also indicate to what the surface f(X) will converge

assuming that PSO balance state in Eq. (3.2) was obtained. Derivation of this convergence

appears below. Importantly, it describes the optimal PSO solution only within the area SU∩D ⊂
Rn. For X in SU\D or SD\U , the convergence can be explained via theorems 7 and 8 respectively.

Yet, in most of the thesis we will limit our discussion to the convergence within the mutual

support, implicitly assuming SU ≡ SD.

33

Method Final fθ(X) and K / References / Loss / MU(·) and MD(·)

DeepPDF F: PU(X), K = R>0
R: [10, 61]

L: −EX∼PU fθ(X) · PD(X) + EX∼PD 1
2

[
fθ(X)

]2
MU , MD: PD(X), fθ(X)

PSO-LDE F: logPU(X), K = R
(Log Density R: Introduced and thoroughly analyzed in this thesis,
Estimators) see Section 8.2

L: unknown

MU , MD: PD(X)

[[exp fθ(X)]α+[PD(X)]α]
1
α

, exp fθ(X)

[[exp fθ(X)]α+[PD(X)]α]
1
α

where α is a hyper-parameter

PSO-MAX F: logPU(X), K = R
R: This thesis, see Section 13.2.1
L: unknown
MU , MD: exp [−max [fθ(X)− logPD(X), 0]],

exp [min [fθ(X)− logPD(X), 0]]

NCE F: logPU(X), K = R
(Noise R: [39, 126];
Contrastive [84, 105];
Estimation) [83]

[40]

L: EX∼PU log exp[fθ(X)]+PD(X)
exp[fθ(X)] + EX∼PD log exp[fθ(X)]+PD(X)

PD(X)

MU , MD: PD(X)
exp[fθ(X)]+PD(X) , exp[fθ(X)]

exp[fθ(X)]+PD(X)

IS F: logPU(X), K = R
(Importance R: [105]
Sampling) L: −EX∼PU fθ(X) + EX∼PD

exp[fθ(X)]
PD(X)

MU , MD: 1, exp[fθ(X)]
PD(X)

Table 5.1: PSO Instances For Density Estimation, Part 1

34

Method Final fθ(X) and K / References / Loss / MU(·) and MD(·)

Polynomial F: logPU(X), K = R
R: [105]
L: −EX∼PU

exp[fθ(X)]
PD(X) + EX∼PD 1

2
exp[2·fθ(X)]

[PD(X)]2

MU , MD: exp[fθ(X)]
PD(X) , exp[2·fθ(X)]

[PD(X)]2

Inverse F: logPU(X), K = R
Polynomial R: [105]

L: EX∼PU 1
2

[PD(X)]2
exp[2·fθ(X)] − EX∼PD

PD(X)
exp[fθ(X)]

MU , MD: [PD(X)]2
exp[2·fθ(X)] ,

PD(X)
exp[fθ(X)]

Inverse F: logPU(X), K = R
Importance R: [105]
Sampling L: EX∼PU

PD(X)
exp[fθ(X)] + EX∼PD fθ(X)

MU , MD: PD(XU)
exp[fθ(XU)] , 1

Root F: d
√
PU(X), K = R>0

Density R: This thesis
Estimation L: −EX∼PU fθ(X) · PD(X) + EX∼PD 1

d+1 · |fθ(X)|d+1

MU , MD: PD(X) , |fθ(X)|d · sign[fθ(X)]

PDF F: log
[
[PU ∗ Pυ](X)

]
, K = R

Convolution R: This thesis
Estimation L: −EX∼P̄U fθ(X) + EX∼PD

exp[fθ(X)]
PD(X)

MU , MD: 1, exp[fθ(X)]
PD(X)

where ∗ is a convolution operator and
P̄U(X) = PU(X) ∗ Pυ(X) serves as up density,
whose sample X ∼ P̄U can be obtained via X = XU + υ
with XU ∼ PU(X) and υ ∼ Pυ(X), see Section 12

Table 5.2: PSO Instances For Density Estimation, Part 2

35

Method Final fθ(X) and K / References / Loss / MU(·) and MD(·)

”Unit” Loss F: Kantorovich potential [142],
only if the smoothness of fθ(X) is heavily restricted

R: see Section 10.3
L: −EX∼PU fθ(X) + EX∼PD fθ(X)
MU , MD: 1, 1

EBGAN F: fθ(X) = m at {X : PU(X) < PD(X)}, and fθ(X) = 0 otherwise
Critic R: [153], see Section 7.6

L: EX∼PU fθ(X) + EX∼PD max[m− fθ(X), 0]
MU , MD: −1, −cut at [X, fθ(X),m]
where the considered model fθ(X) is constrained to have non-negative outputs

uLSIF F: PU (X)
PD(X) , K = R>0

R: [56, 129, 150];
[88, 138]

L: −EX∼PU fθ(X) + EX∼PD 1
2
[
fθ(X)

]2
MU , MD: 1, fθ(X)

KLIEP F: PU (X)
PD(X) , K = R>0

R: [130, 131, 138]
L: −EX∼PU log fθ(X) + EX∼PD [fθ(X)− 1]
MU , MD: 1

fθ(X) , 1

Classical F: PU (X)
PU (X)+PD(X) , K = (0, 1)

GAN Critic R: [32]

L: −EX∼PU log fθ(X)− EX∼PD log
[
1− fθ(X)

]
MU , MD: 1

fθ(X) , 1
1−fθ(X)

* for fθ(X) = sigmoid(hθ(X)) this loss is identical to Logistic Loss in Table 5.4

NDMR F: PU (X)
PU (X)+PD(X) , K = (0, 1)

(Noise-Data R: This thesis
Mixture L: −EX∼PU fθ(X) + EX∼PM fθ(X)2

Ratio) MU , MD: 1, 2fθ(X)
where PM (X) = 1

2P
U(X) + 1

2P
D(X) serves as down density,

instead of density PD(X)

NDMLR F: log PU (X)
PU (X)+PD(X) , K = R<0

(Noise-Data R: This thesis
Mixture L: −EX∼PU fθ(X) + EX∼PM 2 exp[fθ(X)]
Log-Ratio) MU , MD: 1, 2 exp[fθ(X)]

where PM (X) = 1
2P

U(X) + 1
2P

D(X) serves as down density,
instead of density PD(X)

Table 5.3: PSO Instances For Density Ratio Estimation, Part 1

36

Method Final fθ(X) and K / References / Loss / MU(·) and MD(·)

Classical F: log PU (X)
PU (X)+PD(X) , K = R<0

GAN Critic R: This thesis
on log-scale L: EX∼PU 1

exp[fθ(X)] − EX∼PD log exp[fθ(X)]
1−exp[fθ(X)]

MU , MD: 1
exp[fθ(X)] ,

1
1−exp[fθ(X)]

Power F: PU (X)
PD(X) , K = R>0

Divergence R: [80, 130]
Ratio L: −EX∼PU

fθ(X)α
α + EX∼PD

fθ(X)α+1

α+1
Estimation MU , MD: fθ(X)α−1, fθ(X)α

Reversed F: PU (X)
PD(X) , K = R>0

KL R: [138]
L: EX∼PU 1

fθ(X) + EX∼PD log fθ(X)
MU , MD: 1

[fθ(X)]2 , 1
fθ(X)

Balanced F: PU (X)
PD(X) , K = R>0

Density R: This thesis
Ratio L: −EX∼PU log [fθ(X) + 1] + EX∼PD fθ(X)− log [fθ(X) + 1]

MU , MD: 1
fθ(X)+1 , fθ(X)

fθ(X)+1

Log-density F: log PU (X)
PD(X) , K = R

Ratio R: This thesis
L: −EX∼PU fθ(X) + EX∼PD exp[fθ(X)]
MU , MD: 1, exp[fθ(X)]

Square F: PU (X)−PD(X)
PU (X)+PD(X) , K = (−1, 1)

Loss R: [80]
L: EX∼PU 1

2 [1− fθ(X)]2 + EX∼PD 1
2 [1 + fθ(X)]2

MU , MD: 1− fθ(X), 1 + fθ(X)

Logistic F: log PU (X)
PD(X) , K = R

Loss R: [80]
L: EX∼PU log

[
1 + exp[−fθ(X)]

]
+ EX∼PD log

[
1 + exp[fθ(X)]

]
MU , MD: 1

exp[fθ(X)]+1 , 1
exp[−fθ(X)]+1

Table 5.4: PSO Instances For Density Ratio Estimation, Part 2

37

Method Final fθ(X) and K / References / Loss / MU(·) and MD(·)

Exponential F: 1
2 log PU (X)

PD(X) , K = R
Loss R: [80]

L: EX∼PU exp[−fθ(X)] + EX∼PD exp[fθ(X)]
MU , MD: exp[−fθ(X)], exp[fθ(X)]

LSGAN F: b·PU (X)+a·PD(X)
PU (X)+PD(X) , K = (min [a, b] ,max [a, b])

Critic R: [76]
L: EX∼PU 1

2 [fθ(X)− b]2 + EX∼PD 1
2 [fθ(X)− a]2

MU , MD: b− fθ(X), fθ(X)− a

Kullback-Leibler F: 1 + log PU (X)
PD(X) , K = R

Divergence R: [94]
L: −EX∼PU fθ(X) + EX∼PD exp[fθ(X)− 1]
MU , MD: 1, exp[fθ(X)− 1]

Reverse KL F: −PD(X)
PU (X) , K = R<0

Divergence R: [94]
L: −EX∼PU fθ(X) + EX∼PD [−1− log[−fθ(X)]]
MU , MD: 1, 1

−fθ(X)

Lipschitz F: 1
2 ·

PU (X)−PD(X)√
PU (X)·PD(X)

, K = R

Continuity R: [154]
Objective L: −EX∼PU

[
fθ(X)−

√
fθ(X)2 + 1

]
+ EX∼PD

[
fθ(X) +

√
fθ(X)2 + 1

]
MU , MD: 1− fθ(X)√

fθ(X)2+1
, 1 + fθ(X)√

fθ(X)2+1

LDAR F: arctan log PU (X)
PD(X) , K = (−π

2 ,
π
2)

(Log-density R: This thesis
Atan-Ratio) L: unknown

MU , MD: 1
exp[tan fθ(X)]+1 , 1

exp[− tan fθ(X)]+1

LDTR F: tanh log PU (X)
PD(X) , K = (−1, 1)

(Log-density R: This thesis
Tanh-Ratio) L: EX∼PU 2

3 · [1− fθ(X)]
3
2 + EX∼PD 2

3 · [1 + fθ(X)]
3
2

MU , MD:
√

1− fθ(X),
√

1 + fθ(X)

Table 5.5: PSO Instances For Density Ratio Estimation, Part 3

38

5.1 Deriving Convergence of PSO Instance

Given a PSO instance with a particular {PU ,PD,MU ,MD}, the convergence within SU∩D can

be derived by solving PSO balance state PU(X) ·MU [X, f∗(X)] = PD(X) ·MD [X, f∗(X)].

Example 1: From Table 5.1 we can see that IS method hasMU [X, f(X)] = 1 andMD [X, f(X)] =
exp[f(X)]
PD(X) . Given that samples within the loss have densities XU ∼ PU(X) and XD ∼ PD(X),

we can substitute the sample densities and the magnitude functions {MU ,MD} into Eq. (3.2) to

get:
PU(X)
PD(X) = exp[f∗(X)]/PD(X)

1 ⇒ f∗(X) = logPU(X), (5.1)

where we use an equality between density ratio of the samples and ratio of magnitude functions

to derive the final f∗(X). Thus, in case of IS approach, the surface will converge to the log-

density logPU(X).

More formally, we can derive PSO convergence according to definitions of Theorem 5, using

magnitude ratio R and its inverse T . The theorem allows us additionally to verify sufficient

conditions required by PSO framework. Furthermore, we can decide whether the restriction of

F’s range is necessarily by testing criteria of Theorem 6.

Example 2: Consider the ”Polynomial” method in Table 5.2, with MU [X, f(X)] = exp[f(X)]
PD(X)

andMD [X, f(X)] = exp[2f(X)]
[PD(X)]2 . Then, we have MD[X,f(X)]

MU [X,f(X)] = exp[f(X)]
PD(X) and henceR(X, s) =

exp s
PD(X) . Further, consider the convergence interval K to be entire R. Both conditions 1 and 2 of

Theorem 5 are satisfied - R is continuous, strictly increasing and bijective w.r.t. domain R and

codomain R>0, and both magnitudes are continuous and positive on the entire R. Additionally,

F’s range need not to be restricted since K ≡ R. Further, R has a simple form and its invert

is merely T (X, z) = logPD(X) + log z. The above T and R are inverse of each other w.r.t.

the second argument, which can be easily verified. Next, we can calculate PSO convergence

as f∗(X) = T
[
X, P

U (X)
PD(X)

]
= logPD(X) + log PU (X)

PD(X) = logPU(X). Hence, ”Polynomial”

method converges to logPU(X).

Example 3: Consider the LDAR method in Table 5.5, with MU [X, f(X)] = 1
exp[tan f(X)]+1

and MD [X, f(X)] = 1
exp[− tan f(X)]+1 . Then, MD(X,f(X))

MU (X,f(X)) = exp[tan f(X)]+1
exp[− tan f(X)]+1 and hence

R(X, s) = exp[tan s]+1
exp[− tan s]+1 . Function R(X, s) is not bijective w.r.t. s ∈ R - it has multiple

positive increasing copies on each interval (πk − π
2 , πk + π

2). Hence, it does not satisfy the

necessary conditions. Yet, if we restrict it to a domain (πk − π
2 , πk + π

2) for any k ∈ Z, then

Theorem 5 will hold. Particularly, if we choose K = (−π
2 ,

π
2) then all theorem’s conditions are

satisfied. Moreover, Theorem 6 is not applicable here since magnitudes are not defined at points

s ∈ {π2k}. Therefore, we are required to limit range of F to be K. The inverse of R for the

considered K is T (X, z) = arctan log z. Hence, LDAR converges to arctan log PU (X)
PD(X) .

39

5.2 Deriving New PSO Instance

In order to apply PSO for learning any function of X and PU (X)
PD(X) , the appropriate PSO instance

can be derived via Theorem 4. Denote the required PSO convergence by a transformation

T (X, z) : Rn × R → R s.t. f∗(X) = T
[
X, P

U (X)
PD(X)

]
is the function we want to learn. Then

according to the theorem, any pair {MU ,MD} whose ratio R ≡ MD

MU satisfies R ≡ T−1 (i.e.

inverses between K and R>0), will produce the required convergence, given that theorem’s

conditions hold. Further, if conditions of Theorem 6 likewise hold, then no range restriction

over f is needed.

Therefore, to learn any function T
[
X, P

U (X)
PD(X)

]
, first we obtain R(X, s) by finding an

inverse of T (X, z) w.r.t. z. Any valid pair of magnitudes satisfying MD(X,s)
MU (X,s) = R [X, s]

will produce the desired convergence. For example, we can use a straightforward choice

MD [X, s] = R [X, s] and MU [X, s] = 1 in order to converge to the aimed target. Such choice

corresponds to minimizing f -divergence [92, 94], see Section 6 for details. Yet, typically these

magnitude functions will be sub-optimal if for example MD is an unbounded function. When

this is the case, we can derive a new pair of bounded magnitude functions by multiplying the

old pair by the same factor q [X, s] (see also Section 7.2).

Example 4: Consider a scenario where we would like to infer f∗(X) = PU (X)−PD(X)
PU (X)+PD(X) , sim-

ilarly to ”Square Loss” method in Table 5.4. Treating only points X ∈ SD, we can rewrite

our objective as f∗(X) =
PU (X)
PD(X)

−1
PU (X)
PD(X)

+1
and hence the required PSO convergence is given by

T (X, z) = z−1
z+1 . Further, its inverse function is given by R(X, s) = 1+s

1−s . Therefore, magnitude

functions must satisfy MD(X,s)
MU (X,s) = 1+s

1−s . One choice for such magnitudes is MU [X, s] = 1− s
and MD [X, s] = 1 + s, just like in the ”Square Loss” method [80]. Note that the convergence

interval of this PSO instance is K = (−1, 1) which is X-invariant. Further, T is strictly increas-

ing and continuous at z ∈ R>0 and {MU ,MD} are continuous and positive at s ∈ K, hence

satisfying the conditions of Theorem 4. Moreover, {MU ,MD} are actually continuous on entire

s ∈ R, with ∀s ≤ −1: MU(X, s) > MD(X, s) and ∀s ≥ 1: MU(X, s) < MD(X, s). Since

MU and MD do not have the same sign outside of K, conditions of Theorem 6 are likewise

satisfied and the F’s range can be the entire R. Furthermore, other variants with the same PSO

balance state can be easily constructed. For instance, we can use MU [X, f(X)] = 1−f(X)
D(X,f(X))

and MD [X, f(X)] = 1+f(X)
D(X,f(X)) with D(X, f(X)) , |1− f(X)|+ |1 + f(X)| instead. Such

normalization by functionD(·) does not change the convergence, yet it produces bounded magni-

tude functions that are typically more stable during the optimization. All the required conditions

are satisfied also by these normalized magnitudes. Additionally, recall that we considered only

points within support of PD(X). Outside of this support, any X ∈ SU\D will push the model sur-

face f(X) according to the rules implied by MU ; note also that MU changes signs at f(X) = 1,

with force always directed toward the height h(X) = 1. Therefore, at points {X ∈ SU\D}
the convergence will be f∗(X) = 1, which is also a corollary of the condition 4 in Theorem

40

Description Target Function T (X, z) R(X, s) K

Density-Ratio Estimation PU (X)
PD(X) z s R>0

Log-Density-Ratio Estimation log PU (X)
PD(X) log z exp s R

Density Estimation PU(X) PD(X) · z s
PD(X) R>0

Log-Density Estimation logPU(X) logPD(X) + log z exp s
PD(X) R

Table 5.6: Common target functions, their corresponding T and R mappings, and the convergence interval K. Note that for density
estimation methods (2 last cases) the auxiliary pdf PD(X) is known analytically.

7. Finally at points outside of both supports there is no optimization performed, and hence

theoretically nothing moves there - no constraints are applied on the surface f in these areas.

Yet, in practice f(X) at X /∈ SU∪D will be affected by pushes at the training points, according to

the elasticity properties of the model expressed via kernel gθ(X,X ′) (see Section 7.5 for details).

In Table 5.6 we present transformations T and R for inference of several common target

functions. As shown, if PD(X) is analytically known, Theorem 4 can be used to also infer any

function of density PU(X), by multiplying z argument by PD(X) inside T . Thus, we can apply

the theorem to derive a new PSO instances for pdf estimation, and to mechanically recover many

already existing such techniques. In Section 8.2 we will investigate new methods provided by

the theorem for the estimation of log-density logPU(X).

Remark 9. The inverse relation R ≡ T−1 and properties of R and T described in theorems

4 and 5 imply that antiderivatives R̃ [X, s] ,
∫ s
s0
R(X, t)dt and T̃ [X, z] ,

∫ z
z0
R(X, t)dt are

Legendre-Fenchel transforms of each other. Such a connection reminds the relation between

Langrangian and Hamiltonian mechanics, and opens a bridge between control and learning

theories. A detailed exploration of this connection is an additional interesting direction for

future research.

Further, density of up and down sample points within PSO loss can be changed from the

described above choice PU and PD, to infer other target functions. For example, in NDMR

method from Table 5.3 instead of PD(X) we sample 1
2P

U(X) + 1
2P

D(X) to construct training

dataset of down points (denoted by {XD
i } in Eq. (3.1)). That is, the updated down density is

mixture of two original densities with equal weights. Then, by substituting sample densities

and appropriate magnitude functions {MU [X, f(X)] = 1,MD [X, f(X)] = 2f(X)} into the

balance state equilibrium in Eq. (3.2) we will get:

PU(X)
1
2PU(X) + 1

2PD(X)
= 2f(X)

1 ⇒ f(X) = PU(X)
PU(X) + PD(X) . (5.2)

The NDMR infers the same target function as the Classical GAN Critic loss from Table 5.3,

and can be used as its alternative. Therefore, an additional degree of freedom is acquired by

considering different sampling strategies in PSO framework. Similar ideas will allow us to also

infer conditional density functions, as shown in Section 9.

41

“negative”
PSO

𝕂 𝕂+

𝕂–

(a) (b) (c)

Figure 5.1: (a) Correspondence between different quadrants of a complex plane and different parts of c [X, s]. The quadrant I is
where c must be for any s ∈ K. Additionally, if c is continuous w.r.t. s ∈ R and if it is located in the quadrant IV at s ∈ K− and in
the quadrant II at s ∈ K+, then we are allowed to reduce restrictions over the function range. Further, the quadrant III is associated

with ”negative” PSO whose magnitudes have negative outputs and that can learn any decreasing target function T
[
X,

PU (X)
PD(X)

]
.

(b)-(c) c [X, s] for two PSO instances is depicted, (b) ”Square Loss” from Table 5.4 and (c) ”Classical GAN Critic Loss” from
Table 5.3. Colors red, blue and yellow represent parts of c at s ∈ K−, s ∈ K and s ∈ K+ respectively. As seen, in case of (b)
the requirements are satisfied and hence there is no need to restrict the range of functions within F . In contrast, in (c) the curve
c [X, s] parametrized by s is not even continuous, hence F ’s range must be K.

5.3 PSO Feasibility Verification and Polar Parametrization

Sometimes it may be cumbersome to test if given {MU ,MD} satisfy all required conditions

over sets K−, K and K+. Below we propose representing magnitudes within a complex plane,

and use the corresponding polar parametrization. The produced representation yields a graphical

visualization of PSO instance which permits for easier feasibility analysis.

For this purpose, define PSO complex-valued function as c [X, s] ,MU [X, s]+MD [X, s]·
i whose real part is up magnitude, and imaginary part - down magnitude. Further, denote by c∠
and cr the angle and the radius of c defined as c∠ [X, s] = atan2(MD [X, s] ,MU [X, s]) and

cr [X, s] =
√
MU [X, s]2 +MD [X, s]2. Conditions from theorems 5 and 6 can be translated

into conditions over c [X, s] as following.

Lemma 10 (Complex Plane Feasibility). Consider PSO instance that is described by a complex-

valued function c [X, s] : Rn × R → C and some convergence interval K , (smin, smax).

Assume:

1. c [X, s] is continuous at any s ∈ K, with cr [X, s] > 0 and 0 < c∠ [X, s] < π
2 .

2. c∠ [X, s] is strictly increasing and bijective w.r.t. domain s ∈ K and codomain (0, π2).

Then, given that the range of F is K, the minima f∗ = arg inff∈F LPSO(f) will satisfy

∀X ∈ SU∩D : f∗(X) = T
[
X, P

U (X)
PD(X)

]
, where T [X, z] , c−1

∠ [X, atan(z)]. Further, F ’s range

can be entire R if the following conditions hold:

1. c [X, s] is continuous on s ∈ R, with cr [X, s] > 0.

2. ∀s ∈ K− : 3
2π ≤ c∠ [X, s] ≤ 2π.

3. ∀s ∈ K+ : π2 ≤ c∠ [X, s] ≤ π.

Proof. The necessary positivity of magnitudes over s ∈ K from Theorem 5 implies ∀s ∈ K :[
0 < c∠ [X, s] < π

2
]
∨[cr [X, s] > 0]. Further, conditions of Theorem 6 are equivalent to require

42

Figure 5.2: Schematic relationship between PSO mappings of Theorem 4 and Theorem 5. T and R are inverse functions, with
one-to-one relation between them. R is ratio of {MU ,MD}, with infinitely many choices of the latter producing the same ratio.
For this reason, many pairs of magnitude functions will yield the same PSO convergence T .

∀s ∈ K− :
[

3
2π ≤ c∠ [X, s] ≤ 2π

]
∨ [cr [X, s] > 0] and ∀s ∈ K+ :

[
π
2 ≤ c∠ [X, s] ≤ π

]
∨

[cr [X, s] > 0]. Likewise, observe that the range of angles (π, 3
2π) is allocated by ”negative”

PSO family mentioned in Section 4.1.2, which can be formulated by switching between up and

down terms of PSO family and which allows to learn any decreasing function T
[
X, P

U (X)
PD(X)

]
.

See also the schematic illustration in Figure 5.1a.

Further, continuity of c [X, s] (over K or over entire R) is equivalent to continuity of

magnitudes enforced by theorems 5 and 6. Likewise, it leads to continuity of c∠ [X, s].

Moreover, given that c [X, s] at s ∈ K is located within the quadrant I of a complex

plane, its angle can be rewritten as c∠ [X, s] = atan
(
MD[X,s]
MU [X,s]

)
= atan (R [X, s]), with

R [X, s] = tan c∠ [X, s] and T [X, z] = R−1 [X, z] = c−1
∠ [X, atan(z)] where c−1

∠ is an

inverse of c∠ w.r.t. second argument. Hence, continuity of c∠ (implied by continuity of c) yields

continuity of R at s ∈ K, which is required by Theorem 5.

Finally, strictly increasing property of c∠ is equivalent to the same property of R since they

are related via strictly increasing tan(·) and atan(·). Similarly, bijectivity is also preserved,

with codomain changed from R>0 to (0, π2) due to limited range of atan(·).

�

The above lemma summarizes conditions required by PSO framework. As noted in Section

4.1.2, this condition set is overly restrictive and some of its parts may be relaxed. Particularly,

we speculate that continuity may be replaced by continuity almost everywhere, and ”increasing”

(without ”strictly”) may be sufficient. We shall address such condition relaxation in future work.

To verify feasibility of any PSO instance, c [X, s] can be drawn as a curve within a convex

plane where conditions of the above lemma can be checked. In Figures 5.1b and 5.1c we

show example of this curve for ”Square Loss” from Table 5.4 and ”Classical GAN Critic Loss”

from Table 5.3 respectively. From the first diagram it is visible that the curve satisfies lemma’s

conditions, which allows us to not restrict F ’s range when optimizing via ”Square Loss”. In the

second diagram conditions do not hold, leading to the conclusion that ”Classical GAN Critic

Loss” may be optimized only over F whose range is exactly K.

43

5.4 PSO Subsets

Given any two densities PU and PD, all PSO instances can be represented as a set of all feasible

magnitude pairs C , {[MU ,MD] : feasible(MU ,MD)}, where feasible(·) is a logical

indicator that specifies whether the arguments satisfy conditions of Theorem 5 (for any set

K) or not. Below we systematically modulate the set C into subgroups, providing an useful

terminology for the later analysis.

The relation of PSO mappings is presented in Figure 5.2. As observed, many different

PSO instances have the same approximated target function. We will use this property to

divide the set C of all feasible PSO instances into disjoint subsets, according to the estimation

convergence. Considering any target function with the corresponding mapping T , we denote

by C[T] , {[MU ,MD] : [MU ,MD] ∈ C ∨ MD

MU = T−1} all feasible PSO instances that

converge to T . The subset C[T] is referred below as T ’s PSO consistent magnitude set - PSO-

CM set of T for shortness. Further, in this thesis we focus on two specific PSO subsets with

T (X, z) = PD(X) · z and T (X, z) = logPD(X) + log z that infer PU(X) and logPU(X),

respectively. For compactness, we denote the former asA and the latter as B. Likewise, below

we will term two pairs of magnitude functions as PSO consistent if they belong to the same

subset C[T] (i.e. if their magnitude ratio is the same).

Given a specific PSO task at hand, represented by the required convergence T , it is necessary

to choose the most optimal member of C[T] for the sequential optimization process. In Sections

7 and 8 we briefly discuss how to choose the most optimal PSO instance from PSO-CM set of

any given T , based on the properties of magnitude functions.

5.5 PSO Methods Summary

The entire exposition of this section was based on a relation in Eq. (3.2) that sums up the

main principle of PSO - up and down point-wise forces must be equal at the optimization

equilibrium. In Tables 5.1-5.5 we refer to relevant works in case the specific PSO losses were

already discovered in previous scientific studies. The previously discovered ones were all based

on various sophisticated mathematical laws and theories, yet they all could be also derived in a

simple unified way using PSO concept and Theorem 4. Additionally, besides the previously

discovered methods, in Tables 5.1-5.5 we introduce several new losses for inference of different

stochastic modalities of the data, as the demonstration of usage and usefulness of the general

PSO formulation. In Section 6 we reveal that PSO framework has a tight relation with Bregman

and ”f” divergencies. Furthermore, in Section 10.1 we prove that the cross-entropy losses are

also instances of PSO. Likewise, in Section 10.2 we derive Maximum Likelihood Estimation

(MLE) from PSO functional.

44

CHAPTER 6

PSO, Bregman and ”f” Divergencies

Below we define PSO divergence and show its connection to Bregman divergence [18, 30] and

f -divergence [2], that are associated with many existing statistical methods.

6.1 PSO Divergence

Minimization of LPSO(f) corresponds also to minimization of:

DPSO(f∗, f) , LPSO(f)−LPSO(f∗) = − E
X∼PU

∫ f(X)

f∗(X)
MU(X, t)dt+ E

X∼PD

∫ f(X)

f∗(X)
MD(X, t)dt

(6.1)

where f∗(X) = T
[
X, P

U (X)
PD(X)

]
is the optimal solution characterized by Theorem 5. Since f∗

is unique minima (given that theorem’s ”sufficient” conditions hold) and since LPSO(f) ≥
LPSO(f∗), we have the following properties: DPSO(f∗, f) ≥ 0 and DPSO(f∗, f) = 0 ⇐⇒
f∗ = f . Thus, DPSO can be used as a ”distance” between f and f∗ and we name it PSO

divergence. Yet, note that DPSO does not measure a distance between any two functions;

instead it evaluates distance between any f and the optimal solution of the specific PSO instance,

derived from the corresponding {PU ,PD,MU ,MD} via PSO balance state.

6.2 Bregman Divergence

Define F to be a convex set of non-negative functions from Rn to R≥0. Bregman divergence

for every q, p ∈ F is defined as Dψ(q, p) = ψ(q)−ψ(p)−
∫
∇qψ(q(X)) · [q(X)− p(X)] dX ,

where ψ(µ) is a continuously-differentiable, strictly convex functional over µ ∈ F , and ∇q
is the differentiation w.r.t. q. When ψ(µ) has a form ψ(µ) =

∫
ϕ(µ(X))dX with a strictly

convex function ϕ : R→ R, the divergence is referred to as U-divergence [26] or sometimes as

separable Bregman divergence [35]. In such case Dψ(q, p) has the form:

Dϕ(q, p) =
∫
ϕ [q(X)]− ϕ [p(X)]− ϕ′ [p(X)] · [q(X)− p(X)] dX. (6.2)

45

The above modality is non-negative for all q, p ∈ F and is zero if and only if q = p, hence

it specifies a ”distance” between q and p. For this reason, Dϕ(q, p) is widely used in the

optimization minpDϕ(q, p) where q usually represents an unknown density of available i.i.d.

samples and p is a model which is optimized to approximate q. For example, when ϕ(s) =
s · log s, we obtain the generalized KL divergence Dϕ(q, p) =

∫
q(X) · [log q(X)− 1]− q(X) ·

log p(X) + p(X)dX [137]. It can be further reduced to MLE objective −EX∼q(X) log p(X)
in case p is normalized, as is shown in Section 10.2.

Further, the term ψ(µ) ,
∫
ϕ [µ(X)] dX is called an entropy of µ, and dϕ(q, p) , −ψ(p)−∫

ϕ′ [p(X)] · [q(X)− p(X)] dX is referred to as a cross-entropy between q and p. Since

Dϕ(q, p) = dϕ(q, p)− dϕ(q, q), usually the actual optimization being solved is minp dϕ(q, p)
where the cross-entropy objective is approximated via Monte-Carlo integration.

Claim 11. Consider a strictly convex and twice differentiable function ϕ and two densities PU

and PD that satisfy SU ⊆ SD. Likewise, define magnitudes {MU [X, s] = ϕ′′(s), MD [X, s] =
s·ϕ′′(s)
PD(X) } and a space of non-negative functions F . Then PSO functional and PSO divergence

are equal to U-cross-entropy (up to an additive constant) and U-divergence defined by ϕ,

respectively:

1. ∀f ∈ F : LPSO(f) = dϕ(PU , f)

2. ∀f ∈ F : DPSO(PU , f) = Dϕ(PU , f)

Proof. First, primitives corresponding to the above magnitude functions are {M̃U [X, s] =
ϕ′(s) + cU , M̃

D [X, s] = [s·ϕ′(s)−ϕ(s)]
PD(X) + cD}, where cU and cD are additive constants. Denote

cT , cD − cU . Introducing above expressions into LPSO defined in Eq. (3.3) will lead to:

∀f ∈ F : LPSO(f) =
∫
−ϕ [f(X)]+ϕ′ [f(X)]·[f(X)− PU(X)] dX+cT = dϕ(PU , f)+cT .

(6.3)

Further, according to Table 5.6 the minimizer f∗ of LPSO(f) for a given {MU ,MD} is

PU(X). Therefore, Eq. (6.1) leads to DPSO(f∗, f) , LPSO(f)− LPSO(f∗) = dϕ(PU , f)−
dϕ(PU , f∗) = dϕ(PU , f)− dϕ(PU ,PU) = Dϕ(PU , f).

Function ϕ has to be twice differentiable in order to solve minp dϕ(q, p) via gradient-based

optimization - derivative of dϕ(q, p) w.r.t. p involves ϕ′′. Hence, this property is typically satis-

fied by all methods that minimize Bregman divergence. Furthermore, if ϕ′′(s) is a continuous

function then the specified magnitudes are feasible w.r.t. Theorem 5. Otherwise, we can verify

a more general set of conditions at the end of Section 4.1.1 which is satisfied for the claim’s

setting.

�

From the above we can conclude that definitions of Bregman and PSO divergencies coincide

when the former is limited to U-divergence and the latter is limited to magnitudes that satisfy
MD[X,s]
MU [X,s] = s

PD(X) . Such PSO subset has balance state at f∗(X) = PU(X) and is denoted

in Section 5.4 as A. It contains all PSO instances for the density estimation, not including

46

log-density estimation methods in subset B. Further, since LPSO(f) = dϕ(PU , f), a family of

algorithms that minimize U-divergence and PSO subsetA of density estimators are equivalent.

However, in general PSO divergence is different from Bregman as it can also be used to measure

a ”distance” between any PSO solution f∗, including even negative functions such as log-

density logPU(X) and log-density-ratio log PU (X)
PD(X) (see Section 5), and any f ∈ F without the

non-negative constraint over F .

6.3 f -Divergence

Define q and p to be probability densities so that q is absolutely continuous w.r.t. p. Then,

f -divergence between q and p is defined as Dφ(q, p) =
∫
p(X) ·φ(q(X)

p(X))dX , where φ : R→ R
is a convex and lower semicontinuous function s.t. φ(1) = 0. This divergence family contains

many important special cases, such as KL divergence (for φ(z) = z · log z) and Jensen-Shannon

divergence (for φ(z) = −(z + 1) · log 1+z
2 + z · log z).

In [92] authors proved that it is lower-bounded as:

Dφ(q, p) ≥ sup
f∈F

Jφ(f, q, p), Jφ(f, q, p) , E
X∼q(X)

f(X)− E
X∼p(X)

φc [f(X)] , (6.4)

where φc is the convex-conjugate function of φ: φc(s) , supz∈R{z · s − φ(z)}. The above

expression becomes an equality when φ′(q(X)
p(X)) belongs to a considered function space F . In

such case, the supremum is obtained via f(X) = φ′(q(X)
p(X)). Therefore, the above lower bound

is widely used in the optimization maxf Jφ(f, q, p) to approximate Dφ(q, p) [92], and to learn

any function of q(X)
p(X) [94].

Claim 12. Consider a strictly convex and differentiable function φ s.t. φ(1) = 0, its convex

conjugate φc, and two densities PU and PD that satisfy SU ⊆ SD. Likewise, define PSO

primitives {M̃U [X, s] = s, M̃D [X, s] = φc(s)} and assume that φ′(P
U (X)

PD(X)) is contained in a

function space F . Then PSO functional and f -divergence have the following connection:

1. ∀f ∈ F : LPSO(f) ≡ −Jφ(f,PU ,PD) and

f∗ = arg minf∈F LPSO(f) = arg maxf∈F Jφ(f,PU ,PD) = φ′(P
U (X)

PD(X))

2. ∀f ∈ F : Dφ(PU ,PD) = −LPSO(f∗) ≥ −LPSO(f)

Proof. First, introducing the given {M̃U , M̃D} into Eq. (3.3) leads toLPSO(f) ≡ −Jφ(f,PU ,PD).

Further, since {MU [X, s] = 1,MD [X, s] = φc′(s)} we have MD[X,s]
MU [X,s] = φc′(s). Denote

R [X, s] = MD[X,s]
MU [X,s] = φc′(s) and observe that its inverse is T [X, z] = φ′(z) due properties

of LF transform. Applying Theorem 5, we conclude f∗(X) = φ′(P
U (X)

PD(X)). Finally, since we

assumed f∗ ∈ F , we also have Dφ(PU ,PD) = Jφ(f∗,PU ,PD) = −LPSO(f∗).

The required by claim strict convexity and differentiability of function φ are necessary in

order to recover the estimation convergence, as was also noted in Section 5 of [92]. Likewise,

these properties ensure that derivatives φ′ and φc′ are well-defined. Further, above magnitudes

47

Figure 6.1: Schematic relation between PSO and its two subgroups related in Claim 11 and Claim 12. All PSO instances within
C can be indexed by the convergence T , where each C[T] can be further indexed by function MU (given T and MU , MD is
derived as MD [X, s] = T−1 [X, s] ·MU [X, s]). Thus, all elements of C can be viewed as a table indexed by T and MU .
The column corresponding to T [X, z] = PD(X) · z encapsulates PSO methods referred by Claim 11 that minimize a separable
Bregman divergence, and the row corresponding to MU [X, s] = 1 - methods from Claim 12 that approximate f -divergence. The
column-row intersection is obtained at MU [X, s] = 1, MD [X, s] = s

PD(X) and T [X, z] = PD(X) · z.

satisfy the requirements of PSO framework since the PSO derivation in Section 4.1.1 agrees

with derivation in [92] when the mapping G considered in our proof is equal to G(X, s) = s.

Finally, observe that given the above pair of {MU ,MD}, the primitives M̃U and M̃D can be

recovered up to an additive constant. This constant does not affect the outcome of PSO inference

since the optima f∗ of PSO functional stays unchanged. Yet, it changes the output of LPSO(f)
and thus for arbitrary antiderivatives {M̃U , M̃D} the identity Dφ(PU ,PD) = −LPSO(f∗) will

not be satisfied. To recover the correct additive constant, we can use information produced by

φ(1) = 0. Specifically, for the considered above setting the ”proper” antiderivative M̃D of MD

is the one that satisfies M̃D [X, s′] = s′ where s′ , φ′(1).

�

Hence, in light of the above connection PSO framework can be seen as an estimation of

a negative f -divergence between PU and PD, −Dφ(PU ,PD). Likewise, PSO is identical to an

estimation framework of [94] when the former is limited to have magnitudes {MU [X, s] =
1,MD [X, s] = φc′(s)}. Considering the terminology of Section 5.4, such set of magnitude

functions can be obtained by retrieving from each PSO subset C[T] an particular magnitude

pair with MU ≡ 1 and MD ≡ T−1, with all collected pairs being equivalent to the estimation

family of [94], as shown in Figure 6.1. Due to such limitation this algorithm family is a strict

subgroup of PSO.

Furthermore, the formulation of this framework in Eq. (6.4) can be generalized as:

min
f∈F
− E
X∼PU

G [X, f(X)] + E
X∼PD

φc [X,G [X, f(X)]] , (6.5)

where f is replaced by a transformation G(X, s) : Rn × R→ R over the inner model f , and

where φc is the convex-conjugate of φ(X, z) : Rn×R→ R that was extended to accept two argu-

ments. Consequently,G can be selected to obtain any required convergence f∗ = G−1�φ′� PU
PD

, where� defines the composition via a second argument g�h⇐⇒ g(X,h(·)). Such extension

parametrized by a pair {φc, G} becomes identical to PSO parametrized by a pair {M̃U , M̃D},

48

as is evident from our derivation in Section 4.1.1. Particularly, the parametrization {M̃U , M̃D}
can be recovered from {φc, G} via M̃U [X, s] = G [X, s] and M̃D [X, s] = φc [X,G [X, s]].

In the backward direction, {φc, G} can be recovered from {M̃U , M̃D} as following. Denote

the corresponding derivatives by {MU ,MD}, and their ratio by R [X, s]. Further, denote

s• [X] , T [X, 1] where T is an inverse of R w.r.t. second argument. Then, {φc, G} can

be obtained via G [X, s] = M̃U [X, s] and φc [X, s] = M̃D
[
X,G−1 [X, s]

]
+ α [X], with

α [X] , M̃U [X, s• [X]] − M̃D [X, s• [X]]. Note that the additive X-dependent component

α [X] ensures φc [X, s′] = s′ at s′ , φ′ [X, 1], which produces the condition φ [X, 1] = 0
required by the definition of f -divergence. Thus, for the above ”properly” normalized φc the

expression in Eq. (6.5) is equal to−Dφ(PU ,PD), where we extend f -divergence to have a form1

Dφ(q, p) =
∫
p(X) · φ

[
X, q(X)

p(X)

]
dX .

Moreover, the relation between parametrizations {φc, G} and {M̃U , M̃D} allows us to com-

pute Dφ(PU ,PD) from PSO loss LPSO(f) even in case of arbitrary antiderivatives {M̃U , M̃D}
that were not necessarily ”properly” normalized. Specifically, Dφ(PU ,PD) can be recovered

from LPSO(f∗) ≡ minf∈F LPSO(f) via:

Dφ(PU ,PD) = −LPSO(f∗)− β, β = E
X∼PD

α [X] . (6.6)

Furthermore, if {M̃U , M̃D} depend only on their second argument, which is often the case, then

T [X, z] is also only a function of z and the additive constant β = α = M̃U [T (1)]−M̃D [T (1)]
does not require the expected value computation.

The extension in Eq. (6.5) requires a remark about novelty and usefulness of PSO compared

to works in [92, 94]. First, note that the generalization in Eq. (6.5) was not proposed by

any study, to the best of our knowledge, although the original paper [94] was considering a

transformation G [f(X)] to control the domain of particular φc. Likewise, we note that the

implied by f -divergence framework restriction MU [X, s] = 1 over up magnitude inevitably

causes MD [X, s] to be an unbounded function. Such unboundedness property causes instability

during optimization as discussed and empirically shown in sections 7.2 and 13 respectively. In

contrast, PSO formulation allows to easily construct bounded magnitudes for any desired target

function by removing the aforementioned restriction (see Section 7.2 for details).

Further, there are three main points of difference between two estimation procedures. PSO

is defined via {MU ,MD}, permitting {M̃U , M̃D} to not have an analytical form which in

turn increases the number of feasible estimators. This allows us to propose novel techniques

not considered before, such as PSO-LDE in Section 8.2 which is shown in Section 13 to be

superior over other state-of-the-art baselines. Further, using G [X, f(X)] instead of G [f(X)]
is important to allow more freedom in selecting the required convergence f∗. Particularly,

employing PSO to learn the density PU(X) is possible only under this two-argument setting.

Finally, PSO allows for a better intuition which is not available for the f -divergence formulation

1This extended modality can be shown to satisfy the non-negativity Dφ(q, p) ≥ 0 and the identification
Dφ(q, p) = 0⇔ q ≡ p, required by the statistical divergence definition. We leave the proof of that for future work
since it is not the main focus of this thesis.

49

in [94], and can further be used to analyze convergence outside of the mutual support SU∩D.

6.4 Divergence Relation Summary

Due to above links PSO loss can be rewritten as LPSO(f) = DPSO(f∗, f)−Dφ(PU ,PD)− β,

where PSO divergence DPSO(f∗, f) can be considered as an extension of separable Bregman

divergence and where Dφ(PU ,PD) is f -divergence defined via some φ. Further, minimization

of LPSO(f) is same as the minimization of PSO divergence between f∗ and f . Finally, at the

convergence f = f∗,DPSO(f∗, f∗) becomes zero and LPSO(f∗) is equal to−Dφ(PU ,PD)−β.

50

CHAPTER 7

Properties of PSO Estimators

In above sections we saw that PSO principles are omnipresent within many statistical techniques.

In this section we will investigate how these principles work in practice, by extending our

analysis beyond the described above variational equilibrium. Particularly, we will study the

consistency and the convergence of PSO, as also the actual equilibrium obtained via GD

optimization. Furthermore, we will describe the model kernel impact on a learning task and

emphasize the extreme similarity between PSO actual dynamics and the physical illustration in

Figure 3.1. Likewise, we will propose several techniques to improve the practical stability of

PSO algorithms.

7.1 Consistency and Asymptotic Normality

PSO solution fθ∗ is obtained by solving minfθ∈F LPSO(fθ), and hence PSO belongs to the

family of extremum estimators [3]. Members of this family are known to be consistent and

asymptotically normal estimators under appropriate regularity conditions. Below we restate the

corresponding theorems.

Herein, we will reduce the scope to PSO instances whose up and down densities have an

identical support. This is required to avoid the special PSO cases for which fθ∗ has convergence

at infinity outside of the mutual support (see theorems 7 and 8). Although it is possible to evade

such convergence by considering F whose functions’ output is lower and upper bounded (see

Section 7.6), we sidestep this by assuming SU ≡ SD, for simplicity.

The empirical PSO loss over NU samples from PU and ND samples from PD has a form:

L̂N
U ,ND

PSO (fθ) = − 1
NU

NU∑
i=1

M̃U [XU
i , fθ(XU

i)] + 1
ND

ND∑
i=1

M̃D [XD
i , fθ(XD

i)] , (7.1)

with its gradient∇θL̂N
U ,ND

PSO (fθ) being defined in Eq. (3.1).

Theorem 13 (Consistency). Assume:

51

1. Parameter space Θ is a compact set.

2. LPSO(fθ) (defined in Eq. (3.3)) is continuous on θ ∈ Θ.

3. ∃!θ∗ ∈ Θ,∀X ∈ SU∩D : PU(X) ·MU [X, fθ∗(X)] = PD(X) ·MD [X, fθ∗(X)].

4. supθ∈Θ

∣∣∣L̂NU ,ND

PSO (fθ)− LPSO(fθ)
∣∣∣ p→ 0 along with min(NU , ND)→∞.

Define θ̂NU ,ND = arg minθ∈Θ L̂
NU ,ND

PSO (fθ). Then θ̂NU ,ND converges in probability to θ∗ along

with min(NU , ND)→∞, θ̂NU ,ND
p→ θ∗.

The above assumptions are typically taken by many studies to claim the estimation consis-

tency. Assumption 3 ensures that there is only single vector θ∗ for which PSO balance state is

satisfied. Hence it ensures that LPSO(fθ) is uniquely minimized at θ∗, according to Theorem 1.

Assumption 4 is the uniform convergence of empirical loss towards its population form along

with min(NU , ND)→∞. The above consistency statement and its proof appear as theorem

2.1 in [90].

Theorem 13 ensures the estimation consistency of PSO under technical conditions over

space Θ. However, some of these conditions (e.g. compactness of Θ) are not satisfied by NNs.

Another way, taken by [57, 92], is to use a complexity metric defined directly over the space F ,

such as the bracketing entropy. We shall leave this more sophisticated consistency derivation for

future work.

For asymptotic normality we will apply the following statements where we use notations

Iθ(X,X ′) , ∇θfθ(X) · ∇θfθ(X ′)T , N , NU +ND, τ , NU

ND , MU ′(X, s) , ∂MU (X,s)
∂s and

MD ′(X, s) , ∂MD(X,s)
∂s .

Lemma 14 (Hessian). Assume ∃θ∗ ∈ Θ s.t. ∀X ∈ SU∩D : PU(X) · MU [X, fθ∗(X)] =
PD(X) ·MD [X, fθ∗(X)]. Denote PSO convergence as fθ∗(X) = T

[
X, P

U (X)
PD(X)

]
≡ f∗(X),

according to Theorem 5. Then the Hessian H of population PSO loss at θ∗ has a form:

H ≡ ∇θθLPSO(fθ∗) = − E
X∼PU

MU ′ [X, f∗(X)]·Iθ∗(X,X)+ E
X∼PD

MD ′ [X, f∗(X)]·Iθ∗(X,X).
(7.2)

Lemma 15 (Gradient Variance). Under the same setting, the variance of

∇θL̂N
U ,ND

PSO (fθ) at θ∗ has a form Var
[
∇θL̂N

U ,ND

PSO (fθ∗)
]

= 1
NJ where:

J = τ + 1
τ

E
X∼PU

[
MU [X, f∗(X)]2 · Iθ∗(X,X)

]
+

+ (τ + 1) E
X∼PD

[
MD [X, f∗(X)]2 · Iθ∗(X,X)

]
−

− (τ + 1)2

τ
E

X∼PU
X′∼PD

MU [X, f∗(X)] ·MD
[
X ′, f∗(X ′)

]
· Iθ∗(X,X ′). (7.3)

H and J have several additional forms that appear in Appendix A along with the lemmas’

proofs.

52

Theorem 16 (Asymptotic Normality). Given assumptions and definitions of Theorem 13, as-

sume additionally:

1. θ∗ ∈ int(Θ).

2. L̂N
U ,ND

PSO (fθ) is twice continuously differentiable in a neighborhood of θ∗.

3. ∇θθLPSO(fθ) is continuous in θ.

4. Both J and H are non-singular matrices.

5. Each entry of∇θθLPSO(fθ) and of J is uniformly bounded by an integrable function.

6. τ > 0 is a finite and fixed scalar.

Then
√
N ·

[
θ̂NU ,ND − θ∗

]
converges in distribution to N (0,H −1JH −1) along with N →∞.

Proof of the above theorem is in Appendix B. Thus, we can see that for large sample sizes

the parametric estimation error
√
NU +ND ·

[
θ̂NU ,ND − θ∗

]
is normal with zero mean and

covariance matrix Σ = H −1JH −1. Further, it is possible to simplify an expression for Σ
when considering {MU ,MD} of a specific PSO instance. Observe also that none of the above

theorems and lemmas require the analytical knowledge of {M̃U , M̃D}.

7.2 Bounded vs Unbounded Magnitude Functions

Any considered functions {MU ,MD} will produce PSO balance state at the convergence, given

that they satisfy conditions of Theorem 5. Further, as was shown in Section 5, there is infinite

number of possible magnitudes within C[T] that will lead to the same convergence T . Thus, we

need analytical tools to establish the superiority of one magnitude function pair over another.

While this is an advanced estimation topic from robust statistics and is beyond this thesis’s

scope, herein we describe one desired property for these functions to have - boundedness.

In Tables 5.1-5.5 we can see many choices of {MU ,MD}, with both bounded (e.g. NCE

in Table 5.1) and unbounded (e.g. IS in Table 5.1) outputs. Further, note that IS method has

a magnitude function MD [X, fθ(X)] = exp(fθ(X))
PD(X) with outputs that can be extremely high

or low, depending on the difference [fθ(X) − logPD(X)]. From Eq. (3.1) we can likewise

see that the gradient contribution of the down term in PSO loss is MD [X, fθ(X)] · ∇θfθ(X).

Thus, in case fθ(X) � logPD(X), high values from MD(·) will produce gradients with

large norm. Such large norm causes instability during the optimization, known as exploding

gradients problem in DL community. Intuitively, when we make a large step inside θ-space, the

consequences can be unpredictable, especially for highly non-linear models such as modern

NNs.

Therefore, in practice the loss with bounded gradient is preferred. Such conclusion was also

empirically supported in context of unnormalized density estimation [105]. Further, while it

is possible to solve this issue by for example gradient clipping and by decreasing the learning

53

rate [102], such solutions also slow down the entire learning process. PSO framework allows to

achieve the desired gradient boundedness by bounding magnitude functions’ outputs via the

following lemma.

Lemma 17 (PSO Consistent Modification). Consider any PSO instance [MU ,MD] ∈ C with

the corresponding convergence interval K on which criteria of Theorem 5 hold. DefineD(X, s) :
Rn × K → R to be a continuous and positive function on s ∈ K for any X ∈ SU∩D. Then,

[MU ,MD] and [MU

D , M
D

D] are PSO consistent (i.e. have identical convergence).

The proof is trivial, by noting that the ratio of both pairs is preserved which places them

into the same PSO subset C[T]. The feasibility of the second pair is a result of the first pair’s

feasibility and of the fact that a devision by D does not change the sign and continuity of

magnitude functions.

To produce bounded magnitudes, consider any pair of functions {MU [X, s] ,MD [X, s]}
with some desired PSO convergence T . In case these are unbounded functions, a new pair of

bounded functions can be constructed as

MU
bounded [X, s] = MU [X, s]

|MU [X, s] |+ |MD [X, s] | , MD
bounded [X, s] = MD [X, s]

|MU [X, s] |+ |MD [X, s] | .
(7.4)

It is clear from their structure that the new functions’ outputs are in [−1, 1]. Furthermore, their

PSO convergence will be identical to the one of the original pair, due to Lemma 17. Similarly,

we can replace the absolute value also by other norms.

Magnitudes of many popular estimation methods (e.g. NCE, logistic loss, cross-entropy) are

already bounded, making them more stable compared to unbounded variants. This may explain

their wide adaptation in Machine Learning community. In Section 8.2 we will use the above

transformation to develop a new family of robust log-pdf estimators.

7.3 Statistics of Surface Change

Herein we will analyze statistical properties of fθ’s evolution during the optimization. To this

end, define the differential dfθt(X) , fθt+1(X)− fθt(X) as a change of fθ(X) after t-th GD

iteration. Its first-order Taylor approximation is:

dfθ(X) ≈ −δ · ∇θfθ(X)T · ∇θL̂N
U ,ND

PSO (fθ) =

= δ ·
[

1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)] · gθ(X,XU
i)− 1

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · gθ(X,XD
i)
]
,

(7.5)

where δ is the learning rate, value of θ is the one before GD iteration, and∇θL̂N
U ,ND

PSO (fθ) is the

loss gradient. When the considered model is NN, the above first-order dynamics are typically

a very good approximation of the real dfθ(X) [54, 63]. Further, when fθ belongs to RKHS,

54

the above approximation becomes an identity. Therefore, below we will treat Eq. (7.5) as an

equality, neglecting the fact that this is only the approximation.

Theorem 18 (Differential Statistics). Denote Fθ(X) , PU(X) ·MU [X, fθ(X)]− PD(X) ·
MD [X, fθ(X)] to be a difference of two point-wise forces F U

θ and FD
θ defined in Section 3,

Fθ(X) = F U
θ (X) − FD

θ (X). Additionally, define Gθ to be the integral operator [Gθu](·) =∫
gθ(·, X)u(X)dX . Then, considering training points as random i.i.d. realizations from the

corresponding densities PU and PD, the expected value and the covariance of dfθ(X) at any

fixed θ are:

E [dfθ(X)] = δ ·
[

E
X′∼PU

[
MU

[
X ′, fθ(X ′)

]
· gθ(X,X ′)

]
−

− E
X′∼PD

[
MD

[
X ′, fθ(X ′)

]
·gθ(X,X ′)

]]
= δ ·

∫
gθ(X ′, X) ·Fθ(X ′)dX ′ = δ · [GθFθ](X),

(7.6)

Cov
[
dfθ(X), dfθ(X ′)

]
= δ2 · ∇θfθ(X)T · Var

[
∇θL̂N

U ,ND

PSO (fθ)
]
· ∇θfθ(X ′), (7.7)

with Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

being proportional to 1
NU+ND .

Proof of the above theorem together with the explicit form of Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

appears

in Appendix C. The theorem provides insights about stochastic dynamics of the surface fθ
caused by point-wise forces F U

θ (X) and FD
θ (X). Eq. (7.6) is an integral transform of the total

force Fθ(X), which can also be seen as a point-wise error. That is, on the average dfθ(X)
changes proportionally to the convolution of

[
F U
θ (X ′)− FD

θ (X ′)
]

w.r.t. the kernel gθ(X ′, X).

When F U
θ is larger than FD

θ , after both being convolved via gθ, then on the average fθ(X) is

pushed up, and vice versa. When convolutions of F U
θ and FD

θ are equal around the point X ,

fθ(X) stays constant, again on the average. Further, the variance of dfθ(X) depends on the

alignment between∇θfθ(X) and the eigenvectors of Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

that correspond to

the largest eigenvalues (the directions in θ-space to which PSO loss mostly propagates), and in

addition can be reduced by increasing the size of training datasets.

Neglecting higher moments of random variable dfθ(X), this differential can be expressed as

the sum dfθ(X) = δ · [GθFθ](X) + ωθ(X) where ωθ is a zero-mean indexed-by-X stochastic

process with the covariance function defined in Eq. (7.7). Such evolution implies that fθ(X)
will change on average towards the height where the convoluted PSO equilibrium [GθFθ](·) =
0⇔ GθF

U
θ = GθF

D
θ is satisfied:∫
gθ(X,X ′) · F U

θ (X ′)dX ′ =
∫
gθ(X,X ′) · FD

θ (X ′)dX ′, (7.8)

while ωθ’s variance will cause it to vibrate around such target height. Likewise, informally δ

in Eq. (7.7) has a role of configuration parameter that controls the diapason around the target

height where the current estimation fθ(X) is vibrating. Further, sequential tuning/decaying of

the learning rate δ will decrease this vibration amplitude (distance between the function that

55

satisfies Eq. (7.8) and the current model).

Furthermore, considering a large training dataset regime where ωθ’s effect is insignificant,

and replacing θ by the iteration time t, dynamics of the model can be written as dft(X) =
ft+1(X)− ft(X) = δ · [GtFt](X), or as ft+1 = ft + δ ·GtFt. Here, Ft represents a negative

functional derivative - the steepest descent direction of loss LPSO in the function space. Further,

Gt is GD operator that stretches and shrinks Ft according to the alignment of the latter with

eigenfunctions of the model kernel. Hence, it serves as a metric over the function space, defining

what directions are ”fast” to move in and in which directions it is ”slow”.

7.4 Convoluted PSO Balance State

Above we observed that in fact GD optimization will lead to the convoluted PSO equilibrium.

This can also be derived from the first-order-conditions argument as follows. Assume that at

the convergence of PSO algorithm ∇θL̂N
U ,ND

PSO (fθ) = 0 is satisfied, with θ containing final

parameter values. Multiplying it by∇θfθ(X)T will lead to:

1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)] · gθ(X,XU
i) = 1

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · gθ(X,XD
i). (7.9)

According to the weak law of large numbers the above equality converges in probability (under

appropriate regularity conditions) to Eq. (7.8) as batch sizes NU and ND increase.

Further, considering the asymptotic equilibrium [GθFθ](·) = 0, if the θ-dependent operator

Gθ is injective then we also have Fθ(·) = 0 which leads to F U
θ ≡ FD

θ and to the variational PSO

balance state in Eq. (3.2). Yet, in general case during the optimization Fθ will project into the

null-space of Gθ, with Fθ 6≡ 0. Moreover, even for injective Gθ it may take prohibitively many

GD iterations in order to obtain the convoluted PSO equilibrium in Eq. (7.8), depending on

the conditional number of Gθ. Hence, at the end of a typical optimization Fθ is expected to be

outside of (orthogonal to)Gθ’s high-spectrum space (i.e. a space spanned byGθ’s eigenfunctions

related to its highest eigenvalues), and to be within Gθ’s null-space or its low-spectrum space

(associated with the lowest eigenvalues).

Since the low-spectrum is affiliated with high-frequency functions [116], Fθ 6≡ 0 will resem-

ble some sort of a noise function. That is, during GD optimization the Fourier transform F̂θ(ξ)
of Fθ(X) is losing its energy around the origin, yet it almost does not change at frequencies

ξ whose norm is large. See [63] for the empirical evidence of the above conclusions and for

additional analysis of Gθ’s role in a least-squares optimization.

The above described behavior implicitly introduces a bias into PSO solution. Namely, when

a function space F with particular gθ and Gθ is chosen, this decision will affect our learning task

exactly via the above relation to Gθ’s null-space. The deeper analysis is required to answer the

following questions: How closely are two equilibriums in Eq. (7.8) and Eq. (7.9)? What is the

impact of batch sizes NU and ND, and what can we say about PSO solution when these batches

are finite/small? How gθ’s properties, specifically its eigenvalues and eigenfunctions, will effect

56

the PSO solution? What is the rate of converge towards Gθ’s null-space? And how these aspects

behave in a setting of stochastic mini-batch optimization? These advanced questions share their

key concepts with the topics of RKHS estimation and Deep Learning theory, and deserve their

own avenue. Therefore, we leave most of them out of this thesis’s scope and shall address them

as part of future research. Further, below we analyze a specific property of gθ - its bandwidth.

7.5 Model Expressiveness and Smoothness vs Kernel Bandwidth

The model kernel gθ(X,X ′) expresses the impact over fθ(X) when we optimize at a data point

X ′. Intuitively, under the physical perspective (see Section 3) PSO algorithm can be viewed as

pushing (up and down) at the training points with some wand whose end’s shape is described by

the above kernel. Here we will show that the flexibility of the surface fθ strongly depends on

gθ(X,X ′)’s bandwidth (i.e. on flatness of the pushing wand’s end).

For this purpose we will define a notion of the model relative kernel:

rθ(X,X ′) ,
gθ(X,X ′)
gθ(X,X) , (7.10)

which can be interpreted as a relative side-influence over fθ(X) from X ′, scaled w.r.t. the

self-influence gθ(X,X) of X . Further, assume that the model relative kernel is bounded as:

0 < exp
[
−d(X,X ′)

hmin

]
≤ rθ(X,X ′) ≤ exp

[
−d(X,X ′)

hmax

]
≤ 1, (7.11)

where d(X,X ′) is any function that satisfies the triangle inequality d(X,X ′) ≤ d(X,X ′′) +
d(X ′, X ′′) (e.g. metric or pseudometric over Rn), and where hmin and hmax can be considered

as lower and upper bounds on rθ(X,X ′)’s bandwidth. Below, we will explore how hmin and

hmax effect the smoothness of fθ. Note, that in case gθ(X,X) is identical for any X , the below

analysis can be performed w.r.t. properties of gθ instead of rθ. However, in case fθ is NN, the

NTK gθ can not be bounded as in Eq. (7.11), yet its scaled version rθ clearly manifests such

bounded-bandwidth properties. That is, rθ(X,X ′) of NN typically decreases when the distance

between X and X ′ increases (see Section 11), exhibiting some implicit bandwidth induced

by a NN architecture. Moreover, while the magnitude of gθ can be quiet different for various

NN models and architectures, the normalized rθ is on the same scale, allowing to compare the

smoothness properties of particular models. Likewise, Eq. (7.11) is satisfied by many popular

kernels used for RKHS construction, such as Gaussian and Laplacian kernels, making the below

analysis relevant also for kernel models.

Theorem 19 (Spike Convergence). Assume:

1. PSO algorithm converged, with∇θL̂N
U ,ND

PSO (fθ) = 0.

2. {MU ,MD} are non-negative functions.

3. MU [X ′, s] is continuous and strictly decreasing w.r.t. s, at ∀X ′ ∈ SU .

57

(a) (b)

Figure 7.1: Model flexibility vs influence decay rate (bandwidth) of gradient similarity gθ . Assume for simplicity ∀X :
gθ(X,X) ≡ γ for some constant γ. Considering Eq. (7.5), the differential at X is a weighted average of terms belonging to the
training points around X , where gθ(X, ·) serves as a weighting coefficient for each term. Further, consider gradient similarity to
have a local-support. Its influence decay can be seen to express an influence area around each point X outside of which the gradient
similarity gθ(X, ·) becomes very small and negligible, on average. Above we illustrate two possible scenarios where the influence
area is (a) large and (b) small. Red points represent training points, from both PU and PD . Further, blue and green regions around
points X and X′ = X + ∆ express the neighborhoods around the points where gradient similarity has large values. Note that in
context of NNs these regions in general are not centered at X (or X′) and are not symmetric, yet exhibit a particular influence
decay rate (see Section 11 and Appendix H for the empirical evaluation of gθ). The training points in each such region around
some point X can be considered as support training points of X that will influence its surface height. As observed from plots,
when the influence decay rate is low (i.e. large influence area, see plot (a)) the differentials of X and X′ will be very similar since
most of the support training points stay the same for both X and X′. In contrast, when the influence decay rate is high (see plot
(b)), the differentials at X and X′ will be very different since most of the support training points for both X and X′ are not the
same. Hence, the differential as a function of X changes significantly for a step ∆ within the input space when the decay rate is
high, and vice versa. Furthermore, when the differential dfθ(X) changes only slightly for different points, the overall update of the
surface height at each point is similar/identical to other points. Such surface is pushed up/down as one physical rigid body, making
fθ(X) ”inelastic.” Moreover, when the influence decay rate is significantly high, the point X may have only a single support (up
or down) training point and fθ(X) will be pushed only in a single direction (up or down) yielding the spike near X . Finally, in
case the influence area of X will not contain any training point, fθ(X) will stay constant along the entire optimization.

Denote by (MU)−1 [X ′, z] the inverse function of MU w.r.t. second argument. Further, consider

any training sample from PU and denote it by X . Then the following is satisfied:

1. fθ(X) ≥ (MU)−1 [X,α] where α = NU

ND

∑ND

i=1 M
D [XD

i , fθ(XD
i)] · exp

[
−d(X,XD

i)
hmax

]
.

2. (MU)−1 [X, z] is strictly decreasing w.r.t. z, with (MU)−1 [X,α]→∞ when α→ 0.

Proof of the above theorem is in Appendix D. From it we can see that for smaller α the

surface at any up training point X converges to some very high height, where fθ(X) can

be arbitrary big. This can happen when X is faraway from all down samples {XD
i }N

D

i=1 (i.e.

causing d(X,XD
i) to have a large output), or when hmax is very small (i.e. rθ has a very narrow

bandwidth). In these cases we will have up spikes at locations {XU
i }N

U

i=1. Similarly, when hmax
is very small, there will be down spikes at locations {XD

i }N
D

i=1 - the corresponding theorem is

symmetric to Theorem 19 and thus is omitted. Hence, the above theorem states that a very

narrow bandwidth of rθ will cause at the convergence up and down spikes within the surface fθ,

which can be interpreted as an overfitting behavior of PSO algorithm (see Section 12 for the

empirical demonstration). Note that the theorem’s assumptions are not very restrictive, with

many PSO instances satisfying them such as PSO-LDE, NCE and logistic loss (see Section 5).

Providing a more general theorem with less assumptions (specifically reducing the assumption

3) we shall leave for future work.

58

Theorem 20 (Change Difference). Consider the differential dfθ defined in Eq. (7.5). For any

two points X1 and X2, their change difference is bounded as:

|dfθ(X1)− dfθ(X2)| ≤ δ · gθ(X1, X1) ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · νθ [X1, X2, X

U
i] +

+ 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · νθ [X1, X2, X

D
i]
]
, (7.12)

where

νθ [X1, X2, X] , ε [X1, X2, X] + |gθ(X1, X1)− gθ(X2, X2)|
gθ(X1, X1) , (7.13)

ε [X1, X2, X] , 1− exp
[
− 1
hmin

d(X1, X2)
]
· exp

[
− 1
hmin

max [d(X1, X), d(X2, X)]
]
.

(7.14)

Proof of the above theorem is in Appendix E. In the above relation we can see that ε is

smaller for a smaller distance d(X1, X2). Likewise, ε→ 0 along with hmin →∞. Neglecting

the second term in νθ’s definition (gθ(X1, X1) and gθ(X2, X2) are typically very similar for

any two close-by points X1 and X2), νθ has analogous trends. Therefore, the upper bound

in Eq. (7.12) is smaller when two points are nearby or when hmin is large. From this we can

conclude that fθ(X1) and fθ(X2) are evolving in a similar manner for the above specified

setting. Particularly, for hmin →∞ (and if the second term of νθ is relatively small) the entire

surface fθ will change almost identically at each point, intuitively resembling a rigid geometric

body that moves up and down without changing its internal shape.

To conclude, when we decide which function space F to use for PSO optimization, this

decision is equivalent to choosing the model kernel gθ with the most desired properties. The

effect of gθ’s bandwidth on the optimization is described by the above theorems, whose intuitive

summary is given in Figure 7.1. In particular, when a bandwidth of the (relative) kernel is

too narrow - there will be spikes at the training points, and when this bandwidth is too wide -

the converged surface will be overly smoothed. These two extreme scenarios are also known

as overfitting and underfitting, and the kernel bandwidth can be considered as a flexibility

parameter of the surface fθ. Furthermore, the above exposition agrees with existing works for

RKHS models [107] where the kernel bandwidth is known to affect the estimation bias-variance

trade-off.

7.6 Infinite Height Problem and its Solutions

In this section we study main stability issues encountered due to a mismatch between supports

of PU and PD. From part 2 of Theorem 1 we see that there are settings under which fθ(X)
will go to infinity at X outside of mutual support SU∩D. In Figure 7.2 a simple experiment is

shown that supports this conclusion empirically, where fθ(X) at X ∈ SU\D is increasing during

59

(a) (b) (c) (d)

Figure 7.2: Illustration of PSO behavior in areas outside of the mutual support SU∩D . We inferred 2D Uniform distribution
PU via P̄U (X) = exp fθ(X) by using PSO-LDE with α = 1

4 (see Table 5.1 and Section 8.2). The applied NN architecture is
block-diagonal with 6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). We plot P̄U (X) at different
optimization times t: (a) t = 100, (b) t = 200, (c) t = 10000 and (d) t = 100000. The support SU of PU is [−1, 1] for both
dimensions. The chosen down density PD is defined with SD being identical to SU , minus the circle of radius 0.3 around the
origin (0, 0). In its entire support PD is distributed uniformly. Thus, in this setup the zero-centered circle is outside of SU∩D -
we have samples XU

i there but no samples XD
i . For this reason, there is only the up force FUθ that is present in the circle area,

pushing the surface there indefinitely up. This can be observed from how the centered spire rises along the optimization time.

the entire learning process. Observe that while GD optimization obtains the convoluted PSO

equilibrium in Eq. (7.8) instead of the variational PSO balance state in Eq. (3.2), the conclusions

of Theorem 1 still remain valid in practice.

Similarly, the above described infinite height problem can happen at X ∈ SU∩D where

one of the ratios PU (X)
PD(X) and PD(X)

PU (X) is too small, yet is not entirely zero (i.e. | logPU(X)−
logPD(X)| is large). Such relative support mismatch can cause instability as following. During

the sampling process, at areas where PU(X) and PD(X) are very different, we can obtain many

samples from one density yet almost no samples from the other. Taking Theorem 19 into the

account, any training point X that is isolated from samples of the opposite force (i.e. when

d(X, ·) is large) will enforce a spike at fθ(X). Moreover, when combined with the narrow

kernel bandwidth, such spike behavior will be even more extreme with fθ(X) being pushed to

the infinite height (see Section 12 for the empirical illustration).

Hence, in both of the above cases fθ will go to ±∞ at various locations. Meaning of this is

lack of the optimization convergence. Furthermore, too large fθ’ outputs may cause arithmetic

underflow and overflow instabilities when computing the loss gradient, and hence will lead to a

divergence of the learning task.

In case PU and PD are relatively similar distributions and when gθ’s bandwidth is wide

enough, the above problem of infinite height will not occur in practice. For other cases, there

are two possible strategies to avoid the optimization divergence.

Indicator Magnitudes The above problem can be easily fixed by multiplying any given

magnitude MU (or MD) with the following function:

reverse at [X, fθ(X), ϕ] =

−1, if fθ(X) > ϕ (or fθ(X) < ϕ)

1, otherwise
(7.15)

The reverse at(·) will change sign of near magnitude term when fθ(X) at the training point

X passes the threshold height ϕ. This in turn will change a direction of the force, making it to

oscillate the surface fθ(X) around ϕ (similarly to part 2-d of Theorem 1). Such behavior will

60

(a) (b)

Figure 7.3: Impact illustration of the function cut at [X, fθ(X), ϕ]. (a) We inferred 2D Normal distribution via P̄U (X) =
exp fθ(X) by using PSO-LDE with α = 1

4 (see Table 5.1 and Section 8.2). The applied NN architecture is block-diagonal with 6
layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). (b) We performed the same learning algorithm
as in (a), but with modified up magnitude function M̄U [X, fθ(X)] = MU [X, fθ(X)] · cut at [X, fθ(X),−3], where cut at
is defined in Eq. (7.16). This function deactivates up pushes for points with fθ(X) > −3 (and exp fθ(X) > 0.0498), thus the
surface fθ(X) at height above threshold -3 is only pushed by down force and hence is enforced to converge to the threshold. Yet,
note that at points where the converged model satisfies fθ(X) ≤ −3 the convergence is the same as in (a).

happen only at the ”problematic” areas where fθ(X) got too high/low. In other ”safe” areas the

function reverse at(·) will not have any impact. Hence, applying reverse at(·) next to both

MU and MD will enforce the surface height at all X to be between some minimal and maximal

thresholds, improving in this way the optimization stability.

The alternative to the above function is:

cut at [X, fθ(X), ϕ] =

0, if fθ(X) > ϕ (or fθ(X) < ϕ)

1, otherwise
(7.16)

In contrast to reverse at(·), once the surface fθ(X) at some training point X passed the

threshold height ϕ, the corresponding gradient term of X (either up or down) is withdrawn

from the total gradient ∇θL̂N
U ,ND

PSO (fθ) in Eq. (3.1), entirely deactivating the influence of X

on the learning task. Thus, the surface fθ is not pushed anymore in areas where its height got

too high/low; yet, it is still pushed at samples of the opposite force. Such force composition

will constrain the surface height at unbalanced areas to converge to the threshold height ϕ,

similarly to reverse at(·). Further, unlike reverse at(·), once any particular training point X

got disabled by cut at(·), it also does not have a side-influence (via gθ(X,X ′)) on the surface at

other points. Likewise, it stops affecting the value of θ, leading to a higher movement freedom

within θ-space. Empirically we observed cut at(·) to result in overall higher approximation

accuracy compared to reverse at(·). The optimization outcome of cut at(·) usage is illustrated

in Figure 7.3.

Restriction over Functions’ Range Alternatively, we can enforce all functions within the

considered function space F to have any desired range A = [Hmin, Hmax]. The constants

Hmin and Hmax will represents the minimal and maximal surface heights respectively. For

61

example, this can be accomplished by using the model:

fθ(X) = 1
2 · [Hmax −Hmin] · tanh[hθ(X)] + 1

2 · [Hmax +Hmin], (7.17)

where hθ represents an inner model that may have unbounded outputs. Since tanh(·) is bounded

to have values in [−1, 1], it is easy to verify that the above model can return only values between

Hmin and Hmax. Thus, using such model will eliminate the divergence of the surface to an

infinite height. Likewise, other bounded functions can be used instead of tanh(·) such as erf(·),

sigmoid(·), arctan(·) and many others.

While the impact of both above strategies is intuitive and simple - prevention of fθ from

being pushed beyond pre-defined thresholds, the rigorous math proof is more difficult to obtain.

First strategy induces estimators within PSO non-differentiable family presented in Section

4.1.1 - the setting that is not analyzed by this work. Second strategy leads to PSO functionals

minimized over a function space, whose range may not contain the entire convergence interval

K. A detailed analysis of the above special cases is left for future work since they are not the

main focus of this thesis.

62

CHAPTER 8

Density Estimation via PSO

Till now we discussed a general formulation of PSO, where the presented analysis addressed

properties of any PSO instance. In this section we focus in more detail on groups of PSO

instances that can be applied for the density estimation problem, denoted above asA and B. In

particular, in Section 8.1 we shortly describe our previous work on density estimation, while

in Section 8.2 we explore new PSO approaches to infer density on a logarithmic scale, with

bounded magnitude functions that lead to the enhanced optimization performance.

8.1 DeepPDF

Here we briefly describe the density estimation approach, DeepPDF, introduced in [61], as a

particular instance of the PSO paradigm. The density estimation problem involves learning a

pdf function PU(X) from a dataset of i.i.d. samples {XU
i }. For this purpose, the proposed pdf

loss was defined as:

Lpdf (θ) = − E
X∼PU

fθ(X) · PD(X) + E
X∼PD

1
2
[
fθ(X)

]2
, (8.1)

with corresponding magnitude functions MU [X, fθ(X)] = PD(X) and MD [X, fθ(X)] =
fθ(X). PD is an arbitrary density with a known pdf function which can be easily sampled.

The above loss is a specific instance of PSO with balance state achieved when the surface

fθ(X) converges to PU(X) point-wise ∀X ∈ SU∩D (see Theorem 5), with the corresponding

convergence interval being K = R>0. Since conditions of Theorem 6 hold, no restriction

over F’s range is required. Moreover, according to the condition 3 in Theorem 7 upon the

convergence fθ(X) at X ∈ SU\D can be arbitrary - MU is zero in the area SU\D and hence

the force F U
θ is disabled. Due to similar Theorem 8, at X ∈ SD\U the optimal solution must

satisfy fθ(X) = 0. Therefore, any candidate for PD with SU ⊆ SD will lead to the convergence

∀X ∈ SU∪D : fθ(X) = PU(X). Outside of the support union SU∪D a convergence can be

arbitrary, depending of the model kernel, which is true for any PSO method.

Concluding from the above, selected PD must satisfy SU ⊆ SD. In our experiments we

63

typically use a Uniform distribution for down density PD (yet in practice any density can be

applied). The minimum and maximum for each dimension of PD’s support are assigned to

minimum and maximum of the same dimension from the available PU ’s data points. Thus, the

available samples {XU
i } define n-dimensional hyperrectangle in Rn as support of PD, with

PU ’s support being its subset. Inside this hyperrectangle the surface is pushed by F U
θ and

FD
θ . Note that if borders of this support hyperrectangle can not be computed a priori (e.g.

active learning), the reverse at(·) and cut at(·) functions can be used to prevent a possible

optimization divergence as described in Section 7.6.

After training is finished, the converged fθ(X) may have slightly negative values at points

{X ∈ SD\U} being that during optimization the oscillation around height zero is stochastic in

nature. Moreover, surface values outside of the hyperrectangle may be anything since the fθ(X)
was not optimized there. In order to deal with these possible inconsistencies, we can use the

following proxy function as our estimation of target PU(X):

f̄θ(X) =

0, if fθ(X) < 0 or PD(X) = 0

fθ(X), otherwise
(8.2)

which produces the desirable convergence ∀X ∈ Rn : f̄θ(X) = PU(X).

In [61] we demonstrated that the above DeepPDF method with fθ parametrized by NN

outperforms the kernel density estimation (KDE) in an inference accuracy, and is significantly

faster at the query stage when the number of training points is large.

8.2 PSO-LDE - Density Estimation on Logarithmic Scale

Typically, the output from a multidimensional density PU(X) will tend to be extra small,

where higher data dimension causes smaller pdf values. Representing very small numbers in

a computer system may cause underflow and precision-loss problems. To overcome this, in

general it is recommended to represent such small numbers at a logarithmic scale. Furthermore,

the estimation of log-pdf is highly useful. For example, in context of robotics it can represent

log-likelihood of sensor measurement and can be directly applied to infer an unobservable

state of robot [62]. Likewise, once log-pdf logPU(X) is learned its average for data samples

approximates the entropy of PU , which can further be used for robot planning [60].

Here we derive several estimator families from PSO subgroup B that infers logarithm

of a pdf, logPU(X), as its target function. Although some members of these families were

already reported before (e.g. NCE, [39]), the general formulation of these families was not

considered previously. Further, presented below PSO instances with the convergence logPU(X)
can be separated into two groups - instances with unbounded and bounded magnitude functions

{MU ,MD}. As was discussed in Section 7.2 and as will be shown in Section 13, the latter

group yields a better optimization stability and also produces a higher accuracy.

According to Table 5.6, PSO convergence of the subgroup B is described by T [X, z] =
log z + logPD(X), with its inverse being R [X, s] = exp s

PD(X) . Further, according to Theorem 4

64

Loss Version Loss / MU(·) and MD(·)

1 L: −EX∼PU fθ(X) · PD(X) + EX∼PD exp(fθ(X))
MU , MD: PD(X), exp(fθ(X))

2 L: −EX∼PU fθ(X) + EX∼PD
exp(fθ(X))

PD(X)
MU , MD: 1, exp(fθ(X))

PD(X)

3 L: EX∼PU
PD(X)

exp(fθ(X)) + EX∼PD fθ(X)
MU , MD: PD(X)

exp(fθ(X)) , 1

4 L: EX∼PU 2 · exp
[

1
2 ·
(

logPD(X)− fθ(X)
)]

+

+EX∼PD 2 · exp
[

1
2 ·
(
fθ(X)− logPD(X)

)]
MU , MD: exp

[
1
2 ·
(

logPD(X)− fθ(X)
)]

,

exp
[

1
2 ·
(
fθ(X)− logPD(X)

)]
5 L: −EX∼PU exp(fθ(X)) · PD(X) + EX∼PD 1

2 · exp(2 · fθ(X))
MU , MD: PD(X) · exp(fθ(X)), exp(2 · fθ(X))

Table 8.1: Several PSO Instances that converge to fθ(X) = log PU (X)

the convergence interval is K = R. Then, any pair of continuous positive functions {MU ,MD}
that satisfies:

MD(X, fθ(X))
MU(X, fθ(X)) = exp fθ(X)

PD(X) , (8.3)

will produce fθ(X) = logPU(X) at the convergence.

Unbounded Magnitudes To produce new PSO instances with the above equilibrium, infinitely

many choices over {MU ,MD} can be taken. In Table 8.1 we show several such alterna-

tives. Note that according to PSO we can merely move any term q(X, s) from MU(X, s) into

MD(X, s) as 1
q(X,s) , and vice versa. Such modification will not change the PSO balance state

and therefore allows for the exploration of various magnitudes that lead to the same convergence.

Remark 21. Although we can see an obvious similarity and a relation between magnitudes in

Table 8.1 (they all have the same ratio MD(·)/MU(·)), the corresponding losses have a much

smaller resemblance. Without applying PSO rules, it would be hard to deduce that they all

approximate the same target function.

The Table 8.1 with acquired losses serves as a demonstration for simplicity of applying PSO

concepts to forge new methods for the log-density estimation. However, produced losses have

unbounded magnitude functions, and are not very stable during the real optimization, as will be

shown in our experiments. The first loss in Table 8.1 can lead to precision problems since its

magnitudes return (very) small outputs from PD(X) and exp(fθ(X)). Further, MU of the third

loss has devision by output from the current model exp(fθ(X)) which is time-varying and can

produce values arbitrarily close to zero. Likewise, methods 4 and 5 hold similar problems.

65

-20 -15 -10 -5 0 5 10 15 20
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

U
(d)

M
D

(d)

(a) (b)

Figure 8.1: (a) NCE magnitudes as functions of a difference d̄ [X, fθ(X)] , fθ(X)− log PD(X). (b) Log density estimation
via NCE for 20D data, where PU is standard Normal 20D distribution and PD is minimal Uniform 20D distribution that covers
all samples from PU . Blue points are sampled from PU , while red points - from PD . The x axes represent log PU (X) for each
sample, y axes - the surface height fθ(X) after the optimization was finished. Diagonal line represents fθ(X) = log PU (X),
where we would see all points in case of perfect model inference. The black horizontal line represents log PD(X) = −49 which
is constant for the Uniform density. As can be seen, these two densities have a relative support mismatch - the sampled points from
both densities are obviously located mostly in different space neighborhoods; this can be concluded from values of log PU (X) that
are very different for both point populations. Further, points with relatively small |d̄| (around the horizontal line) have a small

estimation error since the ratio PU (X)
PD(X) there is bounded and both points XU and XD are sampled from these areas. In contrast,

we can see that in areas where |d̄| > ε for some positive constant ε we have samples only from one of the densities. Further, points
with d̄ > 0 (above the horizontal line) are pushed up till a some threshold where the surface height is stuck due to up magnitude
MU (·) going to zero (see also Figure (a)). Additionally, points with d̄ < 0 (below the horizontal line) are pushed down till their
magnitude MD(·) also becomes zero. Note that below points are pushed further from the horizontal line than the above points.
This is because the above points are near the origin (mean of Normal distribution) which is a less flexible area; it is side-influenced
from all directions by surrounding down samples via gθ , which prevents it from getting too high. On opposite, the below points are
located far from the origin center on the edges of the considered point space. In these areas there are almost no samples from PU
and thus the surface is much more easily pushed down. Clearly, the PSO estimation task for the above choice of up and down
densities can not yield a high accuracy, unless gθ is a priori chosen in data-dependent manner (not considered in this thesis). Yet,
we can see that NCE does not push the surface to ±∞ at the unbalanced areas.

Bounded Magnitudes Considering the above point, the PSO instances in Table 8.1 are sub-

optimal. Instead, we want to find PSO losses with bounded MD(·) and MU(·). Further, the

required relation in Eq. (8.3) between two magnitudes can be seen as:

MD [X, fθ(X)]
MU [X, fθ(X)] = exp d̄ [X, fθ(X)] , (8.4)

d̄ [X, fθ(X)] , fθ(X)− logPD(X). (8.5)

d̄ [X, fθ(X)] is a logarithm difference between the model surface and log-pdf of down density,

which will play an essential role in magnitude functions below.

According to Section 7.2 and Lemma 17, from Eq. (8.4) we can produce the following

family of PSO instances:

MU [X, fθ(X)] = PD(X)
D [X, fθ(X)] , MD [X, fθ(X)] = exp fθ(X)

D [X, fθ(X)] , (8.6)

where the denominator function D [X, fθ(X)] > 0 takes the responsibility to normalize output

of magnitude functions to be in some range [0, ε]. Moreover, choice of D [X, fθ(X)] does not

affect the PSO balance state; it is reduced when the above magnitudes are introduced into

Eq. (8.3).

66

To bound functions MD(·) and MU(·) in Eq. (8.6), D [X, fθ(X)] can take infinitely

many forms. One such form, that was implicitly applied by NCE technique [39, 126], is

D [X, fθ(X)] = exp fθ(X) + PD(X) (see also Table 5.1). Such choice of normalization

enforces outputs of both magnitude functions in Eq. (8.6) to be between 0 and 1. Moreover,

NCE magnitudes can be seen as functions of a logarithm difference d̄ [X, fθ(X)] in Eq. (8.5),

MU(d̄) = sigmoid(−d̄ [X, fθ(X)]) and MD(d̄) = sigmoid(d̄ [X, fθ(X)]). Thus, an output

of magnitude functions at point X ∈ Rn entirely depends on this logarithm difference at X .

Furthermore, the up magnitude reduces to zero for a large positive d̄ and the down magnitude

reduces to zero for a large negative d̄ (see also Figure 8.1a).

Such property, produced by bounding magnitudes, is highly helpful and intuitively can be

viewed as an elastic springy constraint over the surface fθ; it prevents infinite height problem

described in Section 7.6, even when up and down densities are very different and when their

support does not match. In neighborhoods where we sample many points from PU but almost

no points from PD (ratio PU (X)
PD(X) is large), the surface is pushed indefinitely up through up term

within PSO loss, as proved by Theorem 19. Yet, as it pushed higher, d̄ for these neighborhoods

becomes larger and thus the up magnitude MU(d̄) goes quickly to zero. Therefore, when at a

specific point X the surface fθ(X) was pushed up too far from logPD(X), the up magnitude

at this point becomes almost zero hence deactivating the up force F U
θ (X) at this X . The same

logic also applies to down force FD
θ (X) - in NCE this force is deactivated at points where fθ(X)

was pushed down too far from logPD(X).

Critically, since fθ(X) approximates logPU(X), d̄ [X, fθ(X)] can also be viewed as an esti-

mation of log PU (X)
PD(X) . Therefore, the above exposition of NCE dynamics can be also summarized

as follows. At points where logarithm difference logPU(X)− logPD(X) is in some dynam-

ical active range [−ε, ε] for positive ε, the up and down forces will be active and will reach

the equilibrium with fθ(X) = logPU(X). At points where [logPU(X) − logPD(X)] >
ε ⇔ PU (X)

PD(X) > exp ε, the surface will be pushed up to height ε. And at points where

[logPU(X) − logPD(X)] < −ε ⇔ PU (X)
PD(X) < 1

exp ε , the surface will be pushed down to

height −ε. Once the surface at some point X passes above the height ε or below the height −ε,
the NCE loss stops pushing it due to (near) zero magnitude component. Yet, the side-influence

induced by model kernel gθ(X,X ′) from non-zero magnitude areas can still affect the surface

height at X . The above NCE behavior is illustrated in Figure 8.1b where 20D log-density

estimation is performed via NCE for Gaussian distribution PU and Uniform distribution PD.

Remark 22. Note that the scalar ε represents a sensitivity threshold, where pushes at points

with d̄ > ε⇔ |MU(·)| < sigmoid(−ε) or at points with d̄ < −ε⇔ |MD(·)| < sigmoid(−ε)
have a neglectable effect on the surface due to their small magnitude component. Such sensitivity

is different for various functional spaces fθ ∈ F ; for some spaces a small change of θ can only

insignificantly affect the surface fθ(X), while causing huge impact in others. Hence, the value

of ε depends on specific choice of F and of magnitude functions MU(·) and MD(·).

The above described relationship between NCE magnitude functions and ratio PU (X)
PD(X) is

very beneficial in the context of density estimation, since it produces high accuracy for points

67

with bounded density ratio | logPU(X)− logPD(X)| ≤ ε and it is not sensitive to instabilities

of areas where | logPU(X)− logPD(X)| > ε. Thus, even for very different densities PU and

PD the optimization process is still very stable. Further, in our experiments we observed NCE

to be much more accurate than unbounded losses in Table 8.1.

Moreover, such dynamics are not limited only to the loss of NCE, and can actually be

enforced through other PSO variants. Herein, we introduce a novel general algorithm family

for PSO log density estimators (PSO-LDE) that takes a normalized form in Eq. (8.6). The

denominator function is defined as Dα
PSO−LDE [X, fθ(X)] ,

[
[exp fθ(X)]α + [PD(X)]α

] 1
α

with α being family’s hyper-parameter. Particularly, each member of PSO-LDE has bounded

magnitude functions:

MU
α [X, fθ(X)] = PD(X)

[[exp fθ(X)]α + [PD(X)]α]
1
α

=
[
exp

[
α·d̄ [X, fθ(X)]

]
+ 1

]− 1
α , (8.7)

MD
α [X, fθ(X)] = exp fθ(X)

[[expfθ(X)]α + [PD(X)]α]
1
α

=
[
exp

[
−α·d̄ [X, fθ(X)]

]
+ 1

]− 1
α .

(8.8)

In Figure 8.2 the above magnitude functions are plotted w.r.t. logarithm difference d̄, for

different values of α. As can be observed, α controls the smoothness and the rate of a magnitude

decay to zero. Specifically, for smaller α magnitudes go faster to zero, which implies that

the aforementioned active range [−ε, ε] is narrower. Thus, small α introduce some elasticity

constraints over fθ that induce smoothness of the converged model. We argue that these

smoother dynamics of smaller α values allow for a more stable optimization and a more accurate

convergence, similarly to the robustness of redescending M-estimators [124]. Yet, we leave the

theoretical analysis of this affect for future work. In Section 13 we will empirically investigate

the impact of α on the performance of density estimation, where we will see that α = 1
4 typically

has a better performance.

Additionally, the formulation of PSO-LDE in Eqs. (8.7)-(8.8) can be exploited to overcome

possible underflow and overflow issues. In a typically used single-precision floating-point format

the function exp(·) can only be computed for values in the range [−81, 81]. Hence, there is

an upper bound for values of |d̄ [X, fθ(X)] | above which MU
α (X, fθ(X)) and MD

α (X, fθ(X))
can not be computed in practice. Yet, we can set the hyper-parameter α to be small enough to

overcome this numerical limitation.

Remark 23. Note that NCE is a member of the above PSO-LDE family for α = 1. Further, the

analytic loss for magnitudes in Eqs. (8.7)-(8.8) is unknown for general α. Yet, the gradient of

this loss can be easily calculated.

To summarize, by replacing pdf loss in Eq. (8.1) with PSO-LDE we succeeded to increase

approximation accuracy of density estimation. We show these results in Section 13. Furthermore,

unlike typical density estimators, for both DeepPDF and PSO-LDE cases the total integral of

the density estimator is not explicitly constrained to 1, yet was empirically observed to be very

68

-30 -20 -10 0 10 20 30
0

0.5

1

0

0.5

1

Figure 8.2: PSO-LDE magnitudes as functions of a difference d̄ , fθ(X)− log PD(X) for different values of a hyper-parameter
α.

close to it. This implies that the proposed herein methods produce an approximately normalized

density model. For many applications such approximate normalization is suitable. For example,

in the estimation of a measurement likelihood model for Bayesian state inference in robotics [62]

the model is required only to be proportional to the real measurement likelihood.

69

70

CHAPTER 9

Conditional Density Estimation

In this section we show how to utilize PSO balance state to infer conditional (ratio) density

functions.

9.1 Conditional Density Estimation

Herein we will focus on problem of conditional density estimation, where i.i.d. samples of pairs

{XU
i , Y

U
i } are given as:

D =

(columns of XU) (columns of Y U)

XU
1 Y U

1
XU

2 Y U
2

...
...

, where XU
i ∈ Rnx , Y U

i ∈ Rny . (9.1)

Again, we use U to refer to up force in PSO framework as will be described below. For any

dataset D, the generation process of its samples is governed by the following unknown data

densities: PUXY (X,Y), PUX(X) and PUY (Y). Specifically, in Eq. (9.1) rows under XU columns

will be distributed by marginal pdf PUX(X), rows under Y U columns - by marginal pdf PUY (Y),

and entire rows of D will have the joint density PUXY (X,Y) (see also Table 9.1 for list of

main notations). Likewise, these densities induce the conditional likelihoods PUX|Y (X|Y) and

PUY |X(Y |X), which can be formulated via Bayes theorem:

PUX|Y (X|Y) = PUXY (X,Y)
PUY (Y) , PUY |X(Y |X) = PUXY (X,Y)

PUX(X) . (9.2)

Depending on the task at hand, conditional pdf PUX|Y (X|Y) can produce valuable information

about given data.

The simple way to infer PUX|Y (X|Y) is by first approximating separately the PUXY (X,Y)

71

Notation Description

XU ∼ PUX(X) nx-dimensional random variable with marginal pdf PUX
Y U ∼ PUY (Y) ny-dimensional random variable with marginal pdf PUY
[XU , Y U] n-dimensional random variable with joint pdf PUXY (X,Y),

at samples of which we push the model surface up
n = nx + ny joint dimension of random variable [XU , Y U]
PUX|Y (X|Y) conditional probability density function of X ≡ XU given Y ≡ Y U

XD ∼ PD nx-dimensional random variable with pdf PD
[XD, Y D] n-dimensional random variable with joint pdf PD(X) · PUY (Y),

at samples of which we push the model surface down

Table 9.1: Main Notations for Conditional Density Estimators

and PUY (Y) from data samples (e.g. by using DeepPDF or PSO-LDE), and further applying

Bayes theorem in Eq. (9.2). Yet, such method is not computationally efficient and typically is

also not optimal, since approximation errors of both functions can produce even bigger error in

the combined function.

A different technique, based on PSO principles, can be performed as follows. Consider a

model (PSO surface) fθ(X,Y) : Rn → R with n = nx + ny, where the concatenated input

[X,Y] can be seen as the surface support. Define an arbitrary density PD over Rnx with a known

pdf function which can be easily sampled (e.g. Uniform). Density PD will serve as a down

force to balance samples from PUX , and thus is required to cover the support of PUX . Further,

PUXY (X,Y) will serve as up density in PSO framework, and its sample batch {XU
i , Y

U
i }N

U

i=1 will

contain all rows from D. As well, we will use PD(X) · PUY (Y) as down density. Corresponding

samples {XD
i , Y

D
i }N

D

i=1 will be sampled in two steps. {Y D
i }N

D

i=1 are taken from D under Y U

columns; {XD
i }N

D

i=1 are sampled from PD(X).

Considering the above setup, we can apply PSO to push fθ(X,Y) via up and down forces.

The optimization gradient will be identical to Eq. (3.1) where XU
i and XD

i are substituted by

{XU
i , Y

U
i } and {XD

i , Y
D
i } respectively. For any particular {MU ,MD} the associated PSO

balance state will be:

MD [X,Y, fθ(X,Y)]
MU [X,Y, fθ(X,Y)] = PUXY (X,Y)

PD(X) · PUY (Y) =
PUX|Y (X|Y)

PD(X) , (9.3)

where we can observe PUX|Y (X|Y), which we aim to learn. Similarly to Section 5, below we

formulate PSO subgroup for the conditional density estimation (or any function of it).

Theorem 24 (Conditional Density Estimation). Denote the required PSO convergence by a

transformation T (X,Y, z) : Rn × R → R s.t. fθ(X,Y) = T
[
X,Y,PUX|Y (X|Y)

]
is the

function we want to learn. Denote its inverse function w.r.t. z as T−1(X,Y, s). Then, any pair

{MU ,MD} satisfying:
MD(X,Y, s)
MU(X,Y, s) = T−1(X,Y, s)

PD(X) , (9.4)

will produce the required convergence.

72

The proof is trivial by noting that:

T−1(X,Y, fθ(X,Y)) = PD(X) · M
D(X,Y, fθ(X,Y))

MU(X,Y, fθ(X,Y)) = PD(X) ·
PUX|Y (X|Y)

PD(X) ⇒

⇒ T−1(X,Y, fθ(X,Y)) = PUX|Y (X|Y) (9.5)

where we used both Eq. (9.3) and Eq. (9.4). From properties of inverse functions it follows:

T
[
X,Y,PUX|Y (X|Y)

]
= T

[
X,Y, T−1(X,Y, fθ(X,Y))

]
= fθ(X,Y). (9.6)

Further, the sufficient conditions over mappings T , MU and MD are omitted since they already

appear in Theorem 4.

Example 5: Consider a scenario where we would like to infer fθ(X,Y) = PUX|Y (X|Y). Thus,

the PSO convergence is described by T (X,Y, z) = z. Its inverse is T−1(X,Y, s) = s. Hence,

magnitude functions must satisfy MD(X,Y,fθ(X,Y))
MU (X,Y,fθ(X,Y)) = fθ(X,Y)

PD(X) . One choice for such magnitudes

is MU [X,Y, fθ(X,Y)] = PD(X) and MD [X,Y, fθ(X,Y)] = fθ(X,Y), defined in Table 9.2

as ”Conditional Density Estimation”.

Example 6: Consider a scenario where we would like to infer fθ(X,Y) = logPUX|Y (X|Y),

which can be essential for high-dimensional data. The PSO convergence is described by

T (X,Y, z) = log z, and its inverse is T−1(X,Y, s) = exp s. Hence, magnitude functions must

satisfy MD(X,Y,fθ(X,Y))
MU (X,Y,fθ(X,Y)) = exp fθ(X,Y)

PD(X) . One choice for such magnitudes isMU [X,Y, fθ(X,Y)] =
PD(X)

D(X,Y,fθ(X,Y)) and MD [X,Y, fθ(X,Y)] = exp fθ(X,Y)
D(X,Y,fθ(X,Y)) , defined in Table 9.2 as ”PSO-LDE

Conditional Form”. The denominator D(X,Y, fθ(X,Y)) = [[exp fθ(X,Y)]α + [PD(X)]α]
1
α

serves as a normalization to enforce magnitudes to be bounded functions, similarly to PSO-LDE

method in Section 8.2.

Thus, we can estimate the conditional density, or any function of it, in a one-step algorithm

by applying PSO procedure with up and down densities defined above. This again emphasizes

the simplicity and usability of PSO formulation. Further, note that it is also possible to reuse

sample Y U
i as Y D

i , since within the down term this sample will still be independent ofXD
i and its

density is still the marginal PUY (Y). Such reuse is popular for example in NCE methods [83, 84]

in context of language modeling.

The above examples and several other options are listed in Table 9.2. Similarly to a case of

the ordinary density estimation, also in the conditional case there are numerous PSO instances

with the same target function PUX|Y (X|Y) (or logPUX|Y (X|Y)). Analyses of these techniques

and search for the most ”optimal” can be an interesting direction for future research.

73

Method Final fθ(X) / References / Loss / MU(·) and MD(·)

Conditional F: PU(X|Y)
Density R: This thesis
Estimation L: −E[X,Y]∼PUXY (X,Y) fθ(X,Y) · PD(X)+

+E[X,Y]∼PD(X)·PUY (Y)
1
2

[
fθ(X,Y)

]2
MU , MD: PD(X) , fθ(X,Y)

Conditional F: logPU(X|Y)
Log-density R: This thesis
Estimation L: −E[X,Y]∼PUXY (X,Y) fθ(X,Y) + E[X,Y]∼PD(X)·PUY (Y)

exp[fθ(X,Y)]
PD(X)

MU , MD: 1, exp[fθ(X,Y)]
PD(X)

NCE F: logPU(X|Y)
Conditional R: [83, 84]

Form L: E[X,Y]∼PUXY (X,Y) log exp[fθ(X,Y)]+PD(X)
exp[fθ(X,Y)] +

+E[X,Y]∼PD(X)·PUY (Y) log exp[fθ(X,Y)]+PD(X)
PD(X)

MU , MD: PD(X)
exp[fθ(X,Y)]+PD(X) , exp[fθ(X,Y)]

exp[fθ(X,Y)]+PD(X)

PSO-LDE F: logPU(X|Y)
Conditional R: This thesis
Form L: unknown

MU , MD: PD(X)

[[exp fθ(X,Y)]α+[PD(X)]α]
1
α

, exp fθ(X,Y)

[[exp fθ(X,Y)]α+[PD(X)]α]
1
α

Conditional F:
PU
X|Y (X|Y)

PU
X|Y (X|Y)+PD

φ
(X|Y) ,

GAN Critic where PDφ (X|Y) is density of generator hφ parametrized by φ
R: [81]
L: −E[X,Y]∼PUXY (X,Y) log fθ(X,Y)−
−E[X,Y]∼PD

φ
(X|Y)·PUY (Y) log

[
1− fθ(X,Y)

]
MU , MD: 1

fθ(X,Y) , 1
1−fθ(X,Y)

Likelihood-Ratio F: log
PU
X|Y (X|Y)
PD
φ

(X|Y) ,

with where PDφ (X|Y) is density of generator hφ parametrized by φ
Logistic Loss R: This thesis

L: E[X,Y]∼PUXY (X,Y) log
[
1 + exp[−fθ(X,Y)]

]
+

+E[X,Y]∼PD
φ

(X|Y)·PUY (Y) log
[
1 + exp[fθ(X,Y)]

]
MU , MD: 1

exp[fθ(X,Y)]+1 , 1
exp[−fθ(X,Y)]+1

Table 9.2: PSO Instances For Conditional Density (Ratio) Estimation, see Sections 9.1 and 9.2 for a detailed exposition of
conditional PSO

74

9.2 Relation to Conditional GANs

Furthermore, a similar idea was also presented in the context of GANs, where a conditional

generation of data (e.g. images given labels) was explored. Below we show its connection to

PSO framework.

Denote the dataset D as in Eq. (9.1), where real sample pairs {XU
i , Y

U
i } are distributed

according to unknown PUXY (X,Y). In Conditional GAN (cGAN) [76] the generator produces

fake samples from the generator’s conditional density PDφ (X|Y), where we again use notationsU

andD to refer to PSO forces, as is described below. Density PDφ (X|Y) is an implicit distribution

of fake samples that are returned by the generator hφ(υ, Y) from the latent space υ ∈ Rnυ ,

where the label Y was a priori sampled from PUY (Y); φ is a generator’s parametrization. Further,

the critic sees pairs [X,Y] coming from D and from the generator, and tries to decide where the

pair is originated from. This is done by estimating a statistical divergence between PUX|Y (X|Y)
implicitly defined by D, and between PDφ (X|Y) implicitly defined by hφ. Moreover, the

divergence estimation is typically done by first inferring the ratio
PU
X|Y (X|Y)
PD
φ

(X|Y) (or some function

of this ratio).

The proposed by [76] algorithm is identical to PSO procedure, when PUXY (X,Y) serves

as up density, and PDφ (X|Y) · PUY (Y) - as down density. The up sample batch {XU
i , Y

U
i }N

U

i=1
will contain all rows from D. Further, samples {XD

i , Y
D
i }N

D

i=1 from down density will be

sampled in three steps. {Y D
i }N

D

i=1 are taken from D under Y U columns; {υi}ND

i=1 are sampled

from generator’s base distribution; {XD
i }N

D

i=1 are generator’s outputs for inputs {Y D
i , υi}N

D

i=1 .

Extending the setup of Section 9.1 to the above sampling procedure, any particular {MU ,MD}
will produce PSO balance state:

MD [X,Y, fθ(X,Y)]
MU [X,Y, fθ(X,Y)] = PUXY (X,Y)

PDφ (X|Y) · PUY (Y) =
PUX|Y (X|Y)
PDφ (X|Y) , (9.7)

where the conditional ratio shows up. Similarly to the conditional density estimation, below we

formulate PSO subgroup for inference of this ratio (or any function of it).

Theorem 25 (Conditional Ratio Estimation). Denote the required PSO convergence by a

transformation T (X,Y, z) : Rn × R → R s.t. fθ(X,Y) = T

[
X,Y,

PU
X|Y (X|Y)
PD
φ

(X|Y)

]
is the

function we want to learn. Denote its inverse function w.r.t. z as T−1(X,Y, s). Then, any pair

{MU ,MD} satisfying:
MD(X,Y, s)
MU(X,Y, s) = T−1(X,Y, s), (9.8)

will produce the required convergence.

75

The proof is trivial by noting that:

T−1(X,Y, fθ(X,Y)) = MD(X,Y, fθ(X,Y))
MU(X,Y, fθ(X,Y)) =

PUX|Y (X|Y)
PDφ (X|Y) ⇒

⇒ T−1(X,Y, fθ(X,Y)) =
PUX|Y (X|Y)
PDφ (X|Y) . (9.9)

From properties of inverse functions the Theorem follows.

The cGAN method aimed to infer
PU
X|Y (X|Y)

PU
X|Y (X|Y)+PD

φ
(X|Y) to measure Jensen-Shannon di-

vergence between real and fake distributions. This is associated with PSO convergence

T (X,Y, z) = z
z+1 and the corresponding inverse T−1(X,Y, s) = s

1−s . According to The-

orem 25 the magnitudes must satisfy:

MD(X,Y, fθ(X,Y))
MU(X,Y, fθ(X,Y)) = fθ(X,Y)

1− fθ(X,Y) , (9.10)

with the specific choice {MU(X,Y, fθ(X,Y)) = 1
fθ(X,Y) ,M

D(X,Y, fθ(X,Y)) = 1
1−fθ(X,Y)}

selected by the critic loss in [76].

Hence, we can see that cGAN critic loss is a particular instance of PSO, when the sampling

procedure of up and down samples is as described above. Further, two main problems of the

classical cGAN critic are the not-logarithmic scale of the target function and unboundedness of

magnitude functions (for a general model fθ(X,Y)). In Table 9.2 we propose a ”Likelihood-

Ratio with Logistic Loss” to learn log
PU
X|Y (X|Y)
PD
φ

(X|Y) whose magnitudes are bounded. We argue such

choice to be more stable during the optimization which will lead to a better accuracy. Moreover,

for specific case when cGAN critic fθ(X,Y) is parameterized as sigmoid(hθ(X,Y)) with

hθ(X,Y) being the inner model, cGAN critic loss can be shown to be reduced to the above

logistic loss. Thus, with such parametrization the inner NN hθ(X,Y) within cGAN critic will

converge to log
PU
X|Y (X|Y)
PD
φ

(X|Y) .

76

CHAPTER 10

Additional Applications and Relations of PSO
Framework

In this section we demonstrate how PSO principles can be exploited beyond the (conditional)

pdf inference problem. Particularly, we relate PSO and cross-entropy loss, showing the latter to

be a specific instance of the former. We also outline relation between PSO and MLE by deriving

the latter from PSO functional. Further, we analyze PSO instance with unit magnitude functions

and describe its connection to CD method [46]. Additionally, we show how to use PSO for

learning mutual information from available data samples, and how to employ it in the solution

of occupancy mapping.

10.1 Cross-Entropy as Instance of PSO

In this section we will show that the binary cross-entropy loss combined with a sigmoid non-

linearity, typical in binary classification problems, is instance of PSO. Further, in Appendix F we

extend this setup also to a more general case of softmax cross-entropy. Similarly to a binary

sigmoid cross-entropy, a multi-class softmax cross-entropy is shown to be a PSO instance,

extended to models with multi-dimensional outputs. Thus, the optimization of multi-class

softmax cross-entropy can be seen as pushes of dynamical forces over C different surfaces

{fθ(X)i}Ci=1 - the outputs of the model fθ(X) ∈ RC per each class.

To prove the above point, we derive the binary cross-entropy loss using PSO principles.

Define training dataset of pairs {Xi, Yi}Ni=1 where Xi ∈ Rn is data point of an arbitrary

dimension n (e.g. image) and Yi is its label - the discrete number that takes values from {0, 1}.
Denote by N1 and N0 the number of samples with labels 1 and 0 respectively. Further, assume

each sample pair to be i.i.d. sampled from an unknown density P(X,Y) = P(X) · P(Y |X).

Our task is to enforce the output of σ(fθ(X)), the sigmoid non-linearity over inner model

77

fθ(X), to converge to unknown conditional P(Y = 1|X). Such convergence is equivalent to

fθ(X) = − log
[1
P(Y = 1|X) − 1

]
= log P(X,Y = 1)

P(X,Y = 0) = log P(X|Y = 1) · P(Y = 1)
P(X|Y = 0) · P(Y = 0) .

(10.1)

To apply PSO, we consider P(X|Y = 1) as up density PU and P(X|Y = 0) as down density

PD. Sample batches {XU
i }

N1
i=1 and {XD

i }
N0
i=1 from both can be obtained by fetching Xi with

appropriate label Yi. Then the required convergence is described by T (X, z) = log P(Y=1)
P(Y=0) · z,

with f∗(X) = T (X, P(X|Y=1)
P(X|Y=0)). Further, the T ’s inverse is R(X, s) = P(Y=0)

P(Y=1) · exp s, and

according to Theorem 4 magnitudes must satisfy MD[X,fθ(X)]
MU [X,fθ(X)] = P(Y=0)·exp fθ(X)

P(Y=1) . One possible

choice is:

MU [X, fθ(X)] = P(Y = 1)
1 + exp fθ(X) , MD [X, fθ(X)] = P(Y = 0) · exp fθ(X)

1 + exp fθ(X) (10.2)

where the denominator 1+exp fθ(X) serves as a normalization factor that enforces {MU ,MD}
to be between 0 and 1. Further, the above magnitude functions have known antiderivatives:

M̃U [X, fθ(X)] = P(Y = 1)·log [σ(fθ(X))] , M̃D [X, fθ(X)] = −P(Y = 0)·log [1− σ(fθ(X))]
(10.3)

that produce the following PSO functional:

LPSO(f) = − E
X∼P(X|Y=1)

P(Y = 1)·log [σ(fθ(X))]− E
X∼P(X|Y=0)

P(Y = 0)·log [1− σ(fθ(X))] .

(10.4)

Finally, considering N1
N and N0

N as estimators of P(Y = 1) and P(Y = 0) respectively, the

empirical version of the above loss is:

LPSO(f) ≈ − 1
N1

N1∑
i=1

N1
N
· log [σ(fθ(XU

i))]− 1
N0

N0∑
i=1

N0
N
· log [1− σ(fθ(XD

i))] =

= − 1
N

N∑
i=1

[
Yi · log [σ(fθ(Xi))] + [1− Yi] · log [1− σ(fθ(Xi))]

]
, (10.5)

where we combine two sums of the first row into a single sum after introducing indicators Yi
and 1− Yi.

The second row is known in Machine Learning community as the binary cross-entropy loss.

Therefore, we can conclude that PSO instance with magnitudes in Eq. (10.2) corresponds to

cross-entropy when P(X|Y = 1) and P(X|Y = 0) serve as up and down densities respectively.

See a similar derivation for multi-class cross-entropy in Appendix F. Therefore, convergence

and stability properties of PSO are also shared by the supervised classification domain which

further motivates PSO analysis.

78

10.2 Relation to Maximum Likelihood Estimation

Below we establish the relation between MLE and PSO procedures, by deriving MLE approach

from principles of PSO. Consider a batch of i.i.d. samples {XU
i }N

U

i=1 sampled from density PU ,

whose pdf we aim to estimate. Define an auxiliary distribution PD with analytically known pdf

PD(X) that satisfies SU ⊆ SD, and define PSO functional as:

LPSO(f) = − E
X∼PU

[1 + log f(X)] + E
X∼PD

f(X)
PD(X) (10.6)

that is induced by the following magnitude functions:

MU [X, f(X)] = 1
f(X) , MD [X, f(X)] = 1

PD(X) . (10.7)

Define the hypothesis class F with functions that are positive on SU so that log f(X) is properly

defined for all f ∈ F and X ∈ SU . Then, the optimal f∗ = arg minf∈F LPSO(f) will satisfy

PSO balance state in Eq. (3.2) which yields f∗(X) = PU(X).

Furthermore, in case F is a space of positive functions whose total integral is equal to 1 (i.e.

probability measure space), the above loss can be reduced to:

LPSO(f) =
∫
−PU(X) · [1 + log f(X)] + f(X)dX = − E

X∼PU
log f(X), (10.8)

where we apply an equality
∫
PU(X)dX =

∫
f(X)dX since f is normalized. Note that limiting

F to be a probability measure space does not affect the balance state of PSO since the optimal

solution f∗ is also a probability measure. Further, considering the physical perspective of PSO

such choice of F has an implicit regularization affect, removing a need for the down force FD
θ

in order to achieve the force equilibrium over the surface f(X).

The loss in Eq. (10.8) and its empirical variant LPSO(f) ≈ − 1
NU

∑NU

i=1 log f(XU
i) define

the standard MLE procedure. Therefore, we can conclude that PSO with magnitudes defined in

Eq. (10.7) corresponds to MLE when the data distribution PU is absolutely continuous w.r.t. PD

and when each f ∈ F is a normalized function. Likewise, such relation can also be explained

by the connection between PSO and Kullback-Leibler (KL) divergencies described in Section 6.

10.3 PSO with Unit Magnitudes and Contrastive Divergence

The PSO instance with unit magnitudes MU [X, fθ(X)] = MD [X, fθ(X)] = 1 can be fre-

quently met in Machine Learning (ML) literature. For example, Integral Probability Metrics

(IPMs) [87], contrastive divergence (CD) [46], Maximum Mean Discrepancy (MMD) [34]

and critic of the Wasserstein GAN [6] all rely on this loss to measure some distance between

densities PU and PD. In this section we will explore this unit loss

Lunit(fθ) = − E
X∼PU

fθ(X) + E
X∼PD

fθ(X) (10.9)

79

in a context of the proposed PSO framework.

By following the derivation from Section 4.1, the inner minimization problem solved by

inff∈F Lunit(f) for each X is:

s∗ = arg inf
s∈R

[−PU(X) + PD(X)] · s. (10.10)

Since it is linear in s, the optima s∗ will be either +∞ (if PU(X) > PD(X)) or −∞ (if

PU(X) < PD(X)). Using physical system perspective, we can say that given a flexible enough

surface fθ(X) (e.g. typical NN) the straight forward optimization via unit loss in Eq. (10.9) will

diverge since forces F U
θ (X) = PU(X) and FD

θ (X) = PD(X) are actually independent of θ and

cannot adapt to each other. That is, balance state F U
θ (X) = FD

θ (X) can not be achieved by the

unit loss. Thus, the model is pushed to ±∞ at various input points, up to the surface flexibility.

During such optimization, training will eventually fail due to numerical instability that involves

too large/small numbers. Furthermore, this point can be easily verified in practice by training

NN with loss in Eq. (10.9).

CD One way to enforce the convergence of unit loss is by adapting/changing density PD

towards PU along the optimization. Indeed, this is the main idea behind the CD method

presented in [46] and further improved in [91] and [73]. In CD, the down density PD(X) in

Eq. (10.9) represents the current model distribution P̂θ(X) , exp[fθ(X)]/
∫

exp[fθ(X ′)]dX ′,
PD ≡ P̂θ. At each iteration, {XD

i }N
D

i=1 are sampled from P̂θ(X) by Gibbs sampling [46], Monte

Carlo with Langevin dynamics [51], Hybrid Monte Carlo sampling [91], or Stein Variational

Gradient Descent (SVGD) [72, 73]. Thus, in CD algorithm forces F U
θ (X) = PU(X) and

FD
θ (X) = P̂θ(X) are adapted to each other via their frequency components PU and PD instead

of their magnitude components MU [X, fθ(X)] and MD [X, fθ(X)]. The dynamics of such

optimization will converge to the equilibrium only when PU(X) = P̂θ(X) which will also lead

to exp[fθ(X)] ∝ PU(X).

WGAN We additionally consider the relation between PSO concepts and Wasserstein GAN [6]

(WGAN) which has been recently proposed and is considered nowadays to be state-of-the-art.

Apparently, the critic’s loss in WGAN is exactly Eq. (10.9). It pushes the surface fθ(X) up at

points sampled from the real data distribution PU , and pushes down at points sampled from the

generator density PDφ , which is an implicit distribution of fake samples returned by a generator

from the latent space, with φ being a generator parametrization.

The critic’s loss of WGAN was chosen as proxy to force critic’s output to approximate Earth

Mover (Wasserstein) distance between PU and PDφ . Specifically, the unit loss is a dual form of

Wasserstein distance under the constraint that fθ(X) is 1-Lipschitz continuous. Intuitively, the

critic network will return high values for samples coming from PU , and low values for samples

coming from PDφ , thus it learns to deduce if its input is sampled from PU or from PDφ . Once

critic’s optimization stage ends, the generator of WGAN optimizes its weights φ in order to

80

increase fθ(X)’s output for samples coming from PDφ via the loss

LGWGAN (φ) = − E
X∼PD

φ

fθ(X). (10.11)

The described above ”infinity” divergence of unit loss and 1-Lipschitz constraint may

explain why the authors needed to clip NN weights to stabilize the approach’s learning. In [6]

after each iteration the NN weights are constrained to be between [−c, c] for some constant c.

Likely, such handling reduces the flexibility of a surface fθ(X), thus preventing it from getting

too high/low output values. Such conclusion about the reduced flexibility is also supported

by [36].

Further, in [36] authors prove that 1-Lipschitz constraint of WGAN implies that the surface

has gradient (w.r.t. X) with norm at most 1 everywhere,
∥∥∥∂fθ(X)

∂X |θ=θ∗
∥∥∥ = 1. Instead of weight

clipping, they proposed to combine the unit loss with a X-gradient penalty term that forces this

gradient norm to be close to 1. The effect of such regularization can be explained as follows.

Considering the PSO principles, the optimal surface for the unit loss has areas of +∞ and −∞,

thus requiring sharp slopes between these areas. The gradient penalty term constrains these

slopes to be around 1, hence it prevents the surface from getting too high/low, solving in this way

the ”infinity” oscillations. Overall, by using weight clipping and other regularization techniques

like gradient penalty [36], WGAN is in general highly successful in data generation task. Thus,

we can see that basically unstable PSO instance with unit magnitudes can be stabilized by a

surface flexibility restriction via appropriate regularization terms within the loss.

MMD Finally, MMD algorithm [34] exploits the unit loss in Eq. (10.9) to test if two separate

datasets are generated from the same distribution. Authors express this loss over RKHS function

with a bounded RKHS norm, thus implicitly constraining the model smoothness and eliminating

the infinite height problem.

Remark 26. As was observed empirically on 20D data, even the prolonged GD optimization

via the above unit loss in Eq. (10.9) leaves the randomly initialized NN surface fθ(X) almost

unchanged for the case when PU ≡ PD. This is due to the implicit force balance produced by the

identical densities. In contrast, when densities are different the optimization diverges very fast,

after only a few thousands of iterations. Also, the optimization gradient during these iterations

is typically smaller for the same density scenario than for the different densities. Similarly to

MMD method, such behavior can be exploited for example to test if samples from two datasets

have the same density or not, by performing the optimization and seeing if it diverges.

Overall, all of the above PSO instances with unit magnitudes, except for CD, handle the

instabilities of unit loss by restricting the flexibility of the model fθ(X). Thus, a typical strategy

is to enforce K-Lipschitz constraint. Yet, in context of DL it is still unclear if and how it is

possible to enforce a model to be exact K-Lipschitz, even though there are several techniques

recently proposed for this goal [36, 82, 104, 154].

81

10.4 Mutual Information Estimation

Mutual information (MI) between two random multi-variable distributions represents correlation

between their samples, and is highly useful in the Machine Learning domain [13]. Here we

shortly describe possible techniques to learn MI from data, based on PSO principles.

Consider two random variables X ∈ Rnx and Y ∈ Rny with marginal densities PX and PY .

Additionally, denote by PXY their joint distribution. The MI between X and Y is defined as:

I(X,Y) =
∫ ∫

PXY (X,Y) · V (X,Y)dXdY, V (X,Y) , log PXY (X,Y)
PX(X) · PY (Y) . (10.12)

If log-ratio V (X,Y) is known/learned in some way, and if we have samples {Xi, Y i}Ni=1 from

joint density PXY , we can approximate MI via a sample approximation:

I(X,Y) ≈ 1
N

N∑
i=1

V (Xi, Yi). (10.13)

Further, V (X,Y) can be easily learned by one of PSO instances in Tables 5.1-5.5 for

logarithm density-ratio estimation as follows. Consider a model fθ(X,Y) : Rn → R, with

n = nx + ny. Additionally, we will use PXY (X,Y) as up density in PSO framework, and

PX(X) · PY (Y) - as down density. To obtain sample from up density, we can pick random

pair from available dataset {Xi, Y i}Ni=1, similarly to conditional density estimation in Section

9.1. Further, samples from down density can be acquired by picking Xi and Y i from dataset

independently.

Considering the above sampling procedure, we can apply PSO to push fθ(X,Y) via up and

down forces, using the corresponding magnitude functions. For any particular {MU ,MD} the

associated PSO balance state will be:

MD [X,Y, fθ(X,Y)]
MU [X,Y, fθ(X,Y)] = PXY (X,Y)

PX(X) · PY (Y) . (10.14)

Hence, to produce the convergence fθ(X,Y) = V (X,Y), the appropriate choice of magnitudes

must satisfy MD[X,Y,s]
MU [X,Y,s] = exp s - to infer log-ratio between up and down densities the magnitude

ratio R must be equal to exp s, according to Table 5.6.

For example,MU [X,Y, fθ(X,Y)] = 1
exp[fθ(X,Y)]+1 andMD [X,Y, fθ(X,Y)] = 1

exp[−fθ(X,Y)]+1
can be used (e.g. a variant of the logistic loss in Table 5.4), yet many other alternatives can also

be considered. Recently, similar ideas were also presented in [13].

10.5 Learning Probabilistic Occupancy Mapping

Problem Definition Statistical representation of space occupancy around the robot is manda-

tory for autonomous navigation. Borrowing the formulation from [121], training data for this

learning task can be acquired from lidar scans; the generated dataset is D = {Xi, Yi}Ni=1 where

Xi is the observed space location (2D or 3D) and Yi ∈ {f ,o} , {free, occupied} is its occu-

82

pancy label. Laser hit points can be considered as samples X with Y = o, while samples with

Y = f can be sampled (i.e. uniformly) along the laser beam. The dataset D implies existence of

a joint distribution P(X,Y) from which it was sampled, and a typical objective is to estimate

P(Y |X) = P(X,Y)/P(X). Applying PSO for this task can be done similarly to learning a

(conditional) pdf in sections 8-9.

Yet, observe that the marginal P(X) represents a probability of location X being observed,

and the above objective is well-defined only in areas of obtained scans. Instead, we propose to

estimate a different objective J(X) , P(X) · [P(Y = o|X)− P(Y = f |X)] since it is defined

in any area of the map and produces valuable information about the environment. First, note

that its second term, likelihood difference, defines the sign of J(X) which can be interpreted as

which label of X is more likely. Further, when P(X) = 0, meaning that location X was not

observed during scan gathering, J(X) is also zero, allowing to decide when there is enough

information about X . Moreover, locations that were observed by multiple scans will have

higher P(X), and hence also |J(X)|, which can be used as a measure of confidence about X’s

occupancy state. Furthermore, J(X) is continuous function of location X , allowing to avoid

a discretization of the map typically done by occupancy grid methods. Thus, below we show

how J(X) can be inferred via PSO. Yet, importantly, we emphasize J(X) is only one possible

candidate target, and PSO is definitely not limited to only this case.

PSO-based Solution To learn J(X), we extend PSO framework to setting of 3 different

forces applied over the model fθ(X). For this purpose, we denote by S ⊂ Rn the subset of n-

dimensional space that we want to map. Here n can have value of 2 or 3, and S can represent the

entire space of the considered indoor/outdoor environment (i.e. a navigated-through building).

Further, denote by Ω ⊆ S the space that was observed by any of the acquired lidar scans.

Each training sample Xi ∈ D also belongs to Ω, since it is the observed location. Further,

we can consider D to be implicitly sampled from the joint P(X,Y), with X = {Xi}Ni=1 and

Y = {Yi}Ni=1 being distributed according to marginal probabilities P(X) and P(Y). Also,

as mentioned above P(X) can be interpreted as a likelihood of X being observed during

gathering of lidar scans, with ∀X /∈ Ω : P(X) = 0. Further, P(Y) can be inferred from Y via

P(Y = f) = N f

N and P(Y = o) = No

N , with N f being number of samples Yi = f and No -

number of samples Yi = o.

Next, we construct two datasets X o = {Xo
i }N

o
i=1 and X f = {Xf

i }N
f

i=1, with first dataset

containing each location Xi ∈ D with Yi = o, and the second - the rest of the locations in

D. Note that according to the above considered implicit distributions Xo
i is distributed along

P(X|Y = o) = P(X,Y=o)
P(Y=o) , and Xf

i - along P(X|Y = f) = P(X,Y=f)
P(Y=f) , with supports of both

distributions being contained within Ω. Finally, we construct one more dataset X U = {XUi }N
U

i=1
with NU points sampled from PU (X) - a uniform distribution over the entire S.

Further, we propose to extend PSO in Eq. (3.1) to a 3-term form:

83

dθ = − 1
No

No∑
i=1

Mo [Xo
i , fθ(Xo

i)] · ∇θfθ(Xo
i) + 1

N f

N f∑
i=1

M f
[
Xf
i , fθ(Xf

i)
]
· ∇θfθ(Xf

i)+

+ 1
NU

NU∑
i=1

MU
[
XUi , fθ(XUi)

]
· ∇θfθ(XUi), (10.15)

with Mo(·) = No

No+N f PU (X), M f (·) = N f

No+N f PU (X), and MU (·) = fθ(X). Note that Mo(·)
and M f (·) always return positive values. Therefore, Eq. (10.15) pushes fθ(X) at occupied

locations Xo
i up and at unoccupied locations Xf

i - down, similarly to the original PSO equation.

Further, MU (·) is positive when fθ(X) > 0 and is negative when fθ(X) < 0. Hence, the

applied force at XUi is always pushing the surface towards fθ(X) = 0 (see also the forth

property of Theorem 7).

The convergence fθ(X) = J(X) at the optimization equilibrium can be verified via PSO

balance state below. The equality of forces at X (i.e. Euler-Lagrange equation at X) is satisfied

when:

Mo [X, fθ(X)] ·P(X|Y = o)−M f [X, fθ(X)] ·P(X|Y = f)−MU [X, fθ(X)] ·PU (X) = 0,
(10.16)

where each term represents a physical force - a product of corresponding magnitude function

and data density. After replacing each term with its definition, this equation turns to be:

No

No +N f P
U (X) · P(X,Y = o)

P(Y = o) − N f

No +N f P
U (X) · P(X,Y = f)

P(Y = f) − fθ(X) · PU (X) = 0,
(10.17)

No

No +N f ·
P(X,Y = o)
P(Y = o) − N f

No +N f ·
P(X,Y = f)
P(Y = f) − fθ(X) = 0, (10.18)

P(X,Y = o)− P(X,Y = f)− fθ(X) = 0, (10.19)

fθ(X) = P(X,Y = o)− P(X,Y = f) = P(X) · [P(Y = o|X)− P(Y = f |X)] = J(X).
(10.20)

Therefore, the described by Eq. (10.15) approach will converge to J(X).

Furthermore, we can find a ”loss” form of the proposed PSO method in Eq. (10.15) since its

magnitude functions have analytical anti-derivatives. Specifically, Eq. (10.15) can be considered

as a gradient w.r.t. θ of the following loss:

L(θ) = − 1
No

No∑
i=1

No

No +N f P
U (Xo

i) · fθ(Xo
i) + 1

N f

N f∑
i=1

N f

No +N f P
U (Xf

i) · fθ(Xf
i)+

+ 1
NU

NU∑
i=1

1
2
[
fθ(XUi)

]2
, (10.21)

84

which in its turn is a sample approximation of:

L(θ) =
∫
−P(X|Y = o) · No

No +Nf
PU (X) · fθ(X)+

+ P(X|Y = f) · Nf
No +Nf

PU (X) · fθ(X) + 1
2P
U (X) · [fθ(X)]2 dX =

=
∫

PU (X) ·
[
−
[
P(X,Y = o)− P(X,Y = f)

]
· fθ(X) + 1

2 [fθ(X)]2
]
dX =

= 1
2

∫
PU (X) ·

[
fθ(X)−

[
P(X,Y = o)− P(X,Y = f)

]]2
dX−

− 1
2

∫
PU (X) ·

[
P(X,Y = o)− P(X,Y = f)

]2
dX. (10.22)

Taking into account that the last term is independent of fθ, this loss can be replaced by:

L(θ) =
∫

PU (X) ·
[
fθ(X)− J(X)

]2
dX. (10.23)

whose minimizer is obviously J(X).

Above we can observe that PSO allowed us to create a new probabilistic loss for statistical

occupancy mapping by only considering the various force terms in Eq. (10.15) and verifying

their convergence according to PSO balance state. Apparently, it is also possible to derive

the very same method by considering the loss L(θ) in Eq. (10.23) in the first place. However,

from L(θ)’s definition it is not obvious that it can be even computed/approximated, due to

unknown P(X,Y = o) and P(X,Y = f). In contrast, the physical paradigm of PSO leads to a

very simple and systematic solution. The empirical evaluation of the above method appears in

Section 13.6.

85

86

CHAPTER 11

NN Architecture

In this section we describe various design choices when constructing NN fθ(X), and their

impact on density estimation task. The discussed below are various connectivity architectures,

activation functions and pre-conditioning techniques that helped us to improve overall learning

accuracy. Likewise, where possible we relate the design choice to corresponding properties

acquired by a model kernel gθ(X,X ′).

Algorithms DeepPDF (see Section 8.1) and log-density estimators in Section 8.2 typically

produce highly accurate density approximations in low dimensional cases. For example, in [61]

we showed that DeepPDF produces a better accuracy than KDE methods in 2D and 3D scenarios.

This likely can be accounted to the flexibility of NN - its universal ability to approximate any

function. As empirically observed in [63], the implicit model kernel gθ(X ′, X) adapts to

better represent any learned target function. Further, its bandwidth, discussed in Section 7.5,

is typically different in various areas of the considered input space. This allows to prevent

overfitting in areas with small amount of training points, and to reduce underfitting in areas

where the amount of training data is huge. In contrast, KDE methods are typically limited

to a specific choice of a kernel and a bandwidth (yet variable-bandwidth KDE methods exist,

see [136]) that is applied to estimate the entire pdf surface with its many various details.

Yet, we also observed a considerable underfitting problem of the above PSO instances that

grows with larger data dimension and with higher frequency/variability contained within the

target function. Particularly, even in case where a high-dimensional training dataset is huge, for

a typical fully-connected (FC) NN architecture the produced estimation is far away from the

real data density, and often contains mode-collapses and other inference inconsistencies. We

argue that it is caused by too wide bandwidth of gθ(X ′, X) in FC architecture, which leads to a

growing estimation bias. Such conclusion is supported by Theorem 20 which stated that the

bandwidth of gθ(X,X ′) defines the flexibility of fθ(X).

As was observed, in FC architecture gθ’s bandwidth is growing considerably with the higher

data dimension, thus producing more side interference between the different training points and

decreasing the overall elasticity of the network. In its turn, this limits the accuracy produced

87

(a) (b)

Figure 11.1: (a) Typical NN architecture used in [61]. Yellow blocks are FC layers with non-linearity, except for last layer which is
FC layer without activation function. Entire network can be seen as single transformation channel. (b) Proposed NN architecture
used in this thesis. Block-diagonal layers can be seen as set of independent transformation channels. This independence improves
network’s flexibility. Output vector of a first FC layer is sliced into NB separate vectors. Each small vector is used as input to
separate channel - FC sub-network. At the end outputs of all channels are concatenated and sent to the final FC layer. All FC layers
in this architecture (the yellow blocks) use non-linearity (typically Relu or Leaky-Relu), except for the final FC layer.

by PSO. Below we propose a new NN architecture that mitigates the bandwidth problem and

increases a flexibility of the surface. Further, in Section 13.2.3 we show that such architecture

extremely improves the estimation accuracy.

Remark 27. Note that in context of generative adversarial networks (GANs), whose critics are

also instances of PSO (see Tables 5.1-5.5), the convergence problems (e.g. mode-collapse and

non-convergence) were also reported. Typically, these problems are blamed on Nash equilibrium

between critic and generator networks which is hard to optimize. Yet, in our work we see that

such problems exist even without a two-player optimization. That is, even when only a specific

PSO instance (the critic in GAN’s context) is trained separately, it is typically underfitting

and has mode-collapses within the converged surface fθ(X) where several separate ”hills”

from target T
[
X, P

U (X)
PD(X)

]
are represented as one hill inside fθ(X). Below we present several

techniques that allowed us to reduce these convergence problems.

11.1 Block-Diagonal Layers

A typical FC network (Figure 11.1a) can be seen as one channel transformation from point X

to its surface height fθ(X). During the optimization, due to such NN structure almost every

parameter inside θ is updated as a consequence of pushing/optimizing at any training point

X ∈ Rn within PSO loss. Such high sharing of the weights between various regions of Rn

creates a huge side-influence between them - a dot product between ∇θfθ(X) and ∇θfθ(X ′)
for faraway points X and X ′ is large. This in turn increases bandwidth of gθ and decreases the

flexibility of fθ.

The above line of thought guided us to propose an alternative NN architecture where several

separate transformation channels are built into one network (see Figure 11.1b). As we will see

below, such architecture is identical to a simple FC network where each layer’s weight matrix

Wi is block-diagonal.

Specifically, we propose to pass input X through a typical FC layer with output dimension

S, and split this output into a set of NB smaller vectors of size SB = S/NB . Further, for each

88

SB-sized vector we construct a channel: a subnetwork with [NL − 2] FC layers of the same size

SB . Finally, the outputs of all channels are concatenated into vector of size S and this vector is

sent to the final FC layer (see illustration in Figure 11.1b). All FC layers within this architecture

use non-linearity (typically Relu or Leaky-Relu), except for the last layer.

Exactly the same computational flow will be produced if we use the usual FC network from

Figure 11.1a with inner layers having block-diagonal weight matrices. Namely, we can build

the same simple network as in Figure 11.1a, with NL layers overall, where [NL − 2] inner FC

layers have block-diagonal weight matrices Wi of size S × S. Each Wi in its turn will contain

NB blocks at its diagonal, of SB × SB size each, with rest of the entries being constant zeros.

A straightforward implementation of block-diagonal (BD) layers by setting off-diagonal

entries to be constant zeros can be wasteful w.r.t. memory and computation resources. Instead,

we can use multi-dimensional tensors for a more efficient implementation as follows. Consider

output of the first FC layer as a tensor v̄ with dimensions [B,S], where B is a batch dimension

and S is an output dimension of the layer. We can reshape v̄ to have dimensions [B,NB, SB],
where the last dimension of v̄ will contain small vectors ūj of size SB each, i.e. inputs for

independent channels. Further, each inner BD layer can be parametrized by a weight matrix W

with dimensions [NB, SB, SB] and bias vector b with dimensions [NB, SB]. The multiplication

between v̄ and W , denoted as V , has to be done for each ūj with an appropriate slice of weight

matrix, W [j, :, :]. Moreover, it should be done for every instance of the batch. This can be done

via the following Einstein summation convention:

V [i, j, k] =
SB∑
m=1

W [j, k,m] · v̄[i, j,m], (11.1)

which produces tensor V with size [B,NB, SB]. Further, bias can be added as:

U [i, :, :] = V [i, :, :] + b, (11.2)

where afterwards the tensor U is transformed by point-wise activation function σ(·), finally

producing the output of BD layer Û = σ(U) of size [B,NB, SB].

We construct [NL − 2] such BD layers that represent NB independent channels. Further,

the output of the last BD layer is reshaped back to have dimensions [B,S], and is sent to the

final ordinary FC layer that returns a scalar.

Remark 28. The Einstein summation operation is typically offered by modern DL frameworks,

thus implementing the above BD layers is convenient and easy. Yet, their runtime is slower

relative to FC layers. We hope that in future versions of DL frameworks such BD layers would

be implemented efficiently on GPU level. Also, our code for this layer can be found in open

source library https://bit.ly/2AMwyJT.

89

https://bit.ly/2AMwyJT

(a) (b)

0 5 10 15
d(X', X)

0

2

4

6

8

10

12
10

4

(c)

(d) (e)

(f) (g)

Figure 11.2: Bandwidth of gθ(X′, X) and the surface flexibility of FC and BD models. We infer 20D Columns distribution (see
Section 13.2) by using PSO-LDE with α = 1

4 (see Table 5.1 and Section 8.2). Two networks were trained, FC and BD. The applied
FC architecture contains 4 FC layers of size 1024. The applied BD architecture has 6 layers, number of blocks NB = 50 and
block size SB = 64. Values of gradient similarity gθ(X′, X) and values of Euclidean distance d(X′, X) are plotted for (a) FC
network and (b) BD network. (c) Histogram of d(X′, X) calculated between all sample pairs from dataset D. Further, a histogram
of obtained {rθ(Xi, Xj)} and {d(Xi, Xj)} is plotted for (d) FC model and (f) BD model. Side views of these histograms are
depicted in (e) and (g). See more details in the main text.

11.1.1 Flexibility of BD vs FC

The above BD architecture allowed us to tremendously improve accuracy of density estimation

for high-dimensional data. This was achieved due to the enhanced flexibility of BD architecture

vs FC, as we empirically demonstrate below.

To this end, we analyze the bandwidth of gθ(X,X ′) for each of the architectures as follows.

We perform a typical density estimation task via PSO-LDE method proposed in Section 8.2.

After training a model we sample D = {Xi}3000
i=1 testing points from the target density PU

and calculate their gradients ∇θfθ(Xi). Further, we calculate Euclidean distance d(Xi, Xj) =
‖Xi −Xj‖ and gradient similarity gθ(Xi, Xj) between every two points within D, producing
3000·3001

2 pairs of distance and similarity values (we consider only unique pairs here). These

90

values are plotted in Figures 11.2a-11.2b. As can be seen, gθ(X ′, X) values (y axis) of FC

network are much higher than these values in BD network. Likewise, there is strong correlation

between values of gradient similarity and Euclidean distance. In FC case, for d(X ′, X) > 0
values of gθ(X ′, X) are far away from being zeros, thus implying strong side-influence of

optimization pushes on surface fθ(X) even between far away points. In contrast, for BD case

we can see that gθ(X ′, X) is centered around zero for d(X ′, X) > 0, hence side-influence

here is less significant. Furthermore, we stress that similar trends were achieved in all our

experiments, for various densities PU and PD.

Remark 29. The gap in Figures 11.2a-11.2b between points with d(X ′, X) = 0 and rest of the

samples is explained as follows. At d(X ′, X) = 0 all point pairs are of a form (Xi, Xi), with

overall 3000 such pairs. Rest of the samples are {(Xi, Xj)|i 6= j}. Furthermore, the histogram

of d(X ′, X) between points in D is illustrated in Figure 11.2c. As can be observed, d(X ′, X) is

distributed with Gaussian-like density centered around 8.6. Hence, the gap between the points

in Figures 11.2a-11.2b can be explained by a very low probability of two sampled points to be

close to each other when the considered space volume (here the subset of R20) is huge.

Further, for each sample pair in D we also calculate the relative model kernel rθ(Xi, Xj)
defined in Eq. (7.10). When rθ is greater than 1, it implies that point Xj has stronger impact

over fθ(Xi) than the point Xi itself, and vice versa. Hence, for each point Xi the rθ(Xi, ·) can

be interpreted as a relative side-influence from other areas over fθ(Xi), scaled w.r.t. the self-

influence of Xi. Such normalization allows us to see the actual side-influence impact between

two different points, since the value of gθ(X,X ′) by itself is meaningless and only achieves

significance when compared to the self-similarity gθ(X,X). Moreover, unlike gθ(X,X),

rθ(X,X ′) of different models and NN architectures is on the same scale, allowing to compare

the side-influence level between different models.

For 9 · 106 calculated pairs of a relative side-influence rθ(Xi, Xj) and a Euclidean distance

d(Xi, Xj) we constructed a histogram in Figures 11.2d and 11.2f for FC and BD networks

respectively. Here, we can see the real difference between side-similarities of two models.

Within FC network we have a strong relative side-influence even between far away regions.

This side-influence interferes with the proper PSO optimization by introducing a bias, as was

explained in Section 7.5. In contrast, within BD model the relative side-influence between far

away regions stays very close to zero, implying that the surface height fθ(X) at point X is

only pushed by training points that are relatively close to X . Furthermore, this increases the

flexibility of the surface, since with a less side-influence the surface is less constrained and can

be pushed at each specific neighborhood more freely.

Hence, we see empirically that the kernel bandwidth of BD NN is smaller than the bandwidth

of FC NN, which implies that BD surface is much more flexible than FC. Such flexibility also

improves the overall accuracy performance achieved by BD networks (see Section 13.2.3). The

exact mechanism responsible for such difference in the gradient similarity is currently unknown

and we shall investigate it in future work.

91

11.1.2 Relation between BD and FC - Additional Aspects

The multi-dimensional tensor implementation of BD layers in Eq. (11.1-11.2) allows to signif-

icantly reduce size of θ. For example, BD network applied in Figure 11.2 with 6 layers has

less than 106 weights (|θ| = 902401), while the straightforward implementation would require

above 107 weights - 10 times more; the same size that appropriate FC network with 6 layers of

size 3200 would take. Further, the size of FC network used in Figure 11.2 is |θ| = 2121729.

Yet, surprisingly the more compact BD network produces a narrower model kernel (and higher

approximation accuracy as will be shown in Section 13.2.3) than the more memory consuming

FC network.

Interestingly, BD layers are contained in the hypothesis class of FC layers, thus being

instance of the latter. Yet, a typical optimization of FC architecture will not impose weight

matrices to be block-diagonal, since the local minima of FC network typically has dense weight

matrices. However, as already stated, an optimized network with BD structure has a significantly

lower error compared to FC structure. This suggests that local minima of FC networks has

a much bigger error compared to the error of the global minima for such architecture, since

the global minima should be even smaller than the one achieved by BD network. Hence, this

implies that common statement about local and global errors of NN being close is not always

correct.

11.1.3 Similar Proposed Architectures

The BD model can be expressed as a sum of sub-models, each representing separate network

channel. Such design has a high resemblance to the products of experts (PoE) [45] where model

is constructed as sum (or product) of smaller models. Yet, in typical PoE each expert is trained

separately, while herein we represent our block-diagonal model as single computational graph

that is trained as whole by the classical backpropagation method.

In addition, we argue that also other DL domains can benefit from a BD architecture, and

such investigation can be an interesting future work. In fact, separating network into several

independent channels is not new. The family of convolutional Inception models [132–134]

also applied the split-transform-merge paradigm, where each network block was separated

into a set of independent transformations (channels). These models succeeded to achieve high

accuracy at the image classification problem. Further, ResNeXt convolutional model in [149]

generalized this idea to produce NN computational blocks that contain C independent identical

transformations, where C is a cardinality parameter of NN. Authors showed that increasing

cardinality instead of width/number of layers can significantly improve the accuracy produced

by NN. In context of BD architecture, we have seen a similar trend where increasing number

of channels NB (which is parallel to C) allows to provide a better approximation of the target

function. We demonstrate this in our experiments in Section 13.

Further, a similar architecture was proposed also in [89] in the context of the classification,

although it was implemented in a different way. The main motivation of that work was to

condense a network size to improve the computational complexity of a NN. Authors showed

92

that by forcing weight matrices of FC layers to be block-diagonal a significant speedup in time

can be achieved with small loss in accuracy. In contrast, in our work we see that such NN

structure not only improves runtime and reduces number of weights, but also produces a higher

approximation performance.

11.2 NN Pre-Conditioning

It is a common practice in Machine Learning to pre-condition a learning algorithm by, for

example, whitening and uncorrelating data or performing any other transformation that improves

a condition number of the optimization. We also found that such techniques can be valuable

for the density estimation task. Specifically, the main considered by this thesis application of

PSO framework is to learn logPU(X). In our experiments we combine two pre-conditioning

methods within our NN fθ(X): data normalization and NN height bias.

First, we normalize data to have zero mean and unit standard deviation for each dimension i

independently, via:

X̂i = Xi − µi
σi

, (11.3)

where µ and σ are mean and standard deviation vectors calculated for all available data {XU
i }N

U

i=1
from the target density PU .

Second, we bias an initial surface fθ(X) to coincide with logarithm of the chosen auxiliary

down density PD(X). We assume that the target logPU(X) and logPD(X) reside on a similar

height on average. Thus, to accelerate the convergence we force the initial height of surface

fθ(X) to be identical to logPD(X) as follows. First, as observed a typical initialization of

NN produces the initial surface fθ(X) ≈ 0 for all points X . Hence, in order to bias it to the

initial height logPD(X), we only need to add this log-pdf function to the output of the last layer,

fLθ (X):

fθ(X) = fLθ (X) + logPD(X). (11.4)

Moreover, such NN initialization enforces the logarithm difference d̄ [X, fθ(X)] , fθ(X)−
logPD(X) from Eq. (8.5) to be approximately zero for all points X ∈ Rn at beginning of the

optimization. Further, considering magnitudes of PSO-LDE in Eqs. (8.7)-(8.8), for the above

initialization each of {MU
α ,M

D
α } will return 2−

1
α for any point X . Since both MU

α (X, fθ(X))
and MD

α (X, fθ(X)) have the same value at every point X ∈ Rn, such NN bias produces a more

balanced PSO gradient (see Eq. (3.1)) at start of the training, which improves the optimization

numerical stability. Furthermore, as mentioned above in case the chosen PD is indeed close

to the target PU , the initial value of the surface fθ(X) is also close to its final converged form;

this in turn increases the convergence rate of PSO-LDE. Further, recently a similar idea was

suggested in [65] specifically for NCE method (PSO-LDE with α = 1) in the context of discrete

density estimation for language modeling, where NN initialization according to outputs of the

noise density (parallel to PD(X) in our work) helped to improve the learned model accuracy.

We perform both techniques inside the computational graph of NN fθ(X), by adding at

93

the beginning of graph the operation in Eq. (11.3), and at the end of graph - the operation in

Eq. (11.4).

11.3 Other NN Architecture Aspects

In our experiments we also explored two choices of non-linear activation function to use within

NN fθ(X), Relu and Leaky Relu. We found that both have their advantages and disadvantages.

Relu reduces training time by 30% w.r.t. Leaky Relu, allegedly due to its implicit gradient

sparsity, and the converged surface looks more smooth. Yet, it often contains mode collapse

areas where several modes of PU are represented within fθ(X) by a single ”hill”. On the other

hand, Leaky-Relu sometimes produces artifacts near sharp edges within fθ, that resembles

Gibbs phenomenon. Yet, it yields significantly less mode collapses.

We argue that these mode collapses are in general caused by the reduced model flexibility,

which in case of Relu is induced by more sparse gradients ∇θfθ(·) as follows. The implicit

gradient sparsity of Relu, i.e. zero-gradient ∂fθ(X)
∂θi

= 0 for the most part of the weights

θi ∈ θ at all input points X ∈ Rn, also reduces the effective dimension of subspace spanned

by ∇θfθ(·) evaluated at training points. Thus, the number of possible independent gradient

vectors at different points (i.e. the rank of the aforementioned subspace) is also reduced, which

increases (on average) the correlation gθ(X,X ′) , ∇θfθ(X)T · ∇θfθ(X ′) between various

(even faraway) points X and X ′. This increase can also be interpreted as an increase of the

kernel bandwidth, which will lead to expressiveness reduction of the model, according to Section

7.5.

Further, residual (skip) connections between different NN layers became very popular in

recent NN architectures [42, 132, 149]. Such connections allowed for using deeper neural

networks and for the acceleration of learning convergence. Yet, in our work we did not observe

any performance improvement from introducing skip connections into NN fθ(X) with 8 or less

layers. Thus, in most part of our experiments we did not employ these shortcuts. The only part

where they were used is the Section 13.4 where networks with 14 layers were trained.

Additionally, the Batch Normalization (BN) [53] technique was shown in many DL works to

stabilize the training process and improve the overall approximation accuracy. However, in our

experiments on the density estimation we saw the opposite trend. That is, when BN is combined

with PSO density estimators, the outcome is usually worsen than without it.

Finally, dropout [128] is known to be an useful regularization method to fight the overfitting.

In our experiment we indeed observed the gθ(X,X ′)’s bandwidth increase along with an

increase in the dropout probability. Hence, dropout can be considered as a tool to increase

side-influence and bias of the estimation, and to reduce its variance. Further, the detailed

investigation of dropout impact over gθ(X,X ′) is outside of this thesis scope.

94

CHAPTER 12

Overfitting of PSO

In this section we will illustrate one of the major challenges involved in training PSO in a small

dataset setting - the over-flexibility of model fθ that induces overfitting. Likewise, herein we

will also discuss possible solutions to overcome this issue.

12.1 Problem Illustration

As was described in [61], the accuracy of the estimated density can be very low for a small

dataset setting, since the converged surface can be flat with several spikes at locations of available

training data points. This is due the fact that apparently we estimate the empirical density of

data which in case of sparse datasets can be represented as a flat surface with several peaks. If

the used model fθ(X) is overly flexible and is not properly regularized, it can be indeed pushed

to such spiky form, as was proved by Theorem 19 and as we empirically demonstrate below.

According to Section 7.5, the flexibility of the surface fθ can be expressed via properties of

the model kernel gθ, such as its bandwidth. The kernel acts as a connector of various input space

areas, creating the side influence/force between these areas; it is balancing the overall physical

force at each input point, with its equilibrium described by the convoluted PSO balance state in

Eq. (7.8). Further, when the bandwidth of the model kernel is too narrow w.r.t. distance between

training points, the influence area of any training point X will be some small neighborhood

around X . Any input point X ′ outside of all influence areas is basically not optimized during

the learning - fθ(X ′) will mostly not change during such optimization. Furthermore, the size of

available dataset also has its impact, since with more data the distance between training samples

decreases (on average) and the volume of overall influence area increases.

In Figure 12.1 the overfitting nature of NN surface is illustrated in an experiment where 2D

Gaussian distribution is inferred. When the same network is used and the number of samples is

decreasing, the outcome is the spiky surface at the end of the optimization.

Onwards, in Figure 12.2 we can see the experiment where a small dataset of a size 10000

is used for the same pdf inference, and where the number of used layers is decreased. As

95

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12.1: Illustration of PSO overfitting when the training dataset is small. We infer 2D Normal distribution via P̄U (X) =
exp fθ(X) by using PSO-LDE with α = 1

4 (see Table 5.1 and Section 8.2). The applied NN architecture is block-diagonal
with 6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). Number of up training points {XU

i } is
(a) 106, (b) 105, (c) 80000, (d) 60000, (e) 40000, (f) 20000, (g) 10000 and (h) 1000. As observed, when using the same NN
architecture, that is when we do not reduce the flexibility level of the model, the smaller number of training points leads to the
spiky approximation. In other words, the converged model will contain a peak around each training sample point.

96

(a) (b)

(c) (d)

Figure 12.2: Illustration of decrease in PSO overfitting when the NN flexibility is reduced. We infer 2D Normal distribution
via P̄U (X) = exp fθ(X), using only 10000 training samples {XU

i }. The applied loss is PSO-LDE with α = 1
4 (see Table 5.1

and Section 8.2). The applied NN architecture is block-diagonal with number of blocks NB = 20 and block size SB = 64 (see
Section 11.1). Number of layers within NN is (a) 5, (b) 4, (c) 3 and (d) 2. As observed, when the number of layers is decreasing,
the converged model is more smooth, with less peaks around the training points.

(a) (b)

(c) (d)

Figure 12.3: Illustration of decrease in KDE (kernel density estimation) overfitting when the bandwidth h of applied Gaussian
kernel is increased. We infer 2D Normal distribution via KDE, using only 10000 training samples {XU

i }. Used kernel has h equal
to (a) 0.04, (b) 0.08, (c) 0.12 and (d) 0.2. As observed, when the bandwidth h is increasing, the converged model is more smooth,
with less peaks around the training points. Similar trend is observed for PSO in Figure 12.2.

observed, with less layers the spiky nature of the surface is decreasing due to the reduced NN

flexibility/capacity. Similar behavior is also observed in KDE method in Figure 12.3 where

the bandwidth of Gaussian kernel is increasing; we can see that the surface estimated via

KDE becomes more and more flexible for a smaller kernel bandwidth, similarly to what we

observed in Figure 12.2. Thus, both KDE and PSO exhibit a similar flexibility behavior when

the bandwidth of former is increased and when the layers depth of latter is reduced. Moreover,

97

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12.4: Illustration of NN flexibility and the corresponding bandwidth of gθ(X,X′), for each model in Figure 12.2. We
calculate a relative model kernel rθ(Xi, Xj) and a Euclidean distance d(Xi, Xj) for 9 · 106 point pairs and depict a histogram
of obtained {rθ(Xi, Xj)} and {d(Xi, Xj)} in left column. Likewise, a side view of this histogram is depicted in right column.
Number of layers within NN is (a)-(b) 5, (c)-(d) 4, (e)-(f) 3 and (g)-(h) 2. See more details in the main text.

98

the reduction of layers in case of PSO produces a similar increase of gθ(X,X ′)’s bandwidth as

we further show.

Particularly, in Figure 12.4 we present the bandwidth histogram of gθ(X,X ′) for each

trained model in Figure 12.2. We sample {Xi}3000
i=1 testing points from 2D Gaussian and

calculate relative side-influence rθ(Xi, Xj) defined in Eq. (7.10) for each pair of points. Further,

for each pair we also compute the Euclidean distance d(Xi, Xj).

For 9 · 106 pairs of a relative side-influence rθ(Xi, Xj) and a Euclidean distance d(Xi, Xj)
we construct a histogram in Figure 12.4. As observed, the relative side-influence is reduced

with d(Xi, Xj) - faraway points affect each other on much lower level. Further, we can see

in left column of Figure 12.4 a sleeve right from a vertical line d(X ′, X) = 0 that implies

an existence of overall local-support structure of rθ(Xi, Xj), and a presence of some implicit

kernel bandwidth. Likewise, we can also see a clear trend between rθ(Xi, Xj) and the number

of NN layers. For shallow networks (see Figures 12.4g-12.4h) the relative side-influence is

strong even for faraway regions. In contrast, in deeper networks (see Figures 12.4a-12.4b)

rθ(Xi, Xj) is centered around zero for a pair of faraway points, with some close by points

having non-zero side-influence. Hence, we can see the obvious relation between the network

depth, the bandwidth of model kernel and the model flexibility, which supports conclusions

made in Section 7.5.

Furthermore, since the impact of a kernel bandwidth is similar for PSO and KDE, we

can compare our conclusions with well-known properties of KDE methods. For instance,

optimality of the KDE bandwidth was already investigated in many works [24, 43, 95, 125] and

is known to strongly depend on the number of training data samples. Hence, this implies that the

optimal/”desired” bandwidth of gθ(X,X ′) also depends on the size of training dataset, which

agrees with statements of Section 7.5.

Remark 30. In Figure 12.4a we can see that the side-influence between most points is zero,

implying that gradients∇θfθ(Xi) at different points tend to be orthogonal for a highly flexible

model. This gradient orthogonality does not present at NN initialization, and there is some

mechanism that enforces it during NN training as shown in Appendix H. The nature of this

mechanism is currently unknown.

12.2 Possible Solutions

How big the training dataset should be and how to control NN flexibility to achieve the best

performance are still open research questions. Some insights can be taken from KDE domain,

yet we shall leave such analysis for future investigation. Further, the over-flexibility issue yields

a significant challenge for application of PSO density estimators on small datasets, as well as

also for other PSO instances. However, there are relatively simple regularization methods to

reduce such overfitting and to eliminate peaks from the converged surface fθ.

The first method is to introduce a weight regularization term into the loss, such as L2

norm of θ. This will enforce the weight vector to be inside a ball in the parameter space, thus

99

limiting the flexibility of the NN. Yet, it is unclear what is the exact impact of any specific

weight regularization method on the final surface and on properties of gθ(X,X ′), due to highly

non-linear nature of modern deep models. Typically, this regularization technique is used in

try-and-fail regime, where different norms of θ and regularization coefficients are applied till a

good performance is achieved.

Another arguably more consistent method is data augmentation, which is highly popular in

Machine Learning. In context of PSO and its gradient in Eq. (3.1), we can consider to introduce

an additive noise into each sample XU
i as:

X̄U
i = XU

i + υ (12.1)

where XU
i is the original sample from the data density PU(X) and υ is a random noise sampled

from some density Pυ(X) (e.g. Gaussian distribution). When using X̄U
i instead of XU

i , we will

actually estimate the density of the random variable X̄U
i which is the convolution between two

densities. Thus, for PSO-LDE the converged surface fθ(X) will be:

fθ∗(X) = log ([PU ∗ Pυ](X)) , (12.2)

where ∗ defines the convolution operator.

Considering Pυ(X) to be Gaussian and recalling that it is a solution of the heat equation [12],

the above expression elucidates the effect of such data augmentation as a simple diffusion of the

surface that would be estimated for the original XU
i . That is, assuming that fθ(X) would get a

spiky form when approximating logPU(X), the updated target density function (and thus also

its approximation fθ) undergoes diffusion in order to yield a smoother final surface. In case of

Gaussian noise, the smoothness depends on its covariance matrix. Yet, the other distributions

can be used to perform appropriate convolution and to achieve different diffusion effects. We

employ the above technique to improve an inference accuracy under a small training dataset

setting in Section 13.2.5.

Remark 31. Additionally, in context of image processing, a typical data augmentation involves

image flipping, resizing and introducing various photographic effects [103, 147]. Such methods

produce new samples X̄U
i that are still assumed to have the original density PU(X), which can

be justified by our prior knowledge about the space of all possible images. Given this knowledge

is correct, the final estimation is still of PU(X) and not of its convolution (or any other operator)

with the noise.

100

CHAPTER 13

Experimental Evaluation of PSO Framework

Below we report several experimental scenarios that demonstrate the efficiency of the proposed

PSO algorithm family. Concretely, in Section 13.2 we apply PSO to infer a pdf of 20D Columns

distribution, where in sub-section 13.2.1 we compare between various PSO instances; in 13.2.2

we experiment with state-of-the-art baselines and compare their accuracy with PSO-LDE; in

13.2.3 we evaluate the pdf inference performance for different NN architectures; in 13.2.4 we

investigate the impact of a batch size on PSO performance; and in 13.2.5 we show how different

sizes of training dataset affect inference accuracy and explore different techniques to overcome

difficulties of a small dataset setting. Furthermore, in Section 13.3 we perform pdf inference

over a more challenging distribution Transformed Columns, in Section 13.4 we apply our pdf

estimation approach over 3D densities generated from pixel landscape of RGB images, and

in Section 13.5 we use PSO in robotics domain to infer joint density over robot poses and

acquired measurements. Further, in Section 13.6 we solve the occupancy mapping problem

via PSO-based technique. Additionally, in Appendix G we show that the first-order Taylor

approximation of the surface differential in Eq. (7.5) is actually very accurate in practice, and

in Appendix H we empirically explore dynamics of gθ(X,X ′) and of its bandwidth during a

learning process.

Importantly, our main focus in this paper is to introduce a novel paradigm for inferring

various statistics of an arbitrary data in a highly accurate and consistent manner. To this end

and concretely in context of density estimation, we are required to demonstrate quantitatively
that the converged approximation P̄θ(X) of the pdf function P(X) is indeed very close to its

target. Therefore, except for Section 13.5 we mostly avoid experiments on real datasets (e.g.

MNIST, [68]), since they lack information about the true pdf values of the samples. Instead, we

generate datasets for our experiments from analytically known pdf functions, which allows us to

evaluate the ground truth error between P̄θ(X) and P(X). However, all selected pdf functions

are highly multi-modal and therefore are very challenging to infer.

Likewise, in this work we purposely consider vector datasets instead of image data, to

decouple our main approach from complexities coming with images and CNN models. Our

101

main goal is to solve general unsupervised learning, and we do not want it to be biased towards

spatial data. Moreover, vector data is mostly neglected in modern research and our method

together with the new BD architecture addresses this gap.

13.1 Learning Setup

All the pdf inference experiments were done using Adam optimizer [59], since Adam showed

better convergence rate compared to stochastic GD. Note that replacing GD with Adam does not

change the target function approximated by PSO estimation, although it changes the implicit

model kernel. That is, the variational PSO balance state in Eq. (3.2) stays the same while the

convoluted equilibrium described in Section 7.4 will change according to the model kernel

associated with Adam update rule.

The used Adam hyper-parameters are β1 = 0.75, β2 = 0.999 and ε = 10−10. Each

experiment optimization is performed for 300000 iterations, which typically takes about one

hour to run on a GeForce GTX 1080 Ti GPU card. The batch size is NU = ND = 1000. During

each iteration next batch of up points {XU
i }1000

i=1 is retrieved from the training dataset of size

NDT , and next batch of down points {XD
i }1000

i=1 is sampled from down density PD. For Columns

distribution in Section 13.2 we use a Uniform distribution as PD. Next, the optimizer updates

the weights vector θ according to the loss gradient in Eq. (3.1), where the magnitude functions

are specified by a particular PSO instance. The applied learning rate is 0.0035. We keep it

constant for first 40000 iterations and then exponentially decay it down to a minimum learning

rate of 3 · 10−9. Further, in all our models we use Leaky-Relu as a non-linearity activation

function. Additionally, weights are initialized via popular Xavier initialization [29]. Each

model is learned 5 times; we report its mean accuracy and the standard deviation. Further, PSO

implementation based on Tensorflow framework [135] can be accessed via open source library

https://bit.ly/2AMwyJT.

To evaluate performance and consistency of each learned model, we calculate three different

errors over testing dataset {XU
i }Ni=1, where each point was sampled from PU and N is 105.

First one is pdf squared error PSQR = 1
N

∑N
i=1

[
PU(XU

i)− P̄θ(XU
i)
]2

, with P̄θ(·) being the

pdf estimator produced by a specific model after an optimization convergence. Further, since

we deal with high-dimensional data, PSQR involves operations with very small numbers. To

prevent inaccuracies caused by the computer precision limit, the second used error is log-pdf

squared error LSQR = 1
N

∑N
i=1

[
logPU(XU

i)− log P̄θ(XU
i)
]2

. Since in this thesis we target

logP(·) in the first place, the LSQR error expresses a distance between the data log-pdf and

the learned NN surface fθ(·). Moreover, LSQR is related to statistical divergence between PU

and P̄θ (see more details in Appendix I).

Further, the above two errors require to know ground truth PU for their evaluation. Yet, in

real applications such ground truth is not available. As an alternative, we can approximate PSO

functional in Eq. (3.3) over testing dataset. As explained in Section 6.1, this loss is equal to PSO

divergence up to an additive constant, and thus can be used to measure a discrepancy between

the PSO-optimized model and the target function. However, for most of the below applied PSO

102

https://bit.ly/2AMwyJT

(a) (b)

Figure 13.1: (a) Illustration of Columns distribution. Every slice of its pdf function P(xi, xj) =
PU (0, . . . , 0, xi, 0, . . . , 0, xj , 0, . . . , 0) in Eq. (13.1) contains 25 modes of different shape. Overall, this distribution
has 520 modes. (b) Logarithm of pdf slice in (a) that will be learned via NN surface.

instances LPSO(f) is not analytically known and hence can not be computed. To overcome this

problem and to measure model performance in real applications, we propose to use the loss of

IS method from Table 5.1, IS = − 1
N

∑N
i=1 fθ(XU

i) + 1
N

∑N
i=1

exp[fθ(XD
i)]

PD(XD
i) , where {XD

i }Ni=1
are i.i.d. samples from PD. As we will see, while IS is less accurate than the ground truth

errors, it still is a reliable indicator for choosing the best member from a set of learned models.

Additionally, during the optimization IS is correlated with the real error and if required can be

used to monitor current convergence and to allow an early stop evaluation.

Remark 32. Note that unlike typical density estimator evaluation, herein we do not use perfor-

mance metrics such as perplexity [55] and various kinds of f -divergences, or negative-likelihood

scores. This is because the PSO-learned models are only approximately normalized, while the

aforementioned metrics typically require strictly normalized models for their metric consistency.

Still, both PSQR and LSQR are mean squared errors between target and approximation

functions, and are similar to other performance metrics that are widely applied in regression

problems of Machine Learning domain.

13.2 PDF Estimation via PSO - Columns Distribution

In this Section we will infer a 20D Columns distribution from its sampled points, using various

PSO instances and network architectures. The target pdf here is PU(X) = PClmns(X) and is

defined as:

PClmns(x1, . . . , x20) =
20∏
i=1

p(xi), (13.1)

where p(·) is a 1D mixture distribution with 5 components {Uniform(−2.3,−1.7),N (−1.0,
std = 0.2),N (0.0, std = 0.2),N (1.0, std = 0.2), Uniform(1.7, 2.3)}; each component has

weight 0.2. This distribution has overall 520 ≈ 9.5 · 1013 modes, making the structure of its

entire pdf surface very challenging to learn. For the illustration see Figure 13.1a.

First, we evaluate the proposed density estimation methods under the setting of infinite

103

10
-1

10
0

10
1

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

P
S

Q
R

10
-22

(a)

10
-1

10
0

10
1

0.052

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

L
S

Q
R

(b)

10
-1

10
0

10
1

26.56

26.565

26.57

26.575

26.58

26.585

26.59

26.595

IS

(c)

10
-1

10
0

10
1

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

T
o

ta
l
In

te
g

ra
l

(d)

Figure 13.2: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). For different values of a hyper-parameter α, (a)
PSQR, (b) LSQR and (c) IS are reported, along with their empirical standard deviation. (d) Estimators of the total integral
TI =

∫
P̄θ(X)dX of learned models for each value of α. For a specific learned model P̄θ(X) this integral is estimated through

importance sampling as TI =
∑N

i=1
P̄θ(XDi)
PD(XD

i
) over N = 108 samples from down density PD . Note that such estimator is

consistent, with TI = TI for N →∞.

training dataset, with number of overall training points being NDT = 108. Later, in Section

13.2.5 we will investigate how a smaller dataset size affects the estimation accuracy, and propose

various techniques to overcome issues of sparse data scenario.

13.2.1 PSO Instances Evaluation

Here we perform pdf learning using different PSO instances, and compare their performance.

The applied NN architecture is block-diagonal from Section 11.1, with 6 layers, number of

blocks NB = 50 and block size SB = 64.

PSO-LDE and α First, we apply the PSO-LDE instances from Section 8.2, where we try

various values for the hyper-parameter α. In Figure 13.2 we can see all three errors for different

α. All models produce highly accurate pdf estimation, with average LSQR being around 0.057.

That is, the learned NN surface fθ(X) is highly close to the target logPU(X). Further, we can

see that some α values (e.g. α = 1
4) produce slightly better accuracy than others. This can

be explained by smoother magnitude dynamics with respect to logarithm difference d̄ from

Eq. (8.5), that small values of α yield (see also Section 8.2). Note that here IS error is not very

correlative with ground truth errors PSQR and LSQR since the accuracy of all models is very

similar and IS is not sensitive enough to capture the difference.

104

(a) (b)

0 1 2 3
step 10

5

0

0.5

1

P
S

Q
R

10
-20

0 1 2 3
step 10

5

0

10

20

30

L
S

Q
R

0 1 2 3
step 10

5

26

28

30

32

IS

(c)

Figure 13.3: Learned pdf function of Columns distribution by PSO-LDE with α = 1
4 , where NN architecture is block-diagonal

with 6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). (a) Illustration of learned pdf function.
The depicted slice is P(x1, x2) = P̄U (x1, x2, 0, . . . , 0), with x1 and x2 forming a grid of points in first two dimensions of the
density’s support. As can be seen, all modes (within first two dimensions) and their appropriate shapes are recovered. (b) Illustration
of the learned surface fθ(X). Blue points are sampled from PU , while red points - from PD , minimal 20D Uniform distribution
that covers all samples from PU . The x axis represents log PU (X) for each sample, y axis represents the surface height fθ(X)
after the optimization was finished. The diagonal line represents fθ(X) = log PU (X), where we would see all points in case of
perfect model inference. The black horizontal line represents log PD(X) = −30.5 which is a constant for the Uniform density.
As can be seen, these two densities have a relative support mismatch - although their pdf values are not zero within the considered
point space, the sampled points from both densities are obviously located mostly in different space neighborhoods. This can be
concluded from values of log PU (X) that are very different for both point populations. Further, we can see that there are errors
at both XU and XD locations, possibly due to high bias of the surface estimator fθ(X) imposed by the model kernel gθ (see
also Figure 13.4). (c) Testing errors as functions of the optimization iteration. All three errors can be used to monitor the learning
convergence. Further, IS error can be calculated without knowing the ground truth.

Further, we also estimate the total integral TI =
∫
P̄θ(X)dX for each learned model via

importance sampling. In Figure 13.2d we can see that the learned models are indeed very close

to be normalized, with the estimated total integral being on average 0.97 - very close to the

proper value 1. Note that in our experiments the model normalization was not enforced in any

explicit way, and PSO-LDE achieved it via an implicit force equilibrium.

Furthermore, in Figure 13.2d it is also shown that smaller values of α are more properly

normalized, which also correlates with the approximation error. Namely, in Figure 13.2a same

models with smaller α are shown to have a lower error. We argue that further approximation

improvement (e.g. via better NN architecture) will also increase the normalization quality of

produced models.

Moreover, in Figure 13.3a we can see a slice of the learned exp fθ(X) for the first two

dimensions, where the applied PSO instance was PSO-LDE with α = 1
4 . As observed, it is

highly close to the real pdf slice from Figure 13.1a. In particular, all modes and their shapes

(within this slice) were recovered during learning. Further, in Figure 13.3b we can observe the

105

learned surface height fθ(X) and the ground truth height logPU(X) for test sample points from

PU and PD. As shown, there are approximation errors at both XU and XD, with down points

having bigger error than up points. As we will see below, these errors are correlated with the

norm of θ gradient at each point.

Additionally, in Figure 13.3b we can see an asymmetry of error w.r.t. horizontal line

logPD(X) = −30.5, where points above this line (mostly blue points) have a NN height fθ(X)
slightly lower than a target logPU(X), and points below this line (mostly red points) have a

NN height fθ(X) slightly higher than target logPU(X). This trend was observed in all our

experiments. Importantly, this error must be accounted to an estimation bias (in contrast to

an estimation variance), since the considered herein setting is of infinite dataset setting where

theoretically the variance is insignificant.

Further, we speculate that the reason for such bias can be explained as follows. The points

above this horizontal line have a positive logarithm difference d̄ = fθ(X) + 30.5 defined in

Eq. (8.5), d̄ ≥ 0, whereas points below this line have a negative d̄ ≤ 0. From the relation

between d̄ and magnitude functions discussed in Section 8.2, we know that for ”above” points the

up magnitude MU(·) is on average smaller than down magnitude MD(·) (see Figure 8.2). The

opposite trend can be observed within ”below” points. ThereMD(·) has smaller values relatively

to MU(·). Thus, the surface parts above this horizontal line have large down magnitudes, while

parts below the line have large up magnitudes, which in its turn creates a global side-influence

imposed via the model kernel. Finally, these global side influences generate this asymmetric

error with logPD(X) = −30.5 being the center of the pressure. Likewise, we argue that this

asymmetric tendency can be reduced by selecting PU and PD densities that are closer to each

other, as also enhancing NN architecture to be more flexible, with the side-influence between far

away regions being reduced to zero. In fact, we empirically observed that NN architectures with

bigger side-influence (e.g. FC networks) have a greater error asymmetry; the angle identified

in Figure 13.3b between a point cloud and line fθ(X) = logPU(X) is bigger for a bigger

overall side-influence within the applied model (see also Figure 13.9b below). We leave a more

thorough investigation of this asymmetry nature for future research.

Further, the above asymmetry also clears out why all learned models in Figure 13.2d had the

total integral less than 1. Since this integral is calculated by taking exponential over the learned

fθ(X), red points in Figure 13.3b almost do not have any impact on it, compared with the blue

points (red points’ exponential is much lower than exponential of blue points). Yet, blue points

have smaller exp fθ(X) than their real pdf values PU(X). Therefore, the total integral comes

out to be slightly smaller than 1.

Also, in Figure 13.3c we can see all three errors along the optimization time; the IS is

shown to monotonically decrease, similarly to ground truth errors. Hence, in theory it can

be used in real applications where no ground truth is available, to monitor the optimization

convergence.

Point-wise Error Furthermore, we empirically observe a direct connection between point-wise

ground truth error and self gradient similarity gθ(X,X) (squared norm of gradient ∇θfθ(X)

106

0 1 2 3 4 5 6 7 8
C

1 10
-4

0

20

40

60

L
S

Q
R

Samples from P
U

Samples from P
D

(a)

0 0.002 0.004 0.006 0.008 0.01
C

2

0

5

10

15

20

25

L
S

Q
R

Samples from P
U

Samples from P
D

(b)

0 1 2 3 4 5 6 7 8
C

1 10
-4

0

0.5

1

1.5

2

L
S

Q
R

Samples from P
U

(c)

0 0.002 0.004 0.006 0.008 0.01
C

2

0

0.5

1

1.5

L
S

Q
R

Samples from P
U

(d)

10
-5

10
-4

10
-3

C
1

10
-10

10
-5

10
0

L
S

Q
R

Samples from P
U

Samples from P
D

(e)

10
-5

10
-4

10
-3

10
-2

C
2

10
-5

10
0

L
S

Q
R

Samples from P
U

Samples from P
D

(f)

(g)

Figure 13.4: Relation between a point-wise error and a gradient norm. The pdf function of Columns distribution is learned by
PSO-LDE with α = 1

4 , where NN architecture is block-diagonal with 6 layers, number of blocks NB = 50 and block size
SB = 64 (see Section 11.1). (a)-(b) Relation between inverse-gradient-norm metricsC1 andC2 and a point-wise error LSQR. As
can be seen, points with the smaller inverse-gradient-norm (that is, with a bigger norm of θ gradient) have a greater approximation
error. See details in the main text. (c)-(d) Plots of (a)-(b) with only samples from PU density. (e)-(f) Plots of (a)-(b) with both x
and y axes scaled logarithmically. (g) Matrix G, with Gij = gθ(Xi, Xj).

at the point). To demonstrate this, we define two inverse-gradient-norm empirical metrics

as follows. First, after training was finished we sample 1000 points D = {Xi}, where 500

are sampled from PU and 500 - from PD, and calculate their gradients ∇θfθ(Xi). Next, we

compute the Gramian matrix G that contains all gradient similarities among the samples, with

107

Method PSQR LSQR IS

PSO-LDE, 2.7 · 10−22 ± 2.58 · 10−23 0.057± 0.004 26.58± 0.01
averaged over all α

IS 1.79 · 10−21 ± 5 · 10−22 0.46± 0.14 26.84± 0.07

PSO-MAX 3.04 · 10−22 ± 1.55 · 10−23 0.058± 0.002 26.57± 0.001

Table 13.1: Performance comparison between various PSO instances

Gij = gθ(Xi, Xj). Then, the first empirical metric C1 for sample Xi is calculated as

C1(Xi) = 1
Gii

= 1
gθ(Xi, Xi)

. (13.2)

The above C1(Xi) is bigger if gθ(X,X) is smaller, and vice versa. The second metric C2 is

defined as

C2(Xi) =
[
G−1

]
ii
. (13.3)

Since matrix G is almost diagonal (see Figure 13.4g), both C1 and C2 usually have a similar

trend.

In Figure 13.4 we can see that the above metrics C1(Xi) and C2(Xi) are highly correlated

with point-wise LSQR(Xi) =
[
logPU(Xi)− log P̄θ(Xi)

]2
. That is, points with a bigger norm

of the gradient ∇θfθ(X) (bigger gθ(X,X)) have a bigger approximation error. One possible

explanation for this trend is that there exists an estimation bias, which is amplified by a bigger

gradient norm at the point. Further investigation is required to clarify this aspect. Concluding,

we empirically demonstrate that in the infinite data setting we can measure model uncertainty

(error) at query point X via a norm of its gradient. For a smaller dataset size the connection

between the gradient norm and the approximation error is less obvious, probably because there

we have another/additional factors that increase the approximation error (e.g. an estimation

variance). Also, note that herein we use metrics C1 and C2 that are opposite-proportional to the

gradient norm instead of using the gradient norm directly since the inverse relation is visually

much more substantial.

Additionally, in Figure 13.4 it is visible that on average samples from PD have a bigger

gradient norm than samples from PU . This can explain why in Figure 13.3b we have higher

error at samples from down density.

Other PSO Instances Further, several other PSO instances were executed to compare with

PSO-LDE. First is the IS method from Table 5.1. As was discussed in Section 8.2, its magnitude

functions are unbounded which may cause instability during the optimization. In Table 13.1 we

can see that indeed its performance is much inferior to PSO-LDE with bounded magnitudes.

Additionally, we used an instance of a normalized family defined in Eq. (8.6), which we

108

-10 -8 -6 -4 -2 0 2 4 6 8 10
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

U
(d)

M
D

(d)

Figure 13.5: PSO-MAX magnitudes as functions of a difference d̄ [X, fθ(X)] = fθ(X)− log PD(X).

name PSO-MAX, with the following magnitude functions:

MU [X, fθ(X)] = PD(X)
max [PD(X), exp fθ(X)] = exp

[
−max

[
d̄ [X, fθ(X)] , 0

]]
, (13.4)

MD [X, fθ(X)] = exp fθ(X)
max [PD(X), exp fθ(X)] = exp

[
min

[
d̄ [X, fθ(X)] , 0

]]
. (13.5)

In Figure 13.5 the above magnitudes are depicted as functions of a logarithm difference d̄ where

we can see them to be also bounded. In fact, PSO-MAX is also an instance of PSO-LDE for a

limit α→∞. Similarly to other instances of PSO-LDE, the bounded magnitudes of PSO-MAX

allow to achieve a high approximation accuracy, which gets very close to the performance of

PSO-LDE for finite values of α (see Table 13.1). Yet, PSO-MAX is slightly worse, suggesting

that very high values of α are sub-optimal for the task of pdf inference.

In overall, our experiments show that PSO instances with bounded magnitudes have superior

performance at pdf inference task. Further, PSO-LDE with α = 1
4 has better accuracy w.r.t. other

values of α. Note that this implies PSO-LDE with α = 1
4 is being superior to NCE [39, 126],

which is PSO-LDE with α = 1. Finally, in an infinite dataset setting and when using BD

network architecture, we can measure model uncertainty of a specific query point X via the self

gradient similarity gθ(X,X).

13.2.2 Baselines

In the above section we showed that particular instances of PSO-LDE perform better than the

NCE method (i.e. PSO-LDE with α = 1). Likewise, in our previous work [61] we showed

on 2D and 3D data that PSO-based methods are much more accurate than kernel density

estimation (KDE) approach. Unfortunately, the KDE method does not scale well with higher

dimensions, with very few implementations handling data of arbitrary dimension. Instead, below

we evaluate score matching [50,52,119,151], Masked Auto-encoder for Distribution Estimation

(MADE) [27] and Masked Autoregressive Flow (MAF) [100] as state-of-the-art baselines in the

context of density estimation.

109

Score Matching The originally introduced score matching approach [50] employed the

following loss over samples {XU
i }N

U

i=1 from the target density PU(X):

LSM (θ, {XU
i }N

U

i=1) = 1
NU

NU∑
i=1

n∑
j=1

−(∂2fθ(XU
i)

∂(XU
ij)2

)
+ 1

2

(
∂fθ(XU

i)
∂XU

ij

)2
 , (13.6)

where ∂fθ(XU
i)

∂XU
ij

and ∂2fθ(XU
i)

∂(XU
ij)2 are first and second derivatives of fθ(XU

i) w.r.t. j-th entry of the

n-dimensional sampleXU
i . Intuitively, we can see that this loss tries to construct a surface fθ(X)

where each sample point will be a local minima - its first derivative is ”softly” enforced to be

zero via the minimization of a term
(
∂fθ(XU

i)
∂XU

ij

)2
, whereas the second one is ”softly” optimized

to be positive via maximization of
(
∂2fθ(XU

i)
∂(XU

ij)2

)
. The inferred fθ(X) of such optimization

converges to the data energy function, which is proportional to the real negative log-pdf with

some unknown partition constant, exp [−fθ(X)] ∼ PU(X). Further, note that to optimize a NN

model via LSM (·), the typical GD-based back-propagation process will require to compute a

third derivative of fθ(X), which is typically computationally unfeasible for large NN models.

Due to the last point, in [119, 151] it was proposed to use the following loss as a proxy:

LSM (θ, {XU
i }N

U

i=1) = 1
NU

NU∑
i=1

∥∥∥∥−υi + σ2 · ∂fθ(X)
∂X

|X=XU
i +υi

∥∥∥∥2

2
, (13.7)

where υi is zero-centered i.i.d. noise that is typically sampled from ∼ N (0, σ2 · I). This

”denoising” loss was shown in [143] to converge to the same target of the score matching loss in

Eq. (13.6).

Furthermore, the above loss enforces fθ(X) to converge to the data energy function. How-

ever, in this thesis we are interested to estimate the data log-pdf, which is proportional to the

negative data energy function. To infer the latter via score matching, we employ the following

sign change of the noise term:

LSM (θ, {XU
i }N

U

i=1) = 1
NU

NU∑
i=1

∥∥∥∥υi + σ2 · ∂fθ(X)
∂X

|X=XU
i +υi

∥∥∥∥2

2
, (13.8)

which has the same equilibrium as the loss in Eq. (13.7), yet with the negative sign. Namely, at

a convergence fθ(X) will satisfy now exp [fθ(X)] ∼ PU(X). In our experiments we used this

version of score matching loss for the density estimation of 20D Columns distribution.

The employed learning setup of score matching is identical to PSO-LDE, with the loss

in Eq. (13.8) being applied in a mini-batch mode, where at each optimization iteration a

batch of samples {XU
i }N

U

i=1 was fetched from the training dataset and the new noise batch

{υi}Ni=1 was generated. The learning rate of Adam optimizer was 0.003. Note that this method

infers exp [fθ(X)] which is only proportional to the real pdf with some unknown partition

constant. Therefore, in order to compute LSQR of such model we also calculated its partition

via importance sampling. Specifically, for each learned model exp [fθ(X)] its integral was

110

10
-3

10
-2

10
-1

0

10

20

30

40

L
S

Q
R

(a)

5 6 7 8 9 10 11

10
-3

0.6

0.8

1

1.2

1.4

1.6

L
S

Q
R

(b)

(c) (d) (e)

Figure 13.6: Learned pdf function of Columns distribution by score matching, where NN architecture is block-diagonal with 6
layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). The employed activation function is tanh(). (a)
LSQR error (mean and standard deviation) for various values of a scaling hyper-parameter σ; (b) Zoom of (a); (c) Illustration
of learned pdf function for best model with σ = 0.006. The depicted slice is P(x1, x2) = P̄U (x1, x2, 0, . . . , 0), with x1 and
x2 forming a grid of points in first two dimensions of the density’s support. As can be seen, the estimated pdf is over-smoothed
w.r.t. real pdf in Figure 13.1a. In contrast, PSO-LDE estimation in Figure 13.3a does not have this extra-smoothing nature. (d)
Illustration of the learned surface fθ(X). Blue points are sampled from PU , while red points - from PD , minimal 20D Uniform
distribution that covers all samples from PU . The x axis represents log PU (X) for each sample, y axis represents the surface
”normalized” height f̄θ(X) = fθ(X)− log

(
TI
)

= log P̄θ(X) after optimization was finished. The diagonal line represents
f̄θ(X) = log PU (X), where we would see all points in case of perfect model inference. (e) Plot from (d) with only samples from
PU . We can see that the produced surface is significantly less accurate than the one produced by PSO-LDE in Figures 13.3a-13.3b.

estimated through TI =
∑ND

i=1
exp[fθ(XD

i)]
PD(XD

i) over ND = 108 samples from density PD, which

is the minimal 20D Uniform distribution that covers all samples from PU . Further, we used

P̄θ(X) = exp
[
fθ(X)− log

(
TI
)]

as the final estimation of data pdf.

Furthermore, we trained the score matching model for a range of σ values. After the

explicit normalization of each trained model, in Figures 13.6a-13.6b we can see the LSQR

error for each value of a hyper-parameter σ. Particularly, for σ = 0.006 we got the smaller error

LSQR = 0.907± 0.0075, which is still much inferior to the accuracy obtained by PSO-LDE.

Moreover, in Figure 13.6c we can see that the estimated surface is over-smoothed and does not

accurately approximate sharp edges of the target pdf. In contrast, PSO-LDE produces a very

close pdf estimation of an arbitrary shape, as was shown in Section 13.2.1. Likewise, comparing

Figures 13.6d and 13.3b we can see again that PSO-LDE yields a much better accuracy.

Masked Auto-encoder for Distribution Estimation This technique is based on the autore-

gressive property of density functions, P(x1, . . . , xn) =
∏n
i=1 P(xi|x1, . . . , xi−1), where each

conditional P(xi|x1, . . . , xi−1) is parameterized by NN. MADE constructs a network with

sequential FC layers, where the autoregressive property is preserved via masks applied on

activations of each layer [27]. Likewise, each conditional can be modeled as 1D density of

111

0 100 200 300 400 500

k

10
-1

10
0

10
1

10
2

L
S

Q
R

(a)

100 200 300 400 500

k

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

L
S

Q
R

(b)

(c) (d) (e)

Figure 13.7: Learned pdf function of Columns distribution by MADE, where NN architecture is fully-connected with 4 layers
of size 1024. The employed activation function is Relu. (a) LSQR error (mean and standard deviation) for various values of a
k - a number of mixture components; (b) Zoom of (a); (c) Illustration of learned pdf function for the best model with k = 512.
The depicted slice is P(x1, x2) = P̄U (x1, x2, 0, . . . , 0), with x1 and x2 forming a grid of points in first two dimensions of the
density’s support. As can be seen, the estimated pdf is over-spiky in areas where the real pdf in Figure 13.1a is flat. This is due to
an inability of MoG model to represent flat non-zero surfaces. In contrast, PSO-LDE estimation in Figure 13.3a does not have
this issue. (d) Illustration of the estimated pdf P̄θ(X). Blue points are sampled from PU , while red points - from PD , minimal
20D Uniform distribution that covers all samples from PU . The x axis represents log PU (X) for each sample, y axis represents
f̄θ(X) , log P̄θ(X) after optimization was finished. The diagonal line represents f̄θ(X) = log PU (X), where we would see all
points in case of perfect model inference. (e) Plot from (d) with only samples from PU .

any known distribution family, with a typical choice being Gaussian or Mixture of Gaussians

(MoG).

In our experiments we used MoG with k components to model each conditional, due to

the highly multi-modal nature of Columns distribution. Moreover, we evaluated MADE for

a range of various k, to see how the components number affects the technique’s performance.

Furthermore, the learning setup was similar to other experiments, with the only difference

that the applied NN architecture was FC, with 4 layers of size 1024 each, and the exploited

non-linearity was Relu.

In Figures 13.7a-13.7b the LSQR error is shown for each value of k. We can clearly see

that with higher number of components the accuracy improves, where the best performance

was achieved by k = 512 with LSQR = 0.2 ± 0.0141. Furthermore, in Figure 13.7c we

can see an estimated surface for the best learned model. As observed, most of the MoG

components are spent to represent flat peaks of the target density. Such outcome is natural

since for MoG to approximate flat areas the value of k has to go to infinity. Moreover, this

demonstrates the difference between parametric and non-parametric techniques. Due to an

explicit parametrization of each conditional, MADE can be considered as a member of the

former family, while PSO-LDE is definitely a member of the latter. Further, non-parametric

approaches are known to be more robust/flexible in general. In overall, we can see that PSO-LDE

outperforms MADE even for a large number of mixture components.

112

0 100 200 300 400 500

k

10
0

10
1

L
S

Q
R

(a)

100 200 300 400 500

k

0.8

1

1.2

1.4

1.6

1.8

L
S

Q
R

(b)

(c) (d) (e)

Figure 13.8: Learned pdf function of Columns distribution by MAF, with 5 inner MADE bijections and MADE MoG as a base
density. (a)LSQR error (mean and standard deviation) for various values of a k - a number of mixture components; (b) Zoom of (a);
(c) Illustration of learned pdf function for the best model with k = 256. The depicted slice is P(x1, x2) = P̄U (x1, x2, 0, . . . , 0),
with x1 and x2 forming a grid of points in first two dimensions of the density’s support. The same over-spiky behavior can be
observed as in Figure 13.7c. (d) Illustration of the estimated pdf P̄θ(X) for the best model, constructed similarly to Figure 13.7d.
(e) Plot from (d) with only samples from PU .

Masked Autoregressive Flow Shortly MAF, this technique combines an NN architecture

of the previous MADE method with the idea of a normalizing flow [113] where a bijective

transformation h(·) is applied to transform a priori chosen base density into the target density.

Such bijective transformation allows to re-express the density of target data via an inverse of h(·)
and via the known pdf of a base density, and further to infer the target pdf via a standard MLE

loss. Moreover, the architecture of MADE can be seen as such bijective transformation, which

is specifically exploited by MAF method [100]. Particularly, several MADE transformations are

stuck together into one large bijective transformation, which allows for richer representation of

the inferred pdf. In our experiments we evaluated MAF method with 5 inner MADE bijections.

Furthermore, the original paper proposed two MAF types. First one, referred as MAF(·) in

the paper, uses multivariate normal distribution as a base density. During the evaluation this

type did not succeed to infer 20D Columns distribution at all, probably because of its inability

to handle distribution with 520 modes.

The second MAF type, referred as MAF MoG(·) in the paper, uses MADE MoG as a

base density in addition to the MADE-based bijective transformation. This type showed better

performance w.r.t. first type, and we used it as an another baseline. Likewise, note that also in

the original paper [100] this type was shown on average to be superior between the two.

Like in MADE experiments, also here we tested MAF MoG for different values of k -

mixture components number of the base density, parametrized by a separate MADE MoG model.

In Figures 13.8a-13.8b the LSQR error is shown for each value of k. As in MADE case, also

here accuracy improves with a higher number of components. The top accuracy was achieved

113

by k = 256 with LSQR = 0.9 ± 0.009. On average, MAF MoG showed the same trends

as MADE method, yet with some higher LSQR error. Moreover, during the experiments it

was observed as a highly unstable technique, with thorough hyper-parameter tuning needed to

overcome numerical issues of this approach.

In overall, we observed that non-parametric PSO-LDE is superior to other state-of-the-art

baselines when dealing with highly multi-modal Columns distribution.

13.2.3 NN Architectures Evaluation

Here we compare performance of various NN architectures for the pdf estimation task.

FC Architecture We start with applying PSO-LDE with different values of α where the used

NN architecture is now fully-connected (FC), with 4 layers of size 1024. In Figure 13.9a we

show LSQR for different α, where again we can see that α = 1
4 (and now also α = 1

3) performs

better than other values of α. On average, LSQR error is around 2.5 which is significantly

higher than 0.057 for BD architecture. Note also that BD network, used in Section 13.2.1, is

twice smaller than FC network, containing only 902401 weights in BD vs 2121729 in FC, yet it

produced a significantly better performance.

Further, in Figure 13.9b we illustrated the learned surface fθ(X) for a single FC model

with α = 1
4 . Compared with Figure 13.3b, we can see that FC architecture produces a much

less accurate NN surface. We address it to the fact that in BD network the gradient similarity

gθ(X,X ′) has much smaller overall side-influence (bandwidth) and the induced bias compared

to the FC network, as was demonstrated in Section 11.1. Hence, BD models are more flexible

than FC and can be pushed closer to the target function logPU(X), producing more accurate

estimations.

Additionally, note the error asymmetry in Figure 13.9b which was already observed in

Figure 13.3b. Also here we can see that the entire cloud of points is rotated from zero error

line fθ(X) = logPU(X) by some angle where the rotation axis is also around horizontal line

logPD(X) = −30.5. As explained in Section 13.2.1, according to our current hypotheses there

are global up and down side-influence forces that are responsible for this angle.

Further, to ensure that FC architecture can not produce any better results for the given

inference task, we also evaluate it for different values of NL and S - number of layers and size

of each layer respectively. In Figure 13.10 we see that NL = 4 and S = 1408 achieve best

results for FC NN. Yet, the achieved performance is only LSQR = 1.17, which is still nowhere

near the accuracy of BD architecture.

BD Architecture Further, we performed learning with a BD architecture, but with increasing

number of blocks NB . For NB taking values between 20 and 200, in Figure 13.11 we can see

that with bigger NB there is improvement in approximation accuracy. This can be explained by

the fact that bigger NB produces bigger number of independent transformation channels inside

NN; with more such channels there is less parameter sharing and side-influence between far

114

10
0

1

1.5

2

2.5

3

3.5

4

L
S

Q
R

(a) (b)

Figure 13.9: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is fully-connected with 4
layers of size 1024 (see Section 11.1). (a) For different values of a hyper-parameter α, LSQR error is reported along with its
empirical standard deviation. (b) Illustration of the learned surface fθ(X). Blue points are sampled from PU , while red points from
PD . The x axes represent log PU (X) for each sample, y axes - the surface height fθ(X) after optimization was finished. Diagonal
line represents fθ(X) = log PU (X), where we would see all points in case of perfect model inference. The black horizontal line
represents log PD(X) = −30.5 which is constant for the Uniform density. As can be seen, there are high approximation errors at
both XU and XD locations. Compared with BD architecture in Figure 13.3b, on average the error is much higher for FC network.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

L
S

Q
R

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

S

0

5

10

15

20
L
S

Q
R

500 1000 1500 2000

1

2

3

4

(b)

Figure 13.10: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is fully-connected (see
Section 11.1). The applied loss is PSO-LDE with α = 1

4 . (a) For different number of layers NL, LSQR error is reported, where a
size of each layer is S = 1024. (b) For different values of layer size S, LSQR error is reported, where a number of layers is
NL = 4.

away input regions - different regions on average rely on different transformation channels. As

a result, the NN becomes highly flexible. Further, in the setting of infinite dataset such high NN

flexibility is desirable, and leads to a higher approximation accuracy. In contrast, in Section

13.2.5 below we will see that for a smaller dataset size the relation between NN flexibility and

the accuracy is very different.

Likewise, we experiment with number of layers NL to see how the network depth of a BD

architecture affects the accuracy of pdf inference. In Figure 13.12 we see that deeper networks

allow us to further decrease LSQR error to around 0.03. Also, we can see that at some point

increasing NL causes only a slight error improvement. Thus, increasing NL beyond that point

is not beneficial, since for a very small error reduction we will pay with higher computational

cost due to the increased size of θ.

Furthermore, in Figure 13.13 we evaluate BD performance for different sizes of blocks

SB . Here we don’t see anymore a monotonic error decrease that we observed above for NB

and NL. The error is big for SB below 32 or above 160. This probably can be explained as

follows. For a small block size SB each independent channel has too narrow width that is not

115

20 40 60 80 100 120 140 160 180 200
N

B

2.2

2.4

2.6

2.8

3

3.2

3.4

P
S

Q
R

10
-22

(a)

20 40 60 80 100 120 140 160 180 200N
B

0.05

0.055

0.06

0.065

0.07

0.075

L
S

Q
R

(b)

20 40 60 80 100 120 140 160 180 200
N

B

26.554

26.556

26.558

26.56

26.562

26.564

26.566

26.568

IS

(c)

Figure 13.11: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers and block size SB = 64 (see Section 11.1). The number of blocks NB is changing. The applied loss is PSO-LDE with
α = 1

4 . For different values of NB , (a) PSQR (b) LSQR and (c) IS are reported. As observed, the bigger number of blocks
(e.g. independent channels) NB improves the pdf inference.

116

2 4 6 8 10
0

0.5

1

1.5

2

P
S

Q
R

10
-21

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

L
S

Q
R

2 4 6 8 10
26.5

26.55

26.6

26.65

26.7

26.75

IS

2 4 6 8 10
0

0.5

1

1.5

2
10

6

(a)

2 4 6 8 10

1

2

3

4

5

P
S

Q
R

10
-22

2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

L
S

Q
R

(b)

Figure 13.12: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with
number of blocks NB = 50 and block size SB = 64 (see Section 11.1). The number of layers NL is changing from 3 to 10. The
applied loss is PSO-LDE with α = 1

4 . (a) For different values of NL we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of θ for each value of NL. (b) Zoom of (a).

Method PSQR LSQR IS

BD, X DT,X HB 2.48 · 10−22 ± 6.63 · 10−24 0.054± 0.0009 26.57± 0.01
BD, 7 DT,X HB 2.49 · 10−22 ± 9.8 · 10−24 0.055± 0.0021 26.57± 0.002
BD, X DT, 7 HB 2.51 · 10−22 ± 1.1 · 10−23 0.056± 0.0026 26.57± 0.002
BD, 7 DT, 7 HB 3 · 10−22 ± 4.79 · 10−23 0.066± 0.011 26.57± 0.005

FC, X DT,X HB 5.56 · 10−18 ± 1.02 · 10−17 1.78± 0.18 27.29± 0.05
FC, 7 DT,X HB 1.2 · 10−16 ± 2.67 · 10−16 1.35± 0.058 27.157± 0.029
FC, X DT, 7 HB 7.9 · 10−21 ± 2.37 · 10−21 2.38± 0.3 27.52± 0.08
FC, 7 DT, 7 HB 1.36 · 10−12 ± 3 · 10−12 2.5± 0.23 27.54± 0.08

Table 13.2: Performance comparison between various NN pre-conditioning ways. The pdf function of Columns distribution is
learned by PSO-LDE with α = 1

4 . The applied models are fully-connected (FC) with 4 layers of size 1024, and block-diagonal
(BD) with 6 layers, number of blocksNB = 50 and block size SB = 64 (see Section 11.1). Evaluated pre-conditioning techniques
are the data normalization in Eq. (11.3) (DT), and the height bias in Eq. (11.4) (HB).

enough to properly transfer the required signal from NN input to output. Yet, surprisingly it

still can achieve a very good approximation, yielding LSQR error of 0.075 for SB = 16 with

only 72001 weights, which is very impressive for such small network. Further, for a large block

size SB each independent channel becomes too wide, with information from too many various

regions in Rn passing through it. This in turn causes interference (side-influence) between

different regions and reduces overall NN flexibility, similarly to what is going on inside a regular

FC network.

NN Pre-conditioning Finally, we verified efficiency of pre-conditioning techniques proposed

in Section 11.2, namely the data normalization in Eq. (11.3) and the height bias in Eq. (11.4).

In Table 13.2 we see that both methods improve the estimation accuracy. Further, in case the

used model is FC, the LSQR error improvement produced by the height bias is much more

117

0 100 200
2

2.5

3

3.5

4

P
S

Q
R

10
-22

0 100 200
0.05

0.06

0.07

0.08

0.09

L
S

Q
R

0 100 200
26.55

26.56

26.57

26.58

26.59

IS

0 100 200
0

2

4

6

8
10

6

(a)

0 50 100 150 200
2.2

2.3

2.4

2.5

2.6
P

S
Q

R

10
-22

0 50 100 150 200
0.05

0.052

0.054

0.056

L
S

Q
R

(b)

Figure 13.13: Evaluation of PSO-LDE for estimation of Columns distribution, where NN architecture is block-diagonal with 6
layers and number of blocks NB = 50 (see Section 11.1). The block size SB is taking values {16, 32, 64, 96, 128, 160, 192}.
The applied loss is PSO-LDE with α = 1

4 . (a) For different values of SB we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of θ for each value of SB . (b) Zoom of (a).

significant. Yet, for FC architecture it is unclear if the data normalization indeed helps.

Overall, our experiments combined with empirical observations from Section 11.1.1 show

that BD architecture has a smaller side-influence (small values of gθ(X,X ′) for X 6= X ′)

and a higher flexibility than FC architecture. This in turn yields superior accuracy for BD vs

FC networks. Moreover, in an infinite dataset setting we can see that further increase of NN

flexibility by increasing NB or NL yields even a better approximation accuracy. The block size

SB around 64 produces a better performance in general. Yet, its small values are very attractive

since they yield small networks with appropriate computational benefits, with relatively only a

little error increase.

13.2.4 Batch Size Impact

Herein we investigate the relation between PSO approximation error and a batch size of training

points. In particular, in PSO loss we have two terms, the up term which is a sum over batch

points {XU
i }N

U

i=1 and the down term which is a sum over batch points {XD
i }N

D

i=1 . We will see

how values of NU and ND affect PSO performance.

Increasing bothNU andND First, we run a scenario where both batch sizes are the same,

NU = ND = N . We infer Columns distribution with different values of N , ranging from 10 to

6000. In Figures 13.14a-13.14b we can observe that LSQR error is decreasing for bigger N ,

which is expected since then the stochastic forces at each point X ∈ Rn are getting closer to the

averaged forces F U
θ (X) = PU(X) ·MU [X, fθ(X)] and FD

θ (X) = PD(X) ·MD [X, fθ(X)].
In other words, the sampled approximation of PSO gradient in Eq. (3.5) becomes more accurate.

Moreover, we can observe that for the smaller batch size the actual PSO-LDE performance

is very poor, with LSQR being around 26.3 for N = 10 and decreasing to 0.31 for N = 100.

The high accuracy, in range 0.03-0.05, is only achieved when we increase the number of batch

118

10
2

10
4

10
-2

10
-1

10
0

10
1

L
S

Q
R

(a)

1000 2000 4000 6000

0.03

0.035

0.04

0.045

0.05

0.055

0.06

L
S

Q
R

(b)

10
2

10
4

10
-1

10
0

10
1

L
S

Q
R

(c)

1000 2000 4000 6000

0.045

0.05

0.055

L
S

Q
R

(d)

10
2

10
4

10
-1

10
0

10
1

L
S

Q
R

(e)

1000 2000 4000 6000

0.04

0.045

0.05

0.055

L
S

Q
R

(f)

10
1

10
2

10
3

10
-1

10
0

10
1

L
S

Q
R

(g)
1000 2000 4000 6000

0.03

0.035

0.04

0.045

0.05

0.055

0.06

L
S

Q
R

(h)

Figure 13.14: Batch size evaluation. Columns distribution is estimated via PSO-LDE with α = 1
4 , where NN architecture is

block-diagonal with 6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). (a)-(b) For different values
of a batch size N = NU = ND we report LSQR and its empirical standard deviation. Both the up batch size NU and the
down batch size ND are kept the same. (c)-(d) The NU receives different values while the ND is 1000. (e)-(f) The ND receives
different values while the NU is 1000. (g)-(h) All scenarios are plotted together in the same graph. Note that both x and y axes are
log-scaled. Right column is zoom-in of left column.

119

points to be above 1000. This implies that to reach a higher accuracy, PSO will require a higher

demand over the memory/computation resources. Therefore, the higher available resources,

expected from future GPU cards, will lead to a higher PSO accuracy.

Increasing onlyNU Further, we experiment with increasing/decreasing only one of the batch

sizes while the other stays constant. In Figures 13.14c-13.14d a scenario is depicted where NU

is changing while ND is 1000. Its error for small values of NU is smaller than in the previous

scenario, with LSQR being around 11 for NU = 10 and decreasing to 0.11 for NU = 100.

Comparing with the previous experiment, we can see that even if NU is small, a high value of

ND (1000) improves the optimization performance.

Increasing onlyND Furthermore, in Figures 13.14e-13.14f we depict the opposite scenario

where ND is changing while NU is 1000. Unlike the experiment in Figures 13.14c-13.14d, here

the improvement of error for small values of ND w.r.t. the first experiment is not that significant.

For ND = 10 the error is 24.8 and for ND = 100 it is 0.19. Hence, the bigger number of up

points (NU = 1000) does not lead to a much higher accuracy if a number of down points ND is

stll too small.

Finally, in Figures 13.14g-13.14h we plot all three experiments together. Note that all lines

cross at the same point, where all experiments were configured to have NU = ND = 1000. We

can see that in case our resource budget is low (smaller values of x in Figure 13.14g), it is more

efficient to spend them to increase ND. Yet, for a high overall resource budget (higher values

of x in Figure 13.14g) both NU and ND affect the error similarly, and it is better to keep them

equal and increase them as much as possible.

13.2.5 Small Training Dataset

In this section we will learn 20D Columns distribution using only 100000 training sample points.

As we will see below, the density inference task via non-parametric PSO becomes much more

challenging when the size of the training dataset is limited.

Various Sizes of Dataset To infer the data pdf, here we applied PSO-LDE with α = 1
4 .

Further, we use BD NN architecture since it has superior approximation performance over FC

architecture. First, we perform the inference task using the same BD network as in Section

13.2.1, with 6 layers, NB = 50 and SB = 64, where the size of the entire weights vector is

|θ| = 902401. The Columns pdf is inferred using a various number NDT of overall training

points {XU
i }

NDT
i=1 . As can be observed from Figure 13.15a, LSQR error increases for a

smaller size NDT of the training dataset. From error 0.05 for NDT = 108 it gets to 0.062 for

NDT = 107, 0.67 for NDT = 106, 91.2 for NDT = 105 and 8907 for NDT = 104. As we will

see below and as was already discussed in Section 12, one of the main reasons for such large

errors is a too flexible NN model, which in a small dataset setting can significantly damage the

performance of PSO-LDE, and PSO in general.

120

10
4

10
5

10
6

10
7

10
8

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

L
S

Q
R

(a) (b)

Figure 13.15: Evaluation of PSO-LDE for estimation of Columns distribution with different sizes NDT of the training dataset.
Used NN architecture is block-diagonal with 6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1).
Number of weights is |θ| = 902401. Applied PSO instance is PSO-LDE with α = 1

4 . (a) LSQR error as a function of the
training dataset size NDT , where both x and y axes are log-scaled. (b) Illustration of the learned log-pdf surface fθ(X) for the
dataset size NDT = 105. The depicted slice is log P(x1, x2) ≡ fθ([x1, x2, 0, . . . , 0]), with x1 and x2 forming a grid of points
in first two dimensions of the density’s support. Note the resemblance similarity between this plot and the target surface in Figure
13.1b. Even though LSQR error of this model in (a) is very high (≈ 91.2), the local structure within the converged surface is
close to the local structure of the target function. Unfortunately, its global structure is inconsistent and far away from the target.

Interestingly, although LSQR error is high for models with NDT = 105, in Figure 13.15b

we can see that the converged surface fθ(X) visually highly resembles the real target log-pdf

in Figure 13.1b. We can see that main lines and forms of the target surface were learned by

fθ(X), yet the overall global shape of NN surface is far away from the target. Furthermore, if

we calculate exp fθ(X), we will get a surface that is very far from its target PU(X) since the

exponential will amplify small errors into large.

Further, in Figure 13.16 we can observe error curves for models learned in Figure 13.15a.

Both train and test errors are reported for all three error types, per a different dataset size NDT .

Train and test errors are very similar for big NDT in Figures 13.16a-13.16b. Moreover, in Figure

13.16b we can see according to the LSQR error (the middle column) that at the beginning error

decreases but after 105 steps it starts increasing, which suggests a possible overfitting to the

training dataset at NDT = 106. Further, in Figures 13.16c-13.16d we can see that train and test

errors are more distinct from each other. Likewise, here PSQR and LSQR, both train and test,

are increasing almost from the start of the optimization. In contrast, in Figures 13.16c-13.16d in

case of IS the train and test errors have different trends compared with each other. While the

test IS is increasing, the train IS is decreasing. This is a typical behavior of the optimization

error that indicates strong overfitting of the model, here for NDT = 105 and NDT = 104. In

turn, this means that we apply a too rich model family - over-flexible NN which can be pushed

to form peaks around the training points, as was demonstrated in Section 12. Further, we can

detect such overfitting by comparing train and test IS errors, which do not depend on ground

truth.

Note that train and test errors of PSQR/LSQR have the same trend herein, unlike IS. The

reason for this is that PSQR and LSQR express a real ground truth distance between NN

surface and the target function, whereas IS error is only a some rough estimation of it.

121

0 1 2 3
step 10

5

10
-21

P
S

Q
R

Train
Test

0 1 2 3
step 10

5

10
0

L
S

Q
R

Train
Test

0 1 2 3
step 10

5

27

28

29

30

31

IS

Train
Test

(a)

0 1 2 3
step 10

5

10
-20

P
S

Q
R

Train
Test

0 1 2 3
step 10

5

10
0

10
1

L
S

Q
R

Train
Test

0 1 2 3
step 10

5

26

27

28

29

30

31

IS

Train
Test

(b)

0 1 2 3
step 10

5

10
-20

10
-10

10
-2

P
S

Q
R

Train
Test

0 1 2 3
step 10

5

10
1

10
2

L
S

Q
R

Train
Test

0 1 2 3
step 10

5

10
2

10
4

IS

Train
Test

(c)

0 1 2 3
step 10

5

10
-20

10
-10

10
-2

P
S

Q
R

Train
Test

0 1 2 3
step 10

5

10
2

10
3

L
S

Q
R

Train
Test

0 1 2 3
step 10

5

20

40

100

IS

Train
Test

(d)

Figure 13.16: Error curves during the optimization for models learned in Figure 13.15a, where various dataset sizes NDT were
evaluated. The error is reported for (a) NDT = 107, (b) NDT = 106, (c) NDT = 105 and (d) NDT = 104. In each row we
report: PSQR - first column; LSQR - middle column; IS - last column. Each plot contains both train and test errors; the former
is evaluated over 103 up points from training dataset chosen as a batch for a specific optimization iteration, whereas the latter - over
105 up points from the testing dataset.

122

10
1

10
2

N
B

12

14

16

18

20

22

24

26

28

L
S

Q
R

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
5

5

6

7

L
S

Q
R

5 10 15 20 25 30
N

B

5

6

7

L
S

Q
R

(b)

Figure 13.17: Evaluation of PSO-LDE for estimation of Columns distribution with only NDT = 105 training samples. Used NN
architecture is block-diagonal with block size SB = 64 (see Section 11.1). Applied PSO instance is PSO-LDE with α = 1

4 . (a)
LSQR error for models with 4 layers and various values of the blocks number NB . Size of weights vector θ is depicted for each
model. (b) LSQR error for models with 3 layers and various values of blocks number NB . Top - LSQR is shown as a function
of NB ; bottom - LSQR is shown as a function of the size |θ|. As observed, too big and too small number of parameters, |θ|,
produces a less accurate pdf approximation in the small dataset setting.

Reduction of NN Flexibility to Tackle Overfitting Next, we perform the inference task using

BD network with only 4 layers, on the training dataset of size NDT = 105. We learn models for

various numbers of blocks NB inside our network, being between 5 and 30. In Figure 13.17a we

can see that LSQR error is still very high compared to the results of an infinite dataset setting in

Section 13.2.1: ≈20 vs ≈0.05. Yet, it is smaller than in Figure 13.15a, where we used 6 layers

instead of 4 and NB = 50. Moreover, we can see in Figure 13.17a that the error is reducing

with a smaller number of blocks NB and a smaller number of NN parameters |θ|.

Further, we perform the same experiment where BD architecture has only 3 layers (first and

last are FC layers and in the middle there is BD layer). In Figure 13.17b we can observe that

for a too small/large value of NB the LSQR is higher. That is, for a too big/small number of

weights in θ we have a worse pdf approximation. This can be explained as follows. Small size

|θ| implies NN with low flexibility which is not enough to closely approximate a target surface

logPU(X), thus producing underfitting. We observed similar results also in an infinite dataset

setting in Section 13.2.3, where bigger size of θ yielded an even smaller error. Furthermore,

when |θ| is too big, the NN surface becomes too flexible and causes overfitting. Such over-

flexibility is not appropriate for small dataset setting, since it allows to closely approximate a

peak around each training sample XU (or XD), where the produced spiky surface fθ(X) will

obviously have a high approximation error, as was demonstrated in Section 12. In other words,

in contrast to common regression learning, in case of unsupervised PSO approaches the size

(and the flexibility) of NN should be adjusted according to the number of available training

points, otherwise the produced approximation error will be enormous. In contrast, in common

DL-based regression methods such over-flexible NN may cause overfitting to training samples

and increase the testing error, yet it will not affect the overall approximation performance as

destructively as in PSO.

Interestingly, the optimal size |θ| in Figure 13.17b-bottom is around 100000 - the number

of available training points. It would be an important investigatory direction to find the exact

123

10
-4

10
-2

10
0

0

100

200

300

400

500

600

700

800

L
S

Q
R

(a)

10
-3

10
-2

10
-1

2

3

4

5

6

7

8

9

10

L
S

Q
R

(b)

10 20 30 40 50
N

B

2.5

3

3.5

4

4.5

5

5.5

6

6.5

L
S

Q
R

(c)

0 10 20 30 40 50

N
B

27.8

28

28.2

28.4

28.6

28.8

IS

(d)

Figure 13.18: Evaluation of PSO-LDE for estimation of Columns distribution with only NDT = 105 training samples, using a
data augmentation noise. The used NN architecture is block-diagonal with block size SB = 64 (see Section 11.1). Applied PSO
instance is PSO-LDE with α = 1

4 . Each up training point XU is sampled from the data density PU . Further, an additive 20D noise
υ ∼ N (0, σ2 · I) is sampled and added to XU . The PSO-LDE loss is applied on X̄U = XU + υ instead of the original XU .
Number of overall PU ’s samples is constant 105; new samples of noise υ are sampled at each optimization iteration. We learn
models using various values of σ. (a) LSQR error as a function of σ, for models with 6 layers and the blocks number NB = 50.
(b) LSQR error as a function of σ, for models with 3 layers and the blocks number NB = 20. (c) LSQR error and (d) IS
error as a function of the blocks number NB , for models with 3 layers and σ = 0.08. As can be seen, smaller size (up to some
threshold) of NN produces much higher accuracy in a limited training dataset setting. Also, the additive noise can yield an accuracy
improvement.

mathematical relation between the dataset size and properties of NN (e.g. its size, architecture

and gradient similarity) for the optimal inference. We shall leave it for future research.

Data Augmentation to Tackle Overfitting Additionally, we also apply the augmentation data

technique to smooth the converged surface fθ(X), as was described in Section 12. Concretely,

we use samples of r.v. X̄U = XU + υ as our up points, where we push the NN surface up.

The XU is sampled from the data density PU , while the additive 20D noise υ is sampled from

∼ N (0, σ2 ·I). At each optimization iteration the next batch of {XU
i }N

U

i=1 is fetched from a priori

prepared training dataset of size 105, and new noise instances {υi}NU

i=1 are generated. Further,

{X̄U
i }N

U

i=1 is used as the batch of up points within PSO-LDE loss, where X̄U
i = XU

i + υi. Such

a method allows us to push the fθ(X) up not only at the limited number of training points XU
i ,

but also at other points in some ball neighborhood around each XU
i , thus implicitly changing

the approximated function to be smoother and less spiky. Another perspective to look over it is

that we apply Gaussian diffusion over our NN surface, since adding Gaussian noise is identical

to replacing the target pdf PU(X) with the convolution PU(X) ∗ N (0, σ2 · I).

124

In Figure 13.18a we can see results of such data augmentation for BD network with 6 layers

and 50 blocks, with SB = 64. In such case the used model is over-flexible with too many

degrees of freedom, and the data augmentation is not helpful, with an overall error being similar

to the one obtained in Figure 13.15a. Yet, when the model size (and its flexibility) is reduced to

only 3 layers and 20 blocks, the performance trend becomes different. In Figure 13.18b we can

see that for particular values of the noise s.t.d. σ (e.g. 0.08) the data augmentation technique

reduces LSQR error from 5.17 (see Figure 13.17b) to only 3.13.

Further, in Figures 13.18c-13.18d we can see again that there is an optimal NN size/flexibility

that produces the best performance, where a smaller NN suffers from underfitting and a larger

NN suffers from overfitting. Moreover, in Figure 13.18d we can see again that the empirical

error IS is correlated with the ground truth error LSQR, although the former is less accurate

than the latter. Hence, IS can be used in practice to select the best learned model.

Overall, in our experiments we observed both underfitting and overfitting cases of PSO

optimization. The first typically happens for large dataset size when NN is not flexible enough to

represent all the information contained within training samples. In contrast, the second typically

happens for small datasets when NN is over-flexible so that it can be pushed to have spikes

around the training points. Further, overfitting can be detected via IS test error. Finally, the data

augmentation reduces effect of overfitting.

13.3 PDF Estimation via PSO - Transformed Columns Distribution

In this section we will show that PSO is not limited only to isotropic densities (e.g. Columns

distribution from Section 13.2) where there is no correlation among different data dimensions,

and can be actually applied also to data with a complicated correlation structure between

various dimensions. Specifically, herein we infer a 20D Transformed Columns distribution,

PU(X) = PTrClmns(X), which is produced from isotropic Columns by multiplying a random

variable X ∼ PClmns (defined in Eq. (13.1)) by a dense invertible matrix A that enforces

correlation between different dimensions. Its pdf can be written as:

PTrClmns(X) = 1
abs [detA]P

Clmns(A−1 ·X), (13.9)

where A appears in Appendix J. As we will see below, the obtained results for this more

sophisticated distribution have similar trends to results of Columns. Additionally, we will also

show how important is the choice of PD. Unconcerned reader may skip it to the next Section

13.4.

Uniform PD First, we evaluate PSO-LDE for different values of α on the density inference

task. The applied model is BD with 6 layers, number of blocks NB = 50 and block size

SB = 64. The dataset size is NDT = 108 and PD is Uniform. In Figures 13.19a-13.19b-13.19c

we can see the corresponding errors for learned models. The errors are huge, implying that the

inference task failed. The reason for this is the relative support mismatch between Uniform and

125

10
-1

10
0

-2

0

2

4

6

8

10

12

P
S

Q
R

10
-18

(a)

10
-1

10
0

50

55

60

65

70

75

80

L
S

Q
R

(b)

10
-1

10
0

30

30.5

31

31.5

32

32.5

33

33.5

IS

(c)

10
-1

10
0

1

1.2

1.4

1.6

1.8

2

2.2

P
S

Q
R

10
-21

(d)

10
-1

10
0

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

L
S

Q
R

(e)

10
-1

10
0

26.35

26.4

26.45

26.5

IS

(f)

Figure 13.19: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with
6 layers, number of blocks NB = 50 and block size SB = 64 (see Section 11.1). The down density PD is Uniform in the top
row (a)-(b)-(c), and Gaussian in the bottom row (d)-(e)-(f). For different values of a hyper-parameter α, (a)-(d) PSQR, (b)-(e)
LSQR and (c)-(f) IS are reported, along with their empirical standard deviation. As observed, when PD is Uniform, PSO-LDE
fails to learn the data density due to large relative support mismatch. On the other hand, when PD is Gaussian, the target surface is
accurately approximated.

Transformed Columns densities. After transformation by matrix A the samples from PTrClmns

are more widely spread out within the space R20. The range of samples along each dimension is

now around [−10, 10] instead of the corresponding range [−2.3, 2.3] in Columns distribution.

Yet, the samples are mostly located in a small subspace of hyperrectangle R = [−10, 10]20.

When we choose PD to be Uniform withR as its support, most of the samples XU and XD are

located in different areas of this huge hyperrectangle and cannot balance each other to reach

PSO equilibrium. Such relative support mismatch prevents proper learning of the data density

function.

Gaussian PD Next, instead of Uniform we used Gaussian distribution N (µ,Σ) as our down

density PD. The mean vector µ is equal to the mean of samples from PU ; the Σ is a diagonal

matrix whose non-zero values are empirical variances for each dimension of available up

samples. In Figures 13.19d-13.19e-13.19f we can observe that overall achieved accuracy is high,

yet it is worse than the results for Columns distribution. Such difference can be again explained

by a mismatch between PU and PD densities. While Columns and Uniform densities in Section

13.2 are relatively aligned to each other, the Transformed Columns and Gaussian distributions

have a bounded ratio PU (X)
PD(X) only around their mean point µ. In far away regions such ratio

becomes too big/small, causing PSO inaccuracies. Hence, we argue that a better choice of PD

would further improve the accuracy.

Additionally, we can see that in case of Transformed Columns PSO-LDE with α = 1
5

achieves the smallest error, with its LSQR being 0.32± 0.02. Additionally, we evaluated the

Importance Sampling (IS) method from Table 5.1 and PSO-MAX defined in Eq. (13.4)-(13.5).

126

Method PSQR LSQR IS

PSO-LDE, 1.6 · 10−21 ± 3.17 · 10−22 0.442± 0.095 26.44± 0.05
averaged over all α

IS 9.3 · 10−21 ± 3.4 · 10−24 26.63± 0.86 31.3± 0.04

PSO-MAX 2.1 · 10−21 ± 2.96 · 10−22 0.54± 0.088 26.52± 0.03

Table 13.3: Performance comparison between various PSO instances for Transformed Columns density

10
-1

10
0

3

4

5

6

7

8

9

L
S

Q
R

Figure 13.20: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is FC with
4 layers of size 1024 (see Section 11.1). For different values of a hyper-parameter α, LSQR error is reported, along with its
empirical standard deviation. Again, the small values of α (around 1

5) have a lower error.

In Table 13.3 we see that the performance of PSO-MAX is slightly worse than of PSO-LDE,

similarly to what was observed for Columns. Moreover, the IS fails entirely, producing a very

large error. Furthermore, in order to stabilize its learning process we were required to reduce the

learning rate from 0.0035 to 0.0001. Hence, here we can see again the superiority of bounded

magnitude functions over not bounded.

Various NN Architectures Additionally, we evaluated several different NN architectures

for Transformed Columns distribution, with PD being Gaussian. In Figure 13.20 we report the

performance for FC networks. As observed, the FC architecture has a higher error w.r.t. BD

architecture in Figure 13.19e. Moreover, PSO-LDE with α around 1
5 performs better.

Further, in Figure 13.21 we experiment with BD architecture for different values of the

0 100 200
0

0.5

1

P
S

Q
R

10
-20

0 100 200
0.2

0.4

0.6

0.8

1

L
S

Q
R

0 100 200
26.3

26.4

26.5

26.6

26.7

IS

0 100 200
0

2

4

6

8
10

6

Figure 13.21: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with 6
layers and number of blocks NB = 50 (see Section 11.1). The block size SB is taking values {16, 32, 64, 96, 128, 160, 192}.
The applied loss is PSO-LDE with α = 1

5 . For different values of SB we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of θ for each value of SB .

127

50 100 150 200 250 300 350 400

N
B

0.3

0.4

0.5

0.6

0.7

L
S

Q
R

(a)

50 100 150 200 250 300 350 400

N
B

0

1

2

3

4

5

6
10

5

(b)

Figure 13.22: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with 6
layers and block size SB = 16 (see Section 11.1). The number of blocks NB is changing. The applied loss is PSO-LDE with
α = 1

5 . For different values of NB , (a) LSQR error and (b) the number of weights |θ| are reported.

block size SB . Similarly to what was observed in Section 13.2.3 for Columns distribution, also

here a too small/large block size has worsen accuracy.

We also perform additional experiments for BD architecture where this time we use small

blocks, with SB = 16. In Figure 13.22 we see that for such networks the bigger number

of blocks per layer NB , that is the bigger number of transformation channels, yields better

performance. However, we also observe the drop in an accuracy when the number of these

channels grows considerably (above 250). Furthermore, no matter how big is NB , the models

with small blocks (SB = 16) in Figure 13.22 produced inferior results w.r.t. model with big

blocks (SB = 64, see Figure 13.19e for α = 1
5).

Further, we evaluated the same small-block network for a different number of layers NL,

with SB = 16 and NB = 250. In Figure 13.23 we can see that when NL grows from 2 to 6, the

overall performance is getting better. Yet, for a larger number of layers the performance trend is

inconsistent. When NL is between 7 and 11, some values of NL are better than other, with no

evident improvement pattern for large NL. Moreover, for NL = 12 the error grows significantly.

More so, we empirically observed that 2 out of 5 runs of this setting totally failed due to the zero

loss gradient. Thus, the most likely conclusion for this setting is that for a too deep networks the

signal from input fails to reach its end, which is a known issue in DL domain. Also, from our

experiments it follows that learning still can succeed, depending on the initialization of network

weights.

Furthermore, along with the above inconsistency that can occur for too deep networks, for

NL = 9 in Figure 13.23 we still received our best results on Transformed Columns dataset, with

the mean LSQR being 0.204. This leads to the conclusion that even when BD network uses

blocks of a small size (SB = 16), it still can produce a superior performance if it is deep enough.

Besides, the zero-gradient issue may be tackled by adding shortcut connections between various

layers [42].

Overall, in our experiments we saw that when PU and PD are not properly aligned (i.e. far

from each other), PSO fails entirely. Further, PSO-LDE with values of α around 1
5 was observed

to perform better, which is an another superiority evidence for small values of α. Moreover,

IS with unbounded magnitude functions could not be applied at all for faraway densities. BD

128

2 4 6 8 10 12
0

0.5

1

P
S

Q
R

10
-20

2 4 6 8 10 12

0

50

100

L
S

Q
R

2 4 6 8 10 12
26

28

30

32

34

36

IS

2 4 6 8 10 12
0

2

4

6

8
10

5

(a)

2 4 6 8 10 12
0

2

4

6

8

10

12

L
S

Q
R

2 4 6 8 10 12

26.5

27

27.5

28

28.5

29

IS

(b)

Figure 13.23: Evaluation of PSO-LDE for estimation of Transformed Columns distribution, where NN architecture is BD with
number of blocks NB = 250 and block size SB = 16 (see Section 11.1). The number of layers NL is changing from 2 to 12.
The applied loss is PSO-LDE with α = 1

5 . (a) For different values of NL we report PSQR, LSQR and IS, and their empirical
standard deviation. Additionally, in the last column we depict the size of θ for each value of NL. (b) Zoom of (a).

architecture showed again a significantly higher accuracy over FC networks. Block size SB = 96
produced a better inference. Finally, for BD networks with small blocks (SB = 16) the bigger

number of blocks NB and the bigger number of layers NL improve an accuracy. However, at

some point the increase in both can cause the performance drop.

13.4 PDF Estimation via PSO - 3D Image-based Densities

In order to further evaluate the presented herein PSO-LDE density estimation approach, we use

intricate 3D densities that are based on image surfaces. More specifically, we consider a given

RGB image I as a function F (x, y, c) from R3 to R where x, y and c represent width, height

and color channel of I respectively. For simplicity we define the range for each input scalar

variable from [x, y, c] to be [0, 1], with F : [0, 1]3 → [0, 1]. We use grid of values from an image

I to appropriately interpolate outputs of the function F (X) at any input point X ∈ [0, 1]3 ⊆ R3.

In our experiments we used a linear interpolation.

Further, we use F as pdf function which we sample to create a dataset for our PSO-LDE

experiments. Yet, the function F , interpolated from image I , is not a valid pdf function since its

integral can be any positive number. Thus, we normalize it by its total integral to get a normalized

function F̄ which we use as an intricate 3D pdf function for further density estimation evaluation.

Next, we sample the density F̄ via rejection sampling method and gather a dataset of size 107

129

(a) (b)

(c) (d)

(e) (f)

Figure 13.24: (a),(c),(e) Image-based densities and (b),(d),(f) their approximations - Part 1.

130

(a) (b)

(c) (d)

(e) (f)

Figure 13.25: (a),(c),(e) Image-based densities and (b),(d),(f) their approximations - Part 2.

131

per each image-based density. Furthermore, we approximate the target surface log F̄ (X) via

PSO-LDE only from these sampled points.

Note that log F̄ has a very sophisticated structure since used images have a very high

contrast and nearby pixels typically have significantly different values. This makes log F̄ a

highly non-linear function, which cannot be easily approximated by typical parametric density

estimation techniques. Yet, as we will see below, due to the approximation power of DL, which

is exploited in full by PSO, and due to a high flexibility of the proposed BD architecture, the

non-parametric PSO-LDE allows us to accurately estimate even such complex distributions.

Importantly, we emphasize that the evaluated distributions in this section have their support

in R3, and are not some very high-dimensional densities over image data that can be often

encountered in DL domain.

We use PSO-LDE with α = 1
4 in order to learn the target log F̄ . The applied NN architecture

is block-diagonal with a number of blocks NB = 15, a block size SB = 64 and a number of

layers NL = 14 (see Section 11.1). In order to tackle the problem of vanishing gradients in

such a deep model, we introduced shortcut connections into our network, where each layer

has a form ui = hi(ui−1; θi) + ui−1 with ui and hi(·; θi) being respectively the output and the

applied transformation function of i-th BD layer within the BD network. Note that in this thesis

we use such shortcuts only for the experiments of this section. Furthermore, after training is

finished, we convert the inferred F̄ back into an image format, producing an inferred image I ′.

In Figures 13.24 and 13.25 we show inferred images for several input images. As can

be seen, there is high resemblance between both input I and inferred I ′. That is, PSO-LDE

succeeded to accurately infer densities even with a very complicated surface. Note that each

image-based density was inferred by using identical hyper-parameters, that are the same as in

the rest of our experiments (except for NN structure where shortcuts were applied). Additional

parameter-tuning per a specific input image will most probably improve the produced herein

results.

13.5 PDF Estimation via PSO - Joint Over Poses and CNN Features

Here we consider the joint density estimation task in context of robotics domain, over data

considered in [62]. Specifically, we learn the joint P(Z,X) where robot pose X ∈ R4 has the

form {x, y, pitch, yaw} and Z ∈ R10 is a set of CNN features observed at X . The inferred

dataset was generated from Unreal Engine [139] where we sampled uniformly poses {Xi},
retrieved a camera measurement Ii at each Xi, computed CNN logits fi for each Ii using

Inception-v3 [134], and finally retrieved 10 pre-specified features from fi to construct Zi. A

Gaussian parametric estimation of this particular P(Z,X) was reported to have a relatively poor

accuracy due to the intricate structure of ground truth distribution [62].

The technical setup for this task is very similar to the one described in Section 13.1, with

few differences. Overall size of training and testing datasets was 100000 and 70000 respectively.

BD architecture was used to represent fθ(X), with NL = 8, NB = 100 and SB = 64,

and with Elu non-linearity activation function. Further, here we use negative log-likelihood

132

0.2 0.4 0.6 0.8 1

-12.5

-12

-11.5

Figure 13.26: Evaluation of PSO-LDE for density estimation of CNN features. For different values of hyper-parameter α,NLLikl
is reported, along with the empirical standard deviation.

NLLikl = − 1
N

∑N
i=1 log P̄θ(Zi, Xi) as our performance metric, since we do not have access

to ground truth pdf required to compute LSQR; {Zi, Xi}Ni=1 are N = 70000 testing samples.

First we apply the same baselines from Section 13.2.2. The achieved NLLikl by score

matching, MADE and MAF is, respectively, −7.056± 0.23, −11.55± 0.085 and −12.076±
0.01. Like previously, the score matching model was explicitly normalized via importance

sampling. Furthermore, we inferred the considered model also via Gaussian-Mixture-Model

with k components (GMM-k). The achieved NLLikl was −6.74± 0.06 and −10.01± 0.03
for GMM-50 and GMM-300 respectively.

Further, PSO-LDE with various α was applied. The above learned GMM was chosen as

down distribution in this scenario. We separate 3 · 105 learning iterations into two stages, 80000

and 220000, where during the first stage GMM-50 was used as PD, and during the second stage

- GMM-300. Likewise, during the first stage we kept the learning rate constant 0.0035, and the

applied batch size was NU = ND = 600. For second stage the learning rate was 1e− 5 and the

batch size - NU = ND = 100. Such a 2-stage process empirically showed better performance.

Importantly, NLLikl measures a statistical discrepancy only when the estimated model

is properly normalized. Yet, as was seen above, PSO-LDE models are only approximately

normalized. Hence, in order to compute NLLikl for P̄θ(Z,X) inferred via PSO-LDE, we

can use its normalized form P̂θ(Z,X) = P̄θ(Z,X)/TI , with its total integral TI being calcu-

lated/approximated via importance sampling. Yet, such normalization destroys approximation

power of PSO-LDE model, since as observed empirically, while P̄θ can have a large TI ,

it is still very close to the ground truth pdf on local scale. A better normalization method,

for which PSO-LDE is less sensitive, is to represent the normalized version of P̄θ(Z,X)
as P̂θ,C(Z,X) = min

[
C · PGMM (Z,X), P̄θ(Z,X)

]
, where C > 0 is tuned so that TI of

P̂θ,C(Z,X) is equal to 1, and where PGMM is the GMM-300 that was used as down density.

Such normalization can be considered as sort of a prior over joint P(Z,X) that requires inferred

P̂θ,C(Z,X) to be close to PGMM . In our experiments we used this form to computeNLLikl for

PSO-LDE methods. Importantly, such normalization is only required for comparison with other

baselines, since the comparison of normalized and unnormalized models is a very challenging

task in its own [78].

In Figure 13.26 we can see NLLikl for various α. Best performance was achieved by

α = 0.35, with NLLikl = −12.7± 0.046, which is significantly better than all state-of-the-art

baselines. Furthermore, similarly to Figure 13.2a also here we observe that PSO-LDE with

small α (here around α = 0.35) has a better accuracy w.r.t. NCE (i.e. α = 1) that achieved

133

(a) (b) (c)

Figure 13.27: Probabilistic occupancy mapping scenario 1. (a) Environment with black obstacles and 3 lidar scans (in green).
Laser hit points are in red. (b) NN output fθ(X), approximating J(X). (c) Zoomed-in map parts.

(a) (b)

Figure 13.28: Probabilistic occupancy mapping scenario 2. (a) Environment with black obstacles and white free space. (b) NN
output fθ(X), approximating J(X).

NLLikl = −12.3± 0.1.

13.6 Probabilistic Occupancy Mapping

Finally, we deploy PSO to model a statistical occupancy map, according to the setup in Section

10.5. Here, we consider two scenarios. In the first, we have a room with 3 lidar scans, see Figure

13.27a. Points {Xf
i } are sampled uniformly from each scan cone (in green), whereas {Xo

i } are

taken to be laser hits (in red). At the convergence PSO produced fθ(X) in Figure 13.27b, which

provides a continuous occupancy information about the environment. Specifically, the learned

model returns zero for unobserved areas, depicting an information lack there. In areas of scans

it returns positive values for occupied areas, and negative values - for unoccupied. Moreover,

the magnitude of values is larger for areas that were observed twice, which we can use as a

confidence measure of our knowledge when we plan autonomous navigation through the area.

In the second scenario a larger area with more details, taken from [8], is considered, see

Figure 13.28. Here we assume that the entire environment was observed, with points {Xf
i }

being uniformly sampled from the entire white area of Figure 13.28a, and {Xo
i } being uniformly

sampled on the boundary between white and black regions. In Figure 13.28b we can see that the

learned occupancy model produces very accurate information about the real environment.

Overall, in the above simplistic scenarios we showed that PSO can accurately infer a

continuous probabilistic occupancy map. In future work we shall compare the proposed method

134

to other alternatives in this domain [96, 111, 121].

The technical setup for the above learning task was very similar to the one described in

Section 13.1, with few differences.

Scenario 1 Overall size of training dataset was No = 7347 and N f = 3.5 · 106. Note that

”free” locations are sampled uniformly from scanned areas, and we can construct a dataset of

these points as large as we want. FC architecture was used to represent fθ(X), with 8 layers of

size 256 each, and with Elu non-linearity activation function. Optimization was performed for

300000 iterations, and took around 30 minutes to run on a GeForce GTX 1080 Ti GPU card.

Size of mini batches was 300.

Scenario 2 Overall size of training dataset was No = 674563 and N f = 4.3 · 106. FC

architecture was used to represent fθ(X), with 10 layers of size 256 each, and with Elu non-

linearity activation function. Optimization was performed for 300000 iterations, and took around

one hour to run on a GeForce GTX 1080 Ti GPU card. Size of mini batches was 1000.

135

136

CHAPTER 14

Neural Spectrum Alignment

Understanding expressiveness and generalization of deep models is essential for robust per-

formance of NNs and PSO methods. Recently, the optimization analysis for a general NN

architecture was related to the model kernel gθ(X,X ′) , ∇θfθ(X)T · ∇θfθ(X ′) [54], which

we also related to PSO performance in sections 3 and 7. Properties of this gradient similarity

kernel, a.k.a. NTK, govern NN expressivity level, generalization and convergence rate. Un-

der various considered conditions [54, 71], this NN kernel converges to its steady state and

is invariant along the entire optimization, which significantly facilitates the analyses of DL

theory [7, 11, 15, 41, 54, 71].

Yet, in a typical realistic setting the gradient similarity kernel is far from being constant, as

we empirically demonstrate in this chapter. Moreover, its spectrum undergoes a very specific

change during training, aligning itself towards the target function that is learned by NN. This

kernel adaptation in its turn improves the optimization convergence rate, by decreasing a norm of

the target function within the corresponding RKHS [7]. Furthermore, these gradient similarity

dynamics can also explain the expressive superiority of deep NNs over more shallow models.

Hence, we argue that understanding the gradient similarity of NNs beyond its time-invariant

regime is a must for full comprehension of NN expressiveness power.

To encourage the onward theoretical research of the kernel, herein we report several strong

empirical phenomena and trends of its dynamics. To the best of our knowledge, these trends

neither were yet reported nor they can be explained by DL theory developed so far. We argue

that accounting for the presented below phenomena can lead to a more complete learning theory

of complex hierarchical models like modern NNs.

To this end, in this chapter we perform an empirical investigation of FC NN, its gradient

similarity kernel and the corresponding Gramian at training data points during the entire period

of a typical learning process. Our main empirical contributions below are:

• We show that Gramian serves as a NN memory, with its top eigenvectors changing to

align with the learned target function. This improves the optimization performance since

the convergence rate along kernel top eigenvectors is typically higher.

137

• During the entire optimization NN output is located inside a sub-space spanned by these

top eigenvectors, making the eigenvectors to be a basis functions of NN.

• Deeper NNs demonstrate a stronger alignment, which may explain their expressive

superiority. In contrast, shallow wide NNs with a similar number of parameters achieve a

significantly lower alignment level and a worse optimization performance.

• We show additional trends in kernel dynamics as a consequence of learning rate decay.

Specifically, after each decay the information about the target function, that is gathered

inside top eigenvectors, is spread to a bigger number of top eigenvectors. Likewise, kernel

eigenvalues grow after each learning rate drop, and an eigenvalue-learning-rate product is

kept around the same value for the entire optimization.

• Experiments over various FC architectures and real-world datasets are performed. Like-

wise, several supervised and unsupervised learning algorithms and number of popular

optimizers were evaluated. All experiments showed the mentioned above spectrum

alignment.

This chapter is structured as follows. In Section 14.1 we define necessary notations for

first-order NN dynamics. In Section 14.2 we relate gradient similarity with Fisher information

matrix (FIM) of NN and in Section 14.3 we provide more insight about NN dynamics on L2

loss example. In Section 14.4 the work related to NTK and kernel alignment is described, and in

Section 14.5 we present our main empirical study. Later, the experiment outcome is summarized

in Section 14.6. Further, additional derivations placed in the Appendix. Finally, more visual

illustrations of NN spectrum and additional experiments can be found in [63].

14.1 Notations for Alignment Experiment

Consider a NN fθ(X) : Rn → R with a parameter vector θ, a typical sample loss ` and an

empirical loss L, training samples D =
[
XXX = {Xi ∈ Rn}Ni=1,YYY = {Y i ∈ R}Ni=1

]
and the loss

gradient∇θL:

L(θ,D) = 1
N

N∑
i=1

`
[
Xi, Y i, fθ(Xi)

]
, ∇θL(θ,D) = 1

N

N∑
i=1

`′
[
Xi, Y i, fθ(Xi)

]
·∇θfθ(Xi).

(14.1)

The above formulation can be extended to include unsupervised PSO methods by eliminating

labels YYY from the equations, and introducing down samples {XD
i }N

D

i=1 instead. Further, tech-

niques with a model fθ(X) returning multidimensional outputs are out of scope for this thesis,

to simplify the formulation.

Consider a GD optimization with learning rate δ, where parameters change at each discrete

optimization time t as dθt , θt+1 − θt = −δ · ∇θL(θt, D). Further, a model output change at

138

any X according to first-order Taylor approximation is:

dfθt(X) , fθt+1(X)− fθt(X) = dθTt ·
∫ 1

0
∇θfθs(X)ds ≈

≈ ∇θfθt(X)T · dθt = − δ

N

N∑
i=1

gt(X,Xi) · `′
[
Xi, Y i, fθt(Xi)

]
, (14.2)

where θs , (1− s)θt + sθt+1 and
∫ 1

0 ∇θfθs(X)ds is a gradient averaged over the straight line

between θt and θt+1. Further, gt(X,X ′) , ∇θfθt(X)T · ∇θfθt(X ′) is a gradient similarity -

the dot-product of gradients at two different input points also known as NTK [54], and where

`′
[
Xi, Y i, fθt(Xi)

]
, ∇fθ`

[
Xi, Y i, fθt(Xi)

]
.

In this section we mainly focus on optimization dynamics of fθ at training points. To

this end, define a vector f̄t ∈ RN with i-th entry being fθt(Xi). According to Eq. (14.2) the

discrete-time evolution of fθ at testing and training points follows:

dfθt(X) ≈ − δ

N
· gt(X,XXX) · m̄t, df̄t , f̄t+1 − f̄t ≈ −

δ

N
·Gt · m̄t, (14.3)

where Gt , gt(XXX ,XXX) is a N ×N Gramian with entries Gt(i, j) = gt(Xi, Xj) and m̄t ∈ RN

is a vector with the i-th entry being `′
[
Xi, Y i, fθt(Xi)

]
. Likewise, denote eigenvalues of Gt,

sorted in decreasing order, by {λti}Ni=1, with λtmax , λt1 and λtmin , λtN . Further, notate the

associated orthonormal eigenvectors by {ῡti}Ni=1. Note that {λti}Ni=1 and {ῡti}Ni=1 also represent

estimations of eigenvalues and eigenfunctions of the kernel gt(X,X ′) (see Appendix K for more

details). Below we will refer to large and small eigenvalues and their associated eigenvectors by

top and bottom terms respectively.

Eq. (14.3) describes the first-order dynamics of GD learning, where m̄t is a functional

derivative of any considered loss L, and the global optimization convergence is typically

associated with it becoming a zero vector, due to Euler-Lagrange equation of L. Further, Gt
translates a movement in θ-space into a movement in a space of functions defined onXXX .

14.2 Relation to Fisher Information Matrix

NN Gramian can be written asGt = ATt At whereAt is |θ|×N Jacobian matrix with i-th column

being∇θfθt(Xi). Moreover, Ft = AtA
T
t is known as the empirical FIM of NN1 [58, 97, 101]

that approximates the second moment of model gradients 1
NFt ≈ EX

[
∇θfθt(X)∇θfθt(X)T

]
.

Since Ft is dual of Gt, both matrices share same non-zero eigenvalues {λti 6= 0}. Furthermore,

for each λti the respectful eigenvector ω̄ti of Ft is associated with appropriate ῡti - they are left

and right singular vectors of At respectively. Moreover, change of θt along the direction ω̄ti
causes a change to f̄t along ῡti (see Appendix M for the proof). Therefore, spectrums of Gt and

Ft describe principal directions in function space and θ-space respectively, according to which

1In some papers [117] FIM is also referred to as a Hessian of NN, due to the tight relation between Ft and the
Hessian of the loss. See Appendix L for more details

139

f̄t and θt are changing during the optimization. Based on the above, in Section 14.4 we relate

some known properties of Ft towards Gt.

14.3 Analysis of L2 Loss For Constant Gramian

To get more insight into Eq. (14.3), we will consider L2 loss with `
[
Xi, Y i, fθ(Xi)

]
=

1
2
[
fθ(Xi)− Y i

]2. In such a case we have m̄t = f̄t − ȳ, with ȳ being a vector of labels.

Assuming Gt to be fixed along the optimization (see Section 14.4 for justification), NN dynam-

ics can be written as (see the Appendix N for a proper derivation):

f̄t = f̄0 −
N∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > ῡi, (14.4)

m̄t =
N∑
i=1

[
1− δ

N
λi

]t
< ῡi, m̄0 > ῡi. (14.5)

Further, dynamics of fθt(X) at testing point X appear in the Appendix O since they are not the

main focus of this thesis. Under the stability condition δ < 2N
λmax

, the above equations can be

viewed as a transmission of a signal from m̄0 = f̄0 − ȳ into our model f̄t - at each iteration

m̄t is decreased along each {ῡi : λi 6= 0} since lim
t→∞

[
1− δ

N λi
]t

= 0. Furthermore, the same

information decreased from m̄t in Eq. (14.5) is appended to f̄t in Eq. (14.4).

Hence, in case of L2 loss and for a constant Gramian matrix, conceptually GD transmits

information packets from the residual m̄t into our model f̄t along each axis ῡi. Further,

sti , 1− |1− δ
N λi| governs a speed of information flow along ῡi. Importantly, note that for a

high learning rate (i.e. δ ≈ 2N
λmax

) the information flow is slow for directions ῡi with both very

large and very small eigenvalues λi, since in former the term 1− δ
N λi is close to −1 whereas in

latter - to 1. Yet, along with the learning rate decay, performed during a typical optimization,

sti for very large λi is increased. However, the speed along a direction with small λi is further

decreasing with the decay of δ. As well, in case λmin > 0, at the convergence t → ∞ we

will get from Eq. (14.4)-Eq. (14.5) the global minima convergence: f̄∞ = f̄0 − m̄0 = ȳ and

m̄∞ = 0̄.

Under the above setting, there are two important key observations. First, due to the restriction

over δ in practice the information flow along small λi can be prohibitively slow in case a

conditional number λmaxλmin
is very large. This implies that for a faster convergence it is desirable

for NN to have many eigenvalues as close as possible to its λmax since this will increase a

number of directions in the function space where information flow is fast. Second, if m̄0 (or ȳ

if f̄0 ≈ 0) is contained entirely within top eigenvectors, small eigenvalues will not affect the

convergence rate at all. Hence, the higher alignment between m̄0 (or ȳ) and top eigenvectors

may dramatically improve overall convergence rate. The above conclusions and their extensions

towards the testing loss are proved in formal manner in [7, 99] for two-layer NNs. Further,

the generalization is also shown to be dependent on the above alignment. In Section 14.5 we

support these conclusions experimentally.

140

14.4 Work Related to Model Kernel

First-order NN dynamics can be understood by solving the system in Eq. (14.3). However, its

solution is highly challenging due to two main reasons - non-linearity of m̄t w.r.t. f̄t (except for

the L2 loss) and intricate and yet not fully known time-dependence of Gramian Gt. Although

gradient similarity gt(X,X ′) and corresponding Gt achieved a lot of recent attention in DL

community [54, 71], their properties are still investigated mostly only for limits under which

Gt becomes time-constant. The first work in this direction was done in [54] where gt(X,X ′)
was proven to converge to Neural Tangent Kernel (NTK) in infinite width limit. Similarly,

in [71] G0 was shown to accurately explain NN dynamics when θt is nearby θ0 during the entire

optimization. The considered case of constant Gramian facilitates solution of Eq. (14.3), as

demonstrated in Section 14.3, which otherwise remains intractable. Moreover, GD over NN with

constant Gramian/kernel is identical to kernel methods where optimization is solved via kernel

gradient descent [54], and hence theoretical insights from kernel learning can be extrapolated

towards NNs.

Yet, in practical-sized NNs the spectrum of Gt is neither constant nor it is similar to its

initialization. Recent several studies explored its adaptive dynamics [23, 145, 148], although

most of the work was done for single or two layer NNs. Further, in [25, 49] mathematical

expressions for NTK dynamics were developed for a general NN architecture. Likewise, in the

Appendix P we derive similar dynamics for the Gramian Gt. Yet, the above derivations produce

intricate equations and it is not straightforward to explain the actual behavior of Gt along the

optimization, revealed in this thesis. Particularly, in Section 14.5 we empirically demonstrate

that top spectrum of Gt is dramatically affected by the learning task at hand, aligning itself

with the target function. To the best of our knowledge, the presented NN kernel trends were not

investigated in such detail before.

Further, many works explore properties of FIM Ft both theoretically and empirically

[37, 58, 99, 117]. Specifically, most of these works come to conclusion that in typical NN an

absolute majority of FIM eigenvalues are close to zero, with only small part of them being

significantly strong. According to Section 14.2 the same is also true about eigenvalues of

Gt. Furthermore, in [7, 99] authors showed for networks with a single hidden layer that NN

learnability strongly depends on alignment between labels vector ȳ and top eigenvectors of Gt.

Intuitively, it can be explained by fast convergence rate along ῡi with large λi vs impractically

slow one along directions with small λi, as was shortly described in Section 14.3. Due to

most of the eigenvalues being very small, the alignment between ȳ and top eigenvectors of

Gt defines the optimization performance. Moreover, in [99] authors also noted the increased

aforementioned alignment comparing NN at start and end of the training. This observation was

shortly made for ResNet convolutional NN architecture, and in Section 14.5 we empirically

investigate this alignment for FC architecture, in comprehensive manner for various training

tasks.

Furthermore, the picture of information flow from Section 14.3 also explains what target

functions are more ”easy” to learn. The top eigenvectors of Gt typically contain low-frequency

141

signal, which was discussed in [7] and proved in [11] for data uniformly distributed on a hyper-

sphere. In its turn, this explains why low-frequency target functions are learned significantly

faster as reported in [7, 110, 152]. Combined with early stopping such behavior is used by DL

community as a regularization to prevent fitting high-frequency signal affiliated with noise; this

can also be considered as an instance of commonly known Landweber iteration algorithm [66].

We support findings of [11] also in our experiments below, additionally revealing that for a gen-

eral case the eigenvectors/eigenfunctions of the gradient similarity are not spherical harmonics

considered in [11].

Finally, in context of kernel methods a lot of effort was done to learn the kernels themselves

[31, 141, 144, 146]. The standard 2-stage procedure is to first learn the kernel and latter combine

it with the original kernel algorithm, where the first stage can involve search for a kernel whose

kernel matrix is strongly aligned with the label vector ȳ [31, 144], and the second is to solve

a data fitting task (e.g. L2 regression problem) over RKHS defined by the new kernel. Such

2-stage adaptive-kernel methods demonstrated an improved accuracy and robustness compared

to techniques with pre-defined kernel [31, 141, 146]. In our experiments we show that NNs

exhibit a similar alignment of gt(X,X ′) during the optimization, and hence can be viewed as

an adaptive-kernel method where both kernel learning and data fitting proceed in parallel.

14.5 Experiments

In this section we empirically study Gramian dynamics along the optimization process. Our

main goal here is to illustrate the alignment nature of the gradient similarity kernel and verify

various deductions made in Section 14.3 under a constant-Gramian setting for a real learning

case. To do so in detailed and intuitive manner, we focus our experiments on 2D dataset where

visualization of kernel eigenfunctions is possible. We perform a simple regression optimization

of FC network via GD, where a learning setup2 is similar to common conventions applied by

DL practitioners. All empirical conclusions are also validated for high-dimensional real-world

data, which can be found in [63].

Setup To provide a better intuition, we specifically consider a regression of the target function

y(X) with X ∈ [0, 1]2 ⊆ R2 depicted in Figure 14.1a. We approximate this function with

Leaky-Relu FC network via L2 loss, using N = 10000 training points sampled uniformly

from [0, 1]2 (see Figure 14.1c). Training dataset is normalized to an empirical mean 0 and a

standard deviation 1. NN contains 6 layers with 256 neurons each, with |θ| = 264193, that was

initialized via Xavier initialization [29]. Such large NN size was chosen to specifically satisfy

an over-parametrized regime |θ| � N , typically met in DL community. Further, learning rate δ

starts at 0.25 and is decayed twice each 105 iterations, with the total optimization duration being

6 · 105. At convergence fθ(X) gets very close to its target, see Figure 14.1b. Additionally, in

Figure 14.1d we show that first-order dynamics in Eq. (14.3) describe around 90 percent of the

change in NN output along the optimization, leaving another 10 for higher-order Taylor terms.
2Related code can be accessed via a repository https://bit.ly/2kGVHhG

142

https://bit.ly/2kGVHhG

(a) (b)

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

(c)

0.0

0.2

er
ro
r t

0 200000 400000 600000
t

0.98

1.00

co
s(
α t
)

(d)

0 200000 400000 600000
t

10−2

10−1

δt
2N
λtmax

(e)

Figure 14.1: (a) Mona Lisa target function for a regression task. (b) NN fθ(X) at convergence. (c) 104 sampled training points.

(d) Accuracy of first order dynamics in Eq. (14.3). Depicted is errort = ‖df̃t−df̄t‖‖df̃t‖ , where df̄t = − δt
N
·Gt ·m̄t is the first-order

approximation of a real differential df̃t , f̄t+1− f̄t; cos (αt) is cosine of an angle between df̃t and df̄t. As observed, Eq. (14.3)
explains roughly 90% of NN change. (e) Learning rate δt and its upper stability boundary 2N

λtmax
along the optimization. We

empirically observe a relation λtmax ∝ 1
δt

.

0 5000 10000
i

10−8
10−6
10−4
10−2
100
102
104

λ i

t=0
t=100
t=1000
t=10000
t=100000
t=600000

(a)

0 200000 400000 600000
t

10−3

10−1

101

103

105

λt i

i=1
i=10
i=20
i=50
i=100
i=300
i=500
i=1000
i=3000

(b)

0 200000 400000 600000
t

10−6

10−4

10−2

100

st i i=1
i=4
i=6
i=9
i=10
i=100
i=500
i=1000

(c)

0 200000 400000 600000
t

10−6

10−4

10−2

100

δ t N
λt i i=1

i=4
i=6
i=9
i=10
i=100
i=500
i=1000

0 200000 400000 600000
t

0.0

0.5

1.0

1.5

2.0

δ t N
λt i

i=1
i=2
i=3
i=4
i=5
i=6

(d)

Figure 14.2: (a) Eigenvalues {λti}
N
i=1 for different t. (b) Individual eigenvalues along t. As observed, eigenvalues monotonically

grow along t, with growing boost at times of the learning rate drop. (c) The information flow speed sti discussed in Section 14.3 for
several top eigenvectors. For first 8 eigenvectors, roughly, this speed is increased at learning rate drop. (d) δt

N
λti along time t, for

various i.

Further, we compute Gt and its spectrum along the optimization, and thoroughly analyze them

below.

Eigenvalues In Figures 14.2a-14.2b it is shown that each eigenvalue is monotonically increas-

ing along t. Moreover, at learning rate decay there is an especial boost in its growth. Since δt
N λ

t
i

also defines a speed of movement in θ-space along one of FIM eigenvectors (see Section 14.2),

such behavior of eigenvalues suggests an existence of mechanism that keeps a roughly constant

movement speed of θ within R|θ|. To do that, when δt is reduced, this mechanism is responsible

for increase of {λti}Ni=1 as a compensation. This is also supported by Figure 14.2d where each
δt
N λ

t
i is balancing, roughly, around the same value along the entire optimization. Furthermore,

in Figure 14.1e it is clearly observed that an evolution of λtmax stabilizes3 only when it reaches

value of 2N
δt

, further supporting the above hypothesis.

Neural Spectrum Alignment Notate by cos
[
αt
(
φ̄, k

)]
,

√∑k

i=1<ῡ
t
i ,φ̄>

2

‖φ̄‖2
2

the cosine of an

angle αt
(
φ̄, k

)
between an arbitrary vector φ̄ and its projection to the sub-space of RN spanned

by {ῡti}ki=1. Further, Et(φ̄, k) , cos2
[
αt
(
φ̄, k

)]
can be considered as a relative energy of φ̄,

the percentage of its energy
∥∥∥φ̄∥∥∥2

2
located inside span

(
{ῡti}ki=1

)
. In our experiments we will

3Trend λtmax → 2N
δt

was consistent in FC NNs for a wide range of initial learning rates, number of layers and
neurons, and various datasets (see [63]), making it an interesting venue for a future theoretical investigation

143

0 200000 400000 600000
t

0.80

0.85

0.90

0.95

1.00
En

er
gy

5
10
20
50
100
1000
4000

0 200000 400000 600000
t

0.96

0.97

0.98

0.99

1.00

En
er
gy

60
90
120
200
400
1000
4000

(a)

0 200000 400000 600000
t

0.80

0.85

0.90

0.95

1.00

En
er
gy

5
10
20
50
100
1000
4000

0 200000 400000 600000
t

0.96

0.98

1.00

En
er
gy

60
90
120
200
400
1000
4000

(b)

0 200000 400000 600000
t

0.00

0.25

0.50

0.75

En
er
gy 5

1000
4000

0 200000 400000 600000
t

0.00

0.25

0.50

0.75

1.00

En
er
gy

90
120
200
400
1000
2000
4000

(c)

0 200000 400000 600000
t

0.00

0.25

0.50

0.75

1.00

En
er
gy

5
10
20
50
100
1000
4000

0 200000 400000 600000
t

0.9900

0.9925

0.9950

0.9975

1.0000

En
er
gy

60
90
120
200
400
1000
4000

(d)

0 200000 400000 600000
t

0.80

0.85

0.90

0.95

1.00

En
er
gy

5
10
20
50
100
1000
4000

0 200000 400000 600000
t

0.96

0.98

1.00

En
er
gy

60
90
120
200
400
1000
4000

(e)

Figure 14.3: (a) For different k, relative energy of the label vector ȳ in top k eigenvectors of Gt, Et(ȳ, k), along the optimization
time t. (b) Relative energy of NN output, Et(f̄t, k). (c) Relative energy of the residual, Et(m̄t, k). (d) Relative energy of the
differential df̄t = − δt

N
·Gt · m̄t, Et(df̄t, k). (e) Relative energy of NN output, Et(f̄ testt , k), with bothGt and f̄ testt computed

at 104 testing points. Dashed vertical lines depict time t at which learning rate δ was decayed (see Figure 14.1e).

use Et(φ̄, k) as an alignment metric between φ̄ and {ῡti}ki=1. Further, we evaluate alignment of

Gt with ȳ instead of m̄0 since f̄0 is approximately zero in the considered FC networks.

In Figure 14.3a we depict relative energy of the label vector ȳ in top k eigenvectors of

Gt, Et(ȳ, k). As observed, 20 top eigenvectors of Gt contain 90 percent of ȳ for almost all t.

Similarly, 200 top eigenvectors of Gt contain roughly 98 percent of ȳ, with rest of eigenvectors

being practically orthogonal w.r.t. ȳ. That is, Gt aligns its top spectrum towards the ground truth

target function ȳ almost immediately after starting of training, which improves the convergence

rate since the information flow is fast along top eigenvectors as discussed in Section 14.3 and

proved in [7, 99].

Further, we can see that for k < 400 the relative energy Et(ȳ, k) is decreasing after each

decay of δ, yet for k > 400 it keeps growing along the entire optimization. Hence, the top

eigenvectors of Gt can be seen as NN memory that is learned/tuned toward representing the

target ȳ, while after each learning rate drop the learned information is spread more evenly among

a higher number of different top eigenvectors.

Likewise, in Figure 14.3b we can see that NN outputs vector f̄t is located entirely in a few

hundreds of top eigenvectors. In case we consider Gt to be constant, such behavior can be

explained by Eq. (14.3) since each increment of f̄t, df̄t, is also located almost entirely within top

60 eigenvectors of Gt (e.g. see Et(df̄t, 60) in Figure 14.3d). Yet, for a general NN with a time-

dependent kernel the theoretical justification for the above empirical observation is currently

missing. Further, similar relation is observed also at points outside of XXX (see Figure 14.3e),

leading to the empirical conclusion that top eigenfunctions of gradient similarity gt(X,X ′) are

the basis functions of NN fθ(X).

144

0 5000 10000
i

10−4

10−3
10−2
10−1

100

<
υt i,

M
t
>

2

t=20000
t=600000

(a)
−40 −20 0 20 40−40

−30
−20
−10

0
10
20
30
40

0.0000
0.0027
0.0054
0.0081
0.0108
0.0135
0.0162
0.0189
0.0216
0.0243

(b)
−40 −20 0 20 40−40

−30
−20
−10

0
10
20
30
40

0
2
4
6
8
10
12
14
16
18

(c) (d)

Figure 14.4: (a) Spectral projections of the residual m̄t, < ῡti , m̄t >
2, at t = 20000 and t = 600000; (b) and (c) Fourier

Transform of m̄t at t = 20000 and t = 600000 respectively. The high frequency is observed to be dominant in (c). (d) a linear
combination f̄t,k ,

∑k

i=1 < ῡti , f̄t > ῡti of first k = {10, 100, 200, 500} eigenvectors at t = 600000. Each vector f̄t,k was
interpolated from training points {Xi}Ni=1 to entire [0, 1]2 via a linear interpolation.

Residual Dynamics Further, a projection of the residual m̄t onto top eigenvectors, shown

in Figure 14.3c, is decreasing along t, supporting Eq. (14.5). Particularly, we can see that at

t = 600000 only 10% of m̄t’s energy is located inside top 4000 eigenvectors, and thus at the

optimization end 90% of its energy is inside bottom eigenvectors. Moreover, in Figure 14.4a we

can observe that the projection of m̄t along bottom 5000 eigenvectors almost does not change

during the entire optimization. This may be caused by two main reasons - the slow convergence

rate associated with bottom eigenvectors and a single-precision floating-point (float32) format

used in our simulation. The latter can prevent the information flow along the bottom spectrum

due to the numerical precision limit. No matter the case, we empirically observe that the

information located in the bottom spectrum of Gt was not learned, even for a relatively long

optimization process (i.e. 600000 iterations). Furthermore, since this spectrum part is also

associated with high-frequency information [11], m̄t at t = 600000 comprises mostly the noise,

which is also evident from Figures 14.4b-14.4c.

Moreover, we can also observe in Figure 14.3c a special drop of Et(m̄t, k) at times of δ

decrease. This can be explained by the fact that a lot of m̄t’s energy is located inside first

several {ῡti} (see Et(m̄t, 5) in Figure 14.3c). When learning rate is decreased, the information

flow speed sti , 1− |1− δt
N λ

t
i|, discussed in Section 14.3, is actually increasing for a few top

eigenvectors (see Figure 14.2c). That is, terms δt
N λ

t
i, being very close to 2 before δ’s decay, are

getting close to 1 after, as seen in Figure 14.2d. In its turn this accelerates the information flow

along these first {ῡti}, as described in Eq. (14.4)-(14.5), leading also to a special descend of

Et(m̄t, k) and of the training loss in Figure 14.7b.

Eigenvectors We further explore {ῡti} in a more illustrative manner, to produce a better

intuition about their nature. In Figure 14.4d a linear combination of several top eigenvectors at

t = 600000 is presented, showing that with only 100 vectors we can accurately approximate the

NN output.

Furthermore, in Figure 14.5 several eigenvectors are interpolated to entire [0, 1]2. We can

see that top {ῡti} obtained visual similarity with various parts of Mona Lisa image and indeed

can be seen as basis functions of fθ(X) depicted in Figure 14.1b. Likewise, we also demonstrate

the Fourier Transform of each ῡti . As observed, the frequency of the contained information is

higher for smaller eigenvalues, supporting conclusions of [11]. More eigenvectors are depicted

145

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

−0.02

−0.01

0.00

0.01

0.02

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

−0.015
−0.010
−0.005
0.000
0.005
0.010
0.015
0.020

−0.02

−0.01

0.00

0.01

0.02

0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0
6
12
18
24
30
36
42
48
54

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0
6
12
18
24
30
36
42
48
54

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0
5
10
15
20
25
30
35
40
45

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
4.5
9.0
13.5
18.0
22.5
27.0
31.5
36.0
40.5

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0
5
10
15
20
25
30
35
40
45

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0
5
10
15
20
25
30
35
40
45

−0.03
−0.02
−0.01
0.00
0.01
0.02
0.03
0.04
0.05

−0.04

−0.02

0.00

0.02

0.04

−0.04

−0.02

0.00

0.02

0.04

−0.04

−0.02

0.00

0.02

0.04

0.06

−0.04
−0.03
−0.02
−0.01
0.00
0.01
0.02
0.03
0.04

−0.04
−0.03
−0.02
−0.01
0.00
0.01
0.02
0.03
0.04

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
3.6
7.2
10.8
14.4
18.0
21.6
25.2
28.8
32.4

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
1.8
3.6
5.4
7.2
9.0
10.8
12.6
14.4
16.2

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.00
0.44
0.88
1.32
1.76
2.20
2.64
3.08
3.52
3.96

−40 −20 0 20 40−40
−30
−20
−10

0
10
20
30
40

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

Figure 14.5: Eigenvectors of Gramian Gt at t = 600000. First two rows: from left-to-right, 6 first eigenvectors and their Fourier
Transforms (see the Appendix Q for details). Last two rows: 10-th, 100-th, 500-th, 1000-th, 2000-th and 4000-th eigenvectors, and
their Fourier Transforms. As observed, a frequency of signal inside of each eigenvector increases when moving from large to small
eigenvalue.

−0.005

0.000

0.005

0.010

0.015

0.020

−0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

−0.04

−0.02

0.00

0.02

0.04

−0.04

−0.02

0.00

0.02

0.04

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

−0.06

−0.04

−0.02

0.00

0.02

−0.04

−0.02

0.00

0.02

0.04

0.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−0.04

−0.02

0.00

0.02

0.04

−0.04

−0.02

0.00

0.02

0.04

−0.02

0.00

0.02

0.04

Figure 14.6: First line: from left-to-right, 6 first eigenvectors of Gramian Gt at t = 20000. Second line: 10-th, 100-th, 500-th,
1000-th, 2000-th and 4000-th eigenvectors.

146

0 200000 400000 600000
t

0.90

0.95

En
er
gy

2L, 256W, |θ| = 1025
4L, 256W, |θ| = 132609
6L, 256W, |θ| = 264193
2L, 33000W, |θ| = 132001
2L, 66000W, |θ| = 264001

(a)

0 200000 400000 600000
t

10−2

10−1

100

Tr
ai
n
Lo
ss

2L, 256W, |θ| = 1025
4L, 256W, |θ| = 132609
6L, 256W, |θ| = 264193
2L, 33000W, |θ| = 132001
2L, 66000W, |θ| = 264001

(b)

0 200000 400000 600000
t

10−2

10−1

Te
st
 L
os
s

2L, 256W, |θ| = 1025
4L, 256W, |θ| = 132609
6L, 256W, |θ| = 264193
2L, 33000W, |θ| = 132001
2L, 66000W, |θ| = 264001

(c)

101 103
k

0.00

0.25

0.50

0.75

1.00

En
er
gy

1
2
3
4
5
6
7
8
9
10

101 103
k

0.00

0.25

0.50

0.75

1.00

En
er
gy

10
30
50
100
200
400
1000

(d)

Figure 14.7: (a) For NNs with a different number of layers and of neurons, relative energy of the label vector ȳ in top 400
eigenvectors of Gt, Et(ȳ, 400), along the optimization time t; (b) training loss and (c) testing loss of these models. L and W stand
for number of layers and number of neurons respectively. (d) For different i, relative energy of ῡ600000

i in spectrum of G20000,
E20000(ῡ600000

i , k), as a function of k, with horizontal axes being log-scaled. As seen, 10 first top eigenvectors at final time
t = 600000 are located also in the top spectrum ofG20000, hence the top Gramian spectrum was preserved along the optimization.
Yet, bottom eigenvectors are significantly less stable.

in [63].

Likewise, in Figure 14.6 same eigenvectors are displayed at t = 20000. At this time the

visual similarity between each one of first eigenvectors and the target function in Figure 14.1a is

much stronger. This can be explained by the fact that the information about the target function

within Gt is spread from first few towards higher number of top eigenvectors after each learning

rate drop, as was described above. Hence, before the first drop at t = 100000 this information

is mostly gathered within first few {ῡti} (see also Et(ȳ, 10) in Figure 14.3a).

Alignment and NN Depth / Width Here we further study how a width and a depth of NN

affect the alignment between Gt and the ground truth signal ȳ. To this purpose, we performed

the optimization under the identical setup, yet with NNs containing various numbers of layers

and neurons. In Figure 14.7a we can see that in deeper NN top eigenvectors of Gt aligned more

towards ȳ - the relative energy Et(ȳ, 400) is higher for a larger depth. This implies that more

layers, and the higher level of non-linearity produced by them, yield a better alignment between

Gt and ȳ. In its turn this allows NN to better approximate a given target function, as shown in

Figures 14.7b-14.7c, making it more expressive for a given task. Moreover, in evaluated 2-layer

NNs, with an increase of neurons and parameters the alignment rises only marginally.

Spectrum Preservation Next, we examine how stable are eigenvectors of Gt along t. For this

we explore the relative energy of G600000’s eigenvectors, final eigenvectors of the optimization,

within spectrum of G20000. Note that we compare spectrums at t = 600000 and t = 20000 to

skip first several thousands of iterations since during this bootstrap period the change of Gt is

highly notable.

In Figure 14.7d we depict E20000(ῡ600000
i , k) as a function of k, for various {ῡ600000

i }. As

147

observed, 10 first top eigenvectors of G600000 are also located in the top spectrum of G20000 -

the function E20000(ῡ600000
i , k) is almost 1 for even relatively small k. Hence, the top Gramian

spectrum was preserved, roughly, along the performed optimization. Further, eigenvectors of

smaller eigenvalues (i.e. with higher indexes i) are significantly less stable, with large amount

of their energy widely spread inside bottom eigenvectors of G20000. Moreover, we can see a

clear trend that with higher i the associated eigenvector is less preserved.

Scope of Analysis The above empirical analysis was repeated under numerous different

settings and can be found in [63]. We evaluated various FC architectures, with and without

shortcuts between the layers and including various activation functions. Likewise, optimizers

GD, stochastic GD and Adam were tested on problems of regression (L2 loss) and density

estimation (NCE [39]). Additionally, various high-dimensional real-world datasets were tested,

including MNIST and CIFAR100. All experiments exhibit the same alignment nature of kernel

towards the learned target function.

14.6 Summary

In this chapter we empirically revealed that during GD top eigenfunctions of gradient similarity

kernel change to align with the target function y(X) learned by NN fθ(X), and hence can

be considered as a NN memory tuned during the optimization to better represent y(X). This

alignment is significantly higher for deeper NNs, whereas a NN width has only a minor effect

on it. Moreover, the same top eigenfunctions represent a neural spectrum - the fθ(X) is a linear

combination of these eigenfunctions during the optimization. As well, we showed various trends

of the kernel dynamics as a result of the learning rate decay, accounting for which we argue may

lead to a further progress in DL theory. The considered herein optimization scenarios include

various supervised and unsupervised losses over various high-dimensional datasets, optimized

via several different optimizers. Several variants of FC architecture were evaluated.

The above revealed behavior leads to several implications. First, our empirical study suggests

that the high approximation power of deep models is produced by the above alignment capability

of the gradient similarity, since the learning along its top eigenfunctions is considerably faster.

Furthermore, it also implies that the family of functions that a NN can approximate (in reasonable

time) is limited to functions within the top spectrum of the kernel. Recently, it was proved

in [7,11,99]. Thus, it leads to the next main question - how the NN architecture and optimization

hyper-parameters affect this spectrum, and what is their optimal configuration for learning a

given function y(X). Moreover, NN dynamics behavior beyond first-order Taylor expansion is

still unexplored. We shall leave it for a future research.

148

CHAPTER 15

Conclusions and Future Work

In this thesis we contributed a new algorithm family, Probabilistic Surface Optimization (PSO),

that allows to learn numerous different statistical functions of given data, including (conditional)

density estimation and ratios between two unknown pdfs of two given datasets. In our work we

found a new perspective to view a model as a representation of a virtual physical surface, which

is pushed by the PSO algorithm up and down via gradient descent (GD) optimization updates.

Further, the equilibrium at each point, that is, when up and down forces are point-wise equal,

ensures that the converged surface satisfies PSO balance state, where the ratio of the frequency

components is equal to the opposite ratio of the analytical components. In Section 5 we saw that

such formulation yields infinitely many estimation approaches to learn almost any function of the

density ratio. Moreover, it generalizes numerous existing works, like energy and unnormalized

models as also critics of GAN approaches. Likewise, we showed that f -divergence and Bregman

divergence based techniques (e.g. the cross-entropy loss from the image classification domain)

are also instances of PSO, applying the same physical forces over the model surface.

We provided a thorough analysis of the PSO functional implicitly employed during the

optimization, describing its equilibrium for a wide diapason of settings. Furthermore, we derived

the sufficient conditions over PSO magnitude functions under which the equilibrium is stable.

We likewise related PSO to Legendre-Fenchel transform, demonstrating that its convergence is

an inverse of the magnitude ratio, with their primitives being convex-conjugate of each other.

This resembles the relationship between Langrangian and Hamiltonian mechanics, opening

interesting future directions to connect control and learning theories.

Furthermore, we systematically modulated the set of all PSO instances into various sub-

groups, providing a useful terminology for a future PSO study. Additionally, along this paper we

described several possible parameterizations of PSO family, with each having its own benefits.

Concretely, PSO can be represented/parametrized via a pair of magnitudes {MU ,MD} which

leads to the geometrical/physical force perspective. Such angle brings many insights and is the

central focus of this work. Likewise, we can parametrize PSO by {M̃U , M̃D} that leads to the

PSO functional, which may be viewed as an energy of the optimized physical system. Further,

149

the polar parametrization {cr, c∠} in Section 5.3 permits for an easier feasibility verification.

Lastly, {φc, G} described in Section 6.3 allows to connect PSO methods with f -divergence

between up and down densities.

Moreover, the main goal behind this work is to introduce a novel universal way in forging

new statistical techniques and corresponding objective functions. Due to simplicity and intuitive-

ness of the presented PSO principles, this new framework allows for an easy derivation of new

statistical approaches, which, in turn, is highly useful in many different domains. Depending on

the target function required by a specific application, a data analyst can select suitable magnitude

functions according to the PSO balance state, and simply employ them inside the general

PSO loss. Along this thesis we demonstrated a step-by-step derivation of several such new

approaches.

Likewise, herein we investigated the reason for high resemblance between the statistical

model inference and physics over virtual surfaces. We showed that during the optimization, a

change of model output at any point (the height change of the virtual surface at the point) is

equal to the model kernel (a.k.a. NTK, [54]) between this point and the optimized training point.

Following from this, the optimization can be viewed as pushes at training points performed

via some employed sticks, whose shape is described by the kernel. We analyzed this kernel’s

properties (e.g. the shape of the pushing sticks) and their impact over the convergence of PSO al-

gorithm. Specifically, we showed that its bandwidth corresponds to the flexibility/expressiveness

of the model - with a narrower kernel it is possible to push the surface towards various target

forms, making it more elastic.

Further, the bandwidth of the model kernel can be viewed as a hyper-parameter that controls

the estimation bias-variance tradeoff. We empirically investigated both underfitting and overfit-

ting scenarios that can occur in PSO. In our experiments we showed that the wide bandwidth

is correlated with a sub-optimal optimization performance in case of a large training dataset.

Moreover, if it is too narrow and in case of a small training dataset, the surface converges to

peaks around the training points and also produce a poor target approximation. Thus, the optimal

kernel bandwidth depends on the number of available training points, which agrees with existing

analysis of KDE methods.

Furthermore, we showed that the model kernel serves as a metric over function space during

PSO estimation procedure, which agrees with already existing NTK literature [54]. Namely, its

eigenfunctions associated with largest eigenvalues define directions inside the space of functions

where propagation/movement is fast, and vice versa. Moreover, our empirical analysis of NTK

during the learning process showed a particular dynamics pattern where top eigenfunctions are

aligned towards the target function. Such surprising behavior allows to easily propagate towards

the global minima of the optimization and is overall extremely beneficial, which may explain

why NN-based models typically produce more accurate results compared to RKHS-based

models whose kernel is constant.

Lastly, we applied PSO to learn data log-density, proposing several new PSO instances for

this purpose, including PSO log density estimators (PSO-LDE). Additionally, we presented a

new NN block-diagonal architecture that allowed us to significantly reduce the bandwidth of

150

the model kernel and to extremely increase an approximation accuracy. In our experiments we

showed how the above methods can be used to perform precise pdf inference of multi-modal

20D data, getting a superior accuracy over other state-of-the-art baselines. Importantly, in an

infinite dataset setting we also empirically revealed a connection between the point-wise error

and gradient norm at the point, which in theory can be used for measuring a model uncertainty.

15.1 Future Research Directions

Along this thesis we remarked many possible research directions to further enhance PSO

estimation techniques. The current solution is still very new and many of its aspects require

additional attention and further study. Below is the list of research topics that shall be addressed

in the future:

• Formulation of PSO framework as an arbitrary flow: Currently our approach is based on

an existence of PSO functional which is minimized during the optimization, and therefore

PSO can be viewed as a gradient flow of this functional. Yet, we can extend it to a flow

which does not correspond to any objective function. This will allow us to reduce some

of the ”sufficient” conditions over magnitude functions that were derived in Section 4.1.

Likewise, it can lead to even a more general estimation framework with a higher practical

applicability, and to extensive theoretical implications.

• Search for best density estimator: In the context of density estimation, currently we learn

multiple models for different values of PSO-LDE hyper-parameter α and choose the one

with the highest performance metric. Yet, such brute-force procedure is computationally

very expensive. It is important to understand the exact connection between α and the

produced log-pdf estimation, and also to provide a more intelligent way to choose α

based on properties of the given data. Likewise, a more thorough exploration of all PSO

instances for log-pdf inference is required.

• Robust statistics: The above topic can be extended to a search for the most optimal PSO

instance of any considered target function. Since PSO framework allows us to generate an

infinite number of various PSO instances to approximate a specific function, the natural

question to ask is which one should we pick. The answer is currently unclear, and the

goal here is to categorize different instances by their statistic robustness properties and to

find the optimal one. This topic also includes questions of what is the optimality and how

the most optimal PSO instance is related to properties of the model kernel.

• Model kernel impact: Although we analyzed the effect of some kernel properties, the entire

and full understating of the kernel impact is still missing. It is important to understand

the precise relation between an accuracy of PSO estimators and various properties of the

model kernel. This topic also includes the analysis of PSO convergence rates (w.r.t. a

number of GD iterations), generalization bounds (w.r.t. a number of training points), and

the impact of gθ(X,X ′) in small dataset regime.

151

• Model kernel beyond GD: The above topics and the corresponding analysis must be

extended beyond a simple full-batch GD optimization. In practice a mini-batch setting

combined with various optimizers (e.g. Adam [59]) is common. Therefore, to fully

understand the real learning process and its properties, it is important to extend the idea

of the model kernel from GD optimizer towards other optimizers, and also to account for

difference between ”mini” and ”full” batch regimes.

• Control properties of the kernel via NN architecture: Once we answer the above questions

and once we know what are the most desired properties for kernel to have, the next natural

endeavor is to construct a model with such kernel. Hence, we want to understand how to

control gθ(X,X ′) via NN design. Although this topic was partly addressed in this thesis

(the BD architecture allowed us to reduce kernel bandwidth and to improve estimation

accuracy), it is still very far from being solved. A promising direction to solve this topic

is to first understand why NTK alignment happens, which may produce us with a set of

tools to adjust/control gθ(X,X ′). Research in this direction may guide us to better NN

architectures and new methods to control the bias-variance tradeoff.

• Better model regularization: One of the most difficult issues to handle when applying

PSO in practice is its overfitting behavior. As was shown in Section 12, when the applied

model is overly flexible, the practical outcome will be the spikes at the training points.

Furthermore, this behavior is even more extreme in high-dimensional small dataset setting.

Here our goal is to propose efficient and theoretically-motivated regularization methods

that reduce the above over-flexibility problem.

152

APPENDIX A

Proof of Lemmas 14 and 15

A.1 Lemma 14

Consider the setting of Section 7.1. Further, notate the model Hessian asHθ(X) ≡ ∇θθfθ(X).

Using the gradient of LPSO(fθ) defined in Eq. (3.5), the second derivative of LPSO(fθ) w.r.t. θ

is:

∇θθLPSO(fθ) = − E
X∼PU

[
MU ′ [X, fθ(X)] · Iθ(X,X) +MU [X, fθ(X)] · Hθ(X)

]
+

+ E
X∼PD

[
MD ′ [X, fθ(X)] · Iθ(X,X) +MD [X, fθ(X)] · Hθ(X)

]
=

= − E
X∼PU

MU ′ [X, fθ(X)] · Iθ(X,X)− E
X∼PU

MU [X, fθ(X)] · Hθ(X)+

+ E
X∼PD

MD ′ [X, fθ(X)] · Iθ(X,X) + E
X∼PD

MD [X, fθ(X)] · Hθ(X). (A.1)

Likewise, at θ∗ we also have:

− E
X∼PU

MU [X, fθ∗(X)] · Hθ∗(X) + E
X∼PD

MD [X, fθ∗(X)] · Hθ∗(X) =

= − E
X∼PU

MU [X, f∗(X)] · Hθ∗(X) + E
X∼PD

MD [X, f∗(X)] · Hθ∗(X) =

=
∫

[−PU(X) ·MU [X, f∗(X)] + PD(X) ·MD [X, f∗(X)]] · Hθ∗(X)dX = 0, (A.2)

where the last row is true because f∗ satisfies PSO balance state.

Therefore, we have

H ≡ ∇θθLPSO(fθ∗) =

= − E
X∼PU

MU ′ [X, fθ∗(X)] · Iθ∗(X,X) + E
X∼PD

MD ′ [X, fθ∗(X)] · Iθ∗(X,X) =

= − E
X∼PU

MU ′ [X, f∗(X)] · Iθ∗(X,X) + E
X∼PD

MD ′ [X, f∗(X)] · Iθ∗(X,X). (A.3)

153

Observe also that only Iθ∗ terms depend on the parameter vector θ∗.

Additionally, H has an another form:

H = E
X∼PD

MU [X, f∗(X)]
T ′
[
X, P

U (X)
PD(X)

] · Iθ∗(X,X), (A.4)

where T ′(X, z) , ∂T (X,z)
∂z is a first derivative of the considered PSO convergence T (X, z).

This can be derived as follows.

First, since T and R ≡ MD

MU are inverse functions, derivative of R can be computed via

derivative of T as:
∂R(X, s)

∂s
= 1
T ′(X,R(X, s)) . (A.5)

Observe that due to PSO balance state R(X, f∗(X)) = PU (X)
PD(X) we have

∂R(X, s)
∂s

∣∣∣∣∣
s=f∗(X)

= 1
T ′(X,R(X, f∗(X))) = 1

T ′(X, P
U (X)

PD(X))
. (A.6)

Next, the expression inside integral of Eq. (A.3) is:

− PU(X) ·MU ′ [X, f∗(X)] + PD(X) ·MD ′ [X, f∗(X)] =

= PD(X) ·MU ′ [X, f∗(X)] ·
[
−PU(X)
PD(X) + MD ′ [X, f∗(X)]

MU ′ [X, f∗(X)]

]
=

= PD(X) ·MU ′ [X, f∗(X)] ·
[
−M

D [X, f∗(X)]
MU [X, f∗(X)] + MD ′ [X, f∗(X)]

MU ′ [X, f∗(X)]

]
=

= PD(X) ·MU [X, f∗(X)] · M
D ′ [X, f∗(X)] ·MU [X, f∗(X)]−

MU [X, f∗(X)]2

−MD [X, f∗(X)] ·MU ′ [X, f∗(X)] =

= PD(X) ·MU [X, f∗(X)] ·
∂M

D

MU (X, s)
∂s

|s=f∗(X) =

= PD(X) ·MU [X, f∗(X)] · ∂R(X, s)
∂s

|s=f∗(X) = PD(X) ·MU [X, f∗(X)]
T ′(X, P

U (X)
PD(X))

. (A.7)

Hence:

H =
∫ PD(X) ·MU [X, f∗(X)]

T ′(X, P
U (X)

PD(X))
· Iθ∗(X,X)dX, (A.8)

from which Eq. (A.4) follows.

�

154

A.2 Lemma 15

Consider the empirical PSO gradient ∇θL̂N
U ,ND

PSO (fθ) as defined in Eq. (3.1). Its uncentered

variance is then:

E
[
∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T
]

=

= 1
(NU)2

NU∑
i,j=1

E
[
MU [XU

i , fθ(XU
i)] ·MU

[
XU
j , fθ(XU

j)
]
· Iθ(XU

i , X
U
j)
]

+

+ 1
(ND)2

ND∑
i,j=1

E
[
MD [XD

i , fθ(XD
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XD

i , X
D
j)
]
−

− 1
NUND

NU∑
i=1

ND∑
j=1

E
[
MU [XU

i , fθ(XU
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XU

i , X
D
j)
]
−

− 1
NUND

NU∑
i=1

ND∑
j=1

E
[
MU [XU

i , fθ(XU
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XD

j , X
U
i)
]

=

= 1
(NU)2

NU∑
i=1

E [MU [XU
i , fθ(XU

i)] ·MU [XU
i , fθ(XU

i)] · Iθ(XU
i , X

U
i)] +

+ 1
(ND)2

ND∑
i=1

E [MD [XD
i , fθ(XD

i)] ·MD [XD
i , fθ(XD

i)] · Iθ(XD
i , X

D
i)] +

+ 1
(NU)2

NU∑
i,j=1
i 6=j

E
[
MU [XU

i , fθ(XU
i)] ·MU

[
XU
j , fθ(XU

j)
]
· Iθ(XU

i , X
U
j)
]

+

+ 1
(ND)2

ND∑
i,j=1
i 6=j

E
[
MD [XD

i , fθ(XD
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XD

i , X
D
j)
]
−

− 1
NUND

NU∑
i=1

ND∑
j=1

E
[
MU [XU

i , fθ(XU
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XU

i , X
D
j)
]
−

− 1
NUND

NU∑
i=1

ND∑
j=1

E
[
MU [XU

i , fθ(XU
i)] ·MD

[
XD
j , fθ(XD

j)
]
· Iθ(XD

j , X
U
i)
]
. (A.9)

Denote:

µ̄Uθ , E
X∼PU

MU [X, fθ(X)] · ∇θfθ(X), µ̄Dθ , E
X∼PD

MD [X, fθ(X)] · ∇θfθ(X). (A.10)

155

According to Eq. (A.9), we have:

E
[
∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T
]

=

= 1
NU

E
X∼PU

[
MU [X, fθ(X)]2 · Iθ(X,X)

]
+ 1
ND

E
X∼PD

[
MD [X, fθ(X)]2 · Iθ(X,X)

]
+

+ NU − 1
NU

µ̄Uθ · (µ̄Uθ)T + ND − 1
ND

µ̄Dθ · (µ̄Dθ)T − µ̄Uθ · (µ̄Dθ)T − µ̄Dθ · (µ̄Uθ)T =

= 1
NU

[
E

X∼PU

[
MU [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Uθ · (µ̄Uθ)T

]
+

+ 1
ND

[
E

X∼PD

[
MD [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Dθ · (µ̄Dθ)T

]
+

+ µ̄Uθ · (µ̄Uθ)T + µ̄Dθ · (µ̄Dθ)T − µ̄Uθ · (µ̄Dθ)T − µ̄Dθ · (µ̄Uθ)T . (A.11)

Further, the outer product of ∇θL̂N
U ,ND

PSO (fθ)’s expected value E
[
∇θL̂N

U ,ND

PSO (fθ)
]

=
−µ̄Uθ + µ̄Dθ is:

E
[
∇θL̂N

U ,ND

PSO (fθ)
]
·E
[
∇θL̂N

U ,ND

PSO (fθ)
]T

= µ̄Uθ ·(µ̄Uθ)T+µ̄Dθ ·(µ̄Dθ)T−µ̄Uθ ·(µ̄Dθ)T−µ̄Dθ ·(µ̄Uθ)T ,
(A.12)

and hence:

Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

= 1
NU

[
E

X∼PU

[
MU [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Uθ · (µ̄Uθ)T

]
+

+ 1
ND

[
E

X∼PD

[
MD [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Dθ · (µ̄Dθ)T

]
. (A.13)

Next, using relations NU = τ
τ+1N and ND = 1

τ+1N , we can write the above variance as:

Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

= 1
N

[
τ + 1
τ

E
X∼PU

[
MU [X, fθ(X)]2 · Iθ(X,X)

]
+

+ [τ + 1] E
X∼PD

[
MD [X, fθ(X)]2 · Iθ(X,X)

]
− τ + 1

τ
µ̄Uθ · (µ̄Uθ)T − [τ + 1] µ̄Dθ · (µ̄Dθ)T

]
.

(A.14)

Further, due to the identical support assumption SU ≡ SD we also have µ̄Uθ∗ = µ̄Dθ∗ :

E
[
∇θL̂N

U ,ND

PSO (fθ∗)
]

= −µ̄Uθ∗ + µ̄Dθ∗ =

= − E
X∼PU

MU [X, f∗(X)] · ∇θfθ∗(X) + E
X∼PD

MD [X, f∗(X)] · ∇θfθ∗(X) =

=
∫

[−PU(X) ·MU [X, f∗(X)] + PD(X) ·MD [X, f∗(X)]] · ∇θfθ∗(X)dX = 0, (A.15)

where the last row is true because f∗ satisfies PSO balance state. Hence, the following is also

true:

µ̄Uθ∗ · (µ̄Uθ∗)T = µ̄Dθ∗ · (µ̄Dθ∗)T = µ̄Uθ∗ · (µ̄Dθ∗)T = µ̄Dθ∗ · (µ̄Uθ∗)T . (A.16)

156

Therefore, Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

(Eq. (A.14)) at θ∗ is Var
[
∇θL̂N

U ,ND

PSO (fθ∗)
]

= 1
NJ with:

J = τ + 1
τ

E
X∼PU

[
MU [X, f∗(X)]2 · Iθ∗(X,X)

]
+

+ (τ + 1) E
X∼PD

[
MD [X, f∗(X)]2 · Iθ∗(X,X)

]
−

− (τ + 1)2

τ
E

X∼PU
X′∼PD

MU [X, f∗(X)] ·MD
[
X ′, f∗(X ′)

]
· Iθ∗(X,X ′), (A.17)

where we applied identity from Eq. (A.16). Observe that only Iθ∗ terms depend on the parameter

vector θ∗. Likewise, the term next to (τ+1)2

τ is actually µ̄Uθ∗ · (µ̄Dθ∗)T , and it can be substituted by

either of {µ̄Uθ∗ · (µ̄Uθ∗)T ; µ̄Dθ∗ · (µ̄Dθ∗)T ; µ̄Dθ∗ · (µ̄Uθ∗)T }.
�

157

158

APPENDIX B

Proof of Theorem 16

First, we prove the stepping stone lemmas.

B.1 Lemmata

Lemma 33. Denote N , NU +ND and τ , NU

ND , and assume τ to be a strictly positive, finite

and constant scalar. Then
√
N · ∇θL̂N

U ,ND

PSO (fθ∗)
d→ N (0,J), convergence in distribution

along with N →∞, where J is defined by Lemma 15.

Proof. Define:

ΣU
θ , Var

X∼PU
MU [X, fθ(X)] · ∇θfθ(X) = E

X∼PU

[
MU [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Uθ · (µ̄Uθ)T ,

(B.1)

ΣD
θ , Var

X∼PD
MD [X, fθ(X)] ·∇θfθ(X) = E

X∼PD

[
MD [X, fθ(X)]2 · Iθ(X,X)

]
− µ̄Dθ · (µ̄Dθ)T ,

(B.2)

where µ̄Uθ and µ̄Dθ are defined in Eq. (A.10).

Consider the average 1
NU

∑NU

i=1M
U [XU

i , fθ∗(XU
i)] · ∇θfθ∗(XU

i). It contains i.i.d. random

vectors with mean µ̄Uθ∗ and variance ΣU
θ∗ . Using a multivariate Central Limit Theorem (CLT) on

the considered average, we have:

ā ≡
√
NU

 1
NU

NU∑
i=1

MU [XU
i , fθ∗(XU

i)] · ∇θfθ∗(XU
i)− µ̄Uθ∗

 d→ N (0,ΣU
θ∗). (B.3)

In similar manner, we also have:

b̄ ≡
√
ND

 1
ND

ND∑
i=1

MD [XD
i , fθ∗(XD

i)] · ∇θfθ∗(XD
i)− µ̄Dθ∗

 d→ N (0,ΣD
θ∗). (B.4)

159

Therefore, the linear combination also has a convergence in distribution:

−
√
τ + 1
τ
· ā+

√
τ + 1 · b̄ d→ N (0, Σ), Σ ,

τ + 1
τ
· ΣU

θ∗ + (τ + 1) · ΣD
θ∗ , (B.5)

where
√

τ+1
τ and

√
τ + 1 are finite constant scalars, and where the convergence happens along

with NU → ∞ and ND → ∞. Note that this implies the convergence in N → ∞, since the

latter leads to {NU →∞, ND →∞,min(NU , ND)→∞} due to τ being fixed and finite.

Further, using relations NU = τ
τ+1N and ND = 1

τ+1N , the above linear combination is

equal to:

−
√
τ + 1
τ
· ā+

√
τ + 1 · b̄ =

√
N
[
− 1
NU

NU∑
i=1

MU [XU
i , fθ∗(XU

i)] · ∇θfθ∗(XU
i) + µ̄Uθ∗+

+ 1
ND

ND∑
i=1

MD [XD
i , fθ∗(XD

i)] · ∇θfθ∗(XD
i)− µ̄Dθ∗

]
=
√
N · ∇θL̂N

U ,ND

PSO (fθ∗), (B.6)

where we used µ̄Uθ∗ = µ̄Dθ∗ from Eq. (A.15). Thus, we have
√
N · ∇θL̂N

U ,ND

PSO (fθ∗)
d→ N (0, Σ).

Finally, we have:

Σ = τ + 1
τ
·
[

E
X∼PU

[
MU [X, fθ∗(X)]2 · Iθ∗(X,X)

]
− µ̄Uθ∗ · (µ̄Uθ∗)T

]
+

+ (τ + 1) ·
[

E
X∼PD

[
MD [X, fθ∗(X)]2 · Iθ∗(X,X)

]
− µ̄Dθ∗ · (µ̄Dθ∗)T

]
. (B.7)

Using Eq. (A.16) we conclude J ≡ Σ.

�

B.2 Proof of Theorem

Define θ̂NU ,ND = arg minθ∈Θ L̂
NU ,ND

PSO (fθ) and θ∗ = arg minθ∈Θ LPSO(fθ). Since assump-

tions of Theorem 13 are also the assumptions of Theorem 16, fθ∗ satisfies PSO balance state

and that θ̂NU ,ND
p→ θ∗ when min(NU , ND)→∞.

Further, note that first order conditions (FOCs) are also satisfied∇θL̂N
U ,ND

PSO (fθ̂
NU,ND

) = 0.

Assuming that L̂N
U ,ND

PSO (fθ) is continuously differentiable w.r.t. θ, we can apply mean-value

theorem on FOCs:

∇θL̂N
U ,ND

PSO (fθ̂
NU,ND

) = ∇θL̂N
U ,ND

PSO (fθ∗) +∇θθL̂N
U ,ND

PSO (fθ̄) ·
[
θ̂NU ,ND − θ∗

]
= 0, (B.8)

where θ̄ is located on a line segment between θ̂NU ,ND and θ∗. Given the estimation consistency

θ̂NU ,ND
p→ θ∗, the definition of θ̄ implies θ̄

p→ θ∗.

160

The identity in Eq. (B.8) can be rewritten as:

√
N ·

[
θ̂NU ,ND − θ∗

]
= −

[
∇θθL̂N

U ,ND

PSO (fθ̄)
]−1
·
√
N · ∇θL̂N

U ,ND

PSO (fθ∗), (B.9)

where we used a notation N , NU +ND. Using CLT in Lemma 33 we have:

√
N · ∇θL̂N

U ,ND

PSO (fθ∗)
d→ N (0,J). (B.10)

Next,∇θθL̂N
U ,ND

PSO (fθ̄) has a form:

∇θθL̂N
U ,ND

PSO (fθ̄) = − 1
NU

NU∑
i=1
∇θθM̃U [XU

i , fθ̄(X
U
i)] + 1

ND

ND∑
i=1
∇θθM̃D [XD

i , fθ̄(X
D
i)] .

(B.11)

Using the uniform law of large numbers (LLN) and θ̄
p→ θ∗, we get:

1
NU

NU∑
i=1
∇θθM̃U [XU

i , fθ̄(X
U
i)] p→ E

X∼PU
∇θθM̃U [X, fθ∗(X)] , (B.12)

1
ND

ND∑
i=1
∇θθM̃D [XD

i , fθ̄(X
D
i)] p→ E

X∼PD
∇θθM̃D [X, fθ∗(X)] , (B.13)

and hence

∇θθL̂N
U ,ND

PSO (fθ̄)
p→ − E

X∼PU
∇θθM̃U [X, fθ∗(X)] + E

X∼PD
∇θθM̃D [X, fθ∗(X)] =

= ∇θθ
[
− E
X∼PU

M̃U [X, fθ∗(X)] + E
X∼PD

M̃D [X, fθ∗(X)]
]

= ∇θθLPSO(fθ∗) = H ,

(B.14)

with H being defined by Lemma 14. Applying the Continuous Mapping Theorem, we get:

[
∇θθL̂N

U ,ND

PSO (fθ̄)
]−1 p→ H −1. (B.15)

Further, we apply Slutzky theorem on Eqs. (B.10)-(B.15) to get:

−
[
∇θθL̂N

U ,ND

PSO (fθ̄)
]−1
·
√
N · ∇θL̂N

U ,ND

PSO (fθ∗)
d→ −H −1N (0,J) = N (0,H −1JH −1).

(B.16)

Note that min(NU , ND)→∞ is required for the convergence (see Lemma 33). This limit is

identical to N →∞ due to assumption that τ is fixed and constant.

Therefore, we get:

√
N ·

[
θ̂NU ,ND − θ∗

]
d→ N (0,H −1JH −1), (B.17)

where the convergence in distribution is achieved along with N →∞. Further, all the regulatory

assumptions of the theorem are required for application of CLT, LLN, and satisfaction of FOCs.

161

See theorem 3.1 in [90] for the more technical exposition.

�

162

APPENDIX C

Proof of Theorem 18

The proof for dfθ(X)’s expected value is trivial. Its covariance is derived as following:

E
[
dfθ(X) · dfθ(X ′)

]
= δ2·E

[
∇θfθ(X)T · ∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T · ∇θfθ(X ′)
]

=

= δ2 · ∇θfθ(X)T · E
[
∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T
]
· ∇θfθ(X ′), (C.1)

E [dfθ(X)] = −δ · ∇θfθ(X)T · E
[
∇θL̂N

U ,ND

PSO (fθ)
]
, (C.2)

Cov
[
dfθ(X), dfθ(X ′)

]
= E

[
dfθ(X) · dfθ(X ′)

]
− E [dfθ(X)] · E

[
dfθ(X ′)

]
=

= δ2 · ∇θfθ(X)T · E
[
∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T
]
· ∇θfθ(X ′)−

− δ2 · ∇θfθ(X)T · E
[
∇θL̂N

U ,ND

PSO (fθ)
]
· E
[
∇θL̂N

U ,ND

PSO (fθ)
]T
· ∇θfθ(X ′) =

= δ2 · ∇θfθ(X)T ·
[
E
[
∇θL̂N

U ,ND

PSO (fθ) · ∇θL̂N
U ,ND

PSO (fθ)T
]
−

− E
[
∇θL̂N

U ,ND

PSO (fθ)
]
· E
[
∇θL̂N

U ,ND

PSO (fθ)
]T]
· ∇θfθ(X ′) =

= δ2 · ∇θfθ(X)T · Var
[
∇θL̂N

U ,ND

PSO (fθ)
]
· ∇θfθ(X ′), (C.3)

where Var
[
∇θL̂N

U ,ND

PSO (fθ)
]

was proven to have a form in Eq. (A.14). Observe that it is

proportional to 1
N where N = NU +ND.

�

163

164

APPENDIX D

Proof of Theorem 19

Assume that first order conditions (FOCs) were satisfied,∇θL̂N
U ,ND

PSO (fθ) = 0. Then we have:

1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)] · ∇θfθ(XU
i) = 1

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · ∇θfθ(XD
i). (D.1)

Consider a specific PU ’s training sample X ≡ XU
j with j ∈ {1, . . . , NU}. Multiplying the

above expression by∇θfθ(X)T , we get

MU [X, fθ(X)] · gθ(X,X) +
NU∑
i,i 6=j

MU [XU
i , fθ(XU

i)] · gθ(X,XU
i) =

= NU

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · gθ(X,XD
i). (D.2)

Kernel gθ is non-negative due to boundedness assumed in Eq. (7.11). Since MU is likewise

assumed to be non-negative, we obtain an inequality:

MU [X, fθ(X)] · gθ(X,X) ≤ NU

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · gθ(X,XD
i). (D.3)

Next, we divide by gθ(X,X):

MU [X, fθ(X)] ≤ NU

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · rθ(X,XD
i) ≤

≤ NU

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · exp
[
−d(X,XD

i)
hmax

]
≡ α, (D.4)

where in the last part we applied the assumed bounds over rθ.

Denote the inverse function of MU [X, s] by (MU)−1 [X, z]. Since MU is assumed to be

165

strictly decreasing, then so is its inverse (MU)−1. Further, apply (MU)−1 on both sides of

Eq. (D.4):

(MU)−1 [X,MU [X, fθ(X)]] = fθ(X) ≥ (MU)−1 [X,α] , (D.5)

where we reversed the inequality since the applied function is strictly decreasing.

Next, observe that 0 ≤ α ≤ ∞ due to the assumed non-negativity of MD. Further, for

hmax → 0 we also have α → 0 - for zero bandwidth α goes also to zero. Moreover, due to

its properties (MU)−1 [X,α] is strictly decreasing for α ∈ [0,∞]. Hence, (MU)−1 [X,α] →
maxα′∈[0,∞](MU)−1 [X,α′] along with α→ 0.

Further note that the range of (MU)−1 is the subset of values within R that fθ(X) can have.

That is, (MU)−1 and fθ share their range. Assuming that this range is entire R or its positive

part R>0, extended to contain∞, we will have maxα′∈[0,∞](MU)−1 [X,α′] =∞.

To conclude, we have that fθ(X) ≥ (MU)−1 [X,α], where for α → 0 this lower bound

behaves as (MU)−1 [X,α]→∞.

�

166

APPENDIX E

Proof of Theorem 20

First, we prove the stepping stone lemmas.

E.1 Lemmata

Lemma 34. Consider the relative model kernel rθ defined in Eq. (7.10), and assume it to be

bounded as in Eq. (7.11). Then |rθ(X1, X)−rθ(X2, X)| ≤ ε [X1, X2, X] with ε [X1, X2, X] ,
1− exp

[
− 1
hmin

d(X1, X2)
]
· exp

[
− 1
hmin

max [d(X1, X), d(X2, X)]
]
.

Proof. Consider two scenarios: rθ(X1, X) ≥ rθ(X2, X) and rθ(X1, X) < rθ(X2, X). In the

first case we have:

|rθ(X1, X)− rθ(X2, X)| = rθ(X1, X)− rθ(X2, X) ≤ 1− exp
[
− 1
hmin

d(X2, X)
]
≤

≤ 1− exp
[
− 1
hmin

d(X1, X2)
]
· exp

[
− 1
hmin

d(X1, X)
]
, c1, (E.1)

where in the second row we used a triangle inequality d(X2, X) ≤ d(X1, X2) + d(X1, X).

Similarly, in the second case rθ(X1, X) < rθ(X2, X) we will obtain:

|rθ(X1, X)− rθ(X2, X)| = rθ(X2, X)− rθ(X1, X) ≤

≤ 1− exp
[
− 1
hmin

d(X1, X2)
]
· exp

[
− 1
hmin

d(X2, X)
]
, c2. (E.2)

Next, we combine the two cases:

|rθ(X1, X)− rθ(X2, X)| ≤ max(c1, c2) =

= 1− exp
[
− 1
hmin

d(X1, X2)
]
· exp

[
− 1
hmin

max [d(X1, X), d(X2, X)]
]
. (E.3)

�

167

Lemma 35. Consider the relative model kernel rθ defined in Eq. (7.10), and assume it to be

bounded as in Eq. (7.11). Then
∣∣∣ dfθ(X1)
gθ(X1,X1) −

dfθ(X2)
gθ(X2,X2)

∣∣∣ ≤ ε1(X1, X2) with:

ε1(X1, X2) = δ ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · ε [X1, X2, X

U
i] +

+ 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · ε [X1, X2, X

D
i]
]
. (E.4)

Proof. According to Eq. (7.5) we have:

∣∣∣∣ dfθ(X1)
gθ(X1, X1) −

dfθ(X2)
gθ(X2, X2)

∣∣∣∣ = δ·
∣∣∣∣∣ 1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)]·[rθ(X1, X
U
i)− rθ(X2, X

U
i)]−

− 1
ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · [rθ(X1, X
D
i)− rθ(X2, X

D
i)]

∣∣∣∣∣ ≤
≤ δ · 1

NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · |rθ(X1, X

U
i)− rθ(X2, X

U
i)|+

+ δ · 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · |rθ(X1, X

D
i)− rθ(X2, X

D
i)| ≤

≤ δ · 1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · ε [X1, X2, X

U
i] +

+ δ · 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · ε [X1, X2, X

D
i] , (E.5)

where in the last part we applied Lemma 34.

�

Lemma 36. Consider the relative model kernel rθ defined in Eq. (7.10), and assume it to be

bounded as in Eq. (7.11). Then
∣∣∣ dfθ(X)
gθ(X,X)

∣∣∣ ≤ ε2 with:

ε2 = δ ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]|+ 1

ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]|

]
. (E.6)

168

Proof.

∣∣∣∣ dfθ(X)
gθ(X,X)

∣∣∣∣ =

= δ ·
∣∣∣∣∣ 1
NU

NU∑
i=1

MU [XU
i , fθ(XU

i)] · rθ(X,XU
i)− 1

ND

ND∑
i=1

MD [XD
i , fθ(XD

i)] · rθ(X,XD
i)
∣∣∣∣∣ ≤

≤ δ · 1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]|·rθ(X,XU

i)+δ · 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]|·rθ(X,XD

i) ≤

≤ δ · 1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]|+ δ · 1

ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]|, (E.7)

�

where in the last part we used rθ(X,X ′) ≤ 1.

E.2 Proof of Theorem

Observe that:∣∣∣∣ dfθ(X1)
gθ(X1, X1) −

dfθ(X2)
gθ(X2, X2)

∣∣∣∣ =

= 1
gθ(X1, X1) ·

∣∣∣∣dfθ(X1)− dfθ(X2)− gθ(X1, X1)− gθ(X2, X2)
gθ(X2, X2) · dfθ(X2)

∣∣∣∣ . (E.8)

Applying Lemma 35, we have:∣∣∣∣dfθ(X1)− dfθ(X2)− gθ(X1, X1)− gθ(X2, X2)
gθ(X2, X2) · dfθ(X2)

∣∣∣∣ ≤ gθ(X1, X1) · ε1(X1, X2).
(E.9)

Using the reverse triangle inequality ||x| − |y|| ≤ |x− y| on left part of the above equation,

we get:∣∣∣∣|dfθ(X1)− dfθ(X2)| −
∣∣∣∣gθ(X1, X1)− gθ(X2, X2)

gθ(X2, X2) · dfθ(X2)
∣∣∣∣∣∣∣∣ ≤ gθ(X1, X1) · ε1(X1, X2).

(E.10)

Next, we check the above inequality under two possible scenarios:

1) |dfθ(X1)− dfθ(X2)| ≥
∣∣∣gθ(X1,X1)−gθ(X2,X2)

gθ(X2,X2) · dfθ(X2)
∣∣∣: Here we have:

|dfθ(X1)− dfθ(X2)| ≤ gθ(X1, X1) · ε1(X1, X2) +
∣∣∣∣gθ(X1, X1)− gθ(X2, X2)

gθ(X2, X2) · dfθ(X2)
∣∣∣∣ .

(E.11)

2) |dfθ(X1)− dfθ(X2)| <
∣∣∣gθ(X1,X1)−gθ(X2,X2)

gθ(X2,X2) · dfθ(X2)
∣∣∣: In such case Eq. (E.11) is triv-

ially satisfied.

169

Hence, Eq. (E.11) is satisfied always and therefore:

|dfθ(X1)− dfθ(X2)| ≤ gθ(X1, X1)·ε1(X1, X2)+|gθ(X1, X1)− gθ(X2, X2)|·
∣∣∣∣ dfθ(X2)
gθ(X2, X2)

∣∣∣∣ ≤
≤ gθ(X1, X1) · ε1(X1, X2) + |gθ(X1, X1)− gθ(X2, X2)| · ε2 ≡ ε3(X1, X2), (E.12)

where we applied Lemma 36.

Further, using definitions of ε1 and ε2 we get:

ε3(X1, X2) = gθ(X1, X1) · δ ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · ε [X1, X2, X

U
i] +

+ 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · ε [X1, X2, X

D
i]
]
+

+|gθ(X1, X1)− gθ(X2, X2)|·δ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]|+ 1

ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]|

]
=

= δ·gθ(X1, X1)·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]|·

[
ε [X1, X2, X

U
i] + |gθ(X1, X1)− gθ(X2, X2)|

gθ(X1, X1)

]
+

+ 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| ·

[
ε [X1, X2, X

D
i] + |gθ(X1, X1)− gθ(X2, X2)|

gθ(X1, X1)

]]
. (E.13)

Define νθ(X1, X2, X) , ε [X1, X2, X] + |gθ(X1,X1)−gθ(X2,X2)|
gθ(X1,X1) . Then, the combination of

Eq. (E.12) and Eq. (E.13) will lead to:

|dfθ(X1)− dfθ(X2)| ≤ δ · gθ(X1, X1) ·
[

1
NU

NU∑
i=1
|MU [XU

i , fθ(XU
i)]| · νθ(X1, X2, X

U
i)+

+ 1
ND

ND∑
i=1
|MD [XD

i , fθ(XD
i)]| · νθ(X1, X2, X

D
i)
]
. (E.14)

�

170

APPENDIX F

Proof of Softmax Cross-Entropy being Instance
of PSO

Here we will derive the cross-entropy loss combined with a Softmax layer, typically used

in the image classification domain, via PSO principles, showing it to be another instance of

PSO. For this we define our training dataset as a set of pairs {Xi, Yi}Ni=1 where Xi ∈ Rn is a

data point of an arbitrary dimension n (e.g. image) and Yi is its label - a discrete number that

takes values from {1, . . . , C} with C being the number of classes. Number of samples for each

class is denoted by {N1, . . . , NC}, with
∑C
j=1Nj = N . For the classification task we assume

that each sample pair is i.i.d. sampled from an unknown density P(X,Y) = P(X) · P(Y |X).

Our goal is to enforce the output of Softmax layer to converge to the unknown conditional

P(Y |X). To this end, define a model fθ that returns C dimensional output fθ(X) ∈ RC , with

its j-th entry denoted by fθ,j(X). Further, Softmax transformation hθ(X) is defined as:

hθ,j(X) = exp fθ,j(X)∑C
k=1 exp fθ,k(X)

= exp fθ,j(X)
‖exp fθ(X)‖1

, (F.1)

which yields properties hθ,j(X) ≥ 0 and
∑
k hθ,k(X) = 1. We aim for hθ,j(X) to converge

to P(Y = j|X) - the probability of X’s label to be j. Each fθ,j(X) will be considered as an

independent surface in PSO framework, which we will push to the equilibrium where

exp fθ,j(X)
‖exp fθ(X)‖1

= P(Y = j|X), (F.2)

by optimizing the corresponding loss LjPSO(fθ,j), with total minimized loss being defined as

LPSO(fθ) =
∑C
j=1 L

j
PSO(fθ,j). That is, the described below minimization of LPSO(fθ) will

consist of solving C PSO problems in parallel.

PSO over fθ,j(X) via LjPSO(fθ,j): Consider a typical PSO estimation, where P(X|Y = j)
serves as up density PU and P(X|Y 6= j) - as down density PD. Sample batch from P(X|Y = j)

171

is obtained by fetching samples with label Y = j; data points from P(X|Y 6= j) will be the rest

of samples. Note also that the identity P(X|Y=j)
P(X|Y 6=j) = P(Y 6=j)

P(Y=j) ·
P(Y=j|X)

1−P(Y=j|X) holds, due to below

derivation:

P(X|Y 6= j)
P(X|Y = j) = P(X,Y 6= j) · P(Y = j)

P(X,Y = j) · P(Y 6= j) = P(Y = j)
P(Y 6= j) ·

∑
k 6=j P(X,Y = k)
P(X,Y = j) =

= P(Y = j)
P(Y 6= j) ·

[∑C
k=1 P(X,Y = k)

]
− P(X,Y = j)

P(X,Y = j) = P(Y = j)
P(Y 6= j) ·

[P(X)
P(X,Y = j) − 1

]
=

= P(Y = j)
P(Y 6= j) ·

1− P(Y = j|X)
P(Y = j|X) . (F.3)

Considering PSO balance state, we are looking for a pair of magnitudes {MU
j ,M

D
j } that for

the below system:
MD
j [X, fθ(X)]

MU
j [X, fθ(X)] = P(X|Y = j)

P(X|Y 6= j) , (F.4)

will produce a solution at Eq. (F.2). That is, denoting
MD
j [X,s]

MU
j [X,s] by R(X, s) : Rn ×RC → R and

using the identity in Eq. (F.3), we are looking for the transformation R s.t. the solution fθ(X)
of:

R [X, fθ(X)] = P(Y 6= j)
P(Y = j) ·

P(Y = j|X)
1− P(Y = j|X) , (F.5)

will satisfy Eq. (F.2). Assuming that R has a form R [X, fθ(X)] = R̄
[exp fθ,j(X)
‖exp fθ(X)‖1

]
, the above

is equivalent to find the transformation R̄(s) : R→ R s.t. the solution s of a system:

R̄(s) = P(Y 6= j)
P(Y = j) ·

P(Y = j|X)
1− P(Y = j|X) (F.6)

is P(Y = j|X). Thus, it can be easily identified as R̄(s) = P(Y 6=j)
P(Y=j) ·

s
1−s . From this we conclude

that R [X, fθ(X)] = P(Y 6=j)
P(Y=j) ·

exp fθ,j(X)
‖exp fθ(X)‖1−exp fθ,j(X) and that magnitudes must satisfy:

MD
j [X, fθ(X)]

MU
j [X, fθ(X)] = P(Y 6= j)

P(Y = j) ·
exp fθ,j(X)

‖exp fθ(X)‖1 − exp fθ,j(X) . (F.7)

Specifically, we will choose them to be:

MU
j [X, fθ(X)] = P(Y = j)·‖exp fθ(X)‖1 − exp fθ,j(X)

‖exp fθ(X)‖1
= P(Y = j)·

∑C
k=1,k 6=j exp fθ,k(X)
‖exp fθ(X)‖1

,

(F.8)

MD
j [X, fθ(X)] = P(Y 6= j) · exp fθ,j(X)

‖exp fθ(X)‖1
(F.9)

where the denominator ‖exp fθ(X)‖1 serves as a normalization factor that enforces {MU
j ,M

D
j }

to be between 0 and 1. Such normalization is only one from many possible, yet this choice will

eventually yield the popular softmax cross-entropy loss.

172

Using the above setting to define LjPSO(fθ,j), its gradient can be written as

∇θLjPSO(fθ,j) = − E
X∼P(X|Y=j)

MU
j [X, fθ(X)] · ∇θfθ,j(X)+

+ E
X∼P(X|Y 6=j)

MD
j [X, fθ(X)] · ∇θfθ,j(X). (F.10)

Gradient-based optimization via the above expression will lead to Eq. (F.2). Also, in practice

P(Y = j) inside MU
j can be approximated as Nj

N , and P(Y 6= j) inside MD
j - as N−Nj

N .

PSO over multiple surfaces via LPSO(fθ): Further, combining all losses together into

LPSO(fθ) =
∑C
j=1 L

j
PSO(fθ,j) will produce∇θLPSO(fθ) =

∑C
j=1∇θL

j
PSO(fθ,j):

∇θLPSO(fθ) =
C∑
j=1

[
− E
X∼P(X|Y=j)

MU
j [X, fθ(X)] · ∇θfθ,j(X)+

+ E
X∼P(X|Y 6=j)

MD
j [X, fθ(X)] · ∇θfθ,j(X)

]
. (F.11)

The above expression is also the gradient of softmax cross-entropy, which can be shown as

follows. First, note that the second term can be rewritten as:

E
X∼P(X|Y 6=j)

MD
j [X, fθ(X)] · ∇θfθ,j(X) =

=
∫

P(X,Y 6= j) · exp fθ,j(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X)dX =

=
∫ C∑

k=1,k 6=j
P(X,Y = k)

 · exp fθ,j(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X)dX =

=
C∑

k=1,k 6=j
P(Y = k) · E

X∼P(X|Y=k)

exp fθ,j(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X). (F.12)

Then,∇θLPSO(fθ) is equal to:

∇θLPSO(fθ) =
C∑
j=1

[
− P(Y = j) · E

X∼P(X|Y=j)

∑C
k=1,k 6=j exp fθ,k(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X)+

+
C∑

k=1,k 6=j
P(Y = k) · E

X∼P(X|Y=k)

exp fθ,j(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X)
]

=

= −
C∑
j=1

P(Y = j) · E
X∼P(X|Y=j)

∑C
k=1,k 6=j exp fθ,k(X)
‖exp fθ(X)‖1

· ∇θfθ,j(X)+

+
C∑
j=1

P(Y = j) · E
X∼P(X|Y=j)

C∑
k=1,k 6=j

exp fθ,k(X)
‖exp fθ(X)‖1

· ∇θfθ,k(X), (F.13)

173

where the second equality can be verified by examining coefficients of each ∇θfθ,j(X) before

and after ”=”. Further:

∇θLPSO(fθ) = −
C∑
j=1

P(Y = j)· E
X∼P(X|Y=j)

[‖exp fθ(X)‖1 − exp fθ,j(X)
‖exp fθ(X)‖1

·∇θfθ,j(X)−

−
C∑

k=1,k 6=j

exp fθ,k(X)
‖exp fθ(X)‖1

· ∇θfθ,k(X)
]
, (F.14)

with the expression in brackets being derivative of log exp fθ,j(X)
‖exp fθ(X)‖1

w.r.t. θ.

Concluding from above, LPSO(fθ) with the above gradient can be written as:

LPSO(fθ) = −
C∑
j=1

P(Y = j) · E
X∼P(X|Y=j)

log exp fθ,j(X)
‖exp fθ(X)‖1

=

= −
∫ C∑

j=1

[
P(X,Y = j) · log exp fθ,j(X)

‖exp fθ(X)‖1

]
dX =

= − E
X,Y∼P(X,Y)

log exp fθ,Y (X)
‖exp fθ(X)‖1

. (F.15)

with its empirical version being:

LPSO(fθ) ≈ −
1
N

N∑
i=1

log exp fθ,Yi(Xi)
‖exp fθ(Xi)‖1

. (F.16)

The above loss is known in Machine Learning community as softmax cross-entropy loss.

Therefore, we can conclude that PSO over multiple surfaces {fθ,j(X)}Cj=1 with magnitudes

in Eqs. (F.8)-(F.9) corresponds to cross-entropy when P(X|Y = j) and P(X|Y 6= j) serve as

up and down densities respectively. Yet, according to the PSO principles the magnitudes in

Eqs. (F.8)-(F.9) are not the only choice for such convergence. In fact, we can change the norm

within the denominator of MU(·) and MD(·) to any L-p norm, since the denominator term is

eventually canceled out and since its actual role is to bound outputs of magnitude functions.

Similarly to what we observed in our experiments about the PSO-LDE (see Sections 8.2 and

13), different norms (the α value in context of PSO-LDE) can have smoother dynamics and

produce a smaller approximation error.

�

174

APPENDIX G

Differential approximation

In this section we will empirically justify our approximation in Eq. (7.5), where we assumed

that the surface differential, caused by GD update of weights θ, can be approximated via its

first-order Taylor expansion.

For this purpose we performed a single iteration of GD optimization and measured the real

and the estimated differentials at train and test points as following. First, points D = {Xi}2000
i=1

were sampled from PU density, which is Columns distribution from Section 13.2, whereXi ∈ Rn

with n = 20. Further, we performed a single GD iteration of the following loss:

L(θ,D) = − 1
1000

1000∑
i=1

fθ(Xi) + 1
1000

2000∑
i=1001

fθ(Xi), (G.1)

where fθ(X) is a FC network depicted in Figure 11.1a, with overall 4 layers of size 1024 each.

Next, we measured the surface height fθ(X) at two points Xtrain and Xtest before and after GD

update, where Xtrain ∈ D and Xtest /∈ D. We performed this procedure for a range of learning

rate values and thus obtained the real differential dfθ(X) at Xtrain and Xtest as a function of δ

(see Figure G.1). Likewise, we calculated the approximated differential d̄f(X) at Xtrain and

Xtest using first-order Taylor expansion as:

d̄f(X) = δ

1000 · ∇θfθ(X)T ·
[1000∑
i=1
∇θfθ(Xi)−

2000∑
i=1001

∇θfθ(Xi)
]

=

= δ

1000 ·
[1000∑
i=1

gθ(X,Xi)−
2000∑
i=1001

gθ(X,Xi)
]
, (G.2)

where θ is taken at time before GD update.

In Figures G.1a and G.1b we can see the calculated differentials for both Xtrain and Xtest,

respectively. In both figures the real differential (blue line) and the estimated differential (red

line) become very close to each other for δ < 0.01. Note that for the most part of a typical

optimization process δ satisfies this criteria.

175

10
-6

10
-4

10
-2

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Real differential

Approximated differential

(a)

10
-6

10
-4

10
-2

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Real differential

Approximated differential

(b)

10
-6

10
-5

10
-4

10
-3

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Real differential

Approximated differential

(c)

10
-6

10
-5

10
-4

10
-3

-10

-8

-6

-4

-2

0
10

-3

Real differential

Approximated differential

(d)

10
-6

10
-4

10
-2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error ratio

(e)

10
-6

10
-4

10
-2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error ratio

(f)

Figure G.1: Real and approximated differentials for the training point Xtrain (a)-(c)-(e) and the testing point Xtest (b)-(d)-(f).
(a)-(b) Real differential (blue line) vs approximated differential (red line), as a function of the learning rate δ; (c)-(d) Zoom-in of
(a)-(b); (e)-(f) Error ratio, defined in Eq. (G.3).

Further, in Figures G.1e (for Xtrain) and G.1f (for Xtest) we can see the ratio:

ratio =
∣∣∣dfθ(X)− d̄f(X)

∣∣∣ / |dfθ(X)| , (G.3)

which expresses an error
∣∣∣dfθ(X)− d̄f(X)

∣∣∣ as the percentage from the real differential. As

can be seen, for both Xtrain and Xtest the error ratio is very low for δ < 0.01 (under 10% for

most part). Additionally, the error ratio slightly increases for a very small δ (around 10−6). We

speculate this to be a precision artifact, since the calculation of an approximated differential

in Eq. (G.2) was done in a single-precision floating-point format (float32) and involved the

multiplication by a very small number δ.

Additionally, we calculated the real and approximated differentials along the entire GD

optimization process of PSO-LDE, where the same NN architecture was used as in the first

experiment, and where the pdf inference was applied to Columns distribution from Section

13.2. Particularly, we trained a NN for 300000 iterations, while during each iteration we

176

0 0.5 1 1.5 2 2.5 3

iteration 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Real differential

Approximation error

(a)

0 0.5 1 1.5 2 2.5 3

iteration 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ratio

(b)

0 0.5 1 1.5 2 2.5 3

iteration 10
5

0

0.2

0.4

0.6

0.8

1

1.2

Real differential

Approximation error

(c)

0 0.5 1 1.5 2 2.5 3

iteration 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Ratio

(d)

Figure G.2: The real differential and the approximation error during the training of PSO-LDE for two different testing points X1
and X2. (a)-(b) Results for X1. (c)-(d) Results for X2. (a)-(c) Blue line is an absolute value of the real differential at a specific
point for each iteration time, smoothed via a moving mean with the window size 300; red line is the absolute value of a difference
between the real differential and the approximated one, smoothed via a moving mean of the same window size. (b)-(d) Ratio
between two lines in (a)-(c), can be seen as a moving mean version of Eq. (G.3) - an error as the percentage of the real differential.

computed the real and the approximated differentials for a specific test point X . We performed

such simulation twice, for two different points and plotted their differentials in Figure G.2.

In the left column, the blue line is the absolute value of the real differential, |dfθ(X)|, and

the red line is error
∣∣∣dfθ(X)− d̄f(X)

∣∣∣, both smoothed via moving mean with window size

300. The right column shows the ratio between smoothed
∣∣∣dfθ(X)− d̄f(X)

∣∣∣ and smoothed

|dfθ(X)|,
∣∣∣dfθ(X)− d̄f(X)

∣∣∣ / |dfθ(X)|, which can be seen as the error percentage from the

real differential. As shown in Figures G.2b and G.2d, this error percentage is less than 15%
and for most part of the training is even lower. This trend is the same for both verified points,

suggesting that the real differential indeed can be approximated very closely by the first-order

Taylor expansion. In overall, above we showed that most of the surface change can be explained

by the gradient similarity gθ(X,X ′) in Eq. (7.5).

177

178

APPENDIX H

Weights Uncorrelation and Gradient Similarity
Space

In this appendix we empirically demonstrate the relation between gradient similarity gθ(X,X ′) =
∇θfθ(X)T · ∇θfθ(X ′) and Euclidean distance d(X,X ′), and show how this relation changes

along the optimization over NNs. Particularly, we observe empirically that during first sev-

eral thousand iterations of a typical optimization the trend is achieved where high values of

gθ(X,X ′) are correlated with small values of d(X,X ′) - the model kernel of NN obtains a

local-support structure. Further, this trend is preserved during the rest part of the optimization.

This behavior can be seen as an another motivation for the kernel bandwidth analysis made in

Section 7.5 - the shape of rθ(X,X ′) = gθ(X,X′)
gθ(X,X) has some implicit particular bandwidth.

Global Evaluation We apply PSO-LDE with α = 1
4 on a BD model for the inference of

Columns distribution defined in Eq. (13.1), where at different optimization iterations we plot

output pairs of gθ(X,X ′) and d(X,X ′). The plots are constructed similarly to Figure 11.2b.

Specifically, we sample 500 points DU = {XU
i } and 500 points DD = {XD

i } from PU and PD

respectively. For each sample from D = DU ∪DD we calculate the gradient∇θfθ(X). Further

we compute Euclidean distance and the gradient similarity between every two points within D,

producing 1000·1001
2 pairs of distance and similarity values. These values are plotted in Figure

H.1.

Also, we compute a relative side-influence rθ(X,X ′), defined in Eq. (7.10), for each pair of

points inD. In Figure H.2 we construct a histogram of 106 obtained pairs {rθ(Xi, Xj), d(Xi, Xj)}.
As seen from the above figures, during first iterations the gradient similarity obtains a form

where its values are monotonically decreasing with bigger Euclidean distance between the

points. During next optimization iterations the self similarity gθ(X,X) is growing by several

orders of magnitudes. At the same time the side-similarity gθ(X ′, X) for X ′ 6= X is growing

significantly slower and mostly stays centered around zero. In overall values of gθ(X,X) are

much higher than values of gθ(X ′, X) for X ′ 6= X , implying that the model kernel has mostly

a local influence/impact. Likewise, from Figure H.2 it is also clear that rθ(X,X ′) for faraway

179

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure H.1: Relation between values of gradient similarity gθ(X′, X) and values of Euclidean distance d(X′, X), along the
optimization time t (iteration index). PSO-LDE with α = 1

4 is applied, where NN architecture is block-diagonal with 6 layers,
number of blocks NB = 50 and block size SB = 64 (see Section 11.1). Each plot is constructed similarly to Figure 11.2b, see
the main text for more details. Outputs from both gθ(X′, X) and d(X′, X) are demonstrated at different times; (a) t = 0, (b)
t = 100, (c) t = 3200, (d) t = 3400, (e) t = 6000, (f) t = 100000 and (g) t = 200000. (h) Zoom-in of (g). As can be seen, self
similarities gθ(X,X), depicted at d(X′, X) = 0, are high and increase during the optimization. The side similarities gθ(X′, X)
for X′ 6= X , depicted at d(X′, X) > 0, are centered around zero at t = 200000 and are significantly lower than self similarities.

180

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure H.2: Histograms of the relative gradient similarity rθ(X′, X) and the Euclidean distance d(X′, X) at different optimiza-
tion times t, for the experiment in Figure H.1. At each time t we calculate a relative side-influence rθ(Xi, Xj) and a Euclidean
distance d(Xi, Xj) for 106 point pairs and depict a histogram of obtained {rθ(Xi, Xj)} and {d(Xi, Xj)}. The optimization
time is (a) t = 0, (b) t = 100, (c) t = 3200, (d) t = 3400, (e) t = 4000, (f) t = 6000, (g) t = 10000, (h) t = 29000, (i)
t = 100000, (j) t = 150000, (k) t = 200000 and (l) t = 300000. As observed, after t = 10000 the relative gradient similarity
between far away regions is much smaller than 1, implying that there is a insignificant side-influence over height fθ(X) at point X
from other points that are far away from X .

points X and X ′ is near-zero during the most part of the optimization process (i.e. after 10000

iterations in this experiment). Thus, the corresponding bandwidth of rθ can be bounded similarly

to Eq. (7.11).

Local Evaluation Additionally, we performed a local evaluation of the above relation between

gradient similarity and Euclidean distance. Particularly, after convergence we consider a path

within a 20D input space, that starts at S = [−1, . . . ,−1] and ends at E = [1, . . . , 1]. We

evenly discretized this path into 1000 middle points with which we form an ordered point set

D = {S, . . . , E}, with |D| = 1000. Afterwards, we calculate gradients∇θfθ(·) at each point

in D and construct the Gramian matrix G, with Gij = gθ(Xi, Xj). Note that the index of each

point expresses also its location within the chosen point path, and the index difference |i− j|
also represents Euclidean distance between points Xi and Xj . In Figure H.3a this matrix G is

181

(a)

0 500 1000
-100

0

100

200

300

400

g
(X

',
X

,
)

1

0 500 1000
0

500

1000

1500

2000
100

0 500 1000

0

1000

2000

3000
200

0 500 1000

0

1000

2000

3000
300

(b)

0 500 1000

0

500

1000

1500

g
(X

',
X

,
)

400

0 500 1000
0

100

200

300

400
500

0 500 1000
0

500

1000

1500
600

0 500 1000

0

1000

2000

3000
700

(c)

0 500 1000

0

1000

2000

3000

g
(X

',
X

,
)

800

0 500 1000
0

500

1000

1500
900

0 500 1000

0

200

400

600
1000

(d)

Figure H.3: Local relation between values of gradient similarity gθ(X′, X) and values of Euclidean distance d(X′, X) within
BD architecture. The applied PSO method and model architecture are same as in Figure H.1. After convergence, we calculate
gradient∇θfθ(X) along path within input space, [−1, . . . ,−1] −→ [1, . . . , 1], which is uniformly discretized via 1000 middle
points. Afterwards, (a) the Gramian matrix G is constructed, with Gij = gθ(Xi, Xj) where Xi and Xj are i-th and j-th points
along the path. Note that the index difference |i− j| also represents Euclidean distance between points Xi and Xj . Further, i-th
row of G contains similarities gθ(Xi, ·) between point i and rest of points. (a)-(c) 1-th, 100-th, . . . , 900-th and 1000-th rows of G
are shown. Red line indicates i-th entry of i-th row where self similarity gθ(Xi, Xi) is plotted. See more details in the main text.

182

depicted, and here it can be observed that G’s diagonal is very prominent. This again reasserts

that the gradient similarity kernel has some local support induced by the implicit bandwidth.

Moreover, each row ri inside G represents gθ(Xi, ·) - side similarity between the point

Xi and the rest of points in D (i.e. the chosen path). Note that the i-th entry of ri represents

self-similarity gθ(Xi, Xi), while other entries represent the side-similarity from path points

around Xi. Further, indexes of these other entries are related to the distance between the points

and Xi, via the index difference |i− j|. Hence, first i − 1 entries of ri represent first i − 1
points within the chosen path D before the i-th point, whereas the last 1000 − i entries of ri
represent points at the end of the path. In Figures H.3b-H.3d 11 different rows of G are depicted,

where each row demonstrates gradient similarity around some path point Xi as a function of the

second point index (and thus the distance between two points). Here we can see that gθ(Xi, Xj)
typically has a peak at Xj = Xi, and further smoothly decreases as we walk away from point

Xi in any of the two path directions (towards S or E). Thus, here we see that gradient similarity

has a bell-like behavior, returning high similarity for the same point and diminishing as the

distance between the points grows. Yet, these ”bells” are not centered, with some rows (e.g.

400-th in Figure H.3c) having peaks outside of the i-th entry. Nevertheless, in context of PSO

such local behavior allows us to conclude that when any training point X is pushed by PSO loss,

the force impact on the model surface is local, centered around the pushed X .

Further, in Figure H.4 we also plot the normalized gradient similarity ḡθ(Xi, Xj) ,
∇θfθ(Xi)T ·∇θfθ(Xj)
‖∇θfθ(Xi)‖·‖∇θfθ(Xj)‖ = cos [∠ [∇θfθ(Xi),∇θf(Xj)]] for the same setting as in Figure H.3.

Here, we can see that ḡθ(Xi, Xj), which is a cosine of the angle between θ gradients at points

Xi and Xj , has a more symmetrical and centered behavior compared with gθ(Xi, Xj). That

is, ḡθ(Xi, ·) has a peak when the second argument is equal to Xi, and it gradually decreases as

the distance between the second argument and Xi increases. Moreover, the asymmetry that we

observed in case of gθ(Xi, Xj) (400-th and 600-th rows in Figure H.3c) is actually caused by

the difference in a gradient norm at different points Xi and Xj . Specifically, in Figure H.3c we

can see that peak of 400-th row is pushed towards the beginning of the path D, where X400 has

neighbors with higher norm ‖∇θfθ(Xj)‖. In ḡθ(Xi, Xj) each gradient is normalized to have a

unit norm, which eliminates the above asymmetry as observed in Figure H.4c. Hence, nearby

points with a large gradient norm may affect the gradient similarity at a specific point and make

it less symmetric/centered.

Note that in case the applied optimizer is GD, during the actual optimization the NN surface

is pushed according to the gθ(Xi, Xj) and not ḡθ(Xi, Xj). Therefore, various local asymmetries

inside gθ(Xi, Xj) may affect the optimization optimality. However, Adam optimizer [59], used

in most of our experiments, with its adaptive moment estimation and normalization per each

weight implicitly transforms the actual ”pushing” kernel of the optimization. We speculate that

in this case the actual information kernel is more similar to the normalized gradient similarity.

We shall leave a detailed investigation of the model kernel under Adam optimization update rule

for future work.

Overall, our experiments show that NN weights undergo some uncorrelation process during

the first few thousands of iterations, after which the gradient similarity obtains properties

183

(a)

0 500 1000

0

0.5

1

g
(X

',
X

,
)

1

0 500 1000

0

0.5

1
100

0 500 1000

0

0.5

1
200

0 500 1000

0

0.5

1
300

(b)

0 500 1000

0

0.5

1

g
(X

',
X

,
)

400

0 500 1000

0

0.5

1
500

0 500 1000

0

0.5

1
600

0 500 1000

0

0.5

1
700

(c)

0 500 1000
-0.2

0

0.2

0.4

0.6

0.8

1

g
(X

',
X

,
)

800

0 500 1000
-0.2

0

0.2

0.4

0.6

0.8

1
900

0 500 1000
-0.2

0

0.2

0.4

0.6

0.8

1
1000

(d)

Figure H.4: Normalized gradient results within BD architecture: same results from Figure H.3, with Gramian matrix being

normalized to Ḡ : Ḡij = ḡθ(Xi, Xj) = ∇θfθ(Xi)T ·∇θfθ(Xj)
‖∇θfθ(Xi)‖·‖∇θfθ(Xj)‖ . As observed, normalized gradient similarity ḡθ(Xi, Xj)

is more symmetrical along both directions of a chosen path D compared with the regular gradient similarity gθ(Xi, Xj) in Figure
H.3.

184

approximately similar to a local-support kernel function. Specifically, an opposite relation

is formed between the gradient similarity and Euclidean distance, where a higher distance

is associated with a smaller similarity. This uncorrelation can also be viewed as gradients

(w.r.t. θ) at different training points are becoming more and more linearly independent along

the optimization, which as a result increases angles between gradient vectors. Hence, these

gradients point to different directions inside the parameter space R|θ|, decreasing the side-

influence between the training points. Furthermore, this uncorrelation process was observed

almost in each experiment, yet the radius of local support for the kernel gθ(X ′, X) (that is, how

fast gradient similarity is decreasing w.r.t. d(X,X ′)) is changing depending on the applied NN

architecture (e.g. FC vs BD) and on the specific inferred density PU .

185

186

APPENDIX I

LSQR Divergence

Here we will prove that LSQR evaluation metric, considered in this thesis, is an actual statistical

divergence. First, the log-pdf squared error (LSQR) divergence is defined as:

LSQR(P,Q) =
∫

P(X) · [logP(X)− logQ(X)]2 dX, (I.1)

where P is the pdf over a compact support Ω ⊂ Rn; Q is normalized or unnormalized model

whose support is also Ω.

According to the definition of statistical divergences, LSQR must satisfy ∀P,Q : LSQR(P,Q) ≥
0 and LSQR(P,Q) = 0⇔ P = Q. Obviously, these two conditions are satisfied by Eq. (I.1).

Hence, LSQR(P,Q) is the statistical divergence.

Importantly, we emphasize that LSQR(P,Q) measures a discrepancy between pdf P and

model Q where the latter is allowed to be unnormalized. Therefore, it can be used to evaluate

PSO-based methods since they are only approximately normalized. However, such evaluation is

only possible when P is known analytically.

Further, in this thesis LSQR is measured between the target density, defined as PU in the

thesis, and the pdf estimator P̄θ produced by some method in the following way:

LSQR(PU , P̄θ) = 1
N

N∑
i=1

[
logPU(XU

i)− log P̄θ(XU
i)
]2
, (I.2)

where {XU
i }Ni=1 are testing points, sampled from PU , that were not involved in the estimation

process of P̄θ.

187

188

APPENDIX J

Matrix A from definition of Transformed
Columns Distribution

Matrix A was randomly generated under the constraint of having a determinant 1, to keep the

volume of sampled points the same. Its generated entries are:

A =

0.190704135 -0.103706818 0.287080085 -0.224115607 -0.0296220322 -0.200017067 0.107420472 0.145939799 -0.21151047 0.290260037 -0.109926743 -0.138214861 0.0739138407 -0.173910764 -0.158279581 -0.138856972 -0.512741096 -0.0894244111 -0.465075432 0.138203328

0.254157669 0.00972120677 -0.425381258 -0.165311223 -0.0732519109 0.316785766 -0.0651314216 -0.153534853 -0.294111694 -0.29775682 -0.285308807 0.12228138 -0.11072477 -0.0955035066 0.00942833152 -0.252106498 -0.40791915 0.14810246 0.219848116 0.0170452831

0.213837698 0.435577026 -0.0250319656 0.297552176 0.14030724 0.17703815 0.179253182 -0.0710653564 0.0507340489 0.235684257 0.33391508 -0.40609493 -0.197930666 -0.322136609 -0.146204612 -0.164195869 -0.0672063429 0.138970011 0.121959537 -0.150499483

0.229971825 0.235126465 0.158420112 -0.0223857003 0.28726862 0.133325519 -0.352231148 0.403451114 -0.0161522847 -0.0193998935 0.0455239109 0.162348247 -0.108553457 -0.126312424 0.354695129 -0.18792775 0.101384726 -0.360466001 0.0797850581 0.338497968

0.168709235 0.0770914534 -0.178165495 -0.0661545928 0.323673824 -0.216202087 0.475022027 0.129138946 -0.0173273685 -0.305472906 -0.187205709 -0.0359566427 -0.216262061 -0.0428909211 -0.354871726 0.299579441 0.157803981 -0.190573488 0.0280581785 0.281767192

0.238265575 0.14326338 0.323225051 0.101182056 0.222068216 -0.42470829 -0.132128709 -0.203895612 -0.38640015 -0.193494524 0.15340899 0.0919709633 -0.150512414 0.257608882 0.182536036 0.223159059 -0.177186352 0.198776911 0.130192805 -0.201342323

0.279579926 -0.162797928 -0.0586375005 -0.211398563 -0.178520507 -0.0154862203 -0.371463145 0.187233788 -0.19506691 0.119455231 -0.202696444 -0.581504491 -0.160227753 0.135365515 -0.104123883 0.128700751 0.341221005 0.04776047 0.0956523695 -0.105994479

0.220148935 -0.2672238 0.259200965 -0.348342982 0.155930129 0.0194560055 0.136887538 -0.264686829 0.243602026 0.117285157 -0.002458813 0.241121126 -0.423370778 0.01867544 -0.0604651676 -0.397344315 0.273889032 0.122122216 0.00146222648 -0.125711392

0.274834233 0.105359473 0.135585987 -0.19681974 -0.0573374634 0.272574082 0.0741237415 0.0122961299 0.331281502 -0.33605766 0.271171768 -0.205618232 0.213806318 0.535961439 -0.103513592 -0.0402908492 -0.199964863 -0.203164108 -0.0657867077 -0.0601941311

0.191457811 -0.234983092 0.180777146 0.293340161 -0.0365900702 0.214595475 0.236285794 0.256954426 0.152660465 0.0502990912 -0.34518931 0.0711801608 -0.128073093 -0.0785011303 0.222291071 0.252921604 -0.174804068 -0.217786875 0.114727637 -0.492946359

0.223304218 -0.0257257131 -0.413566391 0.172073687 0.326658323 -0.251109479 -0.188027609 0.334468985 0.161164411 0.150742708 -0.0165671389 0.232902107 0.21926384 0.194760411 -0.235966926 -0.210659524 -0.00475631985 0.172782694 -0.148866241 -0.300869538

0.243388344 0.243683991 -0.121589184 -0.187437781 0.0578409285 -0.27767391 0.118032949 -0.346625601 0.292226942 0.243065097 -0.348108205 -0.141543891 0.37738745 -0.0330943339 0.390702777 0.02656679 0.0292203222 -0.0520266353 0.165078206 0.0596683021

0.230141811 0.0247039796 -0.160146528 0.276454478 -0.576178718 -0.329822403 0.25548108 0.14013065 -0.0103114951 -0.162178682 0.0992219866 0.012231234 -0.189306474 0.0930990418 0.282716476 -0.306277128 0.142988577 -0.00844652753 -0.179308874 0.106622196

0.232700446 -0.203358735 -0.0404096623 0.0651155788 -0.0876307509 -0.191362905 -0.350703084 -0.292134625 0.189041139 -0.344463408 0.182873652 0.00843615229 0.103973847 -0.52808934 -0.153969081 0.0920142117 0.0274541623 -0.30781733 -0.126023284 -0.157587751

0.199527977 0.204898606 -0.0450516851 -0.270830109 -0.122669508 0.203103159 0.237732868 0.012741777 -0.462819922 0.114896626 0.187819585 0.289174359 0.310962024 -0.0974490092 -0.00676534358 0.104883625 0.361388813 -0.151993161 -0.133748076 -0.307757495

0.175957009 0.114449497 0.0205901599 -0.309807805 -0.235656127 0.00557129199 -0.0424724202 0.307742364 0.323261613 -0.00822297356 0.171003077 0.20675015 -0.0593725006 -0.232062167 0.0481299972 0.415888833 -0.102561506 0.524594092 0.0346260903 0.106458345

0.223633992 -0.408554226 -0.309022911 0.131333656 0.253238692 0.245874156 0.0563174345 -0.203397977 -0.0592004594 0.179237363 0.275909961 -0.0735710289 -0.0681467794 0.0974804318 0.340180897 0.282145806 -0.0050587548 0.0683927742 -0.329991983 0.246896636

0.215583387 0.212554612 0.289443614 0.366636519 -0.034606719 0.274097732 -0.127438501 -0.179674304 0.0238811214 -0.126780371 -0.419167616 0.0954798128 0.126317847 0.0330201935 -0.166833728 0.039242297 0.231007699 0.29173484 -0.381428263 0.182896273

0.210225414 -0.42839288 0.239002756 0.174593297 0.0372987005 -0.000156767089 0.183766314 0.132302659 -0.124351715 -0.0656208547 0.126841957 -0.0486788409 0.471440044 -0.112599645 -0.0828678102 -0.173846575 0.0871950404 0.210646003 0.459392924 0.242375288

0.220671036 0.0270987729 -0.0325243953 0.176295746 -0.299408603 -0.00284534072 -0.133474574 -0.186385408 0.0205827025 0.45209226 0.0583508015 0.321753008 -0.120986377 0.217766867 -0.359227919 0.180578462 -0.115873733 -0.281505687 0.296303031 0.245563455

.

(J.1)

189

190

APPENDIX K

Relation between spectrums of gt(X,X ′) and
its Gramian Gt

Consider N dataset pointsXXX = {Xi ∈ Rd}Ni=1 sampled from an arbitrary probability density

function (pdf) P (X). Further, consider a kernel gt(X,X ′) and the corresponding Gramian Gt
defined onXXX , with Gt(i, j) = gt(Xi, Xj). Eigenvalues {λ̃k}k, sorted in decreasing order, and

eigenfunctions {υ̃k(·)}k of gt(·, ·) w.r.t. P (X) are defined as solutions of:

λ̃k · υ̃k(X) =
∫
gt(X,X ′) · υ̃k(X ′) · P (X ′)dX ′. (K.1)

The integral in Eq. (K.1) can be approximated via a sampled approximation:

∫
gt(X,X ′) · υ̃k(X ′) · P (X ′)dX ′ ≈ 1

N

N∑
i=1

gt(X,Xi) · υ̃k(Xi), (K.2)

with the RHS of the above expression converging to the LHS as N →∞ due to the law of large

numbers.

Further, denote by ῡk a N × 1 vector whose i-th entry is υ̃k(Xi). Combining Eq. (K.1) and

Eq. (K.2), ῡk can be written as:

λ̃k · ῡk = 1
N
Gt · ῡk, (K.3)

where we can see ῡk to be eigenvector of Gt. Therefore, eigenvectors {ῡk}k of Gt can be

considered as unbiased estimations of eigenfunctions {υ̃k(·)}k at points in XXX . Note that the

above sampled approximations are expected to be less accurate for larger indexes k since the

corresponding υ̃k(·) will contain more high-frequency oscillations.

Furthermore, from Eq. (K.3) it is clear that each ῡk is associated with the eigenvalue

λk = N · λ̃k of Gt. Hence, eigenvalues {λk}k of Gt can be considered as unbiased estimations

of eigenfunctions {λ̃k}k, up to a multiplier N .

Likewise, υ̃k(X) at an arbitrary point X can be estimated in a similar way, by combining

191

Eq. (K.1) and Eq. (K.2):

λ̃k · υ̃k(X) ≈ 1
N

N∑
i=1

gt(X,Xi) · υ̃k(Xi) =⇒ λk · υ̃k(X) ≈ gt(X,XXX) · ῡk, (K.4)

where gt(X,XXX) is a row vector with gt(X,XXX)(i) = gt(X,Xi). The above approximation is

used in the Appendix O to derive NN dynamics at testing points.

192

APPENDIX L

Relation between FIM and Hessian of the Loss

Hessian of a typical loss in Eq. (14.1) can be written as:

Ht ,
∂2L(θt, D)

∂θ2 = 1
N
AtDtA

T
t + 1

N

N∑
i=1

`′
[
Xi, Y i, fθt(Xi)

]
· Ht(Xi), (L.1)

where At is Jacobian matrix defined in Section 14.2, Dt is a diagonal matrix with Dt(i, i) =
∂2`[Xi,Y i,fθt (X

i)]
∂f2
θ

andHt(X) , ∂2fθt (X)
∂θ2 is the model Hessian.

Further, in case of L2 loss we will have Dt = I and

Ht = 1
N
Ft + 1

N

N∑
i=1

`′
[
Xi, Y i, fθt(Xi)

]
· Ht(Xi). (L.2)

Finally, considering final stages of the optimization, the residual `′
[
Xi, Y i, fθt(Xi)

]
=

fθt(Xi) − Y i is approximately zero and hence the second term of Eq. (L.2) RHS can be

neglected. Therefore, for L2 loss we will have Ht ≈ 1
NFt.

Beyond L2 loss, a connection between FIM and the loss Hessian was also observed for

the cross-entropy loss in [37]. Authors empirically observed that the loss gradient∇θL(θt, D)
converges very fast into a tiny subspace spanned by a few top eigenvectors of Ht. This suggests

that top eigenvectors of Ht and Ft are tightly aligned and are spanning the same subspace of

R|θ| also for cross-entropy case, as follows. Denote At’s SVD as triplets {
√
λti, ω̄

t
i , ῡ

t
i}N

′
i=1 of

ordered singular values, left and right singular vectors respectively, where N ′ is a number of

non-zero singular values. Then,∇θL(θt, D) can be written as:

∇θL(θt, D) = 1
N
At · m̄t = 1

N

 N ′∑
i=1

√
λti · ω̄

t
i · (ῡti)T

 · m̄t = 1
N

N ′∑
i=1

√
λti < ῡti , m̄t > ω̄ti .

(L.3)

Due to typical extremely fast decay of λti w.r.t. i, described along Chapter 14, ∇θL(θt, D) in

the above expression can be roughly seen as a linear combination of only {ω̄ti} associated with

several top {λti}. Noting that these are also the top eigenvectors of Ft, we see that∇θL(θt, D) is

193

located in top-spectrum of Ft. Further, taking into account the empirical observation from [37],

we can conclude from above that top eigenvectors of Ft and Ht are tightly aligned.

194

APPENDIX M

Movement of θ along FIM Eigenvector causes
Movement of NN Output along Gramian

Eigenvector

To understand the relation between FIM Ft and Gramian Gt more intuitively, here we show their

dual connection in terms of how the movement along FIM eigenvector ω̄ti in θ-space affects the

movement in the function space. Specifically, consider f̄t to be a vector of NN outputs at training

points at optimization time t, similarly to the formulation in Section 14.1. Further, consider

a movement of the model in θ-space from current θt to a new location θt′ = θt +
√
λti · ω̄ti

in direction ω̄ti where
√
λti is used as a step size. Then the f̄t′ at the new location can be

approximated via first-order Taylor as:

f̄t′ = f̄t +
√
λti ·A

T
t · ω̄ti , (M.1)

where At is Jacobian matrix defined in Section 14.2. Moreover, considering the singular value

decomposition (SVD) of At, we can see that f̄t′ − f̄t = λti · ῡti . That is, walking in the direction

ω̄ti in θ-space changes NN outputs only along ῡti , according to first-order dynamics.

195

196

APPENDIX N

Dynamics of L2 Loss for a Fixed Gramian, at
Training Points

Consider Eq. (14.3) with a fixed Gramian G whose eigenvalues and eigenvectors are {λi}Ni=1
and {ῡi}Ni=1 respectively. Define N ′ to be a number of non-zero eigenvalues. Likewise, consider

the residual vector m̄t = f̄t − ȳ whose first-order dynamics can be written as:

dm̄t , m̄t+1 − m̄t = f̄t+1 − f̄t = df̄t = − δ

N
·G · m̄t =⇒

=⇒ m̄t+1 =
[
I − δ

N
·G
]
· m̄t =⇒ m̄t =

N ′∑
i=1

[
1− δ

N
λi

]t
< ῡi, m̄0 > ῡi + m̄z

0,

(N.1)

where m̄z
0 is a projection of m̄0 to null-space of G, with G · m̄z

0 = 0̄.

Further, noting that:

t−1∑
j=0

m̄j =
N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi + tm̄z
0, (N.2)

the f̄t can be then rewritten as:

f̄t = f̄0 +
t−1∑
j=0

df̄j = f̄0−
δ

N
G ·

t−1∑
j=0

m̄j = f̄0−
δ

N
G ·

N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi =

= f̄0 −
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > ῡi. (N.3)

197

198

APPENDIX O

Dynamics of L2 Loss for a Fixed Gramian, at
Testing Points

From Eq. (14.2) we can also derive dynamics of NN output at an arbitrary testing point X ′:

dfθt(X ′) = fθt+1(X ′)− fθt(X ′) = − δ

N
g(X ′,XXX) · m̄t, (O.1)

where g(X ′,XXX) , ∇θfθt(X ′)T ·At is a row vector with g(X ′,XXX)(j) = g(X ′, Xj). Moreover,

similarly to Eq. (N.3) we get:

fθt(X ′) = fθ0(X ′) +
t−1∑
j=0

dfθj (X ′) = fθ0(X ′)− δ

N
g(X ′,XXX) ·

t−1∑
j=0

m̄j =

= fθ0(X ′)− δ

N
g(X ′,XXX) ·

 N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N λi

< ῡi, m̄0 > ῡi + tm̄z
0

 . (O.2)

In case G is invertible (i.e. λmin > 0), the above expression can also be written as

fθt(X ′) = fθ0(X ′)− g(X ′,XXX) ·G−1 ·
[
I −

[
I − δ

N ·G
]t]
· m̄0; a very similar expression was

previously derived in [71]. Likewise, considering the stability condition δ < 2N
λmax

, which is

required for a proper optimization convergence lim
t→∞

[
1− δ

N λi
]t

= 0, at time t =∞ we will

have fθ∞(X ′) = fθ0(X ′)− g(X ′,XXX) ·G−1 · m̄0.

Furthermore, for a singular G Eq. (O.2) can be simplified via two methods, using a gradient

at X ′ or eigenfunctions of the kernel g(·, ·).

Simplification via Gradient Observe that for G = ATt ·At to be time-invariant it is necessary

for gradients {∇θfθt(Xi)}Ni=1 at training points either to be constant along the optimization or

rotating together via some time-variant rotation matrix Rt, ∇θfθt(Xi) = Rt · ∇θfθ0(Xi) and

At = Rt · A0. Such rotational behavior will lead to the required time-independence of G =
AT0 ·RTt ·Rt ·A0 = AT0 ·A0. Similarly, for g(X ′,XXX) to be time-invariant the gradient∇θfθt(X ′)

199

at the testing point must rotate with the same rotation Rt, ∇θfθt(X ′) = Rt · ∇θfθ0(X ′).

Assuming the above gradient rotation, the row vector g(X ′,XXX) can be written as:

g(X ′,XXX) = ∇θfθt(X ′)T ·At = ∇θfθ0(X ′)T ·RTt ·Rt ·A0 = ∇θfθ0(X ′)T ·A0. (O.3)

Next, consider A0’s SVD as triplets {
√
λi, ω̄i, ῡi}N

′
i=1 of ordered singular values, left and

right singular vectors respectively, and denote ∇θfθ0(X ′) =
∑N ′
i=1 ai ·

√
λi · ω̄i for ai ,

<ω̄i,∇θfθ0 (X′)>√
λi

. Using SVD properties of A0, we get an identity g(X ′,XXX) =
∑N ′
i=1 ai · λi · ῡTi ,

and we can rewrite fθt(X ′) from Eq. (O.2) as (note that m̄z
0 is reduced since it is orthogonal to

{ῡi : λi 6= 0}):

fθt(X ′) = fθ0(X ′)−
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
ai < ῡi, m̄0 >=

= fθ0(X ′)−
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t] 1√
λi
< ῡi, m̄0 >< ω̄i,∇θfθ0(X ′) > . (O.4)

Likewise, under the stability condition δ < 2N
λmax

, fθt(X ′) at time t =∞ can be expressed

as:

fθ∞(X ′) = fθ0(X ′)−
N ′∑
i=1

1√
λi
< ῡi, m̄0 >< ω̄i,∇θfθ0(X ′) > . (O.5)

Simplification via Kernel Eigenfunctions According to Eq. (K.4), a product g(X ′,XXX) · ῡi
can be approximated by λi · υ̃i(X ′), with υ̃i(·) being an eigenfunction of g(·, ·). Using this

approximation, Eq. (O.2) is reduced to:

fθt(X ′) ≈ fθ0(X ′)− δ

N
·
[
N ′∑
i=1

1−
[
1− δ

N λi
]t

δ
N

< ῡi, m̄0 > υ̃i(X ′)+

+t·
∑
i:λi=0

λi < ῡi, m̄0 > υ̃i(X ′)
]

= fθ0(X ′)−
N ′∑
i=1

[
1−

[
1− δ

N
λi

]t]
< ῡi, m̄0 > υ̃i(X ′),

(O.6)

which at time t =∞ will converge to:

fθ∞(X ′) = fθ0(X ′)−
N ′∑
i=1

< ῡi, m̄0 > υ̃i(X ′). (O.7)

Intuition Eq. (O.4) and Eq. (O.6) describe first-order dynamics of NN output at a testing point.

The intuition behind these expressions can be summarized as following. First, for standard

NN initialization fθ0(X ′) is typically very close to be zero and can be neglected, leading to

m̄0 ≈ −ȳ. Like in Eq. (N.3), the inner-product term < ῡi, m̄0 >, independent of testing point

X ′, defines which part of the signal contained in m̄0 is learned along each spectral direction.

In general,
[
1− δ

N λi
]t

converges faster for large eigenvalues. Also, due to large λi being

200

typically associated with ῡi that contains a low-frequency signal, this leads to fast learning of

low-frequency information and slow (sometimes infinitely slow) learning of high-frequency

information. Further, the inner-product term < ω̄i,∇θfθ0(X ′) > in Eq. (O.4) or the eigenfunc-

tion υ̃i(X ′) in Eq. (O.6), that are functions of X ′, determine amount of information along i-th

spectral direction that is transferred into fθt(X ′), basically describing the generalization behind

Eq. (14.3) for a fixed Gramian G. Note that the convergence rate of fθt(X ′) towards fθ∞(X ′)
is governed by how close terms 1− δ

N λi in Eq. (O.4) and Eq. (O.6) are to zero, similarly to the

convergence rate of a system in Eq. (N.3). Hence, we expect fθt to converge to its final state at

both training and testing points with a similar speed.

201

202

APPENDIX P

First-order Change of Gt

Here we describe the first-order Taylor approximation of a change in Gt between sequential

iterations of GD optimization. We theorize that the thorough analysis of below expressions will

lead to the mathematical explanation required to understand evolution of Gt as also to better

understanding of NN dynamics.

First, change of the Jacobian At, defined in Section 14.2, can be described as:

dAt , At+1 −At ≈ −
δ

N
·Wt, (P.1)

where Wt is |θ| ×N matrix with i-th column beingHt(Xi) ·At · m̄t, withHt(X) , ∂2fθt (X)
∂θ2

being the model Hessian.

Hence, the change between Gt+1 = ATt+1 ·At+1 and Gt = ATt ·At can be written as:

dGt , Gt+1 −Gt ≈ −
δ

N
·
[
ATt ·Wt +W T

t ·At
]

+ δ2

N2 ·W
T
t ·Wt. (P.2)

The last term can be neglected due to δ2

N2 being significantly smaller than δ
N , which leads to:

dGt , Gt+1 −Gt ≈ −
δ

N
·
[
Qt +QTt

]
, (P.3)

where Qt is N ×N matrix whose i-th column is ATt · Ht(Xi) ·At · m̄t.

Recently, similar expressions were reported by [25] (specifically, see Eq. (100-102)) and

by [49].

203

204

APPENDIX Q

Computation Details of Fourier Transform

Here we provide more details on how Fourier Transform was calculated in our experiments.

Consider a function ϕ(X) and N dataset pointsXXX = {Xk ∈ Rd}Nk=1 sampled from an arbitrary

pdf P (X). Further, consider a N × 1 vector ϕ̄ with entries ϕ̄(k) = ϕ(Xk). Given ϕ̄, we

compute Fourier Transform ϕ̂(ξ) of a function ϕ(X) at ξ ∈ Rd as following:

ϕ̂(ξ) =
∫
ϕ(X) · exp [−2πi· < ξ,X >] · P (X)dX ≈

≈ 1
N

N∑
k=1

ϕ(Xk) · exp
[
−2πi· < ξ,Xk >

]
= 1
N
ϕ̄T ε̄, (Q.1)

where ε̄ is a N × 1 vector with entries ε̄(k) = exp
[
−2πi· < ξ,Xk >

]
. Note that the above

definition of Fourier Transform w.r.t. pdf P (X) is identical to the common formulation without

a term P (X) inside, since in our experiments data distribution is P (X) = 1 (see ”Setup” in

Section 14.5).

In all our experiments we compute ϕ̂(ξ) for ξ taking values in [−40, 40]2. Further, we

present a frequency component |ϕ̂(ξ)| as an image.

To perform the above computation, we require sampled values ϕ̄ of the analyzed function

ϕ(X). In case this function is the eigenfunction of gradient similarity kernel, the eigenvector of

Gt approximates this eigenfunction’ values at the training points, as is shown in the Appendix

K. Hence, in this case the eigenvector of Gt serves as a vector ϕ̄ in Eq. (Q.1). Likewise, the

above calculation using the residual vector m̄t can be considered as a Fourier Transform of a

function r(X) , fθt(X)− y(X).

205

206

Bibliography

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning

algorithm for boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[2] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of diver-

gence of one distribution from another. Journal of the Royal Statistical Society:

Series B (Methodological), 28(1):131–142, 1966.

[3] T Amemiya. Asymptotic properties of extremum estimators. Advanced economet-

rics, Harvard university press, 1985.

[4] C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian

nonparametric problems. Annals of Statistics, 2:1152–1174, 1974.

[5] Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[7] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained

analysis of optimization and generalization for overparameterized two-layer neural

networks. arXiv preprint arXiv:1901.08584, 2019.

[8] Daniel Ashlock, Colin Lee, and Cameron McGuinness. Search-based procedural

generation of maze-like levels. IEEE Transactions on Computational Intelligence

and AI in Games, 3(3):260–273, 2011.

[9] Adil M Bagirov, L Jin, N Karmitsa, A Al Nuaimat, and Napsu Sultanova. Sub-

gradient method for nonconvex nonsmooth optimization. Journal of Optimization

Theory and applications, 157(2):416–435, 2013.

[10] Leemon Baird, David Smalenberger, and Shawn Ingkiriwang. One-step neural

network inversion with pdf learning and emulation. In 2005 IEEE International

Joint Conference on Neural Networks, IJCNN’05, volume 2, pages 966–971. IEEE,

2005.

207

[11] Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence

rate of neural networks for learned functions of different frequencies. arXiv preprint

arXiv:1906.00425, 2019.

[12] James Vere Beck, Kevin David Cole, A Haji-Sheikh, and B Litkouhi. Heat con-

duction using Green’s functions, volume 194. Hemisphere Publishing Corporation

London, 1992.

[13] Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R Devon Hjelm, and Aaron

Courville. Mine: mutual information neural estimation. arXiv preprint

arXiv:1801.04062, 2018.

[14] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data

with multi-layer neural networks. In Advances in Neural Information Processing

Systems (NIPS), pages 400–406, 2000.

[15] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels.

arXiv preprint arXiv:1905.12173, 2019.

[16] C.M. Bishop. Mixture density networks. Technical report, Aston University,

Birmingham, 1994.

[17] Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-

young losses. Journal of Machine Learning Research, 21(35):1–69, 2020.

[18] Lev M Bregman. The relaxation method of finding the common point of convex

sets and its application to the solution of problems in convex programming. USSR

computational mathematics and mathematical physics, 7(3):200–217, 1967.

[19] Caffe. caffe.berkeleyvision.org.

[20] Gustavo Deco and Wilfried Brauer. Higher order statistical decorrelation without

information loss. In Advances in Neural Information Processing Systems (NIPS),

pages 247–254, 1995.

[21] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent

components estimation. arXiv preprint arXiv:1410.8516, 2014.

[22] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real nvp. arXiv preprint arXiv:1605.08803, 2016.

[23] Xialiang Dou and Tengyuan Liang. Training neural networks as learning data-

adaptive kernels: Provable representation and approximation benefits. arXiv

preprint arXiv:1901.07114, 2019.

[24] Tarn Duong and Martin L Hazelton. Cross-validation bandwidth matrices for mul-

tivariate kernel density estimation. Scandinavian Journal of Statistics, 32(3):485–

506, 2005.

208

caffe.berkeleyvision.org

[25] Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman

diagrams. arXiv preprint arXiv:1909.11304, 2019.

[26] Shinto Eguchi. Information divergence geometry and the application to statistical

machine learning. In Information theory and statistical learning, pages 309–332.

Springer, 2009.

[27] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked

autoencoder for distribution estimation. In Intl. Conf. on Machine Learning (ICML),

pages 881–889, 2015.

[28] Charles J Geyer and Elizabeth A Thompson. Constrained monte carlo maximum

likelihood for dependent data. Journal of the Royal Statistical Society. Series B

(Methodological), pages 657–699, 1992.

[29] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages 249–256, 2010.

[30] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,

and estimation. Journal of the American statistical Association, 102(477):359–378,

2007.

[31] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal

of machine learning research, 12(Jul):2211–2268, 2011.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems (NIPS), pages 2672–2680,

2014.

[33] Dilan Görür and Carl Edward Rasmussen. Dirichlet process gaussian mixture mod-

els: Choice of the base distribution. Journal of Computer Science and Technology,

25(4):653–664, 2010.

[34] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and

Alex J Smola. A kernel method for the two-sample-problem. In Advances in neural

information processing systems, pages 513–520, 2007.

[35] Peter D Grünwald, A Philip Dawid, et al. Game theory, maximum entropy,

minimum discrepancy and robust bayesian decision theory. the Annals of Statistics,

32(4):1367–1433, 2004.

[36] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 5769–5779, 2017.

209

[37] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a

tiny subspace. arXiv preprint arXiv:1812.04754, 2018.

[38] Michael Gutmann and Jun-ichiro Hirayama. Bregman divergence as general frame-

work to estimate unnormalized statistical models. arXiv preprint arXiv:1202.3727,

2012.

[39] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, pages

297–304, 2010.

[40] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of un-

normalized statistical models, with applications to natural image statistics. J. of

Machine Learning Research, 13(Feb):307–361, 2012.

[41] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Training dynamics of

deep networks using stochastic gradient descent via neural tangent kernel. arXiv

preprint arXiv:1905.13654, 2019.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[43] Nils-Bastian Heidenreich, Anja Schindler, and Stefan Sperlich. Bandwidth se-

lection for kernel density estimation: a review of fully automatic selectors. AStA

Advances in Statistical Analysis, 97(4):403–433, 2013.

[44] G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18:1527–1554, 2006.

[45] Geoffrey E Hinton. Products of experts. 1999.

[46] Geoffrey E Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14(8):1771–1800, 2002.

[47] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex

analysis. Springer Science & Business Media, 2012.

[48] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257, 1991.

[49] Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and

neural tangent hierarchy. arXiv preprint arXiv:1909.08156, 2019.

[50] Aapo Hyvärinen. Estimation of non-normalized statistical models by score match-

ing. Journal of Machine Learning Research, 6(Apr):695–709, 2005.

210

[51] Aapo Hyvarinen. Connections between score matching, contrastive divergence, and

pseudolikelihood for continuous-valued variables. IEEE Transactions on neural

networks, 18(5):1529–1531, 2007.

[52] Aapo Hyvärinen. Some extensions of score matching. Computational statistics &

data analysis, 51(5):2499–2512, 2007.

[53] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,

2015.

[54] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-

vergence and generalization in neural networks. In Advances in Neural Information

Processing Systems (NIPS), pages 8571–8580, 2018.

[55] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity - a

measure of the difficulty of speech recognition tasks. The Journal of the Acoustical

Society of America, 62(S1):S63–S63, 1977.

[56] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares ap-

proach to direct importance estimation. Journal of Machine Learning Research,

10(Jul):1391–1445, 2009.

[57] Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. Statistical analysis of

kernel-based least-squares density-ratio estimation. Machine Learning, 86(3):335–

367, 2012.

[58] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of

fisher information in deep neural networks: mean field approach. arXiv preprint

arXiv:1806.01316, 2018.

[59] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[60] D. Kopitkov and V. Indelman. No belief propagation required: Belief space

planning in high-dimensional state spaces via factor graphs, matrix determinant

lemma and re-use of calculation. Intl. J. of Robotics Research, 36(10):1088–1130,

August 2017.

[61] D. Kopitkov and V. Indelman. Deep PDF: Probabilistic surface optimization and

density estimation. arXiv preprint arXiv:1807.10728, 2018.

[62] D. Kopitkov and V. Indelman. Robot localization through information recovered

from cnn classificators. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS). IEEE, October 2018.

211

[63] Dmitry Kopitkov and Vadim Indelman. Neural spectrum alignment: Empirical

study. arXiv preprint arXiv:1910.08720, 2019.

[64] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[65] Matthieu Labeau and Alexandre Allauzen. Learning with noise-contrastive estima-

tion: Easing training by learning to scale. In Proceedings of the 27th International

Conference on Computational Linguistics, pages 3090–3101, 2018.

[66] Louis Landweber. An iteration formula for fredholm integral equations of the first

kind. American journal of mathematics, 73(3):615–624, 1951.

[67] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pages 29–37, 2011.

[68] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November

1998.

[69] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on

energy-based learning. Predicting structured data, 1(0), 2006.

[70] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,

Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,

et al. Photo-realistic single image super-resolution using a generative adversarial

network. arXiv preprint, 2016.

[71] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-

Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as

linear models under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

[72] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose

bayesian inference algorithm. In NIPS, pages 2378–2386, 2016.

[73] Qiang Liu and Dilin Wang. Learning deep energy models: Contrastive divergence

vs. amortized mle. arXiv preprint arXiv:1707.00797, 2017.

[74] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in

nonconvex statistical estimation: Gradient descent converges linearly for phase re-

trieval, matrix completion, and blind deconvolution. Foundations of Computational

Mathematics, pages 1–182, 2019.

[75] S. N. MacEachern and P. Muller. Estimating mixture of dirichlet process models.

Journal of Computational and Graphical Statistics, 7:223–238, 1998.

212

[76] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks. In Intl.

Conf. on Computer Vision (ICCV), pages 2813–2821. IEEE, 2017.

[77] Hamed Masnadi-Shirazi and Nuno Vasconcelos. On the design of loss functions

for classification: theory, robustness to outliers, and savageboost. In Advances in

neural information processing systems, pages 1049–1056, 2009.

[78] Takeru Matsuda, Masatoshi Uehara, and Aapo Hyvarinen. Information criteria for

non-normalized models. arXiv preprint arXiv:1905.05976, 2019.

[79] G.J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to

Clustering. Marcel Dekker, New York, 1988.

[80] Aditya Menon and Cheng Soon Ong. Linking losses for density ratio and class-

probability estimation. In Intl. Conf. on Machine Learning (ICML), pages 304–313,

2016.

[81] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[82] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018.

[83] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently

with noise-contrastive estimation. In Advances in Neural Information Processing

Systems (NIPS), pages 2265–2273, 2013.

[84] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural

probabilistic language models. arXiv preprint arXiv:1206.6426, 2012.

[85] Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative

models. arXiv preprint arXiv:1610.03483, 2016.

[86] Youssef Mroueh and Tom Sercu. Fisher gan. In Advances in Neural Information

Processing Systems (NIPS), pages 2510–2520, 2017.

[87] Alfred Müller. Integral probability metrics and their generating classes of functions.

Advances in Applied Probability, 29(2):429–443, 1997.

[88] Hyunha Nam and Masashi Sugiyama. Direct density ratio estimation with convo-

lutional neural networks with application in outlier detection. IEICE TRANSAC-

TIONS on Information and Systems, 98(5):1073–1079, 2015.

[89] Amy Nesky and Quentin F Stout. Neural networks with block diagonal inner

product layers. In International Conference on Artificial Neural Networks, pages

51–61. Springer, 2018.

213

[90] KW Newey and D McFadden. Large sample estimation and hypothesis. Handbook

of Econometrics, IV, Edited by RF Engle and DL McFadden, pages 2112–2245,

1994.

[91] Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning

deep energy models. In International Conference on Machine Learning, pages

1105–1112, 2011.

[92] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating

divergence functionals and the likelihood ratio by convex risk minimization. IEEE

Transactions on Information Theory, 56(11):5847–5861, 2010.

[93] XuanLong Nguyen, Martin J Wainwright, Michael I Jordan, et al. On surrogate

loss functions and f-divergences. The Annals of Statistics, 37(2):876–904, 2009.

[94] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative

neural samplers using variational divergence minimization. In Advances in Neural

Information Processing Systems, pages 271–279, 2016.

[95] Travis A O’Brien, Karthik Kashinath, Nicholas R Cavanaugh, William D Collins,

and John P O’Brien. A fast and objective multidimensional kernel density estima-

tion method: fastkde. Computational Statistics & Data Analysis, 101:148–160,

2016.

[96] Simon T O’Callaghan and Fabio T Ramos. Gaussian process occupancy maps for

dynamic environments. In Experimental Robotics, pages 791–805. Springer, 2016.

[97] Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks.

Information and Inference: A Journal of the IMA, 4(2):108–153, 2015.

[98] Thomas R Osborn. Fast teaching of boltzmann machines with local inhibition. In

International Neural Network Conference, pages 785–785. Springer, 1990.

[99] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generaliza-

tion guarantees for neural networks via harnessing the low-rank structure of the

jacobian. arXiv preprint arXiv:1906.05392, 2019.

[100] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive

flow for density estimation. In Advances in Neural Information Processing Systems

(NIPS), pages 2338–2347, 2017.

[101] Hyeyoung Park, S-I Amari, and Kenji Fukumizu. Adaptive natural gradient learning

algorithms for various stochastic models. Neural Networks, 13(7):755–764, 2000.

[102] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding

gradient problem. CoRR, abs/1211.5063, 2:417, 2012.

214

[103] Luis Perez and Jason Wang. The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[104] Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of

wasserstein gans. arXiv preprint arXiv:1709.08894, 2017.

[105] Miika Pihlaja, Michael Gutmann, and Aapo Hyvarinen. A family of computa-

tionally efficient and simple estimators for unnormalized statistical models. arXiv

preprint arXiv:1203.3506, 2012.

[106] David Pollard. A user’s guide to measure theoretic probability, volume 8. Cam-

bridge University Press, 2002.

[107] Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel

perspectives. Springer Science & Business Media, 2010.

[108] PyTorch. pytorch.org.

[109] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[110] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A

Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural

networks. arXiv preprint arXiv:1806.08734, 2018.

[111] Fabio Ramos and Lionel Ott. Hilbert maps: scalable continuous occupancy map-

ping with stochastic gradient descent. The International Journal of Robotics

Research, 35(14):1717–1730, 2016.

[112] Mark D Reid and Robert C Williamson. Composite binary losses. The Journal of

Machine Learning Research, 11:2387–2422, 2010.

[113] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normal-

izing flows. arXiv preprint arXiv:1505.05770, 2015.

[114] Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation

with deep density models. arXiv preprint arXiv:1302.5125, 2013.

[115] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.

Springer Science & Business Media, 2009.

[116] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence

rate of neural networks for learned functions of different frequencies. In Advances

in Neural Information Processing Systems, pages 4761–4771, 2019.

215

pytorch.org

[117] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empir-

ical analysis of the hessian of over-parametrized neural networks. arXiv preprint

arXiv:1706.04454, 2017.

[118] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems (NIPS), pages 2234–2242, 2016.

[119] Saeed Saremi, Arash Mehrjou, Bernhard Schölkopf, and Aapo Hyvärinen. Deep

energy estimator networks. arXiv preprint arXiv:1805.08306, 2018.

[120] David W Scott. Multivariate density estimation: theory, practice, and visualization.

John Wiley & Sons, 2015.

[121] Ransalu Senanayake and Fabio Ramos. Building continuous occupancy maps with

moving robots. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[122] Jayaram Sethuraman and Ram C Tiwari. Convergence of dirichlet measures and

the interpretation of their parameter. In Statistical decision theory and related

topics III, pages 305–315. Elsevier, 1982.

[123] Yi Shen. Loss functions for binary classification and class probability estimation.

PhD thesis, University of Pennsylvania, 2005.

[124] Georgy Shevlyakov, Stephan Morgenthaler, and Alexander Shurygin. Redescend-

ing m-estimators. Journal of Statistical Planning and Inference, 138(10):2906–

2917, 2008.

[125] Bernard W Silverman. Density estimation for statistics and data analysis. Rout-

ledge, 2018.

[126] Noah A Smith and Jason Eisner. Contrastive estimation: Training log-linear models

on unlabeled data. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, pages 354–362. Association for Computational

Linguistics, 2005.

[127] Paul Smolensky. Information processing in dynamical systems: Foundations

of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel

Distributed Processing, volume 1, pages 194–281. The MIT press, Cambridge,

MA, 1986.

[128] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[129] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation

in machine learning. Cambridge University Press, 2012.

216

[130] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching

under the bregman divergence: a unified framework of density-ratio estimation.

Annals of the Institute of Statistical Mathematics, 64(5):1009–1044, 2012.

[131] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von

Bünau, and Motoaki Kawanabe. Direct importance estimation for covariate shift

adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699–746, 2008.

[132] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In AAAI, volume 4, page 12, 2017.

[133] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Go-

ing deeper with convolutions. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2015.

[134] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[135] TensorFlow. www.tensorflow.org.

[136] George R Terrell, David W Scott, et al. Variable kernel density estimation. The

Annals of Statistics, 20(3):1236–1265, 1992.

[137] Masatoshi Uehara, Takeru Matsuda, and Fumiyasu Komaki. Analysis of noise

contrastive estimation from the perspective of asymptotic variance. arXiv preprint

arXiv:1808.07983, 2018.

[138] Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka

Matsuo. b-gan: Unified framework of generative adversarial networks. 2016.

[139] Unreal Engine. www.unrealengine.com.

[140] Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural

autoregressive density-estimator. In Advances in Neural Information Processing

Systems (NIPS), pages 2175–2183, 2013.

[141] Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel

learning. In Proceedings of the 26th Annual International Conference on Machine

Learning, pages 1065–1072, 2009.

[142] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &

Business Media, 2008.

217

www.tensorflow.org
www.unrealengine.com

[143] Pascal Vincent. A connection between score matching and denoising autoencoders.

Neural computation, 23(7):1661–1674, 2011.

[144] Tinghua Wang, Dongyan Zhao, and Shengfeng Tian. An overview of kernel

alignment and its applications. Artificial Intelligence Review, 43(2):179–192, 2015.

[145] Francis Williams, Matthew Trager, Claudio Silva, Daniele Panozzo, Denis Zorin,

and Joan Bruna. Gradient dynamics of shallow univariate relu networks. arXiv

preprint arXiv:1906.07842, 2019.

[146] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep

kernel learning. In Artificial Intelligence and Statistics, pages 370–378, 2016.

[147] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. Un-

derstanding data augmentation for classification: when to warp? arXiv preprint

arXiv:1609.08764, 2016.

[148] Blake Woodworth, Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan

Srebro. Kernel and deep regimes in overparametrized models. arXiv preprint

arXiv:1906.05827, 2019.

[149] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Ag-

gregated residual transformations for deep neural networks. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 5987–5995. IEEE, 2017.

[150] Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi

Sugiyama. Relative density-ratio estimation for robust distribution comparison. In

Advances in Neural Information Processing Systems (NIPS), pages 594–602, 2011.

[151] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured

energy based models for anomaly detection. In International Conference on

Machine Learning, pages 1100–1109, 2016.

[152] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[153] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adver-

sarial network. arXiv preprint arXiv:1609.03126, 2016.

[154] Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan Zhang, Zhihua

Zhang, and Yong Yu. Understanding the effectiveness of lipschitz-continuity in

generative adversarial nets. arXiv preprint arXiv:1807.00751, 2018.

[155] Royce KP Zia, Edward F Redish, and Susan R McKay. Making sense of the

legendre transform. American Journal of Physics, 77(7):614–622, 2009.

218

חדשות (objectivefunctions) אובייקטיביות בפונקציות מעשי ושימוש ההצעה את מאפשרת PSO

מאפשר זה שלהן. אוילר־לגראנז' משוואת הגדרת ידי על אלא סגורה, בצורה לביטוי ניתנות שלא

מספיקים תנאים מפיקים אנו בנוסף, לכן. קודם בחשבון נלקחו שלא חדשנים באומדנים שימוש

שונים. תנאים תחת התכנסותה את ומנתחים PSOה־ פרדיגמת של האופטימיזציה ליציבות

למידה של ואינטואיטיבית פשוטה הבנה המאפשרת חדשה פרשנות רק אינו PSO כי לציין חשוב

תואמת אכן הנלמד המודל שעובר האופטימיזציה שדינמיקת מראים אנו זו תזה בעבודת סטטיסטית.

ביתר להבין לנו אפשרה כזו התאמה עליו. המופעלים מסוימים כוחות עם הפיזי המשטח תמונת את

וקטנים, גדולים נתונים מאגרי של במקרים שלה והתנהגות PSO של האופטימיזציה יציבות את פירוט

ביצועיה. לשיפור חדשות דרכים להציע גם כמו

בתחומים החיונית בסיסית סטטיסטית בעיה ־ הצפיפות אומדן משימת לפתרון PSO מיישמים אנו

אומדני ומציעים המתאים, המשקל שיווי עם PSO תת־משפחת מנתחים אנו רבים. ויישומים מדעיים

צפיפות לאומדן אחרות גישות גם כמו אלה, טכניקות .PSO−LDE המכונים הצפיפות לוגריתם

הנלמד, המודל של כולל אינטגרל על מפורש אילוץ מטילות אינן זו, בתזה המוצגות PSO מבוססות

בהתכנסות מייצר PSO של הפנימי הכוחות מאזן זאת, עם לחלוטין. מנורמל לא להיות לו ומאפשרות

ל־1. מאוד קרוב המודל של הכולל האינטגרל כאשר מנורמלים, וכמעט ביותר מדויקים צפיפות קירובי

ומציעים יותר, טובים שערוך לביצועי עצביות רשתות ארכיטקטורות של אוסף בוחנים אנו בנוסף,

גישת השערוך. דיוק ברמת משמעותי לשיפור אותנו שהובילו אלכסונים בלוקים של חדשות שכבות

של רב־מודאליות צפיפויות ללמוד לנו אפשרו חדשה רשת ארכיטקטורת עם בשילוב PSO−LDE

כולל אחרות, חדישות לשיטות בהשוואה גבוה יותר הרבה בדיוק מימדים 02 של רציפים נתונים

התוצאות את מדגימים אנו .(noise contrastive estimation, NCE) רעש ניגודיות הערכת

שלנו. בניסויים האלו

הלמידה בקהילת הידוע המודל לגרעין אותם ומקשרים PSO אומדני ביצועי את חוקרים אנו לבסוף,

PSOה־ דיוק על השפעתו את מנתחים אנו .Neural Tangent Kernel (NTK)כ־ גם העמוקה

היישור אופייני. אופטימיזציה תהליך במהלך התפתחותו את וחוקרים ההטיות, סטיית פיתרון ועל

מודלים של הלמידה דינמיקת לגבי רבות תובנות מספק היעד פונקציית כלפי זה גרעין של הנחשף

העמוקה. הלמידה תורת של יותר טובה להבנה בעתיד להוביל עשויים אשר עמוקים,

ii

תקציר

יחס או צפיפות אומדן כגון חשובות, סטטיסטיות בעיות הכולל רחב תחום הוא הסתברותי שערוך

בתחומי נעשה אלה לבעיות פתרונות של נרחב שימוש ועוד. צפיפות, דגימת התפלגות, שינוי צפיפויות,

מדעית/תעשייתית. מידע אנליזת נדרשת בהם אחרים רבים ובתחומים כלכלה תמונה, עיבוד רובוטיקה,

חיישנים מדידות בין הסתברותי מודל אוטומטית או ידנית להסיק נדרשים אנו ברובוטיקה לדוגמה,

במהלך הרובוט מצב את להעריך כדי בו להשתמש ניתן בהמשך אשר הרובוט, של הנסתר למצב

ויישומם הסתברותי לשערוך לפתרונות רבה חשיבות קיימת לעיל, באמור בהתחשב מקוון. תרחיש

רבים. מדעיים בתחומים אמיתי עולם לבעיות

לחלוטין מחוברות שכבות עם מלאכותית עצבית רשת כי קובעת האוניברסלית הקירוב תיאוריית

קומפקטית קבוצה תת על המוגדרת רציפה פונקציה כל למדל יכולה (fully−connected layers)
על המבוססות שיטות האחרון בעשור כן, על יתר אוניברסלי. קירוב לכלי אותה שהופך מה ,Rn של

לאחרונה בנוסף, חיזוק. ולמידת ממוחשבת ראייה בתחומי דופן יוצאי ביצועים סיפקו עמוקה למידה

עצביות רשתות של מהירה למידה המאפשרות חזקות פתוחות וספריות אופטימיזציה מנועי פותחו

.(GPUs) גרפים מאיצים באמצעות

בשם חדשה, מאוחדת סטטיסטית למידה פרדיגמה הצגת היא זו תזה עבודת של העיקרית תרומתה

הסתברותיות הסקה בעיות פתרון המאפשרת ,Probabilistic Surface Optimization (PSO)
מלא. באופן עצביות רשתות של הקירוב כוח את לנצל ומאפשרת עמוקה, למידה באמצעות שונות

ידי על המיוצג המשטח, שבה וירטואלית פיזיקלית כמערכת ההסתברותית ההסקה את מבטא PSO

אלגוריתם של אופטימיזציה תוצאת שהם כוחות ידי על נדחף המותאם, הפונקציות מחלל פונקציה

האופטימיזציה במהלך נדחק זה משטח כי מראים אנו .(gradient descent, GD) שיפוע ירידת

בכוחות שימוש ידי על כן, על יתר זה. את זה מבטלים הממוצעים הנקודתיים הכוחות בו היעד למשטח

של שונות הסתברותיות לפונקציות להתכנס המשטח פני את לאכוף יכולים אנו שונים, וירטואליים

שימושיות סטטיסטיות ופונקציות מותנות צפיפויות שונים, צפיפויות יחסי נתונים, צפיפות כגון נתונים,

אחרות. רבות

הלא־מנורמלים מודלים כמו קיימות, רבות הסתברותיות הסקה גישות כי מראים אנו בנוסף,

גנריות נגדיות רשתות מבקרי ,(energy models) אנרגיה מודלי ,(unnormalized models)
מיישמות כבר אנטרופיה, מבוססות ושיטות (generative adversarial networks, GANs)
בפריזמה בעבר נחקרה לא שלהם הבסיסית שהדינמיקה פי על אף מובנה, באופן PSO עקרונות

פשוטה בדרך רבות ומקוריות חדשניות שיטות של בניה מאפשר PSO בנוסף, וירטואליים. כוחות של

ה־ פרדיגמת כן, על יתר הכוחות. ואיזון הווירטואלי המשטח של בסיסיים כללים באותם שימוש ידי על

i

וחלל אוירונוטיקה להנדסת בפקולטה אינדלמן ואדים חבר פרופסור בהנחיית נעשה המחקר

תודות

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

הסתברותי משטח של כללית אופטימיזציה
הצפיפות לוגריתם ושערוך

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

קופיטקוב דמיטרי

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2020 אוקטובר חיפה חשוון תשפ"א

הסתברותי משטח של כללית אופטימיזציה
הצפיפות לוגריתם ושערוך

קופיטקוב דמיטרי

