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Abstract

Accurate pose estimation and 3D reconstruction are important in a variety of applications such as
autonomous navigation or mapping in uncertain or unknown environments. Bundle adjustment
(BA) and simultaneous localization and mapping (SLAM) are commonly used approaches to
address these and other related problems. Given a sequence of images, BA is the problem of
simultaneously inferring the camera poses and the observed 3D landmarks. BA is typically
solved by minimizing the re-projection error between image observations (image features) and
their prediction obtained by projecting the corresponding landmarks onto the camera frame. This
optimization is typically realized using non-linear least-squares (NLS) approaches. Different
techniques exist for detecting image features, including the well-known SIFT features. Yet, state
of the art BA and visual SLAM approaches formulate the constraints in the NLS optimization
utilizing only image feature coordinates.

In this work we propose to incorporate within BA a new type of constraints that use feature
scale information that is readily available from a typical image feature detector (e.g. SIFT,
SURF). While feature scales (and orientation) play an important role in image matching, they
have not been utilized thus far for estimation purposes in BA framework. Our approach exploits
feature scale information and uses it to enhance the accuracy of bundle adjustment, especially
along the optical axis of the camera in a monocular setup. Specifically, we formulate constraints
between the measured and predicted feature scale, where the latter depends on the distance from
the camera and the corresponding 3D point, and optimize the system variables to minimize the
residual error in these constraints in addition to minimizing the standard re-projection error. We
study our approach both in synthetic environments and real-image ground and aerial datasets

(KITTT and Kagaru), demonstrating significant improvement in positioning error.






Abbreviations

BA
BAFS
DTAM
GPS
GTSAM
HOG
IMU
iISAM
MAP
MSER
PDF
RANSAC
StM
SIFT
SLAM
SUFR
SVO
VAN
VO

Bundle Adjustment

Bundle Adjustment with Feature Scale constraints
Dense Tracking and Mapping

Global Positioning System

Georgia Tech-Smoothing and Mapping
Histogram of Oriented Gradients
Inertial Measurement Unit

Incremental Smoothing and Mapping
Maximum a Posteriori

Maximally Stable Extremal Regions
Probability Distribution Function
Random sample consensus

Structure from Motion

Scale Invariant Feature Transform
Simultaneous Localisation and Mapping
Speeded Up Robust Features
Semi-direct Visual Odometry

Vision Aided Navigation

Visual Odometry






Chapter 1

Introduction

1.1 Introduction

Accurate pose estimation and structure reconstruction are important in a variety of applications,
including vision aided navigation (VAN) [23], simultaneous localization and mapping (SLAM)
[20,32], visual odometry (VO) [13], augmented reality, structure from motion (SfM), tracking
and robotic surgery. Building a spatially consistent model is a key functionality to endow
a mobile robot with autonomy. Without an initial map or an absolute localization means, it
requires to concurrently solve the localization and mapping problems. For this purpose, vision
is a powerful sensor, because it provides data from which stable features can be extracted
and matched as the robot moves. But it does not directly provide 3D information, which is
a difficulty for estimating the geometry of the environment. Bundle adjustment (BA) is a
commonly used approach to address these and other related problems, and as such, has been
extensively investigated over the years; see [49] for an extensive review of different aspects in
BA.

Standard BA approaches typically assume a pinhole camera model [22] and minimize
re-projection errors between measured and predicted image coordinates. This minimization is
typically obtained using iterative nonlinear optimization techniques that, provided proper initial
guess, converge to the maximum a posteriori (MAP) solution over camera poses and landmarks
that represent the observed environment.

Two different approaches address the SLAM problem using vision: one with stereovision,
and the other with monocular images. Both approaches rely on a robust interest point matching
algorithm that works in very diverse environments. The stereovision based approach is a
classic SLAM implementation, whereas the monocular approach is more challenging. A stereo
camera setup provides higher accuracy (in proper conditions only) with less computations: as
baseline between cameras is known, it allows to reconstruct the environment absolute scale. The
monocular case requires alternative approaches for landmark initialization and the solution is
available up to scale only. Current work deals with a single camera case.

In lack of sources of absolute information such as GPS or a priori available map, maintaining

high-accuracy estimation over time is a challenging task. Other types of prior information



include known motion model, knowledge about the observed environment, such as certain object
sizes or awareness of the observed environment structure. All these assumptions might help to
create additional constraints for reconstruction and pose estimation and enhance accuracy as a
result. However, for a common algorithm it is preferable to solve the SLAM problem without
the mentioned assumptions, although their impact on accuracy improvement is significant if this
prior information is indeed available.

Current work is dedicated to development of an algorithm independent of prior knowledge
about the environment. In lack of observations and constraints that are able to correct the global
scale it is necessary to prevent scale drift during an exploration scenario. This is particularly
the case for a monocular camera setup due to scale drift: without assuming any additional or
prior information, camera motion and 3D map can be only estimated up to scale, which drifts
over time. SLAM approaches resort to loop closure observations to reset estimation error to
prior values. However, this constrains the camera motion to occasionally revisit previously
seen areas and to reliable detect these loop closure observations. Moreover, one cannot rely
on loop closures in exploration scenarios, where the camera/robot continuously operates in
unseen environments. This research proposes an alternative approach to reduce scale drift in a

monocular camera setting, without relying on loop closure observations.

1.2 Related Work

Visual SLAM

Early definitions of environment mapping were introduced by Smith in [45], where using
constraints formulated from different observations, localization uncertainty was reduced. Further
mainstream works [2] on probabilistic SLAM included an extended Kalman filter (EKF). Later
it was shown that marginalizing past variables leads to increased fill-in (i.e. less sparse matrices)
and thus results in heavier calculations.

In [8], Dellaert investigated a smoothing approache as a viable alternative to extended
Kalman filter-based solutions to the problem. In particular, he looks at approaches that factorize
either the associated information matrix or the measurement Jacobian into a square root form.
Such techniques have several significant advantages over the EKF: they are faster yet exact, they
can be used in either batch or incremental mode, are better equipped to deal with non-linear
process and measurement models, and yield the entire robot trajectory, at lower cost for a large
class of SLAM problems.

A smoothing approach to SLAM involves not just the most current robot location, but the
entire robot trajectory up to the current time. A number of authors considered the problem of
smoothing the robot trajectory only (Pose-SLAM) [18], [35], [40] particularly suited to sensors
such as laser-range finders that easily yield pairwise constraints between nearby robot poses.
Visual Pose-SLAM approaches are also investigated, e.g. [24], [31] are some of the latest works
dealing with visual Pose-SLAM.

More generally, one can consider the full SLAM problem [48], i.e., the problem of optimal



estimation the entire set of sensor poses along with the parameters of all features in the environ-
ment. In fact, this problem has a long history in photogrammetry [4], [17], [5], where it is known
as bundle adjustment” (BA). The bundle adjustment optimization is tightly related to visual
full SLAM, and is typically performed in batch mode, which means that when a new portion of
observation is added, optimization over all variables is performed from scratch. Pose-SLAM
differs from BA and full SLAM since in the former only the camera past and current poses are
estimated, without explicit structure reconstruction (e.g. landmarks are not estimated).

The SLAM problem can be represented as a factor graph. Whereas each node of the
graph represents a state variable to optimize, each edge between two variables represents a
pairwise observation of the two nodes it connects. In the literature, many approaches have been
proposed to address this class of problems. A naive implementation using standard methods like
Gauss-Newton, Levenberg-Marquardt (LM) or variants of gradient descent, cannot be used for
online applications. To achieve efficiency it is necessary to exploit the sparse connectivity of the
graph and use advanced methods to solve sparse linear systems while re-using calculations as

much as possible, as described next.

Online Inference

To be useful for a mobile robot, SLAM calculations have to be performed online, preferably
in real-time. To that end, it has been shown in [8, 32, 33] that calculations can be performed
incrementally as new data comes in, in contrast to operating in batch mode where the algorithm
recalculates the entire solution from scratch. The core insight in these works was that new
measurements typically only affect a small part of the state variables and most of the variables
are unaffected. The latest of these approaches is known as iSAM2 [32] and is considered by
many as the state of the art approach for computationally efficient SLAM.

Another idea to speed up the computations is to perform them in parallel. Parallelization is
the key to providing real-time state updates with the ability to incorporate arbitrary loop closures.
Williams et al. [51] suggested such an architecture, which allows the low-latency inference and
high-latency inference to be viewed as sub-operations of a single optimization performed within
a single graphical model (a factor graph). A specific factorization of the full joint density is
employed that allows the different inference operations to be performed asynchronously while
still recovering the optimal solution produced by a full batch optimization.

Alternative formulations have been also developed in recent years. These include, for
example, structureless BA approaches, such as Light Bundle Adjustment (LBA) [25-29] that
algebraically eliminate the 3D points and minimize the residual error in multiple view geometry
constraints. In contrast, dense BA approaches, such as DTAM [42] and SVO [13], minimize
the photogrammetric errors for each overlapping image. Dense approaches demonstrate higher
accuracy but are unable to perform large scale optimizations due to high complexity.

Many state of the art approaches [16,44,46] incorporate prior information into BA techniques,
such as assuming fixed camera height, and achieve higher estimation accuracy for specific

conditions, e.g. for ground vehicle datasets. On the other hand such approaches are limited to



problems where these assumptions are met, for example to known motion model for planar

environments.

Direct methods

The so called direct methods use either all image pixels (dense) [42], or all pixels with sufficiently
large intensity gradient (semi-dense) [10], or sparsely selected pixels (sparse) [9](DSO) and
minimize a photometric error obtained by direct image alignment on the used pixels. Camera
poses and pixel depths are estimated by minimizing the photometric error using non-linear
optimization algorithms. Since much image information can be used, direct methods are very
robust in low-texture scenes and can deliver relatively dense 3D reconstructions. Consequently,
due to the direct image alignment formulation, direct methods are very sensitive to unmodeled
artifacts such as rolling shutter effect, camera auto exposure and gain control. More crucially,
the brightness constancy assumption does not always hold in practice, which drastically reduces
the performance of direct methods in environments with rapid lighting change.

Unlike other direct VO algorithms which use dense formulations, DSO performs a novel
sparse point sampling across image areas with sufficient intensity gradient. Reducing the amount
of data enables real-time windowed bundle adjustment (BA) which jointly optimizes for all
model parameters, including camera poses, depths, camera intrinsics and affine brightness
transformation factors. The optimal parameters are obtained by minimizing the photometric
error using the Gauss-Newton method, which achieves a good trade-off between speed and
accuracy. Obsolete and redundant information is marginalized with the Schur complement [37],
and the First Estimate Jacobians technique is involved in the non-linear optimization process
to avoid the inconsistency and keep the observability of the system. As a direct method, DSO
is fundamentally based on the brightness constancy assumption, thus the authors proposed a
photometric camera calibration pipeline to recover the irradiance images [9], [11]. Performing
direct image alignment on the irradiance images instead of the original images removes artifacts
polluting the brightness constancy assumption, hence drastically increases the tracking accuracy

[9].

Scale drift

Existing approaches that explicitly address scale drift typically require loop closure observations.
For example, Strasdat et al. [20] incorporated within bundle adjustment optimization explicit
scale drift correction. Other related approaches exploit nonholonomic motion constraints
(e.g. [44]), or fuse information from additional sensors (such as IMU). For example [43], [1], [41]
and [30] incorporate inertial measurements into a visual framework. Adding IMU data makes
estimation more robust and partially addresses the scale drift problem of monocular SLAM,
but does not eliminate this source of error entirely, especially while operating over long time
durations. However, the complexity of the system grows vastly with each extra sensor; one has
to take into account synchronization issues, inter-sensor calibration and intelligent management

of all the additional data that becomes available.



Frost et al. [14] develop an object-aware bundle adjustment approach, and use prior knowl-
edge regarding the size of the observed objects (e.g. cars) to correct scale drift. While their
approach does not require loop closure events for scale correction, it has a limitation - the
mentioned prior knowledge must be available and accurate. In contrast to the above-mentioned

approaches, we do not require any prior knowledge about the environment or loop-closures.

Deep learning

In the last 2-3 years, (deep) learning approaches revolutionized many problems in computer
vision and other communities. Deep learning based approaches for camera pose estimation and
vision based navigation are actively being developed. In particular, Kendall et al. [34] present a
robust and real-time monocular six degree of freedom relocalization system. The system trains a
convolutional neural network to regress the 6-DOF camera pose from a single RGB image in an
end-to-end manner with no need of additional engineering or graph optimisation. The algorithm
can operate indoors and outdoors in real time. This is achieved using a 23 layer pre-trained
network. However, operating in exploration scenarios in environments significantly different
from the training environments can lead to poor performance while using pre-trained networks.
Overall, deep learning approaches to address SLAM are currently actively developed and are

not yet sufficiently mature or stable.

1.3 Contribution

In this work we formulate novel image feature scale constraints and incorporate these within BA
to improve estimation accuracy, especially along the optical axis of the camera in a monocular
setup. This concept leverages the scale invariance property of SIFT [39] (and similar) detectors,
and is based on the key observation that the detected feature scale changes consistently across
a sequence of images. In particular, we show the detected feature scale can be predicted as a
function of camera pose, landmark 3D coordinates and the corresponding 3D environment patch
(see Figures 3.1 and 3.2), with the latter, according to the scale invariance property, remaining
the same for different images observing the same landmark. Incorporating the mentioned
feature scale constraints within BA allows to drastically reduce scale drift without requiring
loop closures or any other information, given that the detected feature scales are sufficiently
accurate. We show the latter can be attained simply by increasing the resolution of Gaussian
kernels within the SIFT detector.

It is important to note that feature scale is already typically calculated by common feature
detectors (e.g. SIFT) but is only used for image matching - see a diagram of a typical BA
and SfM pipeline in Figure 2.1. Here, we propose to exploit this available information for
improving the performance of BA. Note we do not interfere with image matching process, but
rather propose to make better use of its products.

The idea of using feature scale has been proposed in the past, but in different contexts. For

example, Ta et al. [47] use feature scale to determine if a landmark is sufficiently far away to



consider it for rotation updates and to steer the robot to these far-away landmarks (termed Vistas)
to avoid collisions in an indoor environment. Guzel et al. [19] recently suggested to use SIFT
feature scale for distance estimation.

However, to the best of our knowledge, incorporating image feature scale constraints within
BA is novel. In addition to improving accuracy, our method, termed, bundle adjustment with
feature scale (BAFS), has also the capability to estimate the actual landmark (object) sizes, up

to an overall scale.
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Chapter 2

Problem formulation

We consider a sequence of N images captured from different and unknown camera poses. As
schematically shown in Figure 2.1, given this image sequence, existing approaches typically
first extract track image features (e.g. SIFT [38] or SURF [3] detectors) from each of the images.
These features are then matched, typically using the Random Sample Consensus algorithm
(RANSAC) [12] to filter out outliers. The result of this phase are corresponding image features
across different images which are then fed into the bundle adjustment process as described

below. An example for matched features in two images is shown in Figure 2.2.

Image matching

Initialization

Feature Extraction &

Matching
Images ?/(Iazttfj?; Bundle Adjustment

RANSAC *

Camera poses &
3D points

Figure 2.1: Overall framework of monocular BA

Denote the camera pose that captured the i-th image by x; = {R;, t;}, with rotation matrix R;
and translation vector ¢;, and let Z; represent all the landmark observations of that image, with a
single image observation of some landmark /; denoted by z{ € Z;. Let X represent all the camera

poses and L represent all the observed landmarks,
X = {x, X xyy s L={he ), (2.1)

where M is the number of observed landmarks. These landmarks represent 3D scene points that
generate the detected 2D visual features.

We denote by 7 (x,[) the standard projection operator [22], and write the measurement
likelihood for an image observation z given camera pose x and landmark / as

P(zlx, 1) = “Lm&y (2.2)

| 1
Vel (Zns) p(zIIZ
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Figure 2.2: Matched SIFT features.

where we conventionally assumed image noise is sampled from a zero-mean Gaussian distribu-
tion N(0,X,), and ||a||§v = aTZ; a is the squared Mahalanobis distance.

The joint probability distribution function (pdf) for N camera frames can now be written as

N
P(X, LIZ) o priors - [ | [ | PG 1) 2.3)
i=1 jeM;
where Z = {Z,-}ﬁi | is the set of all image observations from all images and M; is a set of indexes
of the landmarks observed from camera pose i. The priors term includes all the prior available
information; this term will be omitted from now on for conciseness.
The MAP estimation of X and L is given by

X*,L* = arg max P(X, L|2), (2.4)

and can be calculated using state of the art computationally efficient solvers [7,36] that solve

the following non-linear least-squares problem:

Tpa (X, L) = ZN: 3 - ﬂ(xi,lj)H; . 2.5)

i jeM;

A key problem in the described monocular camera setup is scale drift as information provided
by a single camera, without considering any additional information, can only be used to recover
the camera motion and the 3D environment up to a common scale, which drifts over time.

Figure 2.3 demonstrates bundle adjustment results in a real-imagery monocular scenario

12



with a forward-facing camera from KITTI dataset [15]. Estimated path is marked with dashed
blue line and black solid line corresponds to ground truth. One can notice that estimated track
length is stretched relatively to ground truth, a well-known issue called scale drift. For a
forward-facing camera, scale drift corresponds to stretching of the estimated trajectory along
optical axis. Referring again to Figure 2.3, right after the start and before the first right turn
(denoted as area 1) position estimate drifts about 8% with respect to ground truth, while towards
the end of trajectory (area 2), position drift grows to 94%.

)
] = Ground Truth
400 1

= = Standard BA

350

N N w
o a o
o o o

North [m]

—_
a
o

100

50

-300 -200 -100 0 100
East [m]

Figure 2.3: Scale drift along optical axis. Top view. Forward-facing camera moves along the
trajectory. Black is GT, blue - estimated path. For the 1st 100 frames estimated path is 8%

longer than ground truth (zone 1). For the last 100 of frames estimated path is 94% longer than
ground truth (zone 2).

-
-

e W WA W W
R-R=

Figure 2.4: Zoomed-in sequence of poses for a singe forward-facing camera. Red arrows show
camera optical axis direction. Green dashed line is estimated track. Blue line is a ground truth
track. Drift along optical axis is cumulative position error component along movement direction.

Drift along the optical axis is indeed a well known problem, which is often addressed only
upon identifying a loop closure event or considering availability of additional sensors or prior
knowledge. In contrast, in the next chapter we formulate a new type of constraints that allow to

enhance estimation accuracy, in particular along the camera optical axis, without requiring loop

13



closures or additional prior knowledge.
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Chapter 3

Approach

3.1 Feature Scale Constraint Formulation

Standard bundle adjustment formulation exploits only partial information extracted from images
by typical image matching approaches: only image coordinates from corresponding views
are used, while an image feature (e.g. SIFT feature) is typically accompanied also with two
additional parameters - scale and orientation. We propose to incorporate scale information into
bundle adjustment optimization by formulating appropriate constraints that describe how feature
scale changes for different views according to camera motion and observed landmarks. The
corresponding idea, that we call Bundle Adjustment with Feature Scale (BAFS), is schematically
illustrated in Figure 3.1.

Our key observation is that the detected scales of matched features from different frames
capture the same portion (patch) of the 3D environment, as illustrated in Figure 3.1. This
observation leverages the scale invariance property that typical feature detectors (e.g. SIFT [39])
satisfy. As an example, we consider the image sequence shown in Figure 3.2, where a single
feature is tracked and its detected scale across different images is explicitly shown. One can
note that, indeed, in all of the frames, the detected scale represents an identical portion of the
environment, i.e. the contents inside of the circle with radius equals to detected scale is identical
in all frames.

We shall consider the mentioned 3D environment patch extent as virtual landmark size and
denote it for the jth landmark by S ;. Based on the above key observation, we argue the detected
feature scales in different images change consistently and can be predicted. Specifically, letting
sl’ denote the detected feature scale of the jth landmark in the ith image frame, and considering

a perspective camera, we propose the following observation model for s{

j_ ¢S
s = f—'j + v, 3.1)
d;
where f is the focal length and v; is the measurement noise which is modelled to be sampled
from a zero-mean Gaussian distribution with covariance X ¢y, i.e. v; ~ N (0, z fs). In Eq. (3.1)

we use d{ to denote the distance along optical axis from the camera pose x; to landmark /;. In
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Virtual size .S .
i

Figure 3.1: Feature scale is modeled as a projection of a virtual landmark size in 3D environment
onto the image plane. We leverage the scale invariance property of typical feature detectors,
according to which, detected scales of matched features from different images correspond to
the same virtual landmark size in the 3D environment, and incorporate novel feature scale
constraints within BA.

other words, assuming the optical axis is the z axis in the camera frame,

Xe
d/(xi, 1) = zc , |ye|=Rilj+ 1, (3.2)
Zc

where R; and #; are the ith camera rotation matrix and translation vector, i.e. x; = {R;, t;}.

We note one might be tempted to consider d{ to be simply the range between the camera
optical center and the landmark 3D position. However, this model is incorrect as we discuss
now. To see that, consider again the sequence of images shown in Figure 3.2, where the same
landmark is tracked. The landmark is relatively distant and the camera (car) is performing an
almost pure rotation motion, such that the range to the landmark is approximately constant.
As the camera rotates, the landmark is projected closer and closer to the center of the image
while the corresponding detected feature scales are shown in the zoom-in figures. One can
observe that these decrease as the features move closer to the center of the image. Figure 3.3
illustrates this scenario schematically. It is shown geometrically that the same landmark (means

S1 =S8, = §3) observed at the same range from the camera optical center produces different
1

feature scales, so s; < sl.2 < s?. Now, modeling d; as range and given some value for S ; in

Eq. (3.1) would yield identical, up-to-noise, feature scale predictions, contradicting the detected
feature scales sl.1 < si2 < sl.3. In contrast, modeling d; as distance along optical axis would and
noting d| > d» > ds, correctly predicts the observed feature scales.

In Eq. 3.1 we assumed the scale measurement noise is sampled from a zero mean Gaussian
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Figure 3.2: A landmark is observed while the camera performs a left turn, from (a) to (d). The
detected feature scale in each frame is shown in the zoom-in figures.

distribution. While convenient, it is not obvious to what extend this is a valid assumption for the
considered scale measurement model. Using statistics for scale measurements from a dataset of
real images we show that, indeed, a Gaussian distribution is a good approximation of the error
between scale measurements and our model. This is shown in Figure 3.4, which presents the
scale error distribution for 500 frames (approximately 20000 measurements) from KITTI [15]
dataset. Scale error measure is estimated for each landmark observation as difference between
measured value and predicted according to model (Eq.3.1) value.

One can note that the distribution is zero-mean. Empirically we fitted a sigma parameter to
get an upper bound approximation for the scale error. Modeling sigma with a larger value, the
measurement impact will decrease, while modeling sigma with too small value might introduce
additional error into optimization.

Based on the observation model (3.1) we can now define the corresponding feature scale

measurement likelihood as

2

; 1 1, S;
P(s’|S ;, xi, 1) = ———— expl—= ||s — f—2 (3.3)
AV AR (—|27T2‘fs| 2|7 f dlj :,

As seen, the above likelihood is conditioned on the virtual landmark size S ;. Since the latter is
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Figure 3.3: Landmark of the same virtual size S ; is observed at a constant range from the
camera’s optical center, producing different scale projections depending on the distance along
optical axis.

actually unknown, we treat it as random variable and infer it, along other variables.

We can now formulate the feature scale constraint and the corresponding likelihood for
each landmark observation. Letting S = {S j} denote the virtual landmark sizes for all observed
landmarks, and incorporating all the measurement likelihood terms (3.3) yields the following

joint pdf (omitting the priors terms)

N
PXLSIZ) e [ | ] el 1)PCsIS o xis 1. (34)
i jeM;

As seen, for each landmark observation we now have two types of constraints: projection

and scale constraints.

Taking —log [p (X, L,S|Z)] we get the following corresponding non-linear least-squares

problem
2

B

5

J_rd
s; fj

i

s L) = Y 3 = n () +

i jeM;
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Figure 3.4: Scale error distribution for real images dataset. Red curve is Gaussian curve chosen
to approximate data distribution. Green curve over estimates measurements accuracy, blue curve
- underestimates.

and we can use state of the art efficient solvers to find the MAP solution X*, L*, S *.

3.2 Computational Complexity and Factor Graph Reduction

The obtained joint pdf can be conventionally represented with a factor graph model [8]. A single
landmark observation is now used to formulate a projection and feature scale factors. Adding
a feature scale factor for each landmark observation corresponds to the factor graph shown in
Figure 3.5b. However, for a scenario of N camera frames and M landmarks, this naive approach
increases the number of variables in the optimization from 6 M + 3N to 6M + 4N, and doubles
the number of factors, which can severely impact optimization time.

Instead, we propose the following simple heuristic. We add feature scale factors and new
virtual landmark size variables only for long-term landmarks that are observed for long period
of time (number of images above a threshold). Moreover, empirically we notice that these long-
term landmarks correspond to “strong” features which are usually measured more accurately.
This property allows to model X ¢, with a lower value than usual, giving more weight to scale
constraints in the optimization. Figure 3.5c illustrates a factor graph that corresponds to this

heuristic.

3.3 Variable initialization

As the MAP solution is obtained via iterative optimization, each of the optimized variables
needs to be initialized. While initialization of camera poses and landmarks can be done using

conventional approaches [21], the following method can be used to initialize the virtual landmark
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Figure 3.5: Factor graph representations: (a) standard BA with projection factors only; (b)
BAFS with naively added all feature scale factors; (c) BAFS with feature scale factors added
only for long-term landmarks (/1, in this case).

size. After a new landmark I/ is observed and initialized (e.g. via triangulation which requires
two landmark observations), the distance along optical axis dl.J from camera pose to the landmark
can be estimated. We then initialize the corresponding virtual landmark size variable, S ;, using
the equation .
d’
s! 7’,

which is obtained from Eq. (3.1) while neglecting the noise.

S;= (3.5)

In our implementation, we initialize each new landmark via triangulation given two land-
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mark observations, and initialize S ; by taking an average value of Eq. (3.5) considering the

corresponding two detected feature scales.

3.4 Enhancement of Feature Scale Measurement Accuracy

Thus far, we incorporated our novel feature scale constraints (3.5) within bundle adjustment, but
did not discuss when these constraints will actually have impact on estimation accuracy. This
aspect naturally depends on how accurate the feature scale observations are in the first place, as
modelling this determines Xz, the measurement noise covariance from Eq. (3.3).

Intuitively, more accurate feature scale observations and the corresponding lower values of
2 rs will yield better estimation accuracy. In fact, there is a scenario-dependent upper threshold
for X, at which the feature scale constraints will have no contribution at all. We study this
statement using a synthetic dataset of a downward-facing camera flying at constant height and
observing landmarks scattered in 3D-space, occasionally performing loop closures (see Figure
3.6). In this scenario we assigned each landmark /; a corresponding (ground truth) size S ;,
and simulated image and feature scale observations while corrupting the latter with sampled

Gaussian noise considering different values of X ;.

Figure 3.6: Simulated scenario of an aerial downward-facing camera observing randomly-scatted
landmarks. Camera’s trajectory is shown in red.

As expected, running on this synthetic data showed that accuracy of feature scales is
extremely important to improve standard BA precision. Figure 3.7 shows results, in terms of
position estimation error, for different simulated values of ¢, such that X¢g1 > X7 > Zp3 >
X rs4 > Zre5. One can observe the dashed curves, that correspond to two highest values of Z
(i.e. Zr51 and Zyy) are very close to the standard BA curve, and do not improve estimation
accuracy. As we consider smaller values of X, estimation accuracy gets dramatically improved.

While the above discussion referred to simulated feature scale observations, in reality these

are produced by feature detectors such as SIFT. Unfortunately, we empirically observed that
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Figure 3.7: Position estimation error. Each curve corresponds to BA with feature scale con-
straints with noise in simulated feature scale measurements sampled from a Gaussian with
different X . Black solid curve corresponds to standard BA.

incorporating scale constraints into the optimization does not yield any significant improvement,
thereby indicating the actual feature scale measurements are not of sufficient quality (i.e. too
noisy).

We propose a simple method to address this difficulty. Recall that a SIFT detector first blurs
the image with different Gaussian kernels, calculates difference between blurred images with
successive kernels, and searches for maxima both spatially and across different kernels. The
former determines the feature coordinates, while the latter determines the scale (see Figure 3.8).
Therefore, feature scale can be determined only up to resolution of the Gaussian kernels used
in this process. To increase accuracy of the detected feature scales, we propose to use a finer
resolution of the Gaussian kernels. This simple idea is illustrated in Figure 3.8, where additional
kernels and corresponding blurred images are shown in red. Furthermore, while in this work Z ¢
is specified manually given detected feature scales, we envision the utilized Gaussian kernels
resolution could be used to determine X¢;. However, exploring this aspect is left for future
research. As we show in the sequel, using feature scales with enhanced resolution yields a

significant improvement in position estimation accuracy.

22



Blur with a set of Blurred
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Figure 3.8: SIFT scale estimation process. (i) Blur each input image with a set of Gaussian
kernels. (ii) Calculate Difference of Gaussians (DoG). (iii) Feature scale is set as the average of
the two Gaussian kernels that correspond to the local-maxima DoG layer.
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3.5 Flat Environments

In this section we study empirically the performance of the proposed method in environments
that are either flat, or appear as flat, e.g. when flying at a relatively high altitude. In such
scenarios, feature scales tend to have constant values with negligible variations from frame
to frame, while the the distance along optical axis up to observed landmarks is also roughly
fixed. We simulated a flat scenario (see Figure 3.9) to examine difference of requirements to

measurements accuracy.

Figure 3.9: Flat simulation scenario. Downward facing camera observes flat environment.

Similar to simulation in section 3.4 we incorporated our novel feature scale constraints
(3.5) within bundle adjustment to identify conditions when these constraints will actually have
impact on estimation accuracy. Modeling the feature scale observations accuracy with different
measurement noise covariance from Eq. (3.3) we got an interesting result for flat scenario
defining higher sufficient measurement accuracy threshold to benefit the estimation. In Figure
3.10 we show two different simulation worlds with corresponding error results with a set of
simulated measurement noise covariances. Figure 3.10a corresponds to non-flat world shown
previously in Figure 3.6 and contains results for the following simulation runs: black solid curve
corresponding to standard BA accuracy, dotted curves corresponding to BAFS approach with
feature scale measurements of insufficient accuracy and solid coloured curves corresponding to
improved accuracy, where one can notice than low X, is modelled than lower error is obtained.
Comparing to Figure 3.10b where runs with insufficient previously accuracy are dropped it
might be noticed that cyan and magenta curves are also of insufficient accuracy giving error of
the same rate as standard BA. Only starting with the yellow curve, accuracy stably improves
which means that for flat environments much more accurate scale measurements are necessary

in order to get any benefit using our proposed feature scale constraints.
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Figure 3.10: Position estimation error. Each curve corresponds to BA with feature scale
constraints with noise in simulated feature scale measurements sampled from a Gaussian with
different X ;. Black solid curve corresponds to standard BA. Subfigure (a) corresponds to
landmarks scattered in space shown in Figure 3.6, Subfigure (b) correstonds to scenario in
Figure 3.9
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3.6 Application to Object-based Bundle Adjustment

The proposed concept of feature scale constraints is applicable also using alternative scale
invariant quantities detected in the images. Here, we briefly describe one such application,
considering object-level BA while using detected object bounding boxes in the images (see
Figure 3.11).

3D object
size S j

Figure 3.11: Object detected bounding box in the image plane.

Specifically, considering the detected bounding boxes of far away stationary objects as
scale invariant, we formulate object scale constraints in a similar manner to feature scale
constraints (3.1). Close objects are not taken into account as the corresponding detected bounding
boxes might be obtained from significantly different viewpoints and provide inconsistent scale
measurements. In our implementation, we use HOG object detector [6] to identify bounding
boxes, and formulate the scale constraint considering the detected width and height instead of

feature scale. For example, for the jth object observed at the ith frame, the scale constraint is

wl = fj 0, (3.6)

where w{ is the detected bounding box width (see Figure 3.11), and v?bj is a Gaussian noise that
corresponds to the accuracy of bounding box picked by the object detector. Interestingly, the
virtual landmark size variable S ;bj now corresponds to object size, which is inferred as part of

the optimization process, up to an overall scale.

In addition to the above scale constraints, we formulate projection constraints considering
projection of virtual landmarks onto the image. A virtual landmark is defined as the center of
the corresponding object, while its projection is found as the center of the detected bounding
box. Similar to standard 3D landmarks, object position and width variables can be initialized

and introduced into optimization after at least 2 object observations.

Overall, the cost function in our implementation for BA with object scale constraints has the
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following form

5 obj |2
2 obj obj k
JBa+os = Z Z llz.; - ﬂ(Xi,lj)”ZV + Z Z ¥ |eid — 7 ")H +B||Wik — f_d-
i jeM; i ke !
3.7)

Here, ZZZJ is a virtual landmark projection on the image plane, 7(x;, l?bj ) is the predicted object
position in the image, while § ij is the object size in 3D, and w; ; is the measured object
width. Similar to M;, we represent by M?bj the object indices observed in the i-th frame. The
coeflicients 8 and y are weights defining impact of object scale and object projection position,
respectively, on the estimation. It is interesting to note that using scale constraints at object level
allows to estimate object size S ij for free as it is a part of optimization process.

Each object detection is accompanied with a score, representing accuracy of the detected
bounding box. This enables flexible weights tuning, individually for each observation, where
higher scores correspond to larger 8 and y values. Object size (S /) estimation accuracy also
depends on the object detection scores.

Remark: As a limitation of using object width or height for formulating scale constraints,
we note that the measured object width (bounding box width) is not always scale invariant; as
an example, consider car observations from significantly different viewpoints (e.g. front and
side observation). It is for this reason that in this work we used only width of far-away objects,

when their projection change is insignificant and can be neglected.
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Chapter 4

Results

We implemented a classical sparse feature based BA framework using the GTSAM [7] solver
and the provided Matlab wrapper. As GTSAM supports only projection factors out of box, we
implemented a scale factor, which corresponds to the feature scale measurement likelihood (3.3).
As described in Section 3.4, we enhance standard SIFT feature scale resolution by increasing
the number of layers per octave from default value 3 up to 15. In the reported results we used
%, = 0.5 and manually set X, to 0.2 while adding feature scale constraints for all landmarks.
We were able to drop Xy, up to 0.1 when adding these constraints only for long-term landmarks,
as empirically we observed the corresponding detected feature scales are typically of higher

quality.

To test the performance of our approach we used two outdoor sequences from the KITTI
dataset [15]; typical images are given in the Figure 4.1. Contrary to many other methods tested
on this dataset, we do not involve any prior knowledge like camera height or typical object
sizes about the environment and solve pure standard bundle adjustment problem with our novel
feature scale constraints. Moreover, in this work we do not use any loop closures, thereby

examining the contribution of the developed scale constraints on estimation accuracy over time.

Figure 4.1: Typical images from KITTI dataset.
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4.1 Results with enhanced SIFT scale resolution

The results for both of the considered sequences are shown in Figures 4.2, 4.2b and compared to
ground truth, and standard BA. Additionally, we show our approach with feature scale constraints
added for all landmarks, or only for long-term landmarks (see Section 3.2). Specifically, Figure
4.2 shows the estimated trajectories (top view), Figure 4.3 position estimation errors, and
Figure 4.4 optimization time. The shown results are obtained in an incremental fashion that
is suitable for online applications, i.e. the k camera pose is estimated given available data
only up to that time. The reported optimization times for all methods correspond to batch
Levenberg-Marquardt optimization with identical settings; we expect running time to drastically
drop upon switching to iISAM2 [32] but leave this endeavor to future research.

As seen in Figures 4.2a and 4.2b, standard BA suffers from significant drift along optical
axis which is manifested in continuous stretching of the estimated trajectory compared to ground
truth. One can notice that position estimation perpendicular to motion heading is more accurate
than along the optical axis.

The green curve, which corresponds to BAFS with feature scale constraints for all landmarks,
is obviously closer to ground truth and the main improvement is caused by discarding the
stretching along optical axis, i.e. reducing scale drift. This result corresponds to our approach
using both projection and scale constraints. The corresponding absolute position error is
significantly improved (green curve in Figures 4.3a and 4.3b) compared to standard BA approach
which only exploits feature projection factors. In particular, position estimation error is often
reduced by a factor of about 2.5, e.g. from around 90 meters to 40 meters around frame number
950 in Figure 4.3a.

Estimation performance is even further improved by BAFS with feature scale constraints
added only for long-term landmarks, as shown by the red curves in the figures. For example, the
above-mentioned 40 meters position error is reduced to 30 meters at the same time instant (see
Figure 4.3a). This is perhaps somewhat surprising result, as we use less constraints but obtain
higher accuracy. We hypothesize this happens since long term feature scales tend to be more
robust and accurate.

Figures 4.4a and 4.4b provide the optimization time for both sequences. One can observe that
naively using all feature scale constraints considerably increases optimization time compared
to standard BA, while adding feature scale constraint only for long-term landmarks does not

increase optimization time significantly.
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Figure 4.2: Each image provides top view of estimated trajectory for a different KITTI dataset
sequence using SIFT features with enhanced scale resolution. Estimation with standard BA
is shown with blue, BA + all Feature Scale constraints - green, BA + long term feature scale
constraints - red, black solid line is ground truth
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Figure 4.3: Each image provides norm of position estimation error as a function of time for
the 2 different KITTI dataset sequences using SIFT features with enhanced scale resolution.
Estimation with standard BA is shown with blue, BA + all Feature Scale constraints - green, BA
+ long term feature scale constraints - red.
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Figure 4.4: Each image provides optimization time for each frame for the 2 different KITTI
dataset sequences using SIFT features with enhanced scale resolution. Estimation with standard
BA is shown with blue, BA + all Feature Scale constraints - green, BA + long term feature scale
constraints - red.
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4.2 Results with non-enhanced SIFT scale resolution

The results above were obtained using enhanced-resolution feature scales (see Section 3.4). To
demonstrate the importance of improving the accuracy of detected feature scales, we show in
Figures 4.5a and 4.5b results of our approach without such enhancement, i.e. using default SIFT
settings. It is evident that, while there is still improvement in position estimation compared to
standard BA, the obtained results are by far inferior to those reported in Figure 4.2a and Figure
4.3a.

Moreover, using only long term feature scales is no longer possible because of scale outliers,
i.e. correctly matched features in terms of image coordinates might have inconsistent scales. In
particular, while using feature scales to generate additional constraints we faced the phenomenon
of significant deviation of some feature scales from our model given in Eq. 3.1. Enhanced

SIFT-scale resolution decreases scale outliers number significantly.
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Figure 4.5: (a) image provides top view of estimated trajectory for KITTI dataset sequence
using SIFT features with non-enhanced scale resolution. Estimation with standard BA is shown
with blue, BA + all Feature Scale constraints - magenta, black solid line is ground truth. (b)
image provides norm of position estimation error as a function of time using SIFT features with
non-enhanced scale resolution.
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4.3 Results with object scale constraints

We modified our framework and added an object detector at the image preprocessing step. It was
necessary to extract cars bounding boxes and track objects across sequence of images. Within
scale constraints we treated bounding box measurements as scale measurements and object size
as virtual landmark size. For consistency we had to introduce car center position as a landmark.
Scale and size initialization were performed in the same way as for landmark scale and size, and
object center of mass was initialized as a triangulation result of corresponding bounding boxes

centers observed from different poses.

Figure 4.6: Cars tracked across sequence of images in KITTI dataset.

Finally, Figure 4.7 provides position estimation error for BA using object scale constraints,
as discussed in Section 3.6, compared to BA with feature scale constraints and to standard
BA. As seen, while estimation accuracy is slightly improved compared to standard BA, using
feature scale constraints provides significantly better accuracy. On the other hand improving
estimation using objects does not increase the optimization time significantly as number of

objects is negligible comparing to number of features.
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Figure 4.7: Norm of position estimation error as a function of time. Blue - standard BA, cyan -

BA with object scale constraints, red - BAFS in modification with long term scale constraints
only.
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4.4 Flat scenario results

To test the performance of our approach in flat environments we used an outdoor Kagaru
dataset [50], which provides a sequence of images from a downward-facing camera and ground
truth camera position from GPS and IMU censors. Images are taken from a plane flying at
constant hight and observing fields and rare trees and houses. Figure 4.8 shows typical images
from the dataset.

Figure 4.8: Typical images from aerial dataset Kagaru.

The result for an aerial image sequence is shown in Figures 4.9 and 4.10, and compared to
ground truth, and standard BA. As seen in Figure 4.9, standard BA suffers much less from scale

drift along optical axis comparing to drift of trajectory given for KITTI dataset (e.g. Figure 4.2).
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Figure 4.9: Top view of estimated trajectory for Kagaru dataset sequence. Estimation with
standard BA is shown with blue, BA + Feature Scale constraints - green, black solid line is
ground truth.

It is clear from Figure 4.9 that estimation is not improved at all in spite of enhanced SIFT

scale resolution applied at feature extraction step. Figure 4.10 confirms this observation - as
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mentioned in Section 3.5, more accurate measurements are required for flat scenarios. A naive
attempt to model scale measurements with too low X, value (which corresponds to the very
high desired accuracy) leads to failure.
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Figure 4.10: Position error for Kagaru dataset as function of time. Estimation with standard BA
is shown with blue, BA + Feature Scale constraints - green.
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Chapter 5

Conclusions and Future Work

We developed novel feature scale constrains and incorporated them within bundle adjustment,
leveraging the scale invariance property typical feature detectors (e.g. SIFT) satisfy. Our
approach does not require any additional or prior information, as it exploits already available
feature scale information, which was used thus far only for image matching, and was not utilized
for estimation purposes. We also proposed a method to improve feature scale accuracy by
simple resolution enhancement at detection step. Using these feature scales as measurements,
our approach significantly improves position estimation, especially along the optical axis in
a monocular setup without requiring loop closures. Specifically, we demonstrated on KITTI
datasets position estimation error can be reduced by a factor of 3, compared to standard bundle
adjustment, e.g. from 90 meters to 30 meters after 950 frames. The suggested concept of
exploiting scale information for improving estimation accuracy is applicable also to other scale-
invariant measurements, and we demonstrated one such application, considering object-level

bundle adjustment.

Future work

While in this work we focused on feature scale information, typical detectors also calculate
feature orientation (local image gradient directions). Future research will investigate how the
latter can be used to improve estimation accuracy even further. The idea of scale constraints
might be developed further: one can utilize any scale invariant substance (objects, features)
stackable across a sequence of frames.

One of the main problems is to define the measurement scale accuracy and to define if the
measurement is indeed scale invariant for the case. It is important both for objects as they are
not scale invariant in all cases and for features due to scale outliers. In section 3.6 we discussed
the idea of using object scale constraints. This idea might be developed further. As we do not
need any prior knowledge about object size, objects might be detected “on the fly”. This means
no specific pre-trained detector is needed. MSER-feature is a simplified variation of such kind
of objects.

Another possible direction is related to scale outliers aspects, as mentioned in Section 4.1.

We hypothesize that accounting for consistent changes in detected feature scales can lead to
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enhanced robust data association.
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