
804 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 2, APRIL 2018

BAFS: Bundle Adjustment With Feature Scale
Constraints for Enhanced Estimation Accuracy

Vladimir Ovechkin and Vadim Indelman

Abstract—We propose to incorporate within bundle adjustment
(BA) a new type of constraint that uses feature scale information,
leveraging the scale invariance property of typical image feature
detectors (e.g., SIFT). While feature scales play an important role
in image matching, they have not been utilized thus far for esti-
mation purposes in a BA framework. Our approach exploits the
already-available feature scale information and uses it to enhance
the accuracy of BA, especially along the optical axis of the camera
in a monocular setup. Importantly, the mentioned feature scale
constraints can be formulated on a frame to frame basis and do
not require loop closures. We study our approach in synthetic en-
vironments and the real-imagery KITTI dataset, demonstrating
significant improvement in positioning error.

Index Terms—Localization, mapping, SLAM.

I. INTRODUCTION

ACCURATE pose estimation and structure reconstruction
are important in a variety of applications, including vi-

sion aided navigation (VAN) [10], simultaneous localization
and mapping (SLAM) [8], [16], visual odometry (VO) [4],
augmented reality, structure from motion (SfM), tracking and
robotic surgery. Bundle adjustment (BA) is a commonly used
approach to address these and other related problems, and as
such, has been extensively investigated over the years; see [22]
for an extensive review of different aspects in BA.

Standard BA approaches typically assume a pinhole camera
model [9] and minimize re-projection errors between measured
and predicted image coordinates. This minimization is typically
obtained using iterative nonlinear optimization techniques that,
provided a proper initial guess, converge to the maximum a
posteriori (MAP) solution over camera poses and landmarks that
represent the observed environment. Alternative formulations
have been also developed in recent years. These include, for
example, structureless BA approaches, such as Light Bundle
Adjustment (LBA) [11]–[15] that algebraically eliminate the
3D points and minimize the residual error in multiple view
geometry constraints. In contrast, dense BA approaches, such
as DTAM [19] and SVO [4], minimize the photogrammetric
errors for each overlapping image.
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Fig. 1. Feature scale is modeled as a projection of a virtual landmark size in 3D
environment onto the image plane. We leverage the scale invariance property
of typical feature detectors, according to which, detected scales of matched
features from different images correspond to the same virtual landmark size in
the 3D environment, and incorporate novel feature scale constraints within BA.

In cases where sources of absolute information such as GPS
or an a priori map are unavailable, maintaining high-accuracy
estimation over time is a challenging task. This is particularly the
case for a monocular camera setup due to scale drift: without
assuming any additional or prior information, camera motion
and 3D map can be only estimated up to scale, which drifts
over time. Existing approaches address this issue by explicitly
correcting scale drift at loop closures (e.g., [8]), exploiting non-
holonomic motion constraints (e.g., [20]), or fusing information
from additional sensors (such as IMU). Frost et al. [5] develop an
object-aware bundle adjustment approach, and use prior knowl-
edge regarding the size of the observed objects (e.g., cars) to
correct scale drift. While their approach does not require loop
closure events for scale correction, it has a limitation - the men-
tioned prior knowledge must be available and accurate.

In this letter we formulate novel image feature scale con-
straints and incorporate these within BA to improve estimation
accuracy, especially along the optical axis of the camera in a
monocular setup. This concept leverages the scale invariance
property of SIFT [18] (and similar) detectors, and is based on
the key observation that the detected feature scale changes con-
sistently across a sequence of images. In particular, we show
the detected feature scale can be predicted as a function of cam-
era pose, landmark 3D coordinates and the corresponding 3D
environment patch (see Figs. 1 and 2), with the latter, accord-
ing to the scale invariance property, remaining the same for
different images observing the same landmark. Incorporating
the mentioned feature scale constraints within BA allows to
drastically reduce scale drift without requiring loop closures or
any other information, given that the detected feature scales are

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1863-3442


OVECHKIN AND INDELMAN: BAFS: BA WITH FEATURE SCALE CONSTRAINTS 805

Fig. 2. A landmark is observed while the camera performs a left turn, from
(a) to (d). The detected feature scale in each frame is shown in the zoom-in
figures.

sufficiently accurate. We show the latter can be attained simply
by increasing the resolution of Gaussian kernels within the SIFT
detector.

It is important to note that feature scale is already typically
calculated by common feature detectors (e.g., SIFT) but is only
used for image matching. Here, we propose to exploit this avail-
able information for improving the performance of BA. Note
we do not interfere with the image matching process, but rather
propose to make better use of its products.

The idea of using feature scale has been proposed in the
past, but in different contexts. For example, Ta et al. [21] use
feature scale to determine if a landmark is sufficiently far away
to consider it for rotation updates in indoor navigation, while
Guzel et al. [7] recently suggested to use SIFT’s feature scale
for distance estimation. However, to the best of our knowledge,
incorporating image feature scale constraints within BA is novel.
In addition to improving accuracy, our method, termed Bundle
Adjustment with Feature Scale (BAFS), has also the capability
to estimate the actual landmark (object) sizes, up to an overall
scale.

II. NOTATIONS AND PROBLEM FORMULATION

We consider a sequence of N images captured from different
and unknown camera poses. Denote the camera pose that cap-
tured the i-th image by xi = {Ri, ti}, with rotation matrix Ri

and translation vector ti , and let Zi represent all the landmark
observations of that image, with a single image observation of
some landmark lj denoted by zj

i ∈ Zi . Let X represent all the
camera poses and L represent all the observed landmarks,

X
.= {x1 , . . . , xi , . . . , xN } , L

.= {l1 , . . . , lj , . . . , lM } ,
(1)

where M is the number of observed landmarks. These land-
marks represent 3D scene points that generate the detected 2D
visual features.

We denote by π (x, l) the standard projection operator [9],
and write the measurement likelihood for an image observation

z given camera pose x and landmark l as

P (z|x, l) =
1

√
det(2πΣ)

exp
(
−1

2
||z − π(x, l)||2Σv

)
, (2)

where we conventionally assumed image noise is sampled from
a zero-mean Gaussian distribution N(0,Σv ), and ‖a‖2

Σv

.=
aT Σ−1

v a is the squared Mahalanobis distance.
The joint probability distribution function (pdf) for N camera

frames can now be written as

P (X,L|Z) ∝ priors ·
N∏

i=1

∏

j∈Mi

P (zj
i |xi, lj ) (3)

where Z .= {Zi}N
i=1 is the set of all image observations from

all images and Mi is a set of indexes of the landmarks observed
from camera pose i. The priors term includes all the prior avail-
able information; this term will be omitted from now on for
conciseness.

The MAP estimation of X and L is given by

X�,L� = arg max
X,L

P (X,L|Z), (4)

and can be calculated using state of the art computationally
efficient solvers [2], [17] that solve the following non-linear
least-squares problem:

JBA (X,L) .=
N∑

i

∑

j∈Mi

∥∥∥zj
i − π (xi, lj )

∥∥∥
2

Σv

. (5)

A key problem in the described monocular camera setup is scale
drift as information provided by a single camera, without con-
sidering any additional information, can only be used to recover
the camera motion and the 3D environment up to a common
scale, which drifts over time. Drift along the optical axis is in-
deed a well known problem, which is often addressed only upon
identifying a loop closure event or considering availability of
additional sensors or prior knowledge. In contrast, in the next
section we formulate a new type of a constraint that allows
enhanced estimation accuracy, particularly along the camera
optical axis, without requiring loop closures or additional prior
knowledge.

III. APPROACH

A. Feature Scale Constraint Formulation

The standard bundle adjustment formulation exploits only
a subset of the information extracted from images by typical
image matching approaches: only image coordinates from cor-
responding views are used, while an image feature (e.g., SIFT
feature) is typically also accompanied by two additional pa-
rameters - scale and orientation. We propose to incorporate this
scale information into bundle adjustment optimization by for-
mulating appropriate constraints that describe how feature scale
changes for different views according to camera motion and
observed landmarks. The corresponding idea, that we call Bun-
dle Adjustment with Feature Scale (BAFS), is schematically
illustrated in Fig. 1.

Our key observation is that the detected scales of matched
features from different frames capture the same portion (patch)
of the 3D environment, as illustrated in Fig. 1. This observa-
tion leverages the scale invariance property that typical feature
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detectors (e.g., SIFT [18]) satisfy. As an example, we consider
the image sequence shown in Fig. 2, where a single feature is
tracked and its detected scale across different images is explic-
itly shown. One can note that, indeed, in all of the frames, the
detected scale represents an identical portion of the environ-
ment, i.e., the contents inside of the circle with radius equals to
detected scale is identical in all frames.

We shall consider the mentioned 3D environment patch extent
as virtual landmark size and denote it for the jth landmark by
Sj . Based on the above key observation, we argue the detected
feature scales in different images change consistently and can
be predicted. Specifically, letting sj

i denote the detected feature
scale of the jth landmark in the ith image frame, and considering
a perspective camera, we propose the following observation
model for sj

i

sj
i = f

Sj

dj
i

+ vi, (6)

where f is the focal length and vi is the measurement noise
which is modelled to be sampled from a zero-mean Gaussian
distribution with covariance Σf s , i.e., vi ∼ N (0,Σf s). In (6)
we use dj

i to denote the distance along the optical axis from the
camera pose xi to landmark lj . In other words, assuming the
optical axis is the z axis in the camera frame,

dj
i (xi, lj )

.= zc ,

⎡

⎢
⎣

xc

yc

zc

⎤

⎥
⎦ = Rilj + ti , (7)

where Ri and ti are the ith camera rotation matrix and translation
vector, i.e., xi = {Ri, ti}.

We note one might be tempted to consider dj
i to be simply the

range between the camera optical center and the landmark 3D
position. However, this model is incorrect as we discuss now.
To see that, consider again the sequence of images shown in
Fig. 2, where the same landmark is tracked. The landmark is
relatively distant and the camera (car) is performing an almost
pure rotation motion, such that the range to the landmark is
approximately constant. As the camera rotates, the landmark is
projected closer and closer to the center of the image while the
corresponding detected feature scales are shown in the zoom-
in figures. One can observe that these decrease as the features
move closer to the center of the image. Fig. 3 illustrates this
scenario schematically. It is shown geometrically that the same
landmark (means S1 = S2 = S3) observed at the same range
from the camera optical center produces different feature scales,
so s1

i < s2
i < s3

i . Now, modeling di as range and given some
value for Sj in (6) would yield identical, up-to-noise, feature
scale predictions, contradicting the detected feature scales s1

i <
s2

i < s3
i . In contrast, modeling di as distance along optical axis

would and noting d1 > d2 > d3 , correctly predicts the observed
feature scales.

Based on the observation model (6) we can now define the
corresponding feature scale measurement likelihood as

P (sj
i |Sj , xi, lj )

.=
1

√|2πΣf s |
exp

⎡

⎣−1
2

∥∥
∥∥∥
sj

i − f
Sj

dj
i

∥∥
∥∥∥

2

Σf s

⎤

⎦. (8)

Fig. 3. Landmark of the same virtual size Sj is observed at a constant range
from the camera’s optical center, producing different scale projections depend-
ing on the distance along optical axis.

As seen, the above likelihood is conditioned on the virtual land-
mark size Sj . Since the latter is actually unknown, we treat it as
random variable and infer it, along other variables.

We can now formulate the feature scale constraint and the
corresponding likelihood for each landmark observation. Let-
ting S

.= {Sj} denote the virtual landmark sizes for all observed
landmarks, and incorporating all the measurement likelihood
terms (8) yields the following joint pdf (omitting the priors
terms)

P (X,L, S|Z) ∝
N∏

i

∏

j∈Mi

P
(
zj

i |xi, lj

)
P

(
sj

i |Sj , xi, lj

)
. (9)

As seen, for each landmark observation we now have two types
of constraints: projection and scale constraints.

Taking − log [p (X,L, S|Z)] we get the following corre-
sponding non-linear least-squares problem

JBAF S (X,L, S) .= +
N∑

i

∑

j∈Mi

∥
∥∥zj

i − π (xi, lj )
∥
∥∥

2

Σv

+

∥∥∥∥∥
sj

i − f
Sj

dj
i

∥∥∥∥∥

2

Σf s

, (10)

and we can use state of the art efficient solvers to find the MAP
solution X�,L� , S� .

B. Computational Complexity and Factor Graph Reduction

The obtained joint pdf can be conventionally represented with
a factor graph model [3]. A single landmark observation is now
used to formulate a projection and feature scale factors. Adding
a feature scale factor for each landmark observation corresponds
to the factor graph shown in Fig. 4(b). However, for a scenario
of N camera frames and M landmarks, this naı̈ve approach
increases the number of variables in the optimization from
6M + 3N to 6M + 4N , and doubles the number of factors,
which can severely impact optimization time.
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Fig. 4. Factor graph representations: (a) standard BA with projection factors
only; (b) BAFS with naı̈vely added all feature scale factors; (c) BAFS with
feature scale factors added only for long-term landmarks (l1 , in this case).

Instead, we propose the following simple heuristic. We add
feature scale factors and new virtual landmark size variables
only for long-term landmarks that are observed for long period
of time (number of images above a threshold). Moreover, em-
pirically we notice that these long-term landmarks correspond
to ”strong” features which are usually measured more accu-
rately. This property allows to model Σf s with a lower value
than usual, giving more weight to scale constraints in the opti-
mization. Fig. 4(c) illustrates a factor graph that corresponds to
this heuristic.

C. Variable Initialization

As the MAP solution is obtained via iterative optimization,
each of the optimized variables needs to be initialized. While
initialization of camera poses and landmarks can be done using
conventional approaches [9], the following method can be used
to initialize the virtual landmark size. After a new landmark lj is
observed and initialized (e.g., via triangulation which requires
two landmark observations), the distance along optical axis dJ

i

from camera pose to the landmark can be estimated. We then
initialize the corresponding virtual landmark size variable, Sj ,
using the equation

Sj = sj
i

dj
i

f
, (11)

which is obtained from (6) while neglecting the noise.

Fig. 5. Simulated scenario of an aerial downward-facing camera observing
randomly-scatted landmarks. Camera’s trajectory is shown in red.

Fig. 6. Position estimation error. Each curve corresponds to BA with feature
scale constraints with noise in simulated feature scale measurements sampled
from a Gaussian with different Σf s . Black solid curve corresponds to standard
BA.

In our implementation, we initialize each new landmark via
triangulation given two landmark observations, and initialize Sj

by taking an average value of (11) considering the corresponding
two detected feature scales.

D. Enhancement of Feature Scale Measurement Accuracy

Thus far, we incorporated our novel feature scale constraints
(10) within bundle adjustment, but did not discuss when these
constraints will actually have impact on estimation accuracy.
This aspect naturally depends on how accurate the feature scale
observations are in the first place, as modelling this determines
Σf s , the measurement noise covariance from (8).

Intuitively, more accurate feature scale observations and the
corresponding lower values of Σf s will yield better estimation
accuracy. In fact, there is a scenario-dependent upper thresh-
old for Σf s at which the feature scale constraints will have no
contribution at all. We study this statement using a synthetic
dataset of a downward-facing camera flying at constant height
and observing landmarks scattered in 3D-space, occasionally
performing loop closures (see Fig. 5). In this scenario we as-
signed each landmark lj a corresponding (ground truth) size
Sj , and simulated image and feature scale observations while
corrupting the latter with sampled Gaussian noise considering
different values of Σf s .

As expected, running on this synthetic data showed that
accuracy of feature scales is extremely important to improve
standard BA precision. Fig. 6 shows results, in terms of po-
sition estimation error, for different simulated values of Σf s
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Fig. 7. SIFT scale estimation process. (a) Blur each input image with a set
of Gaussian kernels. (b) Calculate Difference of Gaussians (DoG). (c) Feature
scale is set via interpolation or as the average of the two Gaussian kernels that
correspond to the local-maxima DoG layer.

such that Σf s1 > Σf s2 > Σf s3 > Σf s4 > Σf s5 . One can ob-
serve the dashed curves, that correspond to two highest values
of Σf s (i.e., Σf s1 and Σf s2) are very close to the standard BA
curve, and do not improve estimation accuracy. As we consider
smaller values of Σf s , estimation accuracy gets dramatically
improved.

While the above discussion referred to simulated feature scale
observations, in reality these are produced by feature detectors
such as SIFT. Unfortunately, we empirically observed that incor-
porating scale constraints into the optimization does not yield
any significant improvement, thereby indicating the actual fea-
ture scale measurements are not of sufficient quality (i.e., too
noisy).

We propose a simple method to address this difficulty. Re-
call that a SIFT detector first blurs the image with different
Gaussian kernels, calculates difference between blurred images
with successive kernels, and searches for maxima both spatially
and across different kernels. The former determines the feature
coordinates, while the latter determines the scale (see Fig. 7).
Therefore, feature scale can be determined only up to resolu-
tion of the Gaussian kernels used in this process. To increase
accuracy of the detected feature scales, we propose to use a
finer resolution of the Gaussian kernels. This simple idea is il-
lustrated in Fig. 7, where additional kernels and corresponding
blurred images are shown in red. Furthermore, while in this
work Σf s is specified manually given detected feature scales,
we envision the utilized Gaussian kernels resolution could be
used to determine Σf s . However, exploring this aspect is left for
future research. As we show in the sequel, using feature scales
with enhanced resolution yields a significant improvement in
position estimation accuracy.

E. Application to Object-Based Bundle Adjustment

The proposed concept of feature scale constraints is applica-
ble also using alternative scale invariant quantities detected in
the images. Here, we briefly describe one such application, con-
sidering object-level BA while using detected object bounding
boxes in the images (see Fig. 8).

Specifically, considering the detected bounding boxes of far
away stationary objects as scale invariant, we formulate object
scale constraints in a similar manner to feature scale constraints
(6). Close objects are not taken into account as the corresponding
detected bounding boxes might be obtained from significantly

Fig. 8. Object detected bounding box in the image plane.

different viewpoints and provide inconsistent scale measure-
ments. In our implementation, we use HoG object detector [1]
to identify bounding boxes, and formulate the scale constraint
considering the detected width and height instead of feature
scale. For example, for the jth object observed at the ith frame,
the scale constraint is

wj
i = f

Sobj
j

dj
i

+ vobj
i , (12)

where wj
i is the detected bounding box width (see Fig. 8), and

vobj
i is a Gaussian noise that corresponds to the accuracy in

bounding box picked by the object detector. Interestingly, the
virtual landmark size variable Sobj

j now corresponds to object
size, which is inferred as part of the optimization process, up to
an overall scale.

IV. EXPERIMENTAL RESULTS

We implemented a classical sparse feature based BA frame-
work using the GTSAM [2] solver and the provided Matlab
wrapper. As GTSAM supports only projection factors out of
box, we implemented a scale factor, which corresponds to
the feature scale measurement likelihood (8). As described in
Section III-D, we enhance standard SIFT feature scale resolu-
tion by increasing the number of layers per octave from default
value 3 up to 15, which, however, consumed about 2.5 times
more runtime of SIFT feature extraction. In the reported results
we used Σv = 0.5 and manually set Σf s to 0.2 while adding
feature scale constraints for all landmarks. We were able to
drop Σf s down to 0.1 when adding these constraints only for
long-term landmarks, as empirically we observed the corre-
sponding detected feature scales are typically of higher quality.

To test the performance of our approach we used two out-
door sequences from the KITTI dataset [6]. Contrary to many
other methods tested on this dataset, we do not involve any prior
knowledge like camera height or typical object sizes about the
environment and solve pure standard bundle adjustment prob-
lem with our novel feature scale constraints. Moreover, in this
work we do not use any loop closures, thereby examining the
contribution of the developed scale constraints on estimation
accuracy over time.

In our experiments we evaluate the performance of the devel-
oped method to reduce scale drift across a sequence of frames.
We initialize the global scale with ground truth range between
the first two camera frames, although odometry information
could also be used. It makes it easy to evaluate estimation per-
formance versus time compared to ground truth, though actual
solution remains up to scale, as in any other monocular SLAM
approach.
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Fig. 9. Each row describes results for a different KITTI dataset sequence using SIFT features with enhanced scale resolution. (a) and (d) top view of estimated
trajectory; (b) and (e) norm of position estimation error as a function of time; (c) and (f) optimization time for each frame.

The results for both of the considered sequences are shown
in Fig. 9, and compared to ground truth, and standard BA. Ad-
ditionally, we show our approach with feature scale constraints
added for all landmarks, or only for long-term landmarks (see
Section III-B). Specifically, Fig. 9 shows the estimated trajec-
tories (top view), position estimation errors, and optimization
time. The shown results are obtained in an incremental fash-
ion that is suitable for online applications, i.e., the k camera
pose is estimated given available data only up to that time.
The reported optimization times for all methods correspond
to batch Levenberg-Marquardt optimization with identical set-
tings; we expect running time to drastically drop upon switching
to iSAM2 [16] but leave this endeavor to future research.

As seen in Fig. 9(a) and (d), standard BA suffers from signif-
icant drift along optical axis which is manifested in continuous
stretching of the estimated trajectory compared to ground truth.
One can notice that position estimation perpendicular to motion
heading is more accurate than along the optical axis. The green
curve, which corresponds to BAFS with feature scale constraints
for all landmarks, is obviously closer to ground truth and the
main improvement is caused by discarding the stretching along
optical axis, i.e., reducing scale drift. This result corresponds to
our approach using both projection and scale constraints. The
corresponding absolute position error is significantly improved
[green curve in Fig. 9(b) and (e)] compared to standard BA
approach which only exploits feature projection factors. In par-
ticular, position estimation error is often reduced by a factor of
about 2.5, e.g., from around 90 to 40 meters around frame 950.

Estimation performance is even further improved by BAFS
with feature scale constraints added only for long-term land-
marks, as shown by the red curves in the figures. For exam-
ple, the above-mentioned 40 meters position error is reduced
to 30 meters at the same time instant [see Fig. 9(e)]. This is
perhaps a somewhat surprising result, as we use less constraints
but obtain higher accuracy. We hypothesize this happens since
long term feature scales tend to be more robust and accurate.

Fig. 9(c) and (f) provide the optimization time for both
sequences. One can observe that naı̈vely using all feature scale
constraints considerably increases optimization time compared
to standard BA, while adding feature scale constraint only
for long-term landmarks does not increase optimization time
significantly.

The above results were obtained using enhanced-resolution
feature scales (see Section III-D). To demonstrate the impor-
tance of improving the accuracy of detected feature scales, we
show in Fig. 10(a) and (b) results of our approach without such
enhancement, i.e., using default SIFT settings. It is evident that,
while there is still improvement in position estimation compared
to standard BA, the obtained results are by far inferior to those
reported in Fig. 9.

Finally, Fig. 10(c) provides position estimation error for BA
using object scale constraints, as discussed in Section III-E,
compared to BA with feature scale constraints and to standard
BA. As seen, while estimation accuracy is slightly improved
compared to standard BA, using feature scale constraints pro-
vides significantly better accuracy.
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Fig. 10. (a), (b) Results with non-enhanced and enhanced scale resolution: (a) top view of estimated trajectory; (b) norm of position estimation error. (c) norm
of position estimation error for BA with object scale constraints, compared with standard BA, and BAFS with long term features using enhanced feature scale
resolution.

V. CONCLUSION

We developed novel feature scale constrains and incorporated
them within bundle adjustment, leveraging the scale invariance
property typical feature detectors (e.g., SIFT) satisfy. Our ap-
proach does not require any additional or prior information, as it
exploits already available feature scale information, which was
used thus far only for image matching, and was not utilized for
estimation purposes. We also proposed a method to improve
feature scale accuracy by simple resolution enhancement at de-
tection step. Using these feature scales as measurements, our
approach significantly improves position estimation, especially
along the optical axis in a monocular setup without requiring
loop closures. Specifically, we demonstrated on KITTI datasets
position estimation error can be reduced by a factor of 3, com-
pared to standard bundle adjustment, e.g., from 90 meters to
30 meters after 950 frames. The suggested concept of exploiting
scale information for improving estimation accuracy is applica-
ble also to other scale-invariant measurements, and we demon-
strated one such application, considering object-level bundle
adjustment. While in this work we focused on feature scale in-
formation, typical detectors also calculate feature orientation
(local image gradient directions). Future research will investi-
gate how the latter can be used to improve estimation accuracy
even further.
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