Bundle Adjustment with Feature Scale Constraint for Enhanced Estimation Accuracy

Vladimir Ovechkin
Under the supervision of Asst. Prof. Vadim Indelman

Technion 02.08.2017

Vision-based navigation

- Aerial unmanned vehicles
- Self-driving cars
- Augmented reality
- Underwater operations
- Space operations

Problem description

Problems:

- Mapping
- 3D reconstruction
- Accurate self-pose estimation

Common approach to use:

Bundle Adjustment

Monocular SLAM

Assumptions:

- no initial map
- no GPS
- only a single camera sensor

Related work

- BA: minimize re-projection errors
 [B. Triggs Bundle Adjustment A Modern Synthesis]
- visual feature-based SLAM online [M. Kaess iSAM2]
- using feature scale for identifying far-away landmarks
 [D.-N. Ta Vistas and parallel tracking]
- correcting monocular scale drift by placing a prior on the size of the objects [D. P. Frost Object-Aware Bundle Adjustment]

Monocular SLAM scale drift problem

Known problem is scale drift along optical axis with time.

Example:

Error along optical axis is growing with time

For the <u>first</u> 100 frames:

Error: 8.6%

For the <u>last</u> 100 frames:

Error: 94.6%

Contribution

We introduce scale constraints into Bundle Adjustment aiming to improve accuracy along optical axis direction.

Outline

- Background:
 - Bundle Adjustment (BA)
 - SIFT features
- Our approach:
 - Adding new constraints to BA
 - Improving accuracy of detected feature scale
- Results
- Variations with new constraints
- Conclusions

BA notations

Landmark set

$$L \doteq \{l_1, \ldots, l_j, \ldots, l_M\}$$

Pose set

$$X \doteq \{x_1, \ldots, x_i, \ldots, x_N\}$$

All measurements set

$$\mathcal{Z} \doteq \left\{ z_i^j \right\}$$

Measurement model: $z = \pi(x, l) + v$ $v \sim N(0, \Sigma_v)$

Projection operator: $\pi(x, l)$

Measurement likelihood:

$$p(z|x, l) = \frac{1}{\sqrt{det(2\pi\Sigma_{v})}} exp\left(-\frac{1}{2} \frac{||z - \pi(x, l)||_{\Sigma_{v}}^{2}}{||exp(z)||_{re-projection}^{2}}\right)$$
error

Using Bayes rule we have:

$$p(x, l|z) = \frac{p(x, l)p(z|x, l)}{p(z)} \propto \underbrace{p(x, l)p(z|x, l)}_{\text{Prior Measurement likelihood}}$$

Objective: calculate the joint posterior distribution

$$p(X, L|\mathcal{Z})$$

For N images:

$$p(X, L|\mathcal{Z}) = priors \cdot \prod_{i}^{N} \prod_{j \in \mathcal{M}_{i}} p(z_{i}^{j}|x_{i}, l_{j})$$

Where \mathcal{M}_i is a landmark subset observed from camera i

$$p\left(z_i^j|x_i,l_j\right) \propto \exp\left(-\frac{1}{2}\left\|z_i^j-\pi\left(x_i,l_j\right)\right\|_{\Sigma_v}^2\right)$$

Example:

For 1^{st} camera pose all observed landmarks belong to subset \mathcal{M}_1

Maximum a posteriori solution:

$$X^*, L^* = \arg \max_{X,L} p(X, L|\mathcal{Z})$$

After omitting prior terms cost function to minimize is:

$$J_{BA}\left(X,L\right) = \sum_{i}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i}^{j} - \pi\left(x_{i},l_{j}\right) \right\|_{\Sigma_{v}}^{2}$$

Variable initialization

Overall scheme of working framework

For optimization process we need to initialize the variables.

- Pose variables: via visual odometry
- Landmark variables: via triangulation

Factor Graph BA representation

Example: all landmarks L are observed from all poses X.

$$p\left(z_i^j|x_i,l_j\right) \propto \exp\left(-\frac{1}{2}\left\|z_i^j - \pi\left(x_i,l_j\right)\right\|_{\Sigma_v}^2\right) \doteq f_{proj}$$

Currently only image feature coordinates are involved.

Outline

- Background:
 - Bundle Adjustment (BA)
 - SIFT features
- Our approach:
 - Adding new constraints to BA
 - Improving accuracy of detected feature scale
- Results
- Variations with our approach
- Conclusions

SIFT features

- Each feature is represented by image coordinates, scale and orientation.
- Only image feature coordinates are involved in BA optimization.

SIFT feature scale

- Blur each input image with a set of Gaussian kernels with given covariance.
- Calculate Difference of Gaussians.
- Search for local maxima (features) among layers and pixels.
- Feature scale is equal to Gaussian kernel covariance corresponding to the layer where the local maxima is found.

Key observation

- → Scale changes consistently across frames.
- → Each feature scale is a function of environment and camera pose.
- → We can use this property to predict landmark scale in the next frame!

"Big" picture

Overall scheme of working framework

New: incorporate scale information also into BA

Consider an image feature in the i-th image that corresponds to a landmark with a 3D position $\ l_j$

- Denote the detected feature scale by s_i^j
- Denote by S_j the corresponding environment patch, or virtual landmark size, centered around landmark l_j

SIFT is a <u>scale invariant</u> feature!

Scale observation model:

We model the noise is Gaussian

$$v_i \sim N(0, \Sigma_{fs})$$

Intuition:

Feature scale depends on the distance along optical axis (and not on range between camera and landmark).

Scale observation model:

$$s_i^j = f \frac{S_j}{d_i^j} + v_i \qquad v_i \sim N(0, \Sigma_{fs})$$

$$v_i \sim N(0, \Sigma_{fs})$$

Virtual landmark size:

$$S_1 = S_2 = S_3$$

Feature scale:

$$S_i^1 > S_i^2 > S_i^3$$

Distance along optical axis:

$$d_i^1 < d_i^2 < d_i^3$$

Intuition:

Feature scale is changing correspondingly to distance along optical axis from camera pose to represented environment patch.

and Perception Lab

Scale observation model:

$$s_i^j = f \frac{S_j}{d_i^j} + v_i$$

Scale Measurement likelihood:

$$p(s_i^j|S_j, x_i, l_j) \propto \exp\left[-\frac{1}{2} \left\| s_i^j - f \frac{S_j}{d_i^j} \right\|_{\Sigma_{fs}}^2\right]$$

New variable: S

New Objective joint posterior distribution:

$$p(X, L, S|\mathcal{Z})$$

Joint posterior distribution

$$p(X, L, S|\mathcal{Z}) = priors \cdot \prod_{i}^{N} \prod_{j \in \mathcal{M}_{i}} p(z_{i}^{j}|x_{i}, l_{j}) p(s_{i}^{j}|S_{j}, x_{i}, l_{j})$$

Joint cost function

Standard cost-function used in BA

$$J_{BA}\left(X,L\right) = \sum_{i}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i}^{j} - \pi\left(x_{i}, l_{j}\right) \right\|_{\Sigma_{v}}^{2}$$

Cost-function used in BA with scale constraints
$$J\left(X,L,S\right) = \sum_{i} \sum_{j \in \mathcal{M}_{i}} \left\|z_{i}^{j} - \pi\left(x_{i},l_{j}\right)\right\|_{\Sigma_{v}}^{2} + \left\|s_{i}^{j} - f\frac{S_{j}}{d_{i}^{j}}\right\|_{\Sigma_{f}s}^{2}$$
 re-projection error scale error

Variable initialization

Reminder:

- Consider an image feature in the i-th image that corresponds to a landmark with a 3D position $\,l_{\,j}\,$
- Denote the detected feature scale by s_i^j
- Denote by S_j the corresponding environment patch, or virtual landmark size, centered around landmark l_j

Virtual landmark size initialization:

- → Landmark triangulation
- → Distance to landmark is known
- → Initialize landmark size

$$S_j = s_i^j \frac{d_i^j}{f}$$

Simulation

Scenario:

- Downward-facing camera
- Constant height
- Landmarks scattered in 3D-space

Simulation

Cost-function using projection and scale constraints

$$J(X, L, S) = \sum_{i}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i}^{j} - \pi \left(x_{i}, l_{j} \right) \right\|_{\Sigma_{v}}^{2} + \left\| s_{i}^{j} - f \frac{S_{j}}{d_{i}^{j}} \right\|_{\Sigma_{fs}}^{2}$$

Represents noise in scale measurements

Each coloured curve corresponds to simulation with a fixed Σ_{fs}

Outline

- Background:
 - Bundle Adjustment (BA)
 - SIFT features
- Our approach:
 - Adding new constraints to BA
 - Improving accuracy of detected feature scale
- Results
- Variations with our approach
- Conclusions

Reminder: SIFT feature scale

- Blur each input image with a set of Gaussian kernels with given covariance.
- Calculate Difference of Gaussians.
- Search for local maxima (features) among layers and pixels.
- Feature scale is equal to Gaussian kernel covariance corresponding the layer where the local maxima is found.

SIFT scale: increasing resolution

- Estimation accuracy is improved only if feature scale measurements are sufficiently accurate.
- Key observation:
 - Can get higher-accuracy scale measurements by increasing number of layers per octave
 - Noise of enhanced-resolution scale measurements can be statistically described with lower \sum_{f_S}

Standard scale resolution

Enhanced scale resolution

Factor graph modifications

BA + scale constraints cost-function:

$$J(X, L, S) = \sum_{i}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i}^{j} - \pi \left(x_{i}, l_{j} \right) \right\|_{\Sigma_{v}}^{2} + \left\| s_{i}^{j} - f \frac{S_{j}}{d_{i}^{j}} \right\|_{\Sigma_{fs}}^{2}$$
re-projection error scale error

Influence on optimization time

Naive implementation taking all scale constraints:

- Number of edges (variables) increased significantly
- Number of links (constraints) increased significantly
 → Optimization time increased.

Influence on optimization time

Heuristic: add scale constraints only for long-track features.

- Number of edges (variables) increased <u>slightly</u> (about 10%)
 - → we keep number of optimization variables as small as possible
- Number of links (constraints) increased.
 - → Optimization time increased, but much less!

Results

We tested our approach with the following datasets:

- Aerial dataset (Kagaru): a single downward-facing, flat ground surface scenario.
 - SIFT based scale approach
- Ground vehicle dataset (KITTI): single forward-looking camera, urban scenario.
 - Full set of feature scales
 - Using only scales corresponding to "long" features

KITTI dataset

Accurate ground truth is provided by a Velodyne laser scanner and a GPS localization system.

Dataset videos are captured by driving around a city.

- + Ground truth synchronized with camera frame rate
- + Images at 10 fps
- + Camera calibration

Monocular SLAM scale drift problem

Known problem is scale drift along optical axis with time.

Example:

Error rate along optical axis is growing with time

For the <u>first</u> 100 frames: Error rate: 8.6%

For the <u>last</u> 100 frames: <u>Error rate: 94.6%</u>

KITTI dataset

Difference between red and green track: amount of scale constraints.

Error rate along optical axis

For the <u>first</u> 100 frames:

Error rate: 8.6% 5% 1%

For the <u>last</u> 100 frames:

Error rate: 94.6% 27.3% 8.8%

KITTI dataset

standard BA + all feature scale constraints standard BA + long-term feature scale constraints

Aerial simulation

Simulation scenario with landmarks spread over height

Flat simulation scenario

Aerial simulation

Error as a function of Σ_{fs} values.

Each coloured curve corresponds to simulation with a fixed Σ_{fs}

Kagaru dataset

- → Ground truth from an XSens Mti-g INS/GPS
- → Downward facing camera
- → The dataset traverses over farmland and includes views of grass, an air-strip, roads, trees, ponds, parked aircraft and buildings
- + Ground truth synchronized with camera frame rate
- + Images at 1 fps
- + Camera calibration

Plane used for dataset creation

Kagaru dataset

Reconstruction of flight track (top view)

Kagaru dataset

- → No accuracy improvement along optical axis
- → No position accuracy improvement

Cost-function:

$$J(X, L, S) = \sum_{i}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i}^{j} - \pi \left(x_{i}, l_{j} \right) \right\|_{\Sigma_{v}}^{2} + \left\| s_{i}^{j} - f \frac{S_{j}}{d_{i}^{j}} \right\|_{\Sigma_{fs}}^{2}$$

Outline

- Background:
 - Bundle Adjustment (BA)
 - SIFT features
- Our approach:
 - Adding new constraints to BA
 - Improving accuracy of detected feature scale
- Results
- Variations with our approach
- Conclusions

Object scale

- Detect objects
- Track objects across the frames
- Use bounding boxes width as scale to create scale constraints.

> Feature scale

- → object bounding box size (width or height)
- Virtual landmark size
- \rightarrow object size
- Landmark position
- → object centre position

Object scale

Main idea:

Objects bounding boxes width/height instead feature scale.

Conclusions

Improved accuracy of bundle adjustment and monocular SLAM along optical axis direction:

- Developed and introduced scale constraints within BA
- Feature scale information is already available from feature detector
- Enhanced feature scale measurement by increasing scale resolution in SIFT
- Application of feature scale constraints to object-level BA

Thank you for your attention!

