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In planning under uncertainty, when data association is incorporated within plan-infer framework of belief
space planning (BSP), it results in a more general form of BSP capable of dealing with non-Gaussian beliefs,
and perceptual aliasing, providing a framework for robust active perception and active disambiguation that

avoids catastrophic failures.

Data-association in BSP

State of the art: Considers data association within BSP as given and
perfect, typically through maximum likelihood assumption.

How to incorporate data association?
Maximum likelihood: assumes association corresponding to planner's
nominal position is the correct one (e.g. [1], [2])

Passive robust inference: models association within passive inference
via binary latent variables (e.g. [3])

Non-parametric inference: infers passively based on available data
(e.g- [4])
Multiple hypothesis tracking: framing it as an MHT problem (e.g.
[51)
Why care about data-association
@ Data association may be ambiguous due to perceptual aliasing

@ Incorrect data association may lead to catastrophic failures
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Data-association aware BSP

@ Approach: Reason about possible associations within BSP.

@ Cost function:
J(uk) = E{c (b[Xk+1]; uk)}s
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with posterior conditioned on A;: b[X,iil] = P(Xet1 | Hpp1s 2641, Ai)-
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Figure: Pose and observation space. (a) black-colored samples {xx} are drawn from

b[X] = N([0,0]T, =), from which, given control uy, samples {xx+1} are computed, colored
according to different scenes A; being observed, and used to generate observations {zx1+1}. (b)
Stripes represent locations from which each scene A; is observable, histogram represents distribution
of {xx+1}, which corresponds to b[X,_ ,]. (c)-(d) distributions of {211} without aliasing and when
{A17 A3}aliased-
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Figure: DA-BSP for a single observation z ;. Red-dotted ellipse denotes b[X,_,], while the true
pose that generated zj; is shown by inverted triangle. Smaller ellipses are the posterior beliefs
b[XLL]. Top row x is near center, observing Ay; bottom row x'" is on the left, observing A;.
Columns represent different perceptual aliasing cases. Weights w; and w;, corresponding to each

scene A; are shown in the inset bar-graphs.

Comparison with state of the art

Table: Evaluating DA-BSP

confi cost metrics
g KL, Worst-Cov | modes Nda
plan 2.60 5.48 21 0.41
o DAREER e 8.14 5.08 4 0.26
i lan -8.67 5.36 13 0.29
g P
g el infer -4.35 2.95 2 0
o [5] plan -na- -na- -na- -na-
infer -63.76 2.82 2 0
bwd plan 6571.29 28.74 48 0.08
a L infer | 6567.86 30.53 4 0.08
(%] -
n.: fwd, .plan 1160.93 6.22 22 0.18
< infer | -1300.72 6.98 2 0.16
o fwdl plan | -166.03 0.66 2 1
2 infer | -227.03 0.91 1 1
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Figure: Using Pioneer robot in simulation and real-world. (a) a counter-example for hypothesis
reduction in absence of pose-uncertainty in prior (b) two (of three) severely-aliased floors, and belief
space planning for it (c¢) DA-BSP can plan for fully disambiguating path (otherwise sub-optimal)

while usual BSP with maximum likelihood assumption can not

@ Data association was incorporated within belief space planning
(DA-BSP)
@ DA-BSP is more general form of plan-infer framework of BSP
Other approaches are degenerate cases of it
Affords active disambiguation in a formal framework
Is a crucial step towards realistic long term planning & autonomy
@ Parsimonious data association

Not all possible associations have significant weights
More effective strategies of pruning are currently explored
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