Data Association Aware Belief Space Planning (DA-BSP)

Shashank Pathak, Antony Thomas, Asaf Feniger and Vadim Indelman
Autonomous Navigation and Perception Lab (ANPL) — Technion, IIT
Haifa 32000, Israel

In planning under uncertainty, when data association is incorporated within plan-infer framework of belief space planning (BSP), it results in a more general form of BSP capable of dealing with non-Gaussian beliefs, and perceptual aliasing; providing a framework for robust active perception and active disambiguation that avoids catastrophic failures.

Data association in BSP

State of the art: Considers data association within BSP as given and perfect, typically through maximum likelihood assumption.

How to incorporate data association?

- **Maximum likelihood:** assumes association corresponding to planner’s nominal position is the correct one (e.g. [1], [2])
- **Passive robust inference:** models association within passive inference via binary latent variables (e.g. [3])
- **Non-parametric inference:** infers passively based on available data (e.g. [4])
- **Multiple hypothesis tracking:** framing it as an MHT problem (e.g. [5])

Why care about data-association?

- Data association may be ambiguous due to perceptual aliasing
- Incorrect data association may lead to catastrophic failures

Experimental results

Abstract example

Figure: DA-BSP for a single observation $x_{i+1,}\text{while the true pose that generated } x_{i+1}\text{ is shown by inverted triangle. Smaller ellipses are the posterior beliefs } \pi[X_{i+1}^j|A_i]. \text{Top row } x_i\text{ is near center, observing } A_1; \text{bottom row } x_i\text{ is on the left, observing } A_2. \text{Columns represent different perceptual aliasing cases. Weights } w_i\text{, corresponding to each scene } A_i\text{, shown in inset bar-graphs.}*

Table: Evaluating DA-BSP

<table>
<thead>
<tr>
<th>config</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>best1</th>
<th>best2</th>
<th>real1</th>
<th>real2</th>
<th>partial</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-BSP plan</td>
<td>2.89</td>
<td>5.88</td>
<td>4</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plan</td>
<td>-8.67</td>
<td>5.36</td>
<td>13</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>infer</td>
<td>-4.35</td>
<td>2.95</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>-63.76</td>
<td>2.82</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison with state of the art

Real-world

Figure: Using Pioneer robot in simulation and real-world. (a) a counter-example for hypothesis reduction in absence of pose-uncertainty in prior (b) two (of three) severely-aliased floors, and belief space planning for it (c) DA-BSP can plan for fully disambiguating path (otherwise sub-optimal) while usual BSP with maximum likelihood assumption can not.

To wrap up

- Data association was incorporated within belief space planning (DA-BSP)
- DA-BSP is more general form of plan-infer framework of BSP
- Other approaches are degenerate cases of it
- Affects active disambiguation in a formal framework
- Is a crucial step towards realistic long term planning & autonomy
- Parsimonious data association

Not all possible associations have significant weights

More effective strategies of pruning are currently explored.

Fund by: Israel Science Foundation (ISF) and Technion Autonomous System Program (TASP)

References

Active visual SLAM for robotic area coverage: Theory and experiment.

Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments.

Towards robust back-end for pose graph slam.

Inference on network of mixtures for robust robot mapping.

Motion planning in non-gaussian belief spaces for mobile robots.