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Towards Data Association Aware Belief Space
Planning for Robust Active Perception

Shashank Pathak, Antony Thomas, Asaf Feniger and Vadim Indelman

Abstract—We develop a belief space planning (BSP) approach
that advances the state of the art by incorporating reasoning
about data association (DA) within planning (existing BSP ap-
proaches typically assume data association is given and perfect),
while considering additional sources of uncertainty. Our data
association aware belief space planning (DA-BSP) approach
explicitly reasons about DA within belief evolution, and as such
can better accommodate these challenging real world scenarios.
Starting from a Gaussian prior, due to perceptual aliasing, we
show that the posterior belief becomes a Gaussian mixture model.
Overall, our approach is applicable to robust active perception
and autonomous navigation in perceptually aliased environments.

I. INTRODUCTION

Belief space planning (BSP) and decision-making under
uncertainty are fundamental problems in robotics and artificial
intelligence, with applications including autonomous naviga-
tion, object grasping and manipulation, active SLAM, and
robotic surgery. In presence of uncertainty, such as in robot
motion and sensing, the true state of variables of interest
(e.g. robot poses), is unknown and can only be represented
by a probability distribution over possible states, given avail-
able data. Planning and decision-making should be therefore
performed over this distribution, the belief space, which can
be inferred using probabilistic approaches based on incoming
sensor observations and prior knowledge. The corresponding
problem is an instantiation of a partially observable Markov
decision problem (POMDP) [9], where, given an objective
function, one aims to determine an optimal control policy
as a function of belief evolution over application-dependent
variables of interest.

However, state-of-the-art BSP approaches typically assume
data association to be given and perfect (see Figure 1), i.e. the
robot is assumed to correctly perceive the environment to
be observed by its sensors, given a candidate action. Recent
works, including [4]–[6], [11], [17], relax this assumption and
model the uncertainty of the environment mapped thus far
within the belief. The corresponding framework is thus tightly
related to active SLAM, with the well known trade-off between
exploration and exploitation. Recent work [5], [6], [11], [17] in
this branch focused in particular on probabilistically modelling
what future observations will be obtained given a candidate
action. However, these approaches consider each such future
observation to be correctly associated to an appropriate scene,
and hence, assume data association to be given and perfect.

In the last few years, the SLAM research community has
investigated approaches to be resilient to false data associa-
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Figure 1: (a) Generative graphical model. While standard BSP approaches typically
assume DA is given and perfect, we incorporate data association aspects within BSP and
thus capable of reasoning about ambiguity (e.g. perceptual aliasing) at a decision-making
level. (b) Schematic representation of pose, scene and observation spaces. Scenes A1

and A3 when viewed from perspective x and x′ respectively, produce the same nominal
observation ẑ, giving rise to perceptual aliasing.

tion (outliers) overlooked by front-end algorithms (e.g. im-
age matching), see e.g. [3], [7], [8], [13], [15]. However
these approaches, also known as robust graph optimization
approaches, are developed only for the passive problem setting.
In contrast, we consider a complimentary active framework
and incorporate data association aspects within BSP.

Our approach is also tightly related with recent work on
active hypothesis disambiguation in the context object detec-
tion and classification [2], [12], [14], [16], [18]. However,
these approaches assume the sensor is perfectly localized and
thus the corresponding belief is only about the considered
hypotheses.

Probably the closest work to our approach is by Agarwal
et al. [1], where the authors also consider hypotheses due to
ambiguous data association and develop a BSP approach for
active disambiguation. In this work the authors only consider
ambiguous data association within the prior belief, modelling
it as mixture of Gaussians, and assume there indeed exists an
action that yields complete disambiguation. In contrast, our
framework is more general since we additionally consider am-
biguous data association within future belief (due to future ob-
servations) given candidate action(s) and do not assume there
is necessarily a fully-disambiguating action. In this work we
develop a general data association aware belief space planning
(DA-BSP) framework capable of better handling complexities
arising in real world, possibly perceptually aliased, scenarios.
To that end, we rigorously incorporate reasoning about data
association within belief space planning and in particular show
that our framework can be used for active disambiguation by
determining appropriate actions, e.g. future viewpoints, for
increasing confidence in a certain data association hypothesis.
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II. PROBLEM FORMULATION

Consider a robot, uncertain about its pose, operating in a
partially known or pre-mapped environment. The robot takes
observations of different scenes or objects in the environment
and uses these observations to infer random variables of inter-
est which are application-dependent. A schematic equivalent
to this is shown in Figure 1,which involves three spaces:
pose-space, scene-space and observation-space. Pose-space
involves all possible perspectives a robot can take with respect
to a given world model and in the context of task at hand.

We shall denote a particular pose at any time step k
as xk, and the sequence of these poses from 0 up to k
as Xk

.
= {x0, . . . , xk}. By uncertainty in robot’s pose,

we mean that the current pose of robot at any step k,
is known only through a posterior probability distribution
function (pdf) P(Xk|u0:k−1, Z0:k) given all controls u0:k−1

.
=

{u0, . . . , uk−1} and observations Z0:k
.
= {Z0, . . . , Zk} up

to time k. For notational convenience, we define histories
Hk

.
= {u0:k−1, Z0:k} and H−k+1

.
= Hk ∪{uk} and we rewrite

the posterior at time k as b[Xk]
.
= P(Xk|Hk).

In contrast, scene-space involves a discrete set of objects or
scenes, denoted by the set {AN}, in the given world model,
and which can be detected through the sensors of the robot. We
shall use symbols Ai and Aj to denote such typical scenes.
Note that even if the objects are identical, they are distinct
in scene space. Finally, observation-space is the set of all
possible observations that the robot is capable of obtaining
when considering its mission and sensory capabilities. We
shall consider such an observation as the model:

zk = h(xk, Ai) + vk , vk ∼ N (0,Σv), (1)

and represent it probabilistically as P(zk|xk, Ai).
We also consider a standard motion model xi+1 =

f(xi, ui) + wi with Gaussian noise wi ∼ N (0,Σw), where
Σw is the process noise covariance, and denote this model
probabilistically by P(xi+1|xi, ui). Given a prior P(x0) and
motion and observation models, the joint posterior pdf at the
current time k can be written as

P(Xk|H) = P(x0)

k∏
i=1

P(xi|xi−1, ui−1)P(Zi|xi, Ai). (2)

This pdf is thus a Gaussian P(Xk|Hk) = N (X̂k,Σk) with
mean X̂k and covariance Σk that can be efficiently calculated
via maximum a posteriori (MAP) inference, see e.g. [10].
It is important to note that the underlying assumption in
factorisation (2) is that it is known which object is being
observed at each time i, i.e. data association is given and error-
free.

For notational convenience we will often represent the
posterior P(Xk+1|H−k+1, zk+1) as the belief b[Xk+1], i.e.:

b[Xk+1]
.
= P(Xk+1|H−k+1, zk+1). (3)

Similarly, we define the propagated joint belief as
b[X−k+1]

.
= P(Xk+1|H−k+1) = P(Xk|Hk)P(xk+1|xk, uk),

from which the marginal belief over the future pose xk+1 can
be calculated as b[x−k+1]

.
=
∫
¬xk+1

b[X−k+1].

As earlier, if data association is assumed given and perfect
as commonly done in BSP, then one can consider for each
specific value of zk+1 the corresponding observed scene Ai,
and express the posterior (3) as

b[Xk+1]=ηP(Xk|Hk)P(xk+1|xk, uk)P(zk+1|xk+1, Ai), (4)

which can be represented as b[Xk+1] = N (X̂k+1,Σk+1)
with appropriate mean X̂k+1 and covariance Σk+1. Yet, it
is unknown from what future robot pose xk+1 the actual
observation zk+1 will be acquired, since the actual robot pose
xk at time k is unknown and the control is stochastic. Indeed,
as a result of action uk, the robot actual (true) pose xk+1 can
be anywhere within the propagated belief b[x−k+1].

III. CONCEPT AND APPROACH

Given the posterior (2) at the current time k, one can reason
about the robot’s best future actions that would minimise (or
maximise) a certain objective function. Such a function, for a
single look ahead step, is given by

J(uk) = E
zk+1

{c(P(Xk+1|H−k+1, zk+1))}, (5)

where the expectation is taken about the random variable
zk+1 with respect to the propagated belief P(Xk+1|H−k+1) to
consider all possible realisations of a future observation zk+1.

To see that, we write the expectation operator explicitly
which transforms Eq. (5) to

J(uk)
.
=

∫
zk+1

(a)︷ ︸︸ ︷
P(zk+1 | H−k+1) c


(b)︷ ︸︸ ︷

P(Xk+1|H−k+1, zk+1)

 (6)

The two terms (a) and (b) in the above equation have intuitive
meaning: for each considered value of zk+1, (a) represents
how likely is it to get such an observation when both the
history H and control uk are known, while (b) corresponds to
the posterior belief given this specific zk+1.

A. Computing term (a): P(zk+1 | H−k+1)

Applying total probability over non-overlapping {AN} and
marginalizing over all possible robot poses, yields

P(zk+1 |H−k+1)≡
∑
i

∫
x

P(zk+1, x, Ai |H−k+1)
.
=
∑
i

wi. (7)

As seen from the above equation, to calculate the likelihood
of obtaining some observation zk+1, we consider separately,
for each scene Ai ∈ {AN}, the likelihood that this observation
was generated by scene Ai. This probability is captured for
each scene Ai by a corresponding weight wi; these weights
are then summed to get the actual likelihood of observation
zk+1. As will be seen below, these weights naturally account
for perceptual aliasing aspects for each considered zk+1.

Proceeding with the derivation further, using the chain rule
we get

∑
i

∫
x
P(zk+1 | x,Ai,H−k+1)P(Ai, x | H−k+1). Since

this integral could be over any arbitrary total distribution of
x, we can use the propagated belief b[x−k+1], giving:

wi
.
=

∫
x

P(zk+1|x,Ai,H−k+1)P(Ai|H−k+1, x)b[x−k+1 =x]. (8)
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Here, P(zk+1 | Ai, x,H−k+1) ≡ P(zk+1 | Ai, x) is the standard
measurement likelihood term, while P(Ai | H−k+1, x) repre-
sents the event likelihood, which denotes the probability of
scene Ai to be observed from viewpoint x. In other words,
this scenario-dependent term encodes from what viewpoints
each scene Ai is observable and could also model occlusion
and additional aspects. As such, this term can be determined
given a model of the environment and thus, in this work, we
consider this term to be given.

The weights wi (8) naturally capture perceptual aliasing
aspects: consider some observation zk+1 and the correspond-
ing generative model zk+1 = h(xtr, Atr)+v with appropriate
unknown true robot pose xtr and scene Atr ∈ {AN}. Clearly,
the measurement likelihood P(zk+1 | x,Ai,H−k+1) will be
high when evaluated for Ai = Atr and in vicinity of xtr. Note
that we will necessarily consider such a case, since according
to Eq. (7) we separately consider each scene Ai in {AN},
and, given Ai, we reason about all poses x in Eq. (8). In
case of perceptual aliasing, however, there will be also another
scene(s) Aj which could generate the same observation zk+1

from appropriate robot pose x′, i.e. {Ai, Aj}aliased. Thus, the
corresponding measurement likelihood term to Aj will also be
high for x′.

However, the actual value of wi (for each Ai ∈ {AN})
depends, in addition to the measurement likelihood, also on the
mentioned-above event likelihood and on the belief b[x−k+1],
with the latter weighting the probability of each considered
robot pose. This correctly captures the intuition that those
observations z with low-probability poses b[x−k+1 = xtr] will
be unlikely to be actually acquired, leading to low value of wi

with Ai = Atr. However, the likelihood term (7) could still go
up in case of perceptual aliasing, where the aliased scene Aj

generates a similar observation to zk+1 from viewpoint x′ with
latter being more probable, i.e. high probability b[x−k+1 = x′].

B. Computing term (b): P(Xk+1|H−k+1, zk+1)

The term (b), P(Xk+1|H−k+1, zk+1), represents the poste-
rior probability conditioned on observation zk+1. Since the
observation zk+1 is given, it must have been generated by one
specific (but unknown) scene Ai according to measurement
model (1). Hence, also here, we consider all possible such
scenes and weight them accordingly, with weights w̃i repre-
senting the probability of each scene Ai to have generated the
observation zk+1.

Applying total probability over non-overlapping {AN} and
chain-rule, we get:

∑
i

P(Xk+1 | H−k+1, zk+1, Ai) · P(Ai | H−k+1, zk+1). (9)

Here, the first term is the posterior belief conditioned on
observations, history as well as a candidate scene Ai that
supposedly generated the observation zk+1. The second term,
P(Ai | Hk, uk, zk+1), is merely the likelihood of Ai be-
ing actually the one which generated the observation zk+1.
Marginalising over all robot poses and applying Bayes rule

yields

P(Ai | H−k+1, zk+1) = η

∫
x

P(zk+1 | Ai, x,H−k+1)P(Ai, x | H−k+1)

(10)
Proceeding in a similar way as in section section (III-A),it

can be shown that this term is actually the normalised weight
wi, such that

∑
i w̃i = 1. Hence, P(Ai | zk+1,H−k+1) =

ηwi
.
= w̃i.

To summarise the discussion thus far, we have shown that
the objective function (6) can be re-written as

J(uk) =

∫
zk+1

(
∑
i

wi) · c

(∑
i

w̃ib[X
i+
k+1]

)
, (11)

with the posterior given scene Ai defined as

b[Xi+
k+1]

.
= P(Xk+1 | H−k+1, zk+1, Ai). (12)

Observe, that for each considered observation zk+1, we get a
mixture pdf inside of the cost c(.), where each component rep-
resents the posterior conditioned on the observation capturing
scene Ai, and weighted by w̃i. In case there is no perceptual
aliasing, there will be only one component with high weight
w̃i, that corresponds to the correct data association to scene
Ai, with all other weights being negligible. On the other hand,
in presence of perceptual aliasing, we expect to see numerous
non-negligible weights. In the extreme case, where all scenes
(objects) are identical, we will get equal normalised weights
w̃i for each Ai ∈ {AN}.

C. An abstract example of data-association aware BSP
Consider the problem of robotic manipulation of objects

in the kitchen. For simplicity, let us abstract it to a simpler
domain of three objects, |{AN}| = 3. We consider a single
step control at time step k, from a given belief b[Xk], as well
as that of one step ahead b[X−k+1], and assume the following
motion and observation models f and h

f(x, u) =

(
1 0
0 1

)
· x+ d

{
[0, 1]T if u = up
[1, 0]T if u = right ,

h(x,Ai) = hi(x) =

(
1 0
0 1

)
· (x− xi) + si.

(13)

where observations as well as the shift si is in an object-
centric frame, with xi representing location of Ai. Intuitively,
si is a simple mechanism to model perceptual aliasing between
objects; e.g., identical objects Ai would have the same si.

Figures 2a-2d denote the situation when the true pose xtr

is close to center and observe A2, while in Figures 2e-2h
it is at the left side and observe A1. Different degrees of
aliasing are considered. Both weights wi and w̃i are shown
in the inset histograms. Note that the unnormalised weight wi

is higher when the object is at the centre, because the overall
likelihood of the observation is higher. Also, with no aliasing,
for any other scene Aj than the true one, the normalised
weight wj is small irrespective of where xtr is. In other words,
weights are also related to how likely the objects are to be the
causes behind an observation; in case of no aliasing, this can
be negligibly small. Thus, DA-BSP in practical applications
with infrequent aliasing, would not require any significant
additional computational effort w.r.t. usual BSP.
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(b) {A1, A2}aliased, Atr=A2
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(c) {A1, A3}aliased, Atr=A2
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First dimesnion of X
k+1

-2 -1.5 -1 -0.5 0 0.5 1

S
ec

o
n

d
 d

im
en

si
o

n
 o

f 
X

k+
1

0

0.5

1

1.5

2

A
1

A
2

A
3

b
1

b
2

b
3

0 0.5 1sc
en

es
 A

i

1
2
3

normalized weights 8
i

0 0.2 0.4sc
en

es
 A

i

1
2
3

weights w
i

(g) {A1, A3}aliased, Atr=A1
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Figure 2: DA-BSP for a single observation zk+1. Red-dotted ellipse denotes b[X−k+1], while the true pose that generated zk+1 is shown by inverted triangle. Smaller ellipses
are the posterior beliefs b[Xi+

k+1]. Top row xtr is near center, observing A2; bottom row xtr is on the left, observing A1. Columns represent different perceptual aliasing cases.
Weights wi and w̃i, corresponding to each scene Ai are shown in the inset bar-graphs.
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V. CONCLUSIONS

State-of-the-art BSP approaches typically consider data as-
sociation to be given and perfect. In this work, we devel-
oped a DA-BSP approach that relaxes this assumption. Our
framework rigorously incorporates data association aspects
within BSP, while considering different sources of uncertainty
(uncertainty in robot motion, sensing and possibly in the
observed environment). As such, it is better suited to cope
with ambiguous, perceptually aliased, situations by appropri-
ately calculating belief evolution and expected cost due to
candidate actions, and in particular, could be used for active
disambiguation. Potential directions for future research include
extension to non-myopic planning and quantitative evaluation
through real-world experiments.
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