Data Association Aware Belief Space Planning (DA-BSP)

Shashank Pathak, Antony Thomas, Asaf Feniger and Vadim Indelman

Autonomous Navigation and Perception Lab (ANPL) — Technion, IIT Haifa 32000, Israel

We argue for incorporating data association within plan-infer framework of belief space planning (BSP). We show that it results in a more general form of BSP capable of dealing with non-Gaussian beliefs, and perceptual aliasing, providing a framework for robust active perception and active disambiguation.

Data-association in BSP

State of the art: Considers data association within BSP as given and perfect, typically through maximum likelihood assumption.

How to incorporate data association?

Maximum likelihood: assumes association corresponding to planner's nominal position is the correct one (e.g. [1], [2])

Passive robust inference: models association within passive inference via binary latent variables (e.g. [3])

Non-parametric inference: infers passively based on available data (e.g. [4])

Multiple hypothesis tracking: framing it as an MHT problem (e.g.

Why care about data-association

- Data association may be ambiguous due to perceptual aliasing
- Incorrect data association may lead to catastrophic failures
- A. Kim and R.M. Eustice, IJRR 2014

Active visual SLAM for robotic area coverage: Theory and experiment.

- V. Indelman, L. Carlone F. Dellaert. IJRR 2015 Planning in the continuous domain: A generalized belief space approach for autonomous
 - navigation in unknown environments
- N. Sunderhauf and P. Protzel. ICRA 2012 Towards robust back-end for pose graph slam
- E. Olson and P. Agarwal. IJRR 2013
- Inference on network of mixtures for robust robot mapping
- Agarwal, A. Tamjidi, and S. Chakravorty. Preprint Motion planning in non-gaussian belief spaces for mobile robots.

Data-association aware BSP

- **Approach**: Reason about possible associations within BSP.
- Cost function:

$$J(u_k) = \underset{z_{k+1}}{\mathbb{E}} \{ c(\mathbb{P}(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1})) \},$$

$$J(u_{k}) = \int_{z_{k+1}} \underbrace{\mathbb{P}(z_{k+1} \mid \mathcal{H}_{k+1}^{-})}_{(z_{k+1})} c \left(\underbrace{\mathbb{P}(X_{k+1} | \mathcal{H}_{k+1}^{-}, z_{k+1})}_{(z_{k+1})}\right)$$

• computing (a): For A_N data associations

$$\mathbb{P}(z_{k+1} | \mathcal{H}_{k+1}^{-}) = \sum_{i} \int_{x} \mathbb{P}(z_{k+1}, x, A_{i} | \mathcal{H}_{k+1}^{-}) \doteq \sum_{i} w_{i}.$$

computing (b):

$$\sum_{i} \mathbb{P}(X_{k+1} \mid \mathcal{H}_{k+1}^{-}, z_{k+1}, A_{i}) \cdot \mathbb{P}(A_{i} \mid \mathcal{H}_{k+1}^{-}, z_{k+1}) = \sum_{i} \tilde{w}_{i} b[X_{k+1}^{i+}]$$

with posterior conditioned on A_i : $b[X_{k+1}^{i+}] \doteq \mathbb{P}(X_{k+1} \mid \mathcal{H}_{k+1}^-, z_{k+1}, A_i)$.

Algorithm

end

Data association aware belief-space planning

Input: Current belief $b[X_k]$ at step-k, history \mathcal{H}_k , action u_k , scenes $\{A_{\mathbb{N}}\}$, event likelihood $\mathbb{P}(A_i \mid \mathcal{H}_k, x)$ for each $A_i \in \{A_{\mathbb{N}}\}$

1:
$$b[X_{k+1}^-] \leftarrow b[X_k] \mathbb{P}(x_{k+1} \mid x_k, u_k)$$
2: $\{z_{k+1}\} \leftarrow \text{SimulateObservations}(b[X_{k+1}^-], \{A_{\mathbb{N}}\})$
3: $J \leftarrow 0$
4: for $\forall z_{k+1} \in \{z_{k+1}\}$ do
5: $w_s \leftarrow 0$
6: for $i \in [1 \dots |A|]$ do
7: $\Rightarrow \text{compute weight}$
8: $w_i \leftarrow \text{CalcWeights}(z_{k+1}, \mathbb{P}(A_i \mid \mathcal{H}_{k+1}^-, x), b[X_{k+1}^-])$
9: $w_s \leftarrow w_s + w_i$
10: $\Rightarrow \text{Calculate posterior belief given } A_i$
11: $b[X_{k+1}^{i+}] \leftarrow \text{UpdateBelief}(b[X_{k+1}^-], z_{k+1}, A_i)$
12: end for
13: $\{\tilde{w}_i\} \leftarrow \text{NormalizeWeights}(\{w_i\})$
14: $c \leftarrow \text{CalcCost}(\{\tilde{w}_i\}, \{b[X_{k+1}^{i+}]\})$
15: $J \leftarrow J + w_s \cdot c$
16: end for
17: return J

Experimental results

(a) Sampled

Abstract example (d) $\{A_1, A_3\}_{aliased}$

(c) No aliasing

viewpoints $\mathbb{P}(A_i|x,\mathcal{H}) \ \forall i$ Figure: Pose and observation space. (a) black-colored samples $\{x_k\}$ are drawn from $b[X_k] \doteq \mathcal{N}([0,0]^T, \Sigma_k)$, from which, given control u_k , samples $\{x_{x+1}\}$ are computed, colored according to different scenes A_i being observed, and used to generate observations $\{z_{k+1}\}$. (b) Stripes represent locations from which each scene A_i is observable, histogram represents distribution of $\{x_{k+1}\}$, which corresponds to $b[X_{k+1}^-]$. (c)-(d) distributions of $\{z_{k+1}\}$ without aliasing and when

(b) Event likelihood

Figure: DA-BSP for a single observation z_{k+1} . Red-dotted ellipse denotes $b[X_{k+1}^-]$, while the true pose that generated z_{k+1} is shown by inverted triangle. Smaller ellipses are the posterior beliefs $b[X_{k+1}^{i+}]$. Top row x^{tr} is near center, observing A_2 ; bottom row x^{tr} is on the left, observing A_1 . Columns represent different perceptual aliasing cases. Weights w_i and \tilde{w}_i , corresponding to each scene A_i are shown in the inset bar-graphs.

Real-world

Figure: Using Pioneer robot in simulation and real-world. (a) a counter-example for hypothesis reduction in absence of pose-uncertainty in prior (b) two (of three) severely-aliased floors, and belief space planning for it (c) DA-BSP can plan for fully disambiguating path (otherwise sub-optimal) while usual BSP with maximum likelihood assumption can not

To wrap up

- Data association was incorporated within belief space planning (DA-BSP)
- DA-BSP is more general form of plan-infer framework of BSP Other approaches are degenerate cases of it Affords active disambiguation in a formal framework Is a crucial step towards realistic long term planning & autonomy
- Parsimonious data association

Not all possible associations have significant weights More effective strategies of pruning are currently explored