An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses

Erik Nelson¹

Vadim Indelman²

Nathan Michael¹ Frank Dellaert²

¹Robotics Institute Carnegie Mellon University Pittsburgh, PA 15232

²College of Computing Georgia Institute of Technology Atlanta, GA 30332

Motivating Scenario

Experimentally evaluates and extends [Indelman, et al., ICRA 2014]

- 1. Related and prior work
- 2. Technical approach from [Indelman, et al., ICRA 2014]
- 3. Algorithmic complexity, metrics for saliency of information
- 4. Experimental design
- 5. Transformation accuracy experiments
- 6. Network complexity and run time efficiency experiments

Related and Prior Work

Landmark based

Landmarks and waypoints observed throughout an environment localize each robot to the same coordinate frame

[Fenwick, et al., ICRA 2002] [Olson, et al., IEEE J. Oceanic Engineering 2006]

Fenwick, et al., ICRA 2002

Related and Prior Work

Landmark based

Landmarks and waypoints observed throughout an environment localize each robot to the same coordinate frame

[Fenwick, et al., ICRA 2002] [Olson, et al., IEEE J. Oceanic Engineering 2006]

Direct inter-robot observations

Robots observe one another

[Kim, et al., ICRA 2010] [Bailey, et al., ICRA 2011] [Howard, et al., IJRR 2006] [Zhou, et al., IROS 2006] [Charrow, et al., ISER 2012]

Zhou, et al., IROS 2006

Related and Prior Work

Landmark based

Landmarks and waypoints observed throughout an environment localize each robot to the same coordinate frame

[Fenwick, et al., ICRA 2002] [Olson, et al., IEEE J. Oceanic Engineering 2006]

Cunningham, et al., ICRA 2012

Direct inter-robot observations

Robots observe one another

[Kim, et al., ICRA 2010] [Bailey, et al., ICRA 2011] [Howard, et al., IJRR 2006] [Zhou, et al., IROS 2006] [Charrow, et al., ISER 2012]

Data association

Localization using correspondences formed between data shared by robots

[Montijano, et al., IEEE Trans. Robotics, 2013] [Cunningham, et al., ICRA 2012] [Indelman. et al., ICRA 2014]

[Indelman, et al., ICRA 2014]

<u>Goal</u>:

- Establish multi-robot data association
- Infer initial relative poses

Local trajectories of 3 robots

Strategy:

- Robots share observations
- Calculate candidate multi-robot relative pose constraints
- Collect into set, *F*, of correspondences (includes many outliers)
- Use EM to estimate inlier correspondences while inferring relative initial poses for each robot

Multi-robot system represented as a factor graph Data associations, $(r_i, r_j, k, l) \in \mathscr{F}$, represent pose constraints, $c_{k,l}^{r_i, r_j}$

Multi-robot joint pdf:

Local measurements

Data association

Multi-robot measurement likelihood

$$p\left(c_{k,l}^{r_i,r_j}|x_k^{r_i},x_l^{r_j}\right) \propto \exp\left(-\frac{1}{2}\left\|err\left(c_{k,l}^{r_i,r_j},x_k^{r_i},x_l^{r_j}\right)\right\|_{\Sigma}^2\right)$$

$$err\left(c_{k,l}^{r_i,r_j}, x_k^{r_i}, x_l^{r_j}\right) \doteq c_{k,l}^{r_i,r_j} \ominus h\left(x_k^{r_i}, x_l^{r_j}\right)$$

$$h\left(x_{k}^{r_{i}}, x_{l}^{r_{j}}\right) \doteq x_{k}^{r_{i}} \ominus \left(T_{r_{j}}^{r_{i}} \oplus x_{l}^{r_{j}}\right)$$

Unknown

 $a \ominus b$ – subtraction with b expressed in the frame of a- transformation composition

Initial relative pose estimates

Relative initial pose estimates can be estimated from each candidate multi-robot correspondence

But only inliers yield similar transformations

- **E**: estimate inlier correspondences given $T_{r_i}^{r_i}$
- **M**: maximize over $T_{r_j}^{r_i}$ given inlier estimates to update $T_{r_j}^{r_i}$

Complexity and Saliency of Information

Problem: Run time complexity of sharing observations is $O(n^{12} m^{12})$

- *n* robots
- *m* shared observations per robot

Hypothesis: Selecting only the most salient observations will mildly reduce transformation accuracy while drastically increasing efficiency.

Complexity and Saliency of Information

Laser scan saliency, computed via autocovariance

Locations with high numbers of ICP correspondences

Complexity and Saliency of Information

Reduce cost by precomputing observation saliency

- Discard scans that aren't salient
- Share those that are

 $\delta = \left(\mathrm{Trace} \left(\Sigma \right) \right)^{-1} \text{, share if } \delta > \delta_s$ threshold saliency

Experimental Design and Approach

Platform

Trial **T1**

Trial **T2**

Trial **T3**

Experimental Design and Approach

SLAM implementation with a single robot

Results: Transformation Accuracy

Computed and measured transformations

			Trial T1		Trial T2		Trial T3	
			$T_{r_2}^{r_1}$	$T_{r_3}^{r_1}$	$T_{r_2}^{r_1}$	$T_{r_3}^{r_1}$	$T_{r_2}^{r_1}$	$T_{r_3}^{r_1}$
	X	(m)	-0.12	0.15	2.62	-4.53	1.41	-13.59
Computed	У	(m)	-0.03	-0.27	7.45	-4.09	-3.99	-1.24
	$\boldsymbol{\theta}$	(rad)	-0.02	0.03	-1.57	0.00	0.97	2.05
	X	(m)	0.00	0.00	2.48	-4.60	1.42	-13.63
Measured	У	(m)	0.00	0.00	7.50	-3.99	-3.90	-1.02
	$\boldsymbol{\theta}$	(rad)	0.00	0.00	-1.57	0.00	1.08	2.01
Error	x,y	(m)	0.12	0.31	0.15	0.12	0.09	0.22
	θ	(rad)	0.02	0.03	0.00	0.00	0.11	0.04

Results: Saliency Thresholding

Computed and measured transformation errors

$\sim\,$ - No transformation established

	Trial T2						Trial T3							
δ_s	Shared scans		$T_{r_2}^{r_1}$ error		$T_{r_3}^{r_1}$ error		Shared scans		$T_{r_2}^{r_1}$ error		$T_{r_3}^{r_1}$ error			
	r_1	r_2	r_3	x,y (m)	θ (rad)	$\ x,y\ $ (m)	θ (rad)	r_1	r_2	r_3	x,y (m)	θ (rad)	x,y (m)	θ (rad)
0	75	77	65	0.15	0.00	0.20	0.00	74	55	71	0.09	0.10	0.22	0.05
2×10^{5}	22	26	23	0.19	0.00	0.24	0.00	26	18	36	0.22	0.08	0.59	0.13
4×10^{5}	22	24	23	0.19	0.00	0.24	0.00	24	16	35	\sim	\sim	0.59	0.13
6×10^{5}	16	18	19	0.18	0.01	0.29	0.02	22	15	31	\sim	\sim	0.67	0.13
8×10^{5}	8	6	4	~	\sim	\sim	\sim	8	1	15	\sim	\sim	\sim	\sim

T2 and T3 trajectories in a common frame

Results: Saliency Thresholding

T2 and T3 robots mapping in a computed common frame

Results: Sharing Frequency and Run Time

Capacity constrained networking

- ~34 kB per scan
- 4 Hz sharing limit with n=3
- 1 Hz sharing limit with n=6

[Jun, et al., IEEE Wireless Communications 2003]

Robot sharing frequencies

			$\delta_s = 0$		$\delta_s = 2 \times 10^5$				
Robot	Duration (s)	Shared Scans	Max (Hz)	Mean (Hz)	Shared Scans	Max (Hz)	Mean (Hz)		
T2 : <i>r</i> ₁	37.4	75	2.08	2.00	22	1.01	0.59		
T2 : <i>r</i> ₂	39.0	77	2.02	1.97	26	1.28	0.67		
T2 : <i>r</i> ₃	32.5	65	2.02	2.00	23	0.95	0.71		
T3 : <i>r</i> ₁	35.5	71	2.06	2.00	26	0.98	0.73		
T3 : <i>r</i> ₂	27.6	55	1.99	1.99	18	1.31	0.65		
T3 : <i>r</i> ₃	37.4	74	1.98	1.98	36	1.20	0.96		

- Without thresholding saliency, network capacity is not reached
- Thresholding causes a reduction in both mean and max sharing frequencies

Percentage of total run time devoted to individual algorithmic steps

- Scan saliency computation requires the same amount of time regardless of the number of shared observations
- Therefore run time was decreased by 46.4% by discarding the bottom 60.0% of salient scans

Conclusions

Experimental analysis of multi-robot data association framework

- Laser scan autocovariance as a measure of saliency
- Subsampling by saliency reduces complexity, mildly diminishes transformation accuracy
- With three robots, implementation is not constrained by network capacities

