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Introduction

* SLAM - simultaneous localization and mapping:

Landmark localization
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Introduction

* SLAM - simultaneous localization and mapping:
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Introduction

* SLAM - simultaneous localization and mapping:

Status:
= Well researched (also today), many open-source libraries
= Partial success in real world autonomous systems
= Online performance

Challenges:

= Accumulated error (Linearization, Measurement noise, miss
identification)

= High complexity — not real-time. Uses much power.
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Motivation

Qualitative spatial reasoning — easier, and good enough

Human navigation:

* Landmark Relative
path

* Qualitative
geometry

* Local accurate
navigation for
minimal effort

‘ Relative
path

UES" ) )

-

Qualitative path Vs metric path
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Motivation

Qualitative spatial reasoning — easier, and good enough
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Motivation

Qualitative spatial reasoning — easier, and good enough

relative location qualitative localization
(no globa/l frame) (qualitative geometric relations)
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v/ less sensitive to noise
¢/ No Long term error accumulation
v/ Low complexity
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Concept - Intuition

* Many small two-landmark relative frames of reference — no global
frame

* Qualitative spatial partition instead of metric location

/
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e Estimate state from landmark relative measurements
o

]
@
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[1] Freksa 1992 . On the utilization of spatial structures for cognitively plausible and
O efficient reasoning.

[2] Schlieder 1993 Representing visible locations for qualitative navigation.

[3] Scivos 2004 The finest of its class: The natural pointbased ternary calculus Ir for

qualitative spatial reasoning.
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Concept

Intuition

* Qualitative relational localization
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Concept - Intuition

* Qualitative relational mapping

Map -> connected graph of landmark triplets
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QSR related work

 Spatial Qualitative Reasoning (QSR) approaches:

McClelland,2013
* Typically assume data association is given

e Address mainly mapping, less localization
* Not probabilistic

 Extended double cross

|BC|>|AB|
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B Cin :ntdo;B
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|Ac|>|AB]
C Left of AB | CRight of AB
CReRm Image taken from McClelland,2013 [5]
McClelland,2013, Qualitative relational mapping for planetary rovers
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QSR related work

 Spatial Qualitative Reasoning (QSR) approaches:

Padgett 2016+2017
* Probabilistic

e Passive + Active planning
* Not a full SLAM framework

Zilberman & Indelman 2022
 Composition in qualitative approaches (RA-L + ICRA 2022)

e Active planning (ongoing)

Padgett, 2016, Probabilistic qualitative mapping for robots
Zilberman, 2022, Incorporating Compositions in Qualitative
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Contributions

Our approach: — probabilistic time and spatial dependent QSR:
* Full probabilistic SLAM framework:
* Localization
°* mapping
* Incorporating Motion model
* Factor graph propagation

publications:

* |[ROS 2020

* Journal paper(in progress)

* Open-source repo (in progress)
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Contributions

Benefits Vs previous QSR work:
* improve accuracy

* improve performance complexity
* estimate sets of landmarks that weren’t seen together

Benefits Vs metric SLAM:
* Low computation

* Robustness to noise / sensor quality
* Simpler computational process
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Single Triplet
Qualitative Estimation
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Our Approach —single triplet

Estimate each triplet separately:
e Landmark relative coordinate frames

* Small 3 landmark — multiple view SLAM problems

Fusing data:

 Build qualitative map and propagate data
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Formulation

2D navigation:

* Metric state

Xin - Camera pose at times 1:n
LAB:C - Metric location of landmark C in AB frame .
HABC — {7, ... Z.} -All AB,C measurements up to time n 01 0.7
0.05 0.1
* qualitative state probability:  P(§45¢|H,) 0.025 0.025
GAB:C - Qualitative state of landmark Cin AB frame
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Our Approach —single triplet

Estimation of a single landmark triplet:

* Measurements:
e Azimuth to landmark triplet A,B:C
* Heading between camera poses

* Metric SLAM For camera poses and landmark triplet A,B,C
» Uses several separate camera poses G --------------- 0
* Incremental g

* Integrate qualitative state probability

.,0.05
o

0.05 \\\0.8
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Our Approach —single triplet

* Probabilistic formulation

P(S‘LIB:(T' = I|]I—U} / / LAU :C Ig»\U( = l ,_, 1 e L( |11 AB:( (ILAB:(:'(L\,l;”

L\P(

Integrate over
metric states
Metric SLAM

For landmark triplet

A,B,C

‘ AB:C\p( Y. T AB:C\ )
P(Zy| X1, L ) )JP(X, L ) iP(ZJXi,-.LAU:(' P(X:| X1, ai1)
P(Z,)

el 0
=2 L j j

P(X1n L*#%C[H,) =

Measurement model Motion model
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Our Approach —single triplet

Solving the 3 landmark SLAM problem:
* Non linear sample based SLAM approach

* Measurements
e Measurements —azimuth to landmarks (@)
* Motion model — heading to next pose (V)

Single view: g
Camera on locus circle B(0.1)
N &
Y. . c9,>
\“ \\ 0
camera . \\O’o,
Optical axis Y N,
\“ \ o{t |
\\6 !
™ ¢3\\ :
@Ay;@\ __________
— A X(y)
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Our Approach —single triplet

Solving the 3 landmark SLAM problem:

Two views:

e Cameras on locus circles

* Landmark C can be triangulated to a curve
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Our Approach —single triplet

Solving the 3 landmark SLAM problem:

Three views or more:

e Cameras on locus circles

* Landmark C can be triangulated to a point
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Our Approach —single triplet

Solving the 3 landmark SLAM problem:

Non linear sample based SLAM approach

A,B locus circle

A,B azimuth measurements noise

Motion heading noise

Number of samples:

* Exponential in camera poses

Practically reduces fast by consistency tests

Very small for 3 camera poses or more

Good for incremental algorithm
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Our Approach —single triplet

Solving the 3 landmark SLAM problem:

* 3 view Simulation example
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Our Approach —single triplet

Our approach Vs regular SLAM

* Non linear
* no linearization errors
* No need for linearization
* No initialization process

 General - variables are not assumed to be Gaussian

measurements

Sample
based
SLAM

measurements
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Our Approach —single triplet

Solving the 3 landmark SLAM problem — Fast approximation
Trying to capitalize on QSR coarse spatial partition
Fast solver variant:

« Sample only geometry (camera locus circle)

* No noise samples
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Our Approach —single triplet

Single triplet results

single triplet EDC estimation results
baseline ours ours-fast
DMSE 0.39, 0.63, 0.71 0, 0.16, 0.63 0, 0.21, 0.62
geometric distance 0.28;1:10; 2:30 0, 0.25, 1.15 0,027, 1.16
Entropy 0.28, 0.66, 0.87 0, Se-3, 0.58 0, 0.07, 0.64
time|sec] 26 -~ 18 0.05

. M ° I
Metrics: Motion Model makes a difference!

« DMSE — probabilistic correctness DMSE = /3 2, (P(si) — P(scr))?
m

* Geometric distance — geometric correctness gmd = Y P(si)l|les — car|2

* Entropy — distribution steepness B = = 2111 P(s;)log(P(s;))

* GT rating — the position of the GT qualitative state when states are ordered by probability
(1 — most probable)

Baseline = padget
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Results

Single triplet results
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Results

MRCLAM dataset

* Autonomous Space Robotics Lab
(ASRL) at the University of Toronto

* Cylindrical landmarks
* Occlusions

* Sensors
e Camera azimuth mesurements
* Odometry

Autonomous Space Robotics Lab: MR.CLAM Dataset
(utoronto.ca)
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MRCLAM dataset EDC estimation

ours-fast uniform
DMSE 0.03, 0.45, 0.69 0.97
gmd 5e-3, 0.27, 0.71 2.2
Entropy 4e-3, 0.38, 0.69 3
GT rating 1,1, 2 -
median 25/75 percentiles
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http://www.asrl.utias.utoronto.ca/datasets/mrclam/index.html?msclkid=e693a29db38911ecaec1e8e988784c30
http://www.asrl.utias.utoronto.ca/datasets/mrclam/index.html?msclkid=e693a29db38911ecaec1e8e988784c30

Our Approach —single triplet

Conclusions

e Adding motion model:
» Better performance
» Better complexity (feasibility tests reduce samples faster)

 fast approximation
* Much faster
* Performance very close to full algorithm
* uses qualitative inherent course spatial partition

e General performance
* Up-to azimuth measurement noise of 3deg — very close to GT

* (Published in IROS 2020)
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Qualitative Composition
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Our Approach - composition

Novel probabilistic Composition:

* Propagate data between triplets

q

* Estimate unseen triplets
* Improve estimation Sﬂ/ HP', HP?) = ZZ]) (S, sP! p2/ HP' HP?)
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Concept - Intuition

Composition:

Qualitative map propagation by composition factor graph

seen triplets %

Triplet prior Q

Composition
factor

Unseen triplet
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Our Approach - composition

Composition:

e Calculate AB:D given metric location of AB:C, and BC:D
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Our Approach - composition

Composition:

* Composition factor — pure qualitative approximation
 Remember only qualitative state P(L|s;, H) ~ P(L|s;)
e Forget metric data

* Formulation:
Single triplet
AB:C=pl estimation

BC:D = p2 \

AN:D = p
t P(SHP , HP?) ~ Y Y P(sP'|[HPY)P(s2 | HP?).

/ / P(St|LP!, LP?)dLP dLP2.

Lrles?' Lr2es?? \

Calculate offline \

Same for all factors 20 20
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Our Approach - composition

Composition:

* Composition factor pure qualitative approximation:
* Fast graph propagation
* Very efficient in HW accelerators
* Low memory consumption

* (Published in IROS 2020)
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Factor Graph
Propagation
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Our Approach - composition

Factor graph propagation algorithm:
Accurate method :

e Elimination - trinary factors -> multiple node factor
 Calculation is exponential in number of nodes

* Runtime Not feasible

* Implemented in GTSAM-discrete
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Our Approach - composition

Factor graph propagation:

Fast Approximated algorithm:
* Greedy — one most informative step
* Single best path

* One pass over each node
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Our Approach - composition

Factor graph propagation:

Information score (ISC):

A metric to measure how informative is the probability distribution
for a specific landmark triplet qualitative state:

* O<ISC<1

* Higher is better (more informative)

ISC: Hmax_Hn

Hmax_Hmin

H, = node entropy
H,, . = uniform (max) entropy
H,,i, = perfect (min) entropy

Autonomous Navigation
and Perception Lab
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Our Approach - composition

Factor graph propagation:
Fast Approximated algorithm:

* Observed nodes = Source nodes
* Loop:

* Break when no factor has 1 or 2 ‘done’ nod

Example:

Fast Approximated algorithm:
* Node text: id (ISC)

* Priors on nodes 1,2,12

* Update order: 6,5,3,4,11,7,9,10,8

\7 TECHNION

Israel Institute
of Technology
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Propagate any factor that has 1 or 2 ‘done’ nodes
Calculate ISC for all newly calculated nodes
* Keep best ISC node, and mark as ‘done’

(D

T

®11(-0§%b(0.56)
61112
®6(-0.00)
: : f:567 :
@35(-0.00) @7(-0.00) fﬁmetol-o‘oo]
f:548 @5(-0.00) ®2(-0.00) |
©4(-0.04)345
f.234
®3(-0.00)
@®2(0.19)
123
®1(0.28)
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Our Approach - composition

Factor graph propagation:

Composition level (CL):

* A tool to study composition behavior in correlation to:
e Graph topology
 prior information

* Propagation in graph:
e CL =1ISC for observed nodes
e Same graph propagation algorithm
* |SC decay Factor:

ISC (1_ ISCAB ctISCpc.p ISCAB:D=ISCBC:D=(1-a)ISCAB:C
AB:D~ 2

AB:D

AB:D
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Our Approach - composition

Composition results:

composition level Vs marginal information score L .
actual composition informative

)
inedn, sid Composition level informative
e 1 T T T T T T T T T o]
Q
508t o 4
kS
g 06 .
5
c04r 3
=
. 502F -
Marginal ICS g §
£
0—=s Il 1 1 1 1 1 1 1 Il
Calculated by actual 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
composition composition level
median, P25, P75
o 1 T T T T T T T T T ST
3
@08 -
3 i
ICS Calculated by EO8T l i
e 8
"composition level" 041 . i
. (1]
propagation 502} 1
g 0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
composition level
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Our Approach — composition

Conclusions

* Composition propagates significant information

* Information propagated is correlated to graph topography
(composition level)

* Might be practical for:
» Estimating unseen nodes (for planning / landmark recognition)
* Improving existing estimation

* (will be published soon)
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Conclusions

‘s 0o0od Performance
. Low measurement noise -> almost perfect results (up to 3°)
. High measurement noise -> Better performance than state of the art (up to 7°)

* Low complexity (practical for low compute systems)
. Good performance for fast approximation

* Good for fast active planning
. Composition is fast and informative

future work

Rigorous / / Multiple extensions

graph propagation
Active plannlng * Complex landmarks @ ————p>
e Data association -
* 3D
Autonomous Navigation .
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