Data Association Aware Belief Space Planning (DA-BSP)

Shashank Pathak, Antony Thomas, Asaf Feniger and Vadim Indelman

Autonomous Navigation and Perception Lab (ANPL) — Technion, IIT Haifa 32000, Israel

In planning under uncertainty, when data association is incorporated within plan-infer framework of belief space planning (BSP), it results in a more general form of BSP capable of dealing with non-Gaussian beliefs, and perceptual aliasing, providing a framework for robust active perception and active disambiguation that avoids catastrophic failures.

Data-association in BSP

State of the art: Considers data association within BSP as given and perfect, typically through *maximum likelihood assumption*.

How to incorporate data association?

Maximum likelihood: assumes association corresponding to planner's nominal position is the correct one (e.g. [1], [2])

Passive robust inference: models association within passive inference via binary latent variables (e.g. [3])

Non-parametric inference: infers passively based on available data (e.g. [4])

Multiple hypothesis tracking: framing it as an MHT problem (e.g. [5])

Why care about data-association

- Data association may be ambiguous due to perceptual aliasing
- Incorrect data association may lead to catastrophic failures
- [1] A. Kim and R.M. Eustice, IJRR 2014

Active visual SLAM for robotic area coverage: Theory and experiment.

- [2] V. Indelman, L. Carlone F. Dellaert. IJRR 2015
 Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments
- [3] N. Sunderhauf and P. Protzel. ICRA 2012 Towards robust back-end for pose graph slam
- [4] E. Olson and P. Agarwal. IJRR 2013
- Inference on network of mixtures for robust robot mapping
- [5] S. Agarwal, A. Tamjidi, and S. Chakravorty. Preprint Motion planning in non-gaussian belief spaces for mobile robots.

Data-association aware BSP

- Approach: Reason about possible associations within BSP.
- Cost function:

$$J(u_k) = \mathbb{E}\left\{c\left(b[X_{k+1}], u_k\right)\right\},\,$$

$$J(u_k) \doteq \int_{z_{k+1}}^{\underbrace{(a)}} \underbrace{\mathbb{P}(z_{k+1} \mid \mathcal{H}_{k+1}^-)}_{c} c \left(\underbrace{\mathbb{P}(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1})}_{c}\right)$$

• computing (a): For A_N data associations

$$\mathbb{P}(z_{k+1}|\mathcal{H}_{k+1}^{-}) = \sum_{i}^{|A_{\mathbb{N}}|} \int_{x} \mathbb{P}(z_{k+1}, x, A_{i} | \mathcal{H}_{k+1}^{-}) = \sum_{i}^{|A_{\mathbb{N}}|} w_{k+1}^{i}.$$

computing (b):

$$b[X_{k+1}] = \sum_{i=1}^{|A_{\mathbb{N}}|} \sum_{j=1}^{M_k} \xi_k^j \mathbb{P}(A_i \mid \mathcal{H}_{k+1}^-, z_{k+1}) b[X_{k+1}^{j+} | A_i].$$

with posterior conditioned on A_i : $b[X_{k+1}^{i+1}] \doteq \mathbb{P}(X_{k+1} \mid \mathcal{H}_{k+1}^-, z_{k+1}, A_i)$.

Experimental results

Abstract example

Figure: Pose and observation space. (a) black-colored samples $\{x_k\}$ are drawn from $b[X_k] \doteq \mathcal{N}([0,0]^T,\Sigma_k)$, from which, given control u_k , samples $\{x_{k+1}\}$ are computed, colored according to different scenes A_i being observed, and used to generate observations $\{z_{k+1}\}$. (b) Stripes represent locations from which each scene A_i is observable, histogram represents distribution of $\{x_{k+1}\}$, which corresponds to $b[X_{k+1}^-]$. (c)-(d) distributions of $\{z_{k+1}\}$ without aliasing and when $\{A_1,A_3\}_{\text{aliased}}$.

Abstract example Abstract example (a) No aliasing, $A^{tr} = A_1$, $A^{tr} = A_2$ (b) $\{A_1, A_2\}_{aliased}$, $A^{tr} = A_1$ (c) No aliasing, $A^{tr} = A_1$ (d) $\{A_1, A_2, A_3\}_{aliased}$, $A^{tr} = A_1$ (e) No aliasing, $A^{tr} = A_1$ (f) $\{A_1, A_2\}_{aliased}$, $\{A_1, A_2\}_{aliased}$

Figure: DA-BSP for a single observation z_{k+1} . Red-dotted ellipse denotes $b[X_{k+1}^-]$, while the true pose that generated z_{k+1} is shown by inverted triangle. Smaller ellipses are the posterior beliefs $b[X_{k+1}^i]$. Top $row \times^{tr}$ is near center, observing A_2 ; bottom $row \times^{tr}$ is on the left, observing A_1 . Columns represent different perceptual aliasing cases. Weights w_i and \tilde{w}_i , corresponding to each scene A_i are shown in the inset bar-graphs.

Comparison with state of the art

Table: Evaluating DA-BSP

config		cost		metrics		
		KL_u	Worst-Cov	modes	η_{da}	
compare	DA-BSP	plan	2.60	5.48	21	0.41
		infer	8.14	5.08	4	0.26
	BSP	plan	-8.67	5.36	13	0.29
		infer	-4.35	2.95	2	0
	[5]	plan	-na-	-na-	-na-	-na-
		infer	-63.76	2.82	2	0
DA-BSP	bwd_1	plan	6571.29	28.74	48	0.08
		infer	6567.86	30.53	4	0.08
	fwd_1	plan	-1160.93	6.22	22	0.18
		infer	-1300.72	6.98	2	0.16
	fwd_2	plan	-166.03	0.66	2	1
		infer	-227.03	0.91	1	1

Real-world

Figure: Using Pioneer robot in simulation and real-world. (a) a counter-example for hypothesis reduction in absence of pose-uncertainty in prior (b) two (of three) severely-aliased floors, and belief space planning for it (c) DA-BSP can plan for fully disambiguating path (otherwise sub-optimal) while usual BSP with maximum likelihood assumption can not

To wrap up

- Data association was incorporated within belief space planning (DA-BSP)
- DA-BSP is more general form of plan-infer framework of BSP
 Other approaches are degenerate cases of it
 Affords active disambiguation in a formal framework
 Is a crucial step towards realistic long term planning & autonomy
- Parsimonious data association

Not all possible associations have significant weights More effective strategies of pruning are currently explored