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Abstract

Simultaneous localization and mapping (SLAM) are essential in numerous robotics applications,

such as autonomous navigation. Traditional SLAM approaches infer the metric state of the

robot along with a metric map of the environment.

While existing algorithms exhibit good results, they are still sensitive to measurement noise,

sensor quality, and data association and are still computationally expensive. Alternatively, we

note that agents can achieve some navigation and mapping tasks using only qualitative geometric

information, an approach known as qualitative spatial reasoning (QSR).

In this work, we contribute a novel probabilistic QSR-based SLAM approach, which ex-

tends the state-of-the-art to make a more holistic framework. We infer a qualitative map of

the environment (mapping) and the qualitative state of the camera (localization). We also

incorporate connections between camera poses (motion model), improving computation time

and performance. Furthermore, we take advantage of qualitative inference properties to achieve

very fast approximated algorithms with good performance. In addition, we show how to propa-

gate probabilistic information between nodes in the qualitative map, which further improves

estimation performance and enables inference of unseen map nodes - a vital base stone for active

qualitative planning.

Our method particularly appeals to scenarios with few salient landmarks and low-quality

sensors. We evaluate our approach in simulation and on a real-world dataset and show its

superior performance and low complexity compared to the state-of-the-art. Our analysis also

indicates good prospects for using qualitative navigation and planning in real-world missions.

1



2



Abbreviations and Notations

QSR : Qualitative Spatial Reasoning

SLAM : Simultaneous Localisation and Mapping

MAP : Maximum A Posteriori (estimation)

iSAM : Incremental Smoothing and Mapping

GT-SAM : Georgia Tech-Smoothing and Mapping

ISC : Information Score

TSC : Topology Score

Xk : camera pose at time k

LA : location of landmark A

S AB:C : qualitative state of landmark C in an AB landmark relative frame of coordinates

ZABC
i : common measurements of landmarks A, B,C in time i

an : action command in from Xn−1 to Xn

Hn : measurement and action history in time t ∈ 1...n measurements

P(S AB:C) : qualitative state probability
˜P(S AB:C) : approximate qualitative state probability

H (·) : Shannon entropy

Σ : covariance matrix
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Chapter 1

Introduction

Robotic and autonomous navigation has much impact on state-of-the-art applications in various

domains. Image-based navigation and simultaneous localization and mapping (SLAM) are vital

in this field.

The SLAM problem has been extensively investigated in the past three decades (see [2] for

a recent survey of state-of-the-art approaches and challenges). In particular, highly-efficient

open source SLAM software packages [4, 7, 23, 40] have been developed and are gradually

incorporated into real-world applications.

Lately, the problem of planning under uncertainty and active SLAM has also received

considerable research attention (see, e.g. [14, 19]). Action planning realizes a given task while

accounting for different sources of uncertainty and considering a SLAM setup.

Some challenges, however, remain. Firstly, while passive SLAM often achieves online

performance, real-time performance for low-cost platforms is more challenging. In active

planning, complexity is still an obstacle. Secondly, state-of-the-art approaches are mainly based

on linearization of the non-linear geometric problem to use fast solvers [16, 17, 23, 39]. These

approaches usually use many landmarks to enable noise filtering and outlier removal algorithms,

another factor in high complexity and error accumulation. In many cases, these approaches

require an accurate initial guess for the estimated variables, achieved using good GPS or IMU

sensors or via accurate image-based camera re-sectioning techniques. [9, 41] is an overview of

basic methods. Some advanced robust graph optimization techniques that attempt to be resilient,

or less sensitive, to outliers are [3, 15, 24, 34, 37, 46]. Non-parametric approaches to the SLAM

problem (e.g. [8, 13]) try to overcome some of these issues by directly solving the nonlinear

problem. These approaches, however, still need to be performed online.

A different approach is topological mapping, which considers relative attributes between

different places. In this approach, a graph represents the environment with vertices for different

places and edges for relative attributes (e.g., reachability between places). This problem is

known as ”Visual Place Recognition,” as the estimation usually handles a discrete set of places.

These approaches usually contain minimal or no geometrical data and do not fully integrate

geometric inference. The advantage is that no continuous geometric estimation means no error

accumulation and low noise dependency. On the other hand, the lack of geometric constraints in
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the estimation process usually makes the approaches computationally expensive. [27] surveys

topological mapping and place recognition approaches.

Qualitative spatial reasoning (QSR) is yet another approach in which an agent perceives the

environment through the geometric relation between objects. However, qualitative geometric

relations are considered instead of metric locations and orientations. In addition, in many cases,

instead of using a global frame of reference, local object-relative reference frames are used

to relate to close-by landmarks. As discussed in this work, QSR is the base for our approach.

While recent QSR works include [32], [28] and [35], section 1.2 gives a more detailed overview

of QSR.

1.1 Motivation

QSR research was initially motivated by how humans and animals efficiently perform complex

path planning and navigation tasks. They often relate to close landmarks instead of a large-scale

global frame of reference and use a qualitative perception of the environment instead of an

accurate metric perception (e.g., in figure 1.1). In QSR approaches, estimation of the map and

robot states is qualitative, hence, less metrically accurate but also less noise dependent. The

general idea is that this more straightforward approach might be easier and more adequate for

many robotic autonomous tasks.

In traditional metric SLAM approaches, noise sensitivity demands using many landmarks

for noise filtering, which partially accounts for the computational load. In addition, using many

landmarks makes data association harder.

Since qualitative inference is less sensitive to noise, it has the potential to be easier to

implement. First, lesser noise sensitivity might require less noise filtering and, therefore, might

be suited for using a smaller number of landmarks. Using a small number of salient landmarks

can, in turn, improve landmark association. Secondly, since qualitative inference is less accurate,

there is room for coarser approximations that produce simpler algorithms. These possibilities

can lead to computationally light inference algorithms. In addition to the insight that many

robotic tasks do not require accurate metric navigation, these properties motivate the research

reported herein.

In this work, we contribute a probabilistic QSR-based mapping and localization framework

designed for large-scale navigation with simple sensors and low complexity. Before stating the

specific contributions of this work, we discuss the most relevant QSR approaches.

1.2 Related Work

The application of QSR to robotic navigation and mapping started in the 90s. The early work

by [26] suggests qualitative localization of a robot about landmarks, given their azimuth ordering

as seen by the agent in a single view. This approach has been extended in [42, 49] and [48] to

include multi-view inference and some aspects of data association and place re-identification,

but not a complete SLAM problem. Other methods address the qualitative representation
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(a)

(b)

Figure 1.1: Qualitative geometry used by humans for various tasks: (a) planning route and navigating relative to landmarks and
qualitatively using topographic map; (b) Football players plan and execute qualitative relative positioning;
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(a) (b) (c) (d)

Figure 1.2: Different partitions of the metric space: (a) left right [43]; (b) Freska’s double cross [11]; (c) Extended double
cross [28]; (d) TPCC [31].

of relative orientation between two oriented landmarks, such as ”bi-pole orientation” [30]

and ”OPRAM” [32]. Another approach for representing spatial location was suggested by

Freksa [10]. This approach localizes in a relative frame regarding two landmarks. Instead of

considering the metric location in this frame, Freska partitions the space into a discrete set of

qualitative states known as ”Freska’s single cross.” The ”Freska’s double cross” was suggested

in [11] and was recently extended by McClelland et al. [28] to the ”extended double cross”

(EDC) for a more detailed representation. Other qualitative partitions were also proposed over

the years, including a ”close and far pie” (TPCC) by [31] and ”Left Right” by [43]. Figure 1.2

illustrates these partitions.

The first comprehensive QSR-based mapping and navigation framework was proposed

by McClelland et al. [28] for NASA’s planetary rover. The authors proposed a qualitative

algorithm for 2D large-scale mapping with a low-quality monocular camera and no GPS or

ego-motion sensing. They use azimuth measurements and range ordering of each triplet of

landmarks observed together to estimate one landmark location in a local frame defined by

the other two. Instead of considering the metric location of the landmark, they use a discrete

set of EDC-partitioned qualitative states. Geometric estimation classifies each qualitative state

as ”feasible” or ”non-feasible” in a binary manner. The mapping goal is to infer all feasible

qualitative states for each landmark triplet. Measurements from different viewpoints can reduce

ambiguity. An additional ”composition” stage propagates qualitative data through triplets with

common landmarks, including triplets that were never viewed together by the agent.

Further work [35] extends this method to probabilistic estimation. Instead of assigning true

or false labels, they infer the probability for each qualitative state of each landmark triplet. [36]

takes another step and addresses active qualitative planning.

However, [28] and [35] do not model any spatial connection between different camera

views of the same triplet (such as motion model or geometric triangulation). They also do not

address probabilistic ”composition.” Finally, in both papers, the focus is on mapping, not camera

localization. The work of [50] on the other end specifically addresses the use of qualitative

composition between landmark triplets in QSR problems. It focuses on the optimal sequence of

compositions for propagating data in a qualitative map given a specific source and target nodes.

It also addresses the question of which new nodes can be added to the map by composition.

8



1.3 Contributions

In this work, we take a few steps closer to a full probabilistic qualitative framework for localiza-

tion and mapping. We aim for simple sensors (such as a low-quality monocular camera with no

GPS or significant IMU), low complexity, and large-scale navigation. The potential of qualitative

geometry for simple and light inference (as mentioned in 1.1), and the insight that many robotic

tasks do not require accurate metric navigation, drive us to extend existing QSR approaches.

Moreover, we envision our approach as a step towards active QSR planning, leveraging belief

space planning formulation (e.g. [14, 22, 37]). We use a different and innovative formulation

of the problem to address some of the key limitations and introduce several improvements to

state-of-the-art, most notably [28] and [35]. In particular, our main contributions are as follows:

1. While state-of-the-art QSR approaches focus mainly on mapping, we develop a holistic

probabilistic QSR approach that also addresses localization.

2. We incorporate a motion model to improve both performance and complexity.

3. We develop a global non-linear solver with a simple algorithmic flow. It is better suited

for various measurement types and does not require prior knowledge. We also utilize

qualitative inference robustness to develop a very fast approximated algorithm with similar

performance.

4. We develop probabilistic composition - a novel way for efficiently propagating informa-

tion in the qualitative map, extending the deterministic approach in [28]. Probabilistic

composition is key for active qualitative planning.

5. We formulate a discrete factor graph representation for the qualitative map and use it

for propagating information. The full solution for getting marginals by elimination is

computationally infeasible. Therefore, we develop an approximate fast and effective

algorithm.

6. We analyze how propagating qualitative information in the factor graph is related to graph

topology and prior information. For this purpose, we suggest new information-related

metrics and a simplified model that gives an empirically strong correlation to actual

qualitative data propagation.

7. We evaluate the performance of our approach in simulation and on a real-world dataset

and compare it against the state-of-the-art.

8. We also made available an open-source code repository [47] that implements all parts of

our work. This repository holds a python-based implementation meant for performance

analysis and to be a reference for future work. It is only partially real-time optimized.

This paper’s organization is as follows. Section 2 introduces notations and provides problem

formulation. Section 3 describes in detail our approach. It presents a probabilistic formulation
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of the qualitative localization and mapping problem. Then it presents our proposed algorithm

for the 2D case in detail while also addressing run-time aspects. Lastly, it also includes the

derivation of our probabilistic composition technique and how to use it in a factor graph for

propagating information in a qualitative map. Section 4 provides performance evaluation. It also

includes an analysis of the relations between propagating qualitative information in the map to

its factor graph topology. Section 5 concludes the discussion and suggests several avenues for

future research.
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Chapter 2

Notations and Problem Formulation

We consider a robot navigating in and mapping an unknown environment. As the robot moves, it

tracks landmarks across different image frames. We aim to qualitatively describe the environment

and camera trajectory. Motivated by the approach in [28], [35], we consider multiple relative

landmark-centric frames of reference and use qualitative geometry to describe camera and

landmark locations in these frames.

While our formulation is general, we test our approach on the 2D case. For every three

landmarks A, B,C observed together, we set a landmark-centric local frame, so that landmark A

location is LA = (0, 0) and landmark B location is LB = (0, 1) (see Figure 2.1a). We describe the

qualitative location of landmark C in this frame using a discrete space partition into a set of m

qualitative states (see Figure 2.1b). The qualitative state of landmark C is S AB:C . It is a vector

of dimension m × 1 that contains the hypothesis for C being in each qualitative state. We denote

the event that C is in a specific a qualitative state S AB:C = i; ∈ {1, ...,m} as sAB:C
i . We also denote

the metric location of landmark C as LAB:C .

Similarly, the metric location of the camera in the AB frame at time step n is denoted by

XAB
n , and the corresponding camera qualitative state is denoted by S AB:X

n . The camera qualitative

location in the entire map at time step n is then the collection of its states regarding all local

frames: S X
n = {S

i, j:X
n }.

One can choose the space partition to fit different tasks, platforms, or scenarios (see Figure

1.2). In our implementation and tests, we employ the EDC partition used in previous works [35],

[28].

The true mapping and localization qualitative states (S i j:k and S i, j:X
1:n ) are unknown. In

this work, we infer them within a Bayesian framework using a set of measurements ZABC
1:n =

{ZABC
j ; j ∈ {1, ..., n}} from time steps 1, ..., n. The observation of landmarks A, B,C from time

instant j is ZABC
j . We note that while, for simplicity, this notation suggests observations are

assumed to exist for all time instances [1, n], in practice, our method does not require this

assumption, as further elaborated in Section 3.2.1.

Herein, we also introduce an innovative usage of a motion model within a qualitative

formulation, which extends previous work. As will be seen, this enables us to use more

substantial geometric constraints to improve estimation. Thus, we assume action an−1 for

11



(a) (b)

Figure 2.1: (a) AB landmark relative metric frame of coordinates. (b) AB frame qualitative state probability distribution P(S AB:C)
(Freska’s double cross in this example).

moving the camera between time instances n − 1 and n.

Our goal at time instant n is to estimate the posterior probabilities of qualitative landmark C

and camera states, given history HABC
n � {ZABC

1:n , a1:n−1}:

P(S AB:C |HABC
n ) , P(S AB:X

1:n |H
ABC
n ). (2.1)

The formulation in this paper is general and can use any measurement and motion model

(although we use the Markov assumption). We consider 2D coordinate systems and a monocular

camera setup in our implementation and results. Therefore landmark 2D location is LAB:C =

(xAB:C , yAB:C) and camera pose 2D is XAB
n = (xAB:X

n , yAB:X
n , αAB:X

n ), where α is the camera

orientation angle. Measurements are bearing angles to landmarks A, B and C, i.e. ZABC
n =

{ϕA
n , ϕ

B
n , ϕ

C
n }.

For this setup, we assume a Gaussian measurement model for i ∈ {A, B,C}:

P(ϕi
n|L

i, Xn) ∝ exp
{
−

1
2
∥ϕi

n − f (Li, Xn)∥2Σv

}
, (2.2)

where Σv is the measurement noise covariance and

f (Li, Xn) � arctan(
yi − yX

n

xi − xX
n

). (2.3)

Considering bearing measurements to different landmarks statistically independent, the joint

likelihood for ZABC
n is readily obtained as a product of individual likelihood terms (2.2) for each

12



bearing measurement ϕi
n ∈ ZABC

n .

In our setup, we consider a simple motion model that can be used with a monocular camera

and basic azimuth-keeping control. Specifically, we consider the robot is moving along a specific

heading an = ψn relative to the previous camera pose and assume Gaussian noise as in

P(XAB
n |X

AB
n−1, an−1)∝exp

{
−

1
2
∥an−1−g(XAB

n ,XAB
n−1)∥2Σw

}
, (2.4)

where Σw is the motion (process) noise covariance and g(.) is defined, similarly to Eq. (2.3), as

g(Xn, Xn−1) � arctan(
yX

n −yX
n−1

xX
n −xX

n−1
). The motion model (2.4) does not constrain the camera orientation.

As will be seen, incorporating a motion model, even as simple as this, leads to a much better

qualitative state estimation.

The second part of our work (section 3.2) addresses the entire qualitative map of all land-

marks and how to propagate information between landmark triplets in this map. The envi-

ronment is a set of m landmarks; we denote the group of all possible landmark triplets as

Mall = {S i, j:k}i, j,k=1...m; j,i,k, j,i. The qualitative map is then a subset of the triplets that we are

interested in M = {S i, j:k} ⊆ Mall. These can be triplets that have been observed or otherwise

ones we want to estimate (see Figures 3.4a and 3.4b).

In section 3.2, we also approach the propagation of information in the map. Information

propagation is the process of inferring a specific triplet state given its history and also the

history of other triplets: P(S AB:D|HAB:C ,HBC:D,HAB:D), or alternatively given an estimation

of other triplets qualitative state P(S AB:D|S AB:C , S BC:D, S AB:D). In this section, we will use a

shortened notation to refer to triplets to simplify formulation. Instead of specifying the two

frame landmarks and the third one: AB:C, we just refer to the triplet as ti for i = 1, 2, ...; so for

example, AB : C ≡ t1, BC : D ≡ t2,CD : E ≡ t3 and this way we annotate S AB:C , S BC:D, S CD:E

as S t1, S t2, S t3 and HAB:C ,HBC:D,HCD:E as Ht1,Ht2,Ht3. In this notation a map with k triplets

is notated as M = {S ti}; i = 1...k.
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Chapter 3

Approach

In this section, we present our probabilistic qualitative localization and mapping approach. The

first part of our work (section 3.1) discusses the single triplet problem. First, we generally

formulate the probabilistic inference of camera and landmark triplet qualitative states when

seen from multiple views and consider a motion model. We then address the 2D problem as a

test case in more detail. We analyze the problem geometry and describe our unique qualitative

inference algorithms (sections 3.1.3, 3.1.4).

The second part of our work (section 3.2) addresses data propagation between different

triplets in the qualitative map. We derive a novel probabilistic composition algorithm for propa-

gating information between different landmark triplets in the qualitative map. We formulate it

using a factor graph representation. Then, we analyze the dependency of propagated information

on the graph topology and prior knowledge. We use unique information metrics and graph

propagation algorithms.

Section 4 includes test results and analysis for both parts of our approach and comparison to

state-of-the-art.
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3.1 Single Triplet

As specified in Section 2, our approach considers multiple landmark-centric triplet frames. In

this section, we focus on a single triplet of landmarks A, B, and C viewed together from multiple

views (at time steps 1, . . . , n). In section 3.1.1, we infer camera and landmark qualitative states

given multiple views of the landmarks and a motion model. Then, we address the 2D SLAM

problem as a test case in more detail. We discuss the geometric properties of the 2D problem

(section 3.1.2) and present our unique algorithm for solving it in detail. In addition, we develop

a very fast approximated algorithm that achieves good performance utilizing the advantages of

qualitative inference (sections 3.1.3, 3.1.4).

3.1.1 Probabilistic Formulation

Let us look at a single triplet of landmarks A, B, and C viewed together at time steps 1, . . . , n.

When considering a specific AB : C local frame, we aim to estimate the qualitative state of

landmark C and the camera at each time step using measurements (2.1). The state-of-the-art [35]

directly formulates this problem, considering only landmark to camera measurements. We notice

that using other types of information may improve inference and therefore adopt a different

approach.

The qualitative problem is derived from an underlying fundamental metric SLAM problem.

This underlying problem is a small three landmark multiple view SLAM problem of determining

camera poses and landmark C location, given a set of noisy measurements P(XAB
1:n , L

AB:C |ZABC
1:n ).

It is well known that incorporating a motion model makes the problem easier to solve and

requires fewer measurements and less prior knowledge. This insight is also valid for the

qualitative problem. We, therefore, take a more general formulation than the one in [35], which

enables us to naturally translate the effect of the motion model into the qualitative problem. We

do this by formulating the qualitative problem directly related to the underlying metric problem.

Given the landmark measurements (2.2) and motion model (2.4) for each camera transition,

we want to infer the posterior probabilities of the landmark C qualitative state and camera

qualitative trajectory (2.1), both in the AB frame. To reduce clutter, we drop the superscript AB

notation in this section as long as everything is in the AB frame. Also, for an easier explanation,

instead of looking at P(S C |Hn) we look at the separate components of this random vector:

P(sC
i |Hn) (i.e., the probabilities of the landmark C to be in each qualitative state separately).

Generalizing to P(S C |Hn) is trivial.

We formulate P(sC
i |Hn) through the underlying metric problem. To do so, we start by

marginalizing over the metric camera poses and landmark locations, writing the belief over sC
i

as:

P(sC
i |Hn) =

"
X1:n,LC

P(sC
i , X1:n, LC |Hn)dLCdX1:n. (3.1)
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We shall now apply chain rule:

P(sC
i |Hn) =

"
X1:n,LC

P(sC
i |X1:n, LC ,Hn)P(X1:n, LC |Hn)dLCdX1:n. (3.2)

Note that landmark C metric location LC uniquely determines its qualitative state sC
i so that

P(sC
i |L

C) = 1 for LC ∈ sC
i and 0 else. Since P(sC

i |L
C) is independent of any other history and

can also be replaced by the corresponding integration range, we get:

P(sC
i |Hn) =

"
X1:n,LC

P(sC
i |L

C)P(X1:n, LC |Hn)dLCdX1:n =

"
LC∈sC

i ,X1:n

P(X1:n, LC |Hn)dLCdX1:n.

(3.3)

Similarly, inferring the camera’s qualitative state:

P(sXi
i |Hn) =

"
Xi∈si,X1:n/i,LC

P(X1:n, LC |Hn)dLCdX1:n. (3.4)

We get an intuitive result: solve the corresponding SLAM problem, P(X1:n, LC |Hn), in the

AB frame and marginalize over camera trajectory X1:n and landmark C metric locations LC that

belong to the relevant qualitative state.

This approach is very different from previous works [35], [28]. It has several advantages: (i)

Summing over qualitative states can be trivially adjusted to any space partition (see Figure 1.2).

(ii) Solving the small metric SLAM problem can be done using any existing method or code to

fit different applications or scenarios.

We now further break down the SLAM problem P(X1:n, LC |Hn) into simpler factors using a

standard SLAM formulation and show how to in-cooperate a motion model. Applying Bayes’

theorem and recalling the measurement model P(Zn|Xn, LC) is independent of history Hn gives:

P(X1:n, LC |Hn)=
1
ζn
P(Zn|Xn, LC)P(X1:n, LC |H−n ). (3.5)

Where H−n � {a1:n−1,Z1:n−1} is the history without measurements from current time, such that

Hn = H−n ∪ {Zn}. In addition, ζn � P(Zn|H−n ) is independent of integration variables, so we can

normalize outside the integrals.

We proceed by using the formula of total probability over Xn, and the Markov property of

the motion model to get the following recursive formulation:

P(X1:n, LC ,Hn) =
1
ζn
P(Zn|Xn, LC)P(Xn|Xn−1, an−1)P(X1:n−1, LC |Hn−1). (3.6)

Repeating these two steps n − 1 times we get

P(X1:n, LC |Hn) =
P(Z1|X1, LC)P(X1, LC)

P(Z1)

n∏
i=2

1
ζi
P(Zi|Xi, LC)P(Xi|Xi−1, ai−1). (3.7)
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where ζi � P(Zi|a1:i−1,Z1:i−1) is the normalization factor. Using this standard decomposition, we

can see how measurement and motion models can solve the underlying SLAM problem.

Recalling Eqs. (3.3) and (3.4), we can now integrate over the camera trajectory and landmark

C location to estimate the required qualitative states.

3.1.2 Basic Problem Geometry

After formulating the problem, we look at the 2D SLAM problem as a test case. In the

following sections (3.1.3, 3.1.4), we suggest novel algorithms for solving this problem while

taking advantage of qualitative geometry’s unique properties to simplify the inference. This

section lays the basics for understanding our motivation and choices. We analyze the geometric

properties of the 2D problem and the effect of incorporating a motion model on the solution

quality.

As specified in Section 2, our approach considers multiple landmark-centric triplet frames.

For each local frame, the underlying fundamental metric problem P(XAB
1:n , L

AB:C |ZABC
1:n ) deter-

mines camera poses and landmark C location in the local AB frame, given a set of measurements.

When considering measurement noise, the problem is a small metric three landmark - multi-view

SLAM problem. This SLAM problem is observable only with enough landmark measurements

and camera poses or with priors. The thing is that achieving enough measurements or priors for

each local frame can be problematic in some robotic platform scenarios.

While the state-of-the-art only uses measurements, we consider the extended problem

P(XAB
1:n , L

AB:C |ZABC
1:n , a1:n−1) and incorporate the corresponding motion model. The motion model

enables solving the problem better and with fewer measurements. A simple degree of freedom

analysis can demonstrate this for the 2D case. The unknowns are landmark C location (xC , yC),

and camera poses (x1:n, y1:n, α1:n). For n time steps, we have 3n+ 2 unknowns. When using only

azimuth measurements (ϕA
1:n, ϕ

B
1:n, ϕ

C
1:n) to landmarks A, B and C, the number of equations is 3n.

This problem is, therefore, under-determined. When considering actions a1:n−1 (i.e. the azimuth

angles from one camera pose to the next, ψ1:n−1) and the corresponding motion model (2.4), the

number of equations is 4n− 1. For n ≥ 3, the number of equations equals or exceeds the number

of unknowns, and the problem becomes fully observable. The intuition is that incorporating a

motion model enables solving landmark C location by triangulating line-of-sight vectors from

multiple views.

This well-known insight related to the metric problem is also valid for the qualitative

problem. Therefore, incorporating a motion model will solve the qualitative problem with fewer

measurements and prior knowledge. In sections 3.1.4 and 4.3 we will look at the effect in more

detail.

We now dive into the 2D problem basic geometry to better understand our algorithm and the

effect of using a motion model in sections 3.1.4 and 3.1.5. We look at the basic deterministic

geometry, so in this explanation, we consider the ideal noise-free measurement and motion

models that we shall denote by Z̄.

First, we regard the single-view case. Landmarks A and B are known (we work in the AB
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frame), while the camera pose and landmark C are unknown. Determining camera pose by 2D

azimuth measurements to two known landmarks is a well-known 2D 2-point camera resection

problem. [38] specifies a complete and efficient analytic solution to this problem. Given these

azimuth measurements, the camera’s location must be on a circle that goes through the two

landmarks A and B. [38] gives the equations for the ”locus circle” center and radius. Azimuth

ordering of ϕA
n , ϕ

B
n further confines the camera location to the left or right to the AB vector, see

Figure 3.1a. It is also easy to show that assuming a specific camera location on the locus circle

directly determines the camera orientation αn:

αn = arctan(
yX

n

xX
n

) + ϕA = arctan(
yX

n − 1
xX

n
) + ϕB. (3.8)

Per every possible camera pose, landmark C can be located somewhere on the line of sight

corresponding to the azimuth measurement ϕC
n . A diagram illustrating these aspects is given

in Figure 3.1a, while Figures 3.2a and 3.2b have a stimulative example. A crucial insight is

that even in this deterministic setting, the problem is not fully observable, i.e. solutions for

metric camera poses and landmark locations have a continuous distribution. We denote this

joint distribution by P(XAB
n , LAB:C |Z̄ABC

n ).

If measurements from several time instances are available, the joint pdf is:

P(XAB, LAB:C |Z̄ABC
1:n ) =

n∏
i=1

P(XAB, LAB:C |Z̄ABC
i ). (3.9)

[29] shows the posterior distribution over qualitative states can now be extracted by integration.

Now we examine the impact of incorporating a motion model. The second camera location

(x∗2, y
∗
2) is determined by the combination of the first camera pose (x∗1, y

∗
1, α
∗
1), the action ψ1,

and the second measurement Z2 = {ϕ
A
2 , ϕ

B
2 , ϕ

C
2 } (obtained after executing the action). It is

the intersection of the line of motion with the valid part of the second measurement locus

circle (see Figure 3.1b). The intersection can occur once, twice, or not at all. As a result,

some of the first camera poses are disqualified. Another consequence is geometric ambiguity:

some measurements can support two solutions for the second camera pose (and the location of

landmark C correspondingly).

Given the two camera poses (x∗1, y
∗
1, α
∗
1), (x∗2, y

∗
2, α
∗
2) and azimuth measurements ϕC

1 , ϕ
C
2 to

landmark C, its location (x∗c, y
∗
c) can be triangulated. Considering all possible poses for the first

camera reduces the possible locations landmark C to a curve (might be split into two curves

in case of geometric ambiguity) - see Figure 3.1b. A simulation example that displays how

our motion model allows disqualifying a part of the first camera poses and triangulating the

landmark C - see Figure 3.1b.

When considering three or more measurements, only one or a few discrete possible locations

for landmark C and the corresponding camera trajectories are left. Triangulation consistency

further disqualifies most camera poses and landmark locations. (Figure 3.1c). The surviving

landmark C locations are an intersection of the curve estimates for pairs of consecutive views.

Using the motion model significantly increased the quality of the solution for the metric

19



(a) (b)

(c)

Figure 3.1: (a) 2D 2-point camera resection from single view. (b) camera resection and landmark triangulation with two views. (c)
camera resection and landmark triangulation with three views
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(a) (b) (c)

Figure 3.2: Simulation example for first camera resection and landmark estimation: Actual camera positions and landmark
positions are marked in circles. (a) First view. Estimated camera position marked by blue +. Estimated landmark C location marked
in magenta (.) - see the legend. (b) Second view. Same markings. (c) Estimation by both views using motion model. Estimated
camera position marked by +,x. Estimated landmark C location marked in magenta circles (see legend).

problem. In the probabilistic case, the probability for qualitative states should also improve as it

is an integration on the metric pdf. This fact demonstrates the motivation for our work.

We also notice that the geometric ambiguity enables several distinct solutions to the problem.

Therefore probabilistic solutions based on linearization might converge to local minima and

achieve subpar results. A global solution or hypothesis-based approach is therefore needed.

3.1.3 Algorithm Design Considerations

Standard SLAM approaches usually solve big bundle adjustment problems with many landmarks

and camera poses. Achieving a global solution for such problems is hard. Therefore, It is

common to model the estimated variables as multi-variate Gaussian and resort to linearization-

based local optimum. These approaches require enough measurements and prior knowledge or

an initial guess for the solution.

Alternatively, we solve many small landmark-centric SLAM problems with three landmarks,

and a few camera poses at a time. We also want to work with a small number of measurements

and no prior knowledge. Under these conditions, we choose a sampling-based approach to

solve the global non-linear small SLAM problem. This approach avoids linearization and gets a

robust global solution. In addition, it does not need prior information or an initialization stage.

Also, integration over coarse resolution qualitative states compensates for some sampling error.

This robust and much simpler algorithmic flow is well suited for low-compute platforms (see

figure 3.3).

This approach can be computationally expensive for a large SLAM problem, but it is feasible

for many small problems. Furthermore, as discussed in chapter 3.1.2, using a motion model

and triangulation allows us to disqualify inconsistent samples rapidly, drastically reducing valid

samples for two or more views, making this method fast.

3.1.4 Detailed Algorithm

We now describe our algorithm for estimating a single landmark triplet observed from multiple

views using noisy measurements and a motion model. Usually, SLAM solvers use a camera-
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(a) (b)

Figure 3.3: (a) general algorithmic flow of standard multi-variate Gaussian linearization based algorithm. (b) general algorithmic
flow of direct global sample based algorithm.

centric global frame. We use a different, landmark-centric frame by fixing landmarks A = (0, 0)

and B = (0, 1), as we believe it is more intuitive to infer qualitative landmark-related states

(Figure 2.1). [38] gives a complete and efficient solution to the deterministic problem.

First, we introduce a few notations to help describe the algorithm. While the random variable

Xn represents camera pose at time n, we denote samples of this camera pose as X(kn)
n , where

n and kn are, respectively, time and sample indices. We also define a ”trajectory hypothesis”

th j
n � {X

(k1)
1 , . . . , X(kn)

n } as a set of specific camera pose samples - one for each time step. Index

j 7→ {k1, . . . , kn} is a simplified notation for a trajectory hypothesis. With a slight abuse of

notation, we denote X j
l as the camera pose sample from time l in trajectory hypothesis th j

n. The

set of all trajectory hypotheses at time n is T Hn � {th
j
n}.

To estimate the qualitative state of a landmark triplet with measurements from n time steps,

we iteratively apply a three-stage algorithm for each time step:

Sampling step: Generate mn camera pose samples for time n X(kn)
n , with kn ∈ [1,mn]. We

samples from the distribution P(Xn|ϕ
A
n , ϕ

B
n ) using bearing measurements ϕA

n and ϕB
n to landmarks

A and B. Given these measurements, the 2D camera pose is on a specific part of a circle that

goes through the two landmarks A and B (see Figure 3.1a). [38] specifies the calculation of the

locus circle parameters. Camera poses are sampled in the vicinity of this locus circle considering

the noisy nature of ϕA
n and ϕB

n .

Motion step: For each trajectory hypothesis th j
n−1 ∈ T Hn−1, we can use X j

n−1 and motion

azimuth ψn−1 to intersect the locus circle from time n (see Figure 3.1b). Camera pose samples

X(kn)
n that are consistent with this intersection are found, also considering the noisy nature of

the motion model (2.4). Using these matches, we generate multiple new, extended trajectory

hypotheses th j
n. For each th j

n, we also calculate and keep motion model consistency wight:

wm j
n = P(X

j
n|X

j
n−1, ψn−1).

Resection step: For each valid trajectory hypothesis th j
n, we test the consistency of the

bearing measurements from all cameras to landmark C. First, we use camera poses X j
1:n and
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bearing measurements ϕC
1:n to triangulate landmark C location, denoted by LC, j. It is estimated to

be the centroid of all line of sight pairs intersection points (see Figure 3.1b). Then we estimate a

triangulation weight as the probability for this configuration: wr j
i = P(ϕ

C
i |L

C, j, X j
i ),∀i ∈ {1...n}

(assuming independent measurement noise). We disqualify trajectories that do not intersect or

have low probability.

Thus far, the results of our algorithm are the set of valid trajectory hypotheses th j
n ∈ T Hn.

For each , th j
n we keep a single landmark location hypothesis LC, j along with corresponding

consistency weights wm j
i and triangulation weights wr j

i ∀i ∈ {1...n}.

Note: Using a single LC, j for each th j
n is a heuristic. We can sample over the area of

line-of-sight intersections to cover all probable LC locations. We choose the simpler way for

run-time considerations.

Note: If we have measurements from only one time step, we sample landmark C location

LC around each sampled camera pose X(k1)
1 line of site. We consider measurement noise and

sample from P(LC |X(k1)
1 , ϕC

1 ).

Finally, we approximate Eqs. (3.3) and (3.4) by summing over each qualitative state to get

state probability distribution (see the similarity to (3.7)):

P(sC
k |Hn) ≈ ηC

∑
j

1(LC, j ∈ sC
k )wr1

n∏
i=2

wm j
i wr j

i , (3.10)

P(sXi
k |Hn) ≈ ηXi

∑
j

1(X j
i ∈ sXi

k )wr1

n∏
i=2

wm j
i wr j

i . (3.11)

Where ηC and ηXi are normalization constants, and the sum is over all trajectory hypotheses

th j
n ∈ T Hn. Note the term wr1

∏n
i=2 wm j

i wr j
i is a sampled approximation of the joint pdf

P(X1:n, LC |Hn).

This algorithm seems to handle many trajectory hypotheses that grow exponentially in time.

Practically, the geometric constraints enforced in the ”motion” step and the ”resection” step

dramatically decrease the number of hypotheses for two views and even more for three views or

more, making our algorithm much faster (experiment example in figure 4.6a). This reduction is

an effect of incorporating a motion model into the qualitative estimation. It also means that using

this algorithm incrementally requires saving only a small number of hypotheses and therefore is

not memory intensive. A pseudo-code for a simplified version of this approach is in Algorithm

3.1.

Remark: This algorithm is simplified for the sake of explanation. Our actual implementation

is more optimized.

3.1.5 Faster Variant Algorithm

We seek to utilize further the ability of the qualitative coarse resolution to absorb errors, aiming

to achieve an even faster algorithm. With this motivation in mind, we introduce an approach

similar to the sampling-based approach described above. However, sampling is done only to
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Algorithm 3.1 Single triplet qualitative state estimation

1: sample camera poses X(k1)
1 ∼ P(X1| ϕ

A
1 , ϕ

B
1 ) with k1 ∈ [1,m1]

2: initialize trajectory hypothesis set: T H = {X(k1)
1 }

3: for i = 1, ..., n do
4: // sampling step:
5: sample camera pose X(ki)

i ∼ P(Xi| ϕ
A
i , ϕ

B
i ) with ki = [1,mi]

6: // motion model step:
7: - ∀th j

i−1 find X j
i that are consistent with motion azimuth ψi−1

8: - extend T Hi with new matches
9: - keep consistency weight: wm j

i = P(X
(ki)
i | X

j
i−1, ψi−1)

10: // resection step:
11: - ∀ th j

i find LC, j by line of sight triangulation
12: - keep consistency weight: wr j

t = P(ϕC
t | L

C, j, X j
t ), ∀ t ∈ {1...i}

13: - dismiss low probability hypotheses
14: end for
15: estimate landmark qualitative state probability via Eq. (3.10)
16: estimate camera qualitative state probability via Eq. (3.11)

represent the prior term in Eq. (3.7). No sampling is done to represent the motion model or

measurement noise.

In Section 4.3, we evaluate this algorithm variant to see how many noise-related errors it

can handle. As we shall see, due to the inherent properties of qualitative estimation, it can

handle reasonable noise levels with accuracy similar to the full algorithm and with a significant

speedup.
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3.2 Propagating Data in a Qualitative Map

Up until now, we discussed how to solve a single landmark triplet problem. We showed how to

estimate the qualitative state of the camera and landmarks in landmark relative frames.

The second part of our work addresses the multiple landmark qualitative map and how to

propagate data between different landmark triplets in this map. We start with the basic concept

of qualitative composition - an inherent geometric attribute of landmark triplets with partially

common landmarks to transfer qualitative data between them (section 3.2.1). Qualitative data

propagation was first approached in the seminal work [28] but in a basic non-probabilistic

sense. We are the first ones (as far as we know) to formulate probabilistic composition. We also

formulate the connection between basic qualitative composition inference to the full solution of

the problem of propagating information in a qualitative map given prior data. Then in chapter

3.2.2 we discuss the representation of a qualitative map as a factor graph. Finally, in section

3.2.3, we present a study of how composition propagates data in the qualitative factor graph

regarding graph topology and prior knowledge, including novel information metrics and an

algorithm for graph propagation we developed for this end.

3.2.1 Propagating Data Between Triplets - Probabilistic Composition

In [28], it is noted that if three landmark triplets share two common landmarks between each pair

(e.g., AB:C, BC:D, AB:D), there are intrinsic geometric constraints about the joint feasibility

of the three qualitative states (sAB:C
i , sBC:D

j , sAB:D
k ) (without referring to any prior knowledge).

Applying these constraints to infer the joint qualitative state is called composition. Composition

enables enhanced estimation for existing overlapping triplets and to infer triplets never viewed

directly (see Figure 3.4). Among other things, this is an essential basis for managing large-scale

qualitative maps and active qualitative planning.

However, [28] only refers to the non-probabilistic joint feasibility of qualitative EDC states.

Also, [28] does not formulate the general problem of propagating data between the three triplets

given measurement history or show how composition relates to it. In this section, we develop a

probabilistic composition variant and show how to use it for data propagation. We also formulate

the general problem of inferring the joint qualitative states probability given measurements

P(S AB:C , S BC:D, S AB:D|HAB:C
n ,HBC:D

n ,HAB:D
n ). Then we show how composition-based inference

relates to the full solution.

For the sake of readability, we simplify notations in this section. We drop the time index

n and assume all history is considered. We also use shortened notations for triplets, as shown

in section 2. AB:C, BC:D, AB:D are denoted as t1, t2 and t3 respectively. So for example:

qualitative states is denoted S AB:C ≡ S t1, history is denoted HAB:C ≡ Ht1, and the landmark

metric location is denoted LAB:C ≡ Lt1.

We address the problem of inferring joint qualitative probability P(S t1, S t2, S t3|Ht1
n ,H

t2
n ,H

t3
n ),

where triplets AB:C, BC:D, AB:D are denoted as t1, t2 and t3 respectively. Specifically, this for-

mulation is also valid in case some of the triplets have no observations, e.g., P(S t1, S t2, S t3|Ht2
n ,H

t3
n ).
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(a) (b) (c)

Figure 3.4: qualitative map: (a) Landmarks A,B,C observed from camera pose 1. Landmarks B,C,D observed from camera pose 2.
(b)qualitative map is represented as landmark triplet graph (c) Composition: try to estimate triplet AB:D given only AB:C and
BC:D estimations (for unobserved triplets, or improving existing estimations).

For the same reasons as in section 3.1.1, we consider the underlying 4-landmark (A, B,C,D)

metric problem. We look at the joint probability of the three triplets and marginalize the metric

locations for each triplet:

P(S t1, S t2, S t3|Ht1,Ht2,Ht3) =
$

Lp1,Lp2,Lt

P(S t1, S t2, S t3, Lt1, Lt2, Lt3|Ht1,Ht2,Ht3)dLt1dLt2dLt3.

We break the integration argument using the formula of total probability:

P(S t1, S t2, S t3, Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) =

= P(S t1, S t2, S t3|Lt1, Lt2, Lt3,Ht1,Ht2,Ht3)P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3).

Note that given the metric location of the landmarks Lt1, Lt2, Lt3, the qualitative states S t1, S t2, S t3

are directly determined, and are independent in anything else. Therefore we get the following:

P(S t1, S t2, S t3, Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) =

= P(S t1, S t2, S t3|Lt1, Lt2, Lt3)P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3),

And overall:

P(S t1, S t2, S t3|Ht1,Ht2,Ht3) =
$

Lt1,Lt2,Lt3

P(S t1, S t2, S t3|Lt1, Lt2, Lt3)

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3)dLt1dLt2dLt3.

(3.12)

This formulation resembles equation (3.3). It gives a similar intuitive result: For each com-

bination of qualitative states S t1, S t2, S t3, we solve the metric 4-landmark SLAM problem

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3), and integrate probability distribution over all landmark location

that corresponds with this combination of qualitative states.

However, using this method in a sizeable multiple-landmark map will eventually translate

(when using variable elimination) to solving the big multi-landmark SLAM metric problem.

We want to use qualitative geometry’s unique properties to find an approximate faster and

more straightforward solution and still achieve good results. Specifically, we want to replace
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the second factor in equation (3.12) with a probabilistic version of the composition described

in [28].

Our main approximation is as follows:

• Instead of considering the full 4-landmark(A, B,C,D) problem, we estimate each triplet’s

qualitative state using only its own history.

• When propagating information between different triplets, we use only the estimated

qualitative state of the triplets instead of the entire history.

This approximation might be considered a blunt for metric SLAM. However, we will show

that since we care only about the qualitative states, it is much less influential and still enables

considerable data propagation in the qualitative map. On the other hand, it gives us several

advantages looking at the overall approach:

1. Each triplet can be estimated individually using the incremental algorithm in Section 3.1.

2. Map propagation uses only the qualitative state for each triplet. So in a large map, triplets

can be saved efficiently using very little data (if no intermediate estimation results are

saved for incremental algorithms).

3. We will show that the composition-based algorithm is straightforward and fast and can be

mostly calculated offline. Low computing is significant for online map propagation since

every new measurement propagates multiple times through the map in each time step.

To apply these approximations for the second factor in equation (3.12), we start by marginal-

izing over the qualitative states:

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) =
∑
st1

i

∑
st2

j

∑
st3

k

P(Lt1, Lt2, Lt3, st1
i , s

t2
j , s

t3
k |H

t1,Ht2,Ht3).

Using the formula of total probability to break down the sum argument we get:

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) =
∑
st1

i

∑
st2

j

∑
st3

k

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k ,H

t1,Ht2,Ht3)

P(st1
i , s

t2
j , s

t3
k |H

t1,Ht2,Ht3).

The first part of our approximation uses only the qualitative states to estimate landmark metric

locations instead of the entire history:

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) ≈
∑
st1

i

∑
st2

j

∑
st3

k

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )

P(st1
i , s

t2
j , s

t3
k |H

t1,Ht2,Ht3).

The second part of our approximation assumes that each qualitative state is estimated only based
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on its own history and correlations between different triplets are dropped:

P(Lt1, Lt2, Lt3|Ht1,Ht2,Ht3) ≈
∑
st1

i

∑
st2

j

∑
st3

k

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )

P(st1
i |H

t1)P(st2
j |H

t2)P(st3
k |H

t3).

Substituting this back to equation (3.12) we get the approximated P̃(S t1, S t2, S t3|Ht1,Ht2,Ht3):

P(S t1, S t2, S t3|Ht1,Ht2,Ht3) ≈

≈

$
Lt1,Lt2,,Lt3

P(S t1, S t2, S t3|Lt1, Lt2, Lt3)
∑
st1

i

∑
st2

j

∑
st3

k

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )

P(st1
i |H

t1)P(st2
j |H

t2)P(st3
k |H

t3)dLt1dLt2dLt3 ≜

≜ P̃(S t1, S t2, S t3|Ht1,Ht2,Ht3).

Now we change the order of integration and sum:

P̃(S t1, S t2, S t3|Ht1,Ht2,Ht3) =

=
∑
st1

i

∑
st2

j

∑
st3

k

P(st1
i |H

t1)P(st2
j |H

t2)P(st3
k |H

t3)
$

Lt1,Lt2,Lt3

P(S t1, S t2, S t3|Lt1, Lt2, Lt3)

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )dLt1dLt2dLt3,

and we note that

P(S t1, S t2, S t3|Lt1, Lt2, Lt3) =

1, if Lti ∈ S ti ∀i = 1, 2, 3

0, otherwise
. (3.13)

Therefore P(S t1, S t2, S t3|Lt1, Lt2, Lt3) can be translated into integral bounds:

P̃(S t1, S t2, S t3|Ht1,Ht2,Ht3) =

=
∑
st1

i

∑
st2

j

∑
st3

k

P(st1
i |H

t1)P(st2
j |H

t2)P(st3
k |H

t3)
$

Lt1∈S t1,Lt2∈S t2,Lt3∈S t3

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )

dLt1dLt2dLt3.

This approximate formulation is very enlightening. The first term P(st1
i |H

t1)P(st2
j |H

t2)P(st3
k |H

t3)

is the stand-alone estimation of each triplet separately as detailed in section 3.1.1 equation 3.3.

The second term is qualitative composition. It is an intrinsic geometric constraint between the

triplets independent of measurements. It represents the probability of each specific combination

of qualitative states: {st1
i , s

t2
j , s

t3
k }∀i, j, k ∈ {1...m}. Therefore it can also be calculated offline for

each of the m3 combinations of the three qualitative states.

We implement this offline calculation using a semi-sample-based approach. For each

qualitative state combination (sAB:C
i , sBC:D

j , sAB:D
k ) we sample LAB:C from sAB:C

i uniformly. Then
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we calculate the intersection area of the geometric polygons that fit sBC:D
j ∩ sAB:D

k in the AB frame

(for a specific qualitative space partition). Finally, we sum the intersection areas for all samples

and normalize the probability for all (sAB:C
i , sBC:D

j , sAB:D
k ) combinations to sum up to 1. This

process is illustrated in figure 3.5 using Freska’s double cross space partition [11]. In 3.5a,3.5b

we see two different (sBC:D
j , sAB:D

k ) combinations given a specific sample of LAB:C ∈ sAB:C
i , each

with a different intersection area. Some combinations of (sBC:D
j , sAB:D

k ) are infeasible given a

specific sample of LAB:C ∈ sAB:C
i and have 0 intersection area, and therefore 0 probability (e.g.

figure 3.5c). On the other hand, some combinations have an infinite intersection area (e.g.,

figure 3.5d). If not handled correctly, this could zero out all finite intersection combinations.

Therefore we enforce integration borders for each landmark triplet relative frame. We choose

these borders to achieve as similar area size for all states as possible and thereby minimize bias

(different for each qualitative space partition). As an example, for Freska’s double cross [11] we

use −1 < x < 1,−1 < y < 2. The deterministic qualitative composition in [28] considers only

the feasibility of qualitative state combinations. This is equivalent to reducing the probabilities

for each (sAB:C
i , sBC:D

j , sAB:D
k ) combination to 1 or 0 (and normalize).

The online calculation of equation 3.2.1 can now be very efficient. This efficiency is more

clearly demonstrated by using vector and matrix notations:

V ti
m×1 ≜ P(S

ti|Hti),

T t1,t2,t3
m×m×m(i, j, k) ≜

$
Lt1∈S t1,Lt2∈S t2,Lt3∈S t3

P(Lt1, Lt2, Lt3|st1
i , s

t2
j , s

t3
k )dLt1dLt2dLt3.

Here P(S t1|Ht1) is denoted as a m × 1 vector (the same for P(S t2|Ht2),P(S t3|Ht3)), and the

offline integral term in Eq. 3.2.1 for each of the m3 combination of qualitative states {st1
i , s

t2
j , s

t3
k }

is denoted as a m × m × m tensor. We also note that it is sparse to some degree, e.g. offline

composition for EDC space partition is a T t1,t2,t3
20×20×20 tensor with 8000 elements in total, but only

2257 non-zero elements.

For example, if we want the probability for a specific combination of qualitative states,

equation 3.2.1 translates to:

P̃(st1
i , s

t2
j , s

t3
k |H

t1,Ht2,Ht3) = V t1(i)V t2( j)V t3(k)T (i, j, k), (3.14)

and if we want to calculate the marginal for a specific triplet, equation 3.2.1 translates to:

P̃(S t1|Ht1,Ht2,Ht3) =
∑
st2

i

∑
st3

j

P(S t1, S t2, S t3|Ht,Hp1,Hp2) = (Tm×m×m×V t2
m×1)×V t3

m×1. (3.15)

This is a speedy way to update joint probabilities and marginals since it uses only (and

not too many) mult-add operations. We will also see in sections 4.4.1 and 4.4.2 that although

the composition is an approximation, it is effective and still propagates significant amounts of

qualitative data. Thus our primary motivation to enable online data propagation in the qualitative

map for low-compute platforms is supported.
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(a) (b)

(c) (d)

(e)

Figure 3.5: Example for our implementation of qualitative composition offline calculation in section 3.2.1. This example uses
Freska’s double cross space partition (e). For each specific combination of qualitative states (sAB:C

i , sBC:D
j , sAB:D

k ) we sample
LAB:C ∈ sAB:C

i uniformly. Given each sample, we calculate the intersection area of the polygons corresponding to sBC:D
j and sAB:D

k
in the AB frame. We sum for all LAB:C samples and normalize. Figures (a-d) demonstrate a specific sample LAB:C ∈ S AB:C = 2 and
different sBC:D

j and sAB:D
k combinations: (a) small intersection for S BC:D = 4 and S AB:D = 2. (b) larger intersection for S BC:D = 4

and S AB:D = 4. (c) No intersection for S BC:D = 5 and S AB:D = 2. (d) Infinite intersection for S BC:D = 2 and S AB:D = 2 requires
special treatment.
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In this chapter, we formulate the probabilistic qualitative composition for the first time and

discuss the exact meaning of the approximation concerning the full solution for propagating

data in the qualitative map.

3.2.2 Qualitative Map As a Factor Graph

We discussed the basic geometry of propagating data between landmark triplets and a fast

approximate algorithm. We will show how to use this in a factor graph representation of the

multi-landmark qualitative map to maintain and propagate data.

Factor graphs are used in state-of-the-art SLAM (and active planning) approaches as dis-

cussed in detail, e.g. in [5]. Generally speaking, a factor graph is a bipartite graph G that contains

two types of nodes. Variable nodes Vv represent the random variables of the problem, and factor

nodes V f encode probabilistic constraints between different variables. The edges in the graph E

connect each factor node to all the variable nodes it engages (see Fig. 3.6):

G = (V, E)

V = Vv ∪ V f .

In our framework, the qualitative map is the collection of the qualitative states of all landmark

triplets we are interested in M = {S i, j:k}. In the current formulation, we do not include camera

poses as part of the map for simplicity. The unknown variable nodes, in this case, are the

corresponding qualitative states:

Vv = {v
i j:k
v } ∀S i, j:k ∈ M.

These landmark triplets can be those we have seen together and measured in the past, denoted

as V seen
v , or unseen triplets Vunseen

v that we are interested in for accomplishing a specific task or

mission such as planning (see Fig. 3.6). Note that unseen triplets mean the landmarks were not

observed together from the same view but might have been observed separately from different

views.

Vv = V seen
v ∪ Vunseen

v

V seen
v = {vi j:k

v } ∀S i, j:k ∈ M,Hi j:k , ∅

Vunseen
v = {vi j:k

v } ∀S i, j:k ∈ M,Hi j:k = ∅.

We also discuss two types of factors: First is the estimation of each landmark triplet qualitative

state by its own measurement history P(S i j:k|Hi j:k
n ) as calculated in section 3.1.1. This factor is

unary (connected only to one variable node) and exists for any landmark triplet V seen
v ∈ V seen

with observations. The group of all unary factors is denoted as V f u. The second factor is a

”composition factor”. It is a trinary factor that involves landmark triplets with common landmarks

connected by composition, as discussed in Section 3.2.1. The group of all composition factors
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(a)

Figure 3.6: Qualitative map as a factor graph: Variable nodes are landmark triplet qualitative states. Prior factor nodes - estimating
landmark triplet qualitative state based on its measurements. Composition factor nodes - connecting between three triplets with
common landmarks by composition.

is denoted as V f c. Therefore we get the following:

V f = V f u ∪ V f c

Vu f = {v
i j:k
f u } ∀ vi j:k

v ∈ V seen
v

Vc f = {v
i, j,k,s
f c } ∀ i, j, k, s; S i, j:k, S j,k:s, S i, j:s ∈ M.

Factor graph edges correspondingly are of two types. Unary edges exist between every unary

factor and its corresponding triplet qualitative state, and composition edges exist between any

composition factor to the three common landmark triplets it is associated with:

E = Eu ∪ Ec

Eu = {(v
i j:k
v , vi j:k

u f )} ∀vi j:k
v ∈ V seen

v

Ec = {(v
i, j,k,s
f c ,̇vi j:k

v ), (vi, j,k,s
f c , v̇ jk:s

v ), (vi, j,k,s
f c , v̇i j:s

v )} ∀ vi, j,k,s
f c ∈ Vc f .

It is important to note that our factor graph represents a joint distribution over discrete random

variables. As mentioned in section 3.2.1, variable nodes and unary factor nodes are m×1 vectors,

whereas composition nodes are m×m×m tensors. Fig. 3.6 is a visual example of this qualitative

factor graph.
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3.2.3 A Study Of Factor Graph Propagation By Composition

Having defined our qualitative SLAM framework and how to represent it as a qualitative factor

graph, we now study how data propagation by composition behaves in the factor graph. The

main goal is to see how much information can composition propagate through the graph in

relation to prior knowledge and graph topology. This study is also essential for addressing active

qualitative planning (specifically the ability to estimate unseen triplets). We only perform a

basic study and do not suggest a generally optimal solution for qualitative factor graph data

propagation (this can be thoroughly done in future work).

This study directly relates to topological signatures in traditional metric SLAM factor graphs

with Gaussian distributions. The works [18, 20, 21, 44] show that topological graph signatures

are highly correlated to differential entropy (under certain assumptions). We provide the first

empirical indication that a similar notion could potentially apply also to factor graphs with

discrete variables.

The simplest way to measure data propagation in the factor graph is by looking at unseen

landmark triplets. Since unseen triplets have no stand-alone estimation, we can propagate data

from seen triplets with unary factors through the graph and examine how much information was

propagated to the unseen triplets. Intuitively we expect the amount of propagated information

to be dependent on both the initial amount of information in the graph and the topology of the

unseen triplets relating to all of the seen triplets with unary factors.

The way we address this study is as follows:

• We suggest a simple information decay model for describing composition-based propaga-

tion. This model was empirically derived also using a basic understanding of the process

(described in section 3.2.1).

• We suggest a simple algorithm for propagating data from seen triplets to unseen triplets

by composition factors. Then we measure the amount of information in each variable

node given its qualitative state probability using a unique information score metric.

• We use the information decay model to predict the information propagated to each unseen

node. We call this prediction ”topology Score”. We show a reasonable correlation to

the composition-based information score, which means we have a simple model for

understanding how composition-based propagation depends on graph topology.

This study uses a simulation that generates random realizations of factor graphs that contain

seen and unseen triplets with various levels of information and topologies as detailed in sections

4.1 and 4.4.2. This section specifies our information decay model, graph propagation algorithm,

information score, and topology score.

We use a few additional notations to describe our information decay model and propagation

algorithm. Our algorithm needs to keep track of which triplet estimations have been updated in

different stages of its operation. Therefore we divide the variable nodes Vv into two subgroups:

the set of triplets marked as updated Vu
v , and the set of triplets marked as not yet updated V¬u

v .
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The algorithm updates these groups during its operation.

Vv = Vu
v ∪ V¬u

v .

For the reader’s convenience, a recap of all factor graph-related notations can be found in Table

3.1.

qualitative factor graph notations
notation description
G qualitative factor graph
V graph nodes
E graph edges
Vv variable graph nodes (each corresponds to a triplet qualita-

tive state Si, j:k)
V f factor graph nodes
Vseen

v variable graph nodes that where observed
Vunseen

v variable graph nodes that where never observed together
Vu

v variable graph nodes that have already been updated during
some stage of data propagation through the graph

V¬u
v variable graph nodes that have not yet been updated during

some stage of data propagation through the graph

Table 3.1: Qualitative factor graph notations used in 3.2.3.

Information Score

Our graph propagation algorithm and topology score refer to the information in each variable

node. To measure the information of a triplet with a specific qualitative state probability P(S AB:C)

(ground truth, estimated or prior), we introduce a new ”information Score” metric denoted as

IS CAB:C . To make this metric intuitive, we want it to maintain 0 ≤ IS CAB:C ≤ 1 where 0 means

no information (uniform probability) and 1 means full information (qualitative state is perfectly

known).

Respectively we define information Score of an arbitrary landmark triplet AB:C as the

normalized entropy distance of its qualitative state probability from uniform probability:

IS CAB:C ≜
Hmax −H

AB:C

Hmax −Hmin
, (3.16)

whereHAB:C is the entropy of the given qualitative state probability,Hmax is maximal entropy

(no information), andHmin is minimum entropy (full information). Remembering the dimension

of the discrete qualitative state probability vector is d (dependent on the specific qualitative

space partition we use), we get:

HAB:C = −

d∑
i=1

P(S AB:C = i|HAB:C
n ) logP(S AB:C = i|HAB:C

n )

Hmax = log (
1
d

)

Hmin = 0.
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(a) (b)

Figure 3.7: Each composition factor is connected to three variable nodes. Data is propagated through these factors during map
update. Our information decay model for a single composition factor is dividend into two cases: (a) In case two variable nodes are
non updated, and one is updated, decay model is (1 − α) (b) I case one variable node is not updated and two nodes are, decay model
is (1 − α2). (see section 3.2.3). note that 0 < α < 1, so less information decay in the second case.

Information Decay Model

A significant part of this study is finding a simplified model for the composition behavior in

factor graph data propagation. Using a basic understanding of composition and empiric trial

and error, we achieved two important insights: First, the qualitative composition cannot fully

preserve the information and makes it decay (partially explained in section 3.2.1). Second, the

composition is a product of two problems (partially described in section 3.2.1). Remembering

that composition factors connected three triplet nodes (e.g. AB:C, BC:D, AB:D), the decay

effect for the case where one triplet has information and the other two do not is roughly quadratic

in reference to the case where two triplets have information and one do not.

Therefore, we divide the model into two cases (see Figure 3.7). In case of two non-updated

nodes and one updated node (e.g., vBC:D
v , vAB:D

v ∈ V¬u
v ; vAB:C

v ∈ Vu
v ) we model the information

score decays by a factor of (1 − α) where 0 < α < 1:

IS CBC:D = IS CAB:D = (1 − α)IS CAB:C , (3.17)

and in case one node is not updated, and two nodes are (e.g., vAB:C
v , vBC:D

v ∈ Vu
v ; vAB:D

v ∈ V¬u
v )

we model a smaller decay factor of (1 − α2):

IS CAB:D = (1 − α2)
IS CAB:C + IS CBC:D

2
. (3.18)

The scalar α is the decay factor and is empirically set to α = 0.5. Section 4.4.2 presents the

results of this study and the correlation between ”topological score” to actual ISC.
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(a) (b)

Figure 3.8: Discrete factor graph variable elimination: (a) a discrete qualitative factor graph contains only trinary (and unary) factors.
If each discrete variable dimension id d, each trinary factor is a d×d×d tensor. (b) eliminating variables VAB:C

v ,VAB:D
v ,VAB:E

v ,VBD:E
v ,

we get a new factor that is a function of four qualitative states, and therefore is a d × d × d × d tensor. Similarly, multiple variables
elimination may lead to factors that are a function of multiple variables and, therefore, are high dimensional tensors that are
infeasible to compute.

Graph Propagation Algorithm

In the scope of this study, we consider factor graphs that contain seen and unseen triplets. We

want to propagate the initial data from the seen triplets to the unseen ones using composition

factors to test propagation by the composition process.

The accurate way of doing this is by variable elimination (as discussed in [6]). Unfortunately,

this approach is impractical in our case. Variable elimination replaces a group of connected

variables and factor nodes with a single factor that connects all involved variables (see figure

3.8). Generally, a discrete factor is a d dimensional tensor with d#variables entries (In our

case, d is the number of sections in the qualitative space partition). The factors generated in

elimination usually involve multiple variables, are too big, and are practically infeasible in our

case. Practically even very efficient implementations, such as in GTSAM [12] discrete factor

graph, do not scale well.

Another well-known approximated solution is belief propagation, also known as sum-

product message passing (see, e.g., [45], [1]). This solution mainly holds for non-loopy graphs

(which is not the case for us). Loopy belief propagation algorithms support general factor graph

topology but are not proven to converge [33].

For our study, we chose a simpler algorithm that is very stable and good enough to investigate

the behavior of qualitative composition concerning graph topology. Finding a generally good

approximated algorithm for this problem is still to be studied, and we leave this for future work.

The algorithm we suggest inspired by label correcting algorithms is detailed in Alg. 3.2.

To better describe our algorithm, we add a few notations. During its progress, our algorithm

needs to determine which composition factors are available for data propagation in each step.

Accordingly, we divide the group of all composition factors V f c into two groups. The first group

comprises composition factors connected to at least one updated triplet and one not updated

triplet. These factors are considered available for propagating new information. We call these
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open composition factors and denote this subgroup as Vopen
f c . The second group includes compo-

sition factors that are connected only to updated or only to not updated triplets. These factors

are considered unavailable for new information propagation and are called closed composition

factors. We denote this subgroup as Vclosed
f c . The algorithm initializes both subgroups when it

starts and updates them during its progress.

V f c = Vopen
f c ∪ Vclosed

f c

Vopen
f c = {vi jks

f c };∃e(vi jks
f c , v ∈ Vu

v ) ∧ ∃e(vi jks
f c , v ∈ V¬u

v )

Vclosed
f c = {vi jks

f c };∄e(vi jks
f c , v ∈ Vu

v ) ∨ ∄e(vi jks
f c , v ∈ V¬u

v ).

Algorithm 3.2 qualitative factor graph data propagation
1: // init all seen triplets as updated
2: Vu

v = V seen
v

3: Vnu
v = Vv \ V seen

v
4: init Vopen

f c , Vclosed
f c by Vu

v , V¬u
v

5: init IS Ci, j:k∀ vi, j:k
v ∈ V seen

v
6: while V¬u

v not empty and Vopen
f c not empty do

7: // propagate all open composition factors
8: for all vi

f c ∈ Vopen
f c do

9: calculate qualitative state probability of non updated triplets - eq 3.15
10: calculate ISC of non updated triplets
11: end for
12: // keep only best ISC triplet
13: Find best new ICS triplet vbest

v ∈ V¬u
v

14: mark best triplet as updated: vbest
v → Vu

v
15: keep vbest

v estimation
16: mark relevant composition factor as closed V i

f c → Vclosed
f c

17: end while
18: // handle unreachable triplets
19: if V¬u

v not empty then ∀ vi j:k
v ∈ V¬u

v set uniform state probability
20:21:end if

In Alg. 3.2 all triplets with unary factors V seen
v are ”source” nodes. They are initialized as

Vu
v and are not updated again (lines 2-5). Every open composition factor connects updated and

non-updated variable nodes. On every step of the algorithm, all open composition factors Vopen
f c

propagate new data to their non-updated triplets (lines 8-11). However, only the update of the

factor that achieves the best information score for its not updated nodes is saved. The selected

triplet nodes are marked as updated and are not updated again (lines 12-16). This way, every

unseen node is updated only once. Finally, the algorithm halts when there are no open factors

left. Figure 3.9 shows an example of the graph propagation algorithm.

We chose this algorithm for three reasons: First, it is fast - a single update for each triplet.

Speedy runtime lets us go over many scenarios quickly and conduct a comprehensive study.

Second, it is very stable and not affected by graph loops. Finally, it proved helpful for our

purpose (as shown in section 4.4.2).
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(a) (b)

(c) (d)

Figure 3.9: Example for the factor graph propagation algorithm (described in 3.2). In this example, we show a specific qualitative
factor graph. Yellow triangles are composition factors. Small blue circles are non-updated variable nodes, while big green circles
are updated nodes. Each variable node has a notation of Id(ISC level). In each step of the algorithm, several non-updated candidate
nodes are considered for propagation (marked in red circles), but only the one with the best ISC is updated. (a) Initial state. Nodes
1,2,12 are source nodes and are marked as updated. (b) Nodes 3,4,6,11 are candidates to be updated. Node 6 gets the best ISC and
is updated. (c) Nodes 3,4,5,7,11 are candidates to be updated. Node 5 gets the best ISC and is updated. (d) Nodes 3,4,7,8,11 are
candidates to be updated. Node 3 gets the best ISC and is updated. (This example does not reach the end of the propagation)
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Topology Score

The last part of this study shows how our information decay model explains the behavior of

composition-based propagation in qualitative factor graphs. Our information decay model uses

only the initial information of seen triplets (not the entire probability distribution) and graph

topology to predict how much information will propagate to each variable node in the graph.

We call this prediction ” topology score” (TSC) and denote it as TS C(vAB:C
v ) = TS CAB:C . In

section 4.4.2, we show that this prediction has a reasonable correlation to the ISC of unseen

nodes from the composition-based propagation. Therefore we conclude it is a valid model.

The decay model prediction might be used when addressing a globally optimized solution

for qualitative factor graph propagation or active qualitative planning.

The process of generating a ”topology score” is as follows: we start by setting the topology

score for all seen triplets V seen
v to be their initially estimated ISC:

TS CAB:C = IS CAB:C ∀vAB:C
v ∈ V seen

v .

Then we use the same graph propagation algorithm described in Alg. 3.2, but instead of using

actual composition factors for propagating data, we use our ”information decay” model. The

”topology score” variant of the algorithm is described in Alg. 3.3. Note that while we use

Alg. 3.2 to propagate actual data in the graph, our decay-based ”topology score” can be applied

to any graph propagation algorithm.

Algorithm 3.3 topology score propagation
1: ▷ differences from in Alg. 3.2 in red
2: // init all seen triplets as updated
3: Vu

v = V seen
v

4: Vnu
v = Vv \ V seen

v
5: init Vopen

f c , Vclosed
f c by Vu

v , V¬u
v

6: init TS Ci, j:k = IS Ci, j:k ∀ vi, j:k
v ∈ V seen

v
7: while V¬u

v not empty and Vopen
f c not empty do

8: // propagate all open composition factors
9: for all vi

f c ∈ Vopen
f c do

10: calculate TSC of non updated triplets - eq 3.17,3.18
11: end for
12: // keep only best TCS triplet
13: Find best new TCS triplet vbest

v ∈ V¬u
v

14: mark best triplet as updated: vbest
v → Vu

v
15: keep vbest

v estimation
16: mark relevant composition factor as closed vi

f c → Vclosed
f c

17: end while
18: // handle unreachable triplets
19: if V¬u

v not empty then ∀ vi j:k
v ∈ V¬u

v set uniform state probability
20:21:end if

Section 4.4.2 presents the results of this study and the correlation between ”topological

score” to actual ISC.
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Chapter 4

Results

We thoroughly evaluate our approach to test its performance and effectiveness. We discuss our

test and analysis methodology in sections 4.1 and 4.2. The first part of our approach concerns

single landmark triplet estimation. In section 4.3, we use simulation to compare our approach to

the state of the art [35] and specifically show the effect of in-cooperating a motion model on

speed and performance. We also compare our full, accurate algorithm to our approximated one

(As presented in sections 3.1.4, 3.1.5), further improving the speed with a slight performance

cost. In section 4.3.3, we use the MCRLAM dataset [25] for testing in a more realistic scenario.

The second part of our work addresses data propagation in the qualitative map. This part

is innovative and without existing work as a reference. In section 4.4.1, we evaluate the basic

performance of qualitative composition, and in section 4.4.2, we show the results of our study

of composition behavior in a qualitative factor graph as discussed in section 3.2.3.

4.1 Simulation

The main tool we use to evaluate our approach is a MATLAB-based simulation. We consider

a 2D scenario with point landmarks and a mobile camera. Specifically we uniformly choose

positions for m landmarks Li = (xi, yi), i ∈ 1, ...,m. The set of landmarks is our metric ground

truth map Mmetric = {Li}i=1...m. Then we uniformly choose camera trajectory Tra jectory =

{X j} j=1...n (where X j is camera pose at time instant j). We randomly select which landmarks

are observed from each pose and randomize measurements and actions Hn using Gaussian

measurement and motion models. Camera to landmark measurements are noisy azimuth

measurements, and actions are heading commands as described in Section 2. To evaluate the

different parts of our work, we randomize numerous scenarios with various noise levels. Figure

4.1a illustrates an example scenario.

To keep the analysis general, we consider locations and poses as uniform as possible:

Landmark locations and camera trajectory are sampled uniformly; each pose observes only

three landmarks. This constraint prevents biasing results with specific assumptions on camera

trajectory or landmark visibility. Note that our method is more comprehensive than observing

only three landmarks at a specific time. If a specific view observes more than three landmarks,
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(a)

Figure 4.1: Simplified illustration of a simulation scenario. The camera trajectory is presented in red. The camera gets
measurements of two landmark triplets: 1,2:4 and 3,5:6. Each is observed from 3 different viewpoints. In the actual simulation, the
order of observations is random.

all landmark triplets involved will generate measurements.

An important parameter of the simulation is its geometric dynamic range (GDR), i.e. the

ratio between the minimal distance between any two objects and the maximal distance between

any two objects (cameras or landmarks). All 2D locations are randomised within x ∈ [−3, 3]

and y ∈ [−3, 4], and we enforce a minimum distance of 0.01 between any two objects. This

means GDR ≤ 800. It is also a valid assumption for real systems (e.g., a robot moving in a 60m

×70m area with landmarks and cameras not closer than 10 cm from each other). Limiting the

GDR enables a numerically stable solution.

We also note that landmark recognition is ideal with no false landmark identification. Our

work focuses on basic qualitative geometry. Identification errors can be modeled in our approach

(an important direction for future work).

4.2 Performance Metrics

We use various metrics to analyze our inference performance. Using various metrics is an

important addition compared to the analysis made in state-of-the-art approaches [28] and [35].

It provides us with a deeper understanding of qualitative inference. We use two main types of

metrics:
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1. Ground truth (GT) related metrics:

• Probability DMSE: The mean square error for the difference between the estimated

qualitative state probability vector to the GT state vector DMS E =
√∑m

i=1 (sAB:C
i − sAB:C

GT )2.

It tests how accurate the estimation is.

• Ground truth rating: The rank of the GT qualitative state when ordering qualitative

states by their estimation likelihood (1 is most likely).

• Geometric distance: The mean distance from qualitative state centroids to GT state

centroids weighted by the state estimated probability. gmd =
∑m

i=1 ||c
AB:C
i − cAB:C

GT ||2

This metric tells us how close are the estimated states to GT (1 is the distance

between A and B).

• Ground truth likelihood: estimated posterior probability of GT qualitative state

P(sAB:C
GT ). This metric measures the accuracy of estimation but ignores false qualita-

tive states.

• Ground truth likelihood ratio: The ratio between the estimated probability of GT

qualitative state to the estimated probability of the most likely state P(sGT )
max(S AB:C) . This

metric measures how close the GT state is to being most likely.

2. Information (or entropy) related metrics:

• Entropy: estimation probability entropy E = −
∑m

i=1 P(sAB:C
i log sAB:C

i ) measures

how distributed is the qualitative state probability (or how much information is in

the distribution).

• Likelihood ratio: the ratio between the second most likely qualitative state to the

most likely qualitative state. This measures how ”decisive” the estimation result is.

Very important to maximal likelihood approaches.

Using all these metrics in different stages of result analysis teaches us much about the quality

of our algorithms.

4.3 Single Triplet

To evaluate the effect of our motion-model-incorporated inference, we compare three different

algorithms: (a) State-of-the-art baseline [35] (b) Our full multi-view inference as described in

Section 3.1.1. (c) Our fast approximated multi-view inference (section 3.1.1).

The baseline for evaluating our performance is the previous work of [35] (mapping only).

To compare running time and complexity, we do not directly implement [35], but an equivalent

algorithm. We use our formulation from Section 3.1.1 that leads to equations 3.3 and 3.7.

Since [35] does not consider a motion model, views are independent. Under these assumptions,

we now get:

P(sC
i |Hn) =

"
LC∈sC

i ,X1:n

P(X1:n, LC |Hn)dLCdX1:n, (4.1)
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(a) (b)

Figure 4.2: EDC single triplet estimation. Our motion model in-cooperated algorithm is compared to the state-of-the-art
baseline [35]. The plot shows median and percentiles 25 and 75 for each algorithm. (a) DMSE Vs. measurement noise (motion
model noise is ×2). (b) mean geometric distance vs. measurement noise (motion model noise is ×2).

where

P(X1:n, LC |Hn) =
P(X1, LC)
P(Z1)

n∏
i=1

1
ζi
P(Zi|Xi, LC), (4.2)

and ζi � P(Zi|a1:i−1,Z1:i−1). We Then correspondingly implement a reduced version of our

sample-based algorithm 3.1 in section 3.1.4.

To evaluate the single triplet inference, we randomize 300 scenarios with 36 different

combinations of measurement and motion model noise levels for each scenario (10800 scenarios

in total). Measurement and motion model has Gaussian noise as described in section 2, where

measurement noise is σv ∈ [0◦, 10◦] and motion model noise is σw ∈ [0◦, 20◦]. We also use

landmark triplets with views from 3-time steps, as shorter trajectories will not show the effect of

using a motion model, and longer trajectories typically do not improve results significantly.

4.3.1 General Performance

Figure 4.2 shows performance results and compares our motion-model-incorporated inference to

the state-of-the-art. Performance is represented by DMSE and Geometric distance as specified

in section 4.2. In this table, for the ease of visualization, results are a function of azimuth

measurement noise, while motion model heading noise is ×2 bigger for each run correspondingly.

EDC estimation with motion model
Metric baseline ours ours-fast
DMSE 0.39, 0.63, 0.71 0, 0.16, 0.63 0, 0.21, 0.62
geometric distance 0.28, 1.10, 2.30 0, 0.25, 1.15 0, 0.27, 1.16
Entropy 0.28, 0.66, 0.87 0, 5e-3, 0.58 0, 0.07, 0.64
time[sec] 26 18 0.05

Table 4.1: EDC state estimation for single triplet. measurement noise: σv = 2◦, motion model noise: σw = 5◦

We observe that using a motion model dramatically improves performance. Up to measure-

ment noise of 2◦ (which is reasonable even for low-end camera-based platforms), results are

much better than state-of-the-art and almost perfect. Up to 7◦ (which is a significant error for

camera-based systems), our estimated probability DMSE is still better than state-of-the-art. We
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(a) (b)

Figure 4.3: EDC single triplet estimation. Our motion model in-cooperated algorithm is compared to the state-of-the-art
baseline [35]. The plot shows median and percentiles 25 and 75 for each algorithm. (a) Entropy Vs. measurement noise (motion
model noise is ×2). (b) Ground truth rating vs. measurement noise (motion model noise is ×2).

can also see that for 7◦ gmd < 1, all of the qualitative states that are wrongly estimated are likely

to be close to the ground truth state.

Another significant result concerns our fast-approximated algorithm. Table 4.1 shows

various performance metrics, including run time for each algorithm. We show 25 percentile,

median, and 75 percentile. Our fast approximated algorithm achieves performance very close to

the full one. While our full algorithm is about ×2 faster than the baseline, the approximation is

about ×100 faster than both. These results show a successful usage of the ability of the coarse

qualitative estimation to absorb errors and enable fast approximations. While we use a simple

MATLAB implementation, absolute run times are irrelevant but can be used for comparing the

algorithms.

Figure 4.3 includes additional performance metrics. Unlike DMSE and Geometric distance,

which measure the correctness of the estimation, Entropy measures only the steepness of it.

Entropy performance shows similar behavior. On the other hand, looking at ground truth rating,

we note that for high noise levels, our estimation is sometimes lesser than the baseline method.

Remembering that even in these conditions, the correctness of our probability distribution is

better (as seen in DMSE) we conclude that this is caused by the fact that scenarios with higher

noise may lead to multiple (mostly two and up to 4) likely qualitative states. In these cases,

minor estimation errors may translate to a change in likelihood rating between these close states.

We also note that these high noise levels are unlikely for real camera-based applications.

4.3.2 Fast Variant Noise Sensitivity

Observing that the fast approximation algorithm presents results close to the full algorithm, we

analyzed its performance more extensively. Since our fast variant is noise ignorant (as detailed

in section 3.1.5), we want to specifically test the different effects of motion model noise and

measurement noise separately. We use the same simulation and scenario set but look at different

cross-sections of noise levels.

Figure 4.4 shows the effect of motion model noise on the performance. We look at scenarios
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(a) (b)

(c)

Figure 4.4: Sensitivity to motion model error. The plot shows median and percentiles 25 and 75. (a) mean geometric distance Vs.
Motion model noise. (b) ground truth rating Vs. Motion model noise (c) ground truth likelihood Vs. Motion model noise.

with 0 measurement noise and various motion model noise levels. Motion model noise has a

small effect on ground truth likelihood and geometric distance. Even with a very high noise of

20◦, the estimated probabilities are relatively unaffected. However, it has more effect on the

ground truth rating (but only on the 75 percentile), although GT is typically in the top 3 most

likely states.

We conclude that this is caused by scenarios with more challenging geometry (landmarks

close to qualitative state edges or ill-conditioned camera poses) that may lead to two or three

likely qualitative states. In these cases, the minor errors may translate to a change in likelihood

rating between these close states.

Figure 4.5 shows the effect of measurement noise on the performance. We look at scenarios

with 0 motion mode noise and various azimuth measurement noise levels. The effect of

measurement noise is more substantial. Both geometric distance and ground truth likelihood

respond as noise increases above 2◦, but still, medians are not very strongly affected. Again GT

rating responds harder on the 75 percentile but is stable on the median, leading us to the same

conclusions.
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(c)

Figure 4.5: Sensitivity to measurement model error. The plot shows median and percentiles 25 and 75. (a) mean geometric
distance Vs. Measurement model noise. (b) ground truth rating Vs. Measurement model noise (c) ground truth likelihood Vs.
Measurement model noise.
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4.3.3 MRCLAM Dataset Results

To evaluate our method in a realistic scenario, we use the MRCLAM dataset [25], which

comprises several scenarios of multiple robots moving around pre-set landmarks with unique

markers. We choose this dataset since it has robot pose GT and landmark identification and

location GT. In addition, landmarks are round and, therefore, act as point landmarks. This

real-world dataset allows us to evaluate how informative our qualitative estimation framework is

(e.g. in terms of entropy) and quantify performance concerning GT, which has yet to be tackled

in previous work [35].

We use five scenarios, each with five robots and 15 landmarks. We get 16-230 landmark

triplets observed three times or more in each scenario. Our qualitative approach thus generates

rich mapping for these scenarios.

A typical estimation result for a single landmark triplet observed from three camera views is

in Figure 4.6a. We can see that the usage of the motion model reduces the trajectory sampling

hypotheses T H (blue color), which is further refined by the landmark C triangulation step to

only a small subset (green color). The resulting landmark C location hypotheses are in red. One

can observe that the camera and landmark hypotheses are very close to GT. As a result, the

likelihood of the GT qualitative state in this example run is 1.

Table 4.2 summarizes the results for this dataset. We compare our fast algorithm variant

to an uninformative uniform distribution. Looking at Entropy and DMSE, we conclude that

estimation is informative and is close to the truth. GT rating shows that most of the time, the GT

state is the most likely, and always within the top 2. Also, looking at gmd, we can see that all

likely qualitative states are close to GT. In conclusion, we note that results show meaningful and

informative estimation, which concurs with our stimulative results considering the reasonable

noise levels in the dataset.

MRCLAM dataset EDC estimation
ours-fast uniform

DMSE 0.03, 0.45, 0.69 0.97
gmd 5e-3, 0.27, 0.71 2.2
Entropy 4e-3, 0.38, 0.69 3
GT rating 1, 1, 2 -

Table 4.2: MRCLAM dataset results summary: We show 25 percentile, median, and 75 percentile for each metric. Our approximated
fast algorithm is compared to an uninformative uniform estimation.

4.3.4 Conclusions

Generally, our full algorithm and fast approximation have several good properties. First, they

perform very well for azimuth measurement noise of up to 2◦ and motion model heading noise

of up to 10◦, which is a reasonable range even for low-quality camera-based platforms. Secondly,

they are more sensitive to measurement model noise than motion model noise, which is also

practical since measurement noise is usually smaller in real-world scenarios. Furthermore,

performance degradation in high noise levels is gradual and generally stable.

We also successfully demonstrate the unique attributes of qualitative inference to hold ap-
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(a)

Figure 4.6: MRCLAM dataset: EDC example scenario result. Ground truth camera poses are red triangles, and ground truth
landmark locations are blue circles. Thin green lines are camera locus circles, while thick blue and green are valid hypotheses after
two and three view constraints. Redline is the landmark C location hypothesis after three-view constraints. All estimations are
close to GT, and the error is still inside GT’s qualitative state (light green area).
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proximations well and achieve a very low compute global nonlinear algorithm. We believe there

is a good potential for this approach to be practical for real-world qualitative autonomous navi-

gation and mapping. It may also even be more meaningful when addressing online qualitative

active planning.

4.4 Qualitative Map Data Propagation Results

We now analyse data propagation in the qualitative map as described in section 3.2. First, in

section 4.4.1 we show the results of a basic single triplet simulation that measures how much

information is propagated through a single trinary composition factor (as described in section

3.2.1). Then, in section 4.4.2 we present the results of our qualitative graph data propagation

study (as described in section 3.2.3). We discuss the specifics of how we simulate the problem,

and show the correlation between our topological information decay model to actual composition

composition based propagation.

4.4.1 Basic Composition Factor Analysis

In this section, we evaluate the basic composition operator for propagating data between three

common landmark triplets as detailed in section 3.2.1. While composition can improve existing

estimation, we only test its performance in propagating data to un-estimated triplets, enabling

us to understand its operation clearly.

Specifically, we simulate 1000 scenarios, each comprising three inter-connected landmark

triplets (AB:C, BC:D, AB:D) and camera trajectories with different noise levels. Histories, in

terms of measurements and controls HAB:C and HBC:D are available, but HAB:D = ∅. We estimate

P(S AB:C |HAB:C) and P(S BC:D|HBC:D) using measurement history and our fast approximated

algorithm. Then, P(S AB:D|HAB:C ,HBC:D) is inferred only through composition. Figure 4.7

summarizes the performance evaluation. The propagated data is compared to the initial state of

uniform estimation for the unseen triplets. Results are not perfect, but considering this triplet

has no direct measurements, we see that composition still propagates significant information.

The GT rating tells us that for reasonable measurement noise of up to 2◦, the GT state is mostly

among the four most probable EDC states (and half the time among the two leaders). The gmd

plot shows that the False EDC states are mainly close to the GT state. Considering that these

are triplets that were never measured together and could not be estimated otherwise, these are

significant results that might enable the use of unseen triplets in active qualitative planning.

4.4.2 Factor Graph Propagation Analysis

The last part of our work studies how composition factors propagate data through the qualitative

factor graph. As explained in section 3.2.3 this is done in 4 steps:

1. We generate a factor graph with seen triplets that has an initial independent estimation

and unseen triplets with no independent estimation.
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(c)

Figure 4.7: EDC probabilistic composition. The plot shows median and percentiles 25 and 75. (a) DMSE vs. measurement noise.
Composition results Vs. uniform probability (qualitative state unknown) (b) mean geometric distance vs. measurement noise. In
addition to our composition, we also show results for uninformative estimation.
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2. We use the composition-based Alg. 3.2 to propagate data from seen triplets to all unseen

triplets and calculate the ”information score” for each one (section 3.2.3).

3. We use our information decay model and Alg. 3.3 to generate a ”topology score” for all

triplets (sections 3.2.3, 3.2.3). This score is a prediction of the amount of information that

will get to each triplet based on our decay model and graph topology.

4. Finally, we compare the ”topology score” to the actual ”information score” for each

triplet and see if the information decay model correlates to the actual composition-based

propagation.

Next, we specify this study in more detail.

Factor Graph Simulation

First, we must simulate scenarios with complex factor graphs containing seen and unseen triplets

in various topologies. To do so, we use the same simulation described in section 4.1 to organize

landmarks and camera poses uniformly and randomly. Then we consider all possible landmark

triplets V f ull
v , and all possible composition factors V f ull

f c . We choose a random subgroup of n f c

composition factors V f c ⊆ V f ull
f c , and all related triplets Vv ⊆ V f ull

v to make the factor graph.

Then out of all the nv = |Vv| triplets we randomly choose nseen =
nv

coverage rate triplets to have

observations. Coverage rate is a parameter of the simulation that affects how close unseen

triplets will be to the closest seen triplet. A high coverage rate means most triplets are seen, so

many unseen triplets are directly connected to seen triplets via composition. A low coverage rate

means few triplets are seen, so many unseen triplets are a few composition factors away from

the closest seen triplet. We empirically set it to 0.5, which gives us a good variety of typologies.

Azimuth and motion model measurements are then randomized using the proper noise models

(section 2) from camera trajectory to the selected triplets. The rest are unseen triplets Vunseen
v .

For our study, we prefer factor graphs with various levels of connectivity between seen and

unseen triplets. Therefore, we also apply a process for selecting factor graphs with various

connectivity levels. Given a factor graph, we calculate TSC for each triplet as described in

3.2.3. Since measurement-based estimation is not relevant in this stage, we just initialize TSC

to be 1 for all seen triplets TS Ci, j:k = 1, ∀V i, j:k
v ∈ V seen

v and 0 for all Vunseen
v , and we apply

Alg. 3.3. We look at the histogram of topology scores of all triplets in the graph and calculate

the corresponding entropy (figure 4.8). We call this connectivity score. It is a measure of the

variability of topology in the graph. If the connectivity score is high, it means the distribution of

TCP in the graph is close to uniform, and a low connectivity score means there are only a few

dominant TCP values in the graph. Therefore we randomly generate multiple-factor graphs and

choose the best connectivity score.

Information Decay Model Vs Composition

With 5400 simulated factor graph scenarios, we solve all seen triplets using their measurements

and our fast variant of the single triplet solver (section 3.1.5). We then use the composition-based
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(c) (d)

(e) (f)

(g) (h)

Figure 4.8: For generating factor graph scenarios, we randomize multiple graphs and use a TSC histogram to select graphs with
various connectivity levels. (a), (c), (e), and (g) are examples of selected factor graphs. (b), (d), (f), and (h) are the corresponding
TPC histograms and connectivity scores.
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(a)

Figure 4.9: The correlation between the Information decay model and composition. Topology scores of all triplets in all scenarios
are collected into ten bins. For each bin, we show the percentile 25, median, and percentile 75 statistics of the corresponding triplets
information scores.

Alg. 3.2 to propagate data from seen triplets to all unseen triplets and calculate the information

score for each one (section 3.2.3).

Then we generate a topology score for all triplets with our information decay model and

Alg. 3.3 as detailed in sections 3.2.3 and 3.2.3. This score predicts the amount of information

that will get to each triplet based on graph topology. Finally, we compare the topology score to

the actual information score for each triplet.

Figure 4.9 shows how our information decay model prediction relates to the actual composition-

based information score. In this figure, we collect topology scores of all triplets in all scenarios

and bin them into ten bins. For each bin, we collect the information scores of the corresponding

triplets and show percentile 25, median, and percentile 75 statistics. We see that the information

decay model correlates reasonably to the composition-based propagation.

This is a validation of our information decay model and the main contribution of this study.

Having a simplified model for qualitative factor graph data propagation means we understand

this process, which also might be valuable for active qualitative planning.

To test if our information decay model is trivial, we also tried several other simplified models

for predicting qualitative data propagation via composition. An example is a model we call

composition level (CL). This model sets the composition level for seen triplets V seen
v to be 0.

Propagation via a composition factor just increases the composition level by 1. We denote the

composition level of a triplet node vAB:C
v to be: CLAB:C . As in section 3.2.3 we address the
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(a) (b)

Figure 4.10: Comparing two simplified models for qualitative data propagation to actual composition-based information score
(as described in 4.4.2). Topology score (a) represents our information decay model; (b) is an alternative composition level model.
For both scores, all triplets from all scenarios are collected into (the same) 10 bins. For each bin, percentile 25, median, and 75
statistics are shown. (a) exhibits a better correlation than (b).

propagation through a composition factor that involves three triplet nodes (e.g., AB:C, BC:D,

AB:D) and divides the model into two cases. In case of two non-updated nodes and one updated

node (e.g., VBC:D
v ,VAB:D

v ∈ V¬u
v ; VAB:C

v ∈ Vu
v ):

CLBC:D = CLAB:D = CLAB:C + 1, (4.3)

and in case one node is not updated, and two nodes are (e.g., VAB:C
v ,VBC:D

v ∈ Vu
v ; VAB:D

v ∈ V¬u
v ):

CLAB:D = min{CLAB:C ,CLBC:D} + 1. (4.4)

Then composition level is propagated through the graph using an algorithm similar to Alg. 3.3.

Comparing the information decay-based topological score to the composition level model,

we see that TCP correlates more to the actual composition-based information score (figure 4.10).

Since the composition level does not use the information in the unary factors, we use a simplified

version of TCP to make an unbiased comparison, using the same information decay model and

graph propagation algorithm but initializing TCP to be 1 for all V seen
v instead of IS C(P(S i j:K)).

Statistics binning is done the same way for both. The composition level graph is incomplete

because it naturally gets limited values but is binned into the same ten bins. Also, to make the

graphs comparable, in figure 4.10, we present a normalized version of the composition level:

ĈLi j:k
= 1 −

CLi j:k

CLmax
, (4.5)

where CLmax is single maximal composition level in the graph.

We conclude that only some ways of modeling composition factor propagation are valuable

and that the information decay model is noticeably useful.
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4.4.3 Conclusion

Looking at data propagation in the qualitative map gives us several important insights. First, the

qualitative composition can propagate significant information, even to landmark triplets that

were never seen together.

We also show that our information decay model reasonably predicts how much information

is propagated by composition. Hence, we have a good simple model for understanding data

propagation in the qualitative map regarding its topology and existing information.

This process of data propagation and the innovative connection between data propagation

and graph topology are essential tools when addressing real-world qualitative autonomous

planning.
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Chapter 5

Conclusions

This research presents a new approach for localization and mapping based on qualitative spatial

reasoning. We use a new and more general formulation, which more naturally addresses various

aspects of the problem. We use this to achieve several innovations and improvements, taking

a few steps towards a whole and useful qualitative SLAM framework. We demonstrate how

incorporating a motion model in qualitative estimation improves results. Our method also

enables easy use of various qualitative space partitions and underlying SLAM solvers. We

suggest a sampling-based global non-linear algorithm that does not need initialization. We

also successfully used qualitative inference to accommodate minor errors and generated a low

compute approximated algorithm.

Furthermore, we show how to represent the problem using a factor graph and propagate

data efficiently using the inherent properties of qualitative geometry. Data propagation can also

estimate landmark triplets with no direct observations, an essential building block for active

qualitative planning. We also identified a simple model for this qualitative data propagation that

helps understand its behavior.

In addition to improving both complexity and performance compared to the state-of-the-

art [28] and [35], we also show that this approach is a practical alternative for low-cost robotic

systems or active planning, in cases where exact metric location is not essential.

Future research may focus on using qualitative data for handling recognition errors, address-

ing complex volumed landmarks, and active qualitative planning.
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Chapter 6

Future Work

This work lays the basics for further investigating and expanding qualitative localization and

mapping as well as active qualitative planning. We also see an indication that additional research

in this field may lead to a low-compute alternative for low-cost autonomous platforms in various

tasks. Some of the directions we see for the future are:

1. Finding more general or optimal algorithms for qualitative data propagation in the factor

graph and understanding their performance limits.

2. Qualitative active planning. As was the case for qualitative SLAM, current works address

separate parts of the problem but not in a holistic way. Our formulation and algorithms

may be utilized to achieve a full framework.

3. Addressing false recognition and outlier removal using qualitative geometry.

4. Expanding the scenario limits, specifically addressing volumed landmarks and 3D geome-

try.

5. Building a large and diverse qualitative SLAM active planning dataset based on common

existing datasets.
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