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Abstract— One key assumption of Belief Space Planning
(BSP) is that the data association is known perfectly. In this
paper, we relax this assumption in the context of non-myopic
planning as well as belief being a Gaussian Mixture Model
(GMM). Interestingly, explicit reasoning about the data associ-
ation within the belief enables our framework to have parsimo-
nious data association, thereby resulting in a scalable solution
compared with naı̈ve permutational approaches. Unlike in some
of the recent approaches where the number of components in
a GMM belief can only be reduced, in our approach this can
also go up such as due to perceptual aliasing present in the
environment. Furthermore, our approach naturally integrates
with inference, providing a unified framework for robust passive
and active perception. We demonstrate key aspects of our
approach and its comparison with the state of the art on a
general abstract domain as well as in a real robot setup.

I. INTRODUCTION

A key challenge in robotics is autonomous operation under
different sources of uncertainty and in ambiguous situations.
In such a setting, the true state of variables of interest
(e.g. robot poses) is unknown and can be only inferred
from a probability distribution conditioned on available data.
Hence, planning and decision making should be performed
considering how this distribution evolves due to candidate
actions and the corresponding expected future observations.
The corresponding problem, known as belief space planning
(BSP), is an instantiation of a partially observable Markov
decision problem (POMDP) [9], where, given an objective
function over a suitable planning horizon, one aims to
determine an optimal control policy as a function of belief
evolution over application-dependent variables of interest.

In the last two decades, the research community has been
actively developing BSP approaches that consider stochastic
motion and observation models, and more recently also un-
certainty in the environment. However, a typical assumption
made in these approaches is that data association is given and
perfect. In other words, the robot is assumed to correctly
perceive the environment to be observed by its sensors,
given a candidate action. Such an assumption simplifies the
computation of posterior future beliefs, and is well motivated
while operating in unique, unambiguous, environments.

However, real world scenarios often exhibit some level of
ambiguity and perceptual aliasing (e.g. two objects that look
alike from certain viewpoints), making the above assumption
less appropriate. Assuming data association is given and
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perfect within BSP, i.e. neglecting ambiguity aspects, can
lead to incorrect posterior beliefs, and consequently yield
sub-optimal actions. Interestingly, ambiguity aspects have
been recently accounted for in inference, e.g. in the context
of SLAM, leading to robust perception and graph optimiza-
tion approaches that aim to be resilient to incorrect data
association due to perceptual aliasing. Yet, these approaches
only tackle the passive instance of the problem, considering
robot actions to be externally determined and given.

In recent work [14],[13] we developed a data association
aware belief space planning (DA-BSP) framework, rigor-
ously incorporating reasoning about data association within
BSP, while also considering other sources of uncertainty
(motion, sensing and environment). Such a framework is
capable of better handling complexities arising in real world
possibly ambiguous scenarios, and can be used e.g. for active
disambiguation by determining appropriate actions for in-
creasing confidence in a certain data association hypothesis.
Yet, the approach in [14],[13] was formulated within a greedy
decision making paradigm, i.e. only considering a single look
ahead step.

Contributions: Our contributions in this paper are in: (1)
Developing a nonmyopic formulation for DA-BSP, repre-
senting the belief as a Gaussian mixture model (GMM)
(2) Demonstrating parsimonious data association in typical
cases, where only the aliased scenes within the uncertainty
region, as determined by a belief from appropriate look ahead
step, should be accounted for (3) Generalizing the planning
such that the number of components in a GMM belief can
not only go down (due to full or partial disambiguation), but
can also go up (4) Providing a unified framework for robust
passive and active perception through seamless integration
of our approach with the inference (5) Finally, evaluating
the framework and its reasonable variation (that assumes the
data association) on both a simulated as well as a real world
robotic setup.

II. RELATED WORK

Calculating optimal solutions to POMDP is computa-
tionally intractable (PSPACE-complete) [12] for all but the
smallest problems. The vast research area of approximate
approaches (with reduced computational complexity) can be
roughly segmented into point-based value iteration methods
[16], simulation based [19] and sampling based approaches
[17][2], and direct trajectory optimization [20][8] methods.
In all cases, finding the (locally) optimal actions involves
evaluating a given objective function while considering fu-
ture observations to be acquired as a result of each candidate
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Fig. 1: (left) Overall implementation pipeline of DA-BSP. (middle) Factor-graph representation of an aliased world. Here, prior b[Xk] is bi-modal due to the ambiguous data
association with two similar-looking chairs. (right) Thus, the propagated GMM belief b[X−k+1] has two components. It depicts an observation zk+1 ∈ {zk+1} of distinct
scene (Atr), the posterior belief b[Xk+1] will also have two components, one of which may have subsequent negligible weight.

action. All these approaches assume data association is given
and perfect. For example, it is typically assumed that the
robot can be localized by making observations of known
landmarks or beacons, while correctly associating future
measurements with appropriate landmarks (see, e.g. [17][2]).

In the last few years, the SLAM community has inves-
tigated approaches to be resilient to false data association
(outliers) overlooked by front-end algorithms (e.g. image
matching), see e.g. [4][15]. However these methods, also
known as robust graph optimization approaches, are de-
veloped only for the passive problem setting, i.e. robot
actions are given and externally determined. In contrast, we
consider a complimentary active framework that incorporates
data association aspects within BSP, while also coping with
perceptual aliasing within inference. The latter aspect of our
approach is closely related to the recent method by Pfin-
gsthorn et al. [15] as in both cases the belief is represented
by a GMM.

Coming back to scalable planning methods such as BSP,
we note that while the traditional BSP approaches had
typically assumed the environment to be accurately known
(e.g. a given map), recent works, including [11][8][5], relax
this assumption and model the uncertainty of the environ-
ment mapped thus far within the belief. The corresponding
framework is thus tightly related to active SLAM, with the
well known trade-off between exploration and exploitation.
Recent works [11][8][5] in this branch focused in particular
on probabilistically modeling what future observations will
be obtained given a candidate action, but again, assuming
data association is given and perfect.

The issue of perceptual aliasing has been considered in
earlier works on POMDP planning (e.g. [6]), though with
highly simplified scenarios, since data-association further
complicates the problem, especially considering multi-modal
prior belief as done herein. Approaches that study related
aspects were in the context of multiple hypothesis tracking
(MHT), see [18] for earliest work on MHT, or more recently,
of robust passive perception [21][15]. However these works
do not consider active perception. Probably the closest work
to our approach is by Agarwal et al. [1], where the authors
also consider hypotheses due to ambiguous data association
and develop a BSP approach for active disambiguation.

However, unlike them, DA-BSP considers ambiguous data
association also in posterior and thus does not require a
guarantee of fully disambiguating action in the future. More-
over, in [1], the number of GMM components representing
the belief from either inference or planning can only be
reduced, for example due to a disambiguating observation.
In contrast, DA-BSP provides a more general formulation
where the number of components can also grow as a result
of making an observation of aliased scenes. We discuss the
importance of this aspect in Section IV-B.

Our approach is also tightly related with recent work
on active hypothesis disambiguation in the context object
detection and classification (e.g. [3][21]). Given hypotheses
regarding object class and pose, these approaches aim to find
a sequence future viewpoints that will lead to disambigua-
tion, i.e. identifying the correct hypothesis. However, these
approaches assume the sensor is perfectly localized and can
be shown to be a specific case of DA-BSP.

III. BELIEF SPACE PLANNING: PRELIMINARIES AND
NOTATIONS

We consider a robot operating in a known or pre-mapped
environment that can be ambiguous and perceptually aliased.
The robot captures observations of different scenes (or ob-
jects) in the environment with its on-board sensors, and uses
these observations to infer application-dependent random
variables of interest (e.g. robot poses). Denote the robot
pose at time step k by xk and a sequence of poses by that
time by Xk

.
= {x0, . . . , xk}. Given all controls u0:k−1

.
=

{u0, . . . , uk−1} and observations Z0:k
.
= {Z0, . . . , Zk}

up to time step k, the posterior probability distribution
function (pdf), the belief, is defined as P(Xk|u0:k−1, Z0:k).
For notational convenience, we define the histories Hk

.
=

{u0:k−1, Z0:k} and H−k+1
.
= Hk ∪ {uk}, and rewrite b[Xk]

as b[Xk]
.
= P(Xk|Hk).

Let {AN} denote different scenes or objects Ai in the given
environment map. Ambiguous scenes can be described as
some specific scenes Ai and Aj that have similar appearance
from certain viewpoints. In the case the two scenes are iden-
tical, they will have the same visual appearance regardless
of the viewpoint.

We consider probabilistic motion and observation models



P(xk+1|xk, uk) and P(zk|xk, Ai), respectively, that can be
written explicitly as

xk+1 = f(xk, uk) + wk , zk = h(xk, Ai) + vk. (1)

As common in literature, we consider Gaussian zero-mean
process and measurement noise wi ∼ N (0,Σw) and vk ∼
N (0,Σv), with known noise covariance matrices Σw and
Σv .

Given a prior P(x0) and motion and observation models
(1), the joint posterior pdf at the current time k can be written
as

P(Xk|Hk) = P(x0)

k∏

i=1

P(xi|xi−1, ui−1)P(Zi|xi, Ai). (2)

Note the above formulation assumes data association is
given.

If the prior P(x0) is Gaussian, it is not difficult to show
that b[Xk] is also a Gaussian with some mean X̂k and
covariance Σk that can be efficiently calculated, see e.g. [10].
This is also the case when the environment model is unknown
a priori and instead is constructed on-line within SLAM
framework.

However, in this paper we consider a more general case
where the prior belief is modeled by a Gaussian mixture
model (GMM). Such a situation can arise, for example,
in the kidnapped robot problem in a perceptually aliased
environment (e.g. look-alike rooms), where matching sensor
observations against a given map would indicate several most
probable robot locations. In such a case, the belief at time k
can be represented by a GMM,

b[Xk] =

Mk∑

j=1

ξjkP(Xk|Hk, γ = j), (3)

where Mk is the number of components, the jth component
is represented by the weight ξjk

.
= P(γ = j|Hk), modeling

the probability of the robot being in that component, and
by the conditional Gaussian b[Xj

k]
.
= P(Xk|Hk, γ = j) ≡

N (X̂j
k,Σ

j
k), with appropriate mean X̂j

k and covariance Σjk.
Here, γ is an indicator variable denoting the component
number.

Given the belief at time k, one can reason about the robot’s
best future actions that would minimize an objective function
J for L look-ahead steps,

J(uk:k+L−1) =

E
zk+1:k+L

{
L∑

l=1

cl(P(Xk+l|Hk, uk:k+l−1, zk+1:k+l))} (4)

where the expectation is over the (unknown) future observa-
tions zk+1:k+L, and cl(.) is the immediate cost for the lth
look ahead step.

The belief from the lth step, b[Xk+l]
.
= P(Xk+l|Hk+l),

is a function of the history Hk, actions uk:k+l−1 and future
observations zk+1:k+l, i.e.

b[Xk+l] = P(Xk+l|H−k+l, zk+l) = P(Xk+l|Hk, uk:k+l−1, zk+1:k+l).
(5)

The propagated belief is defined as b[X−k+l]
.
=

b[Xk+l−1]P(xk+l|xk+l−1, uk+l−1). As in the greedy
case [14][13], one can calculate the marginal belief over the
future pose xk+l as b[x−k+l]

.
=

∫
¬xk+l

b[X−k+l].
Given the GMM belief from the previous look ahead step,

b[Xk+l−1] =
∑Mk+l−1

j=1 ξjk+l−1b[X
j
k+l−1], the propagated

belief b[X−k+l] becomes

b[X−k+l] =

Mk+l−1∑

j=1

ξj−k+lb[X
j−
k+l], (6)

with ξj−k+l
.
= P(γk+l = j|H−k+l) ≡ ξjk+l−1,

and b[Xj−
k+l]

.
= P(Xk+l|H−k+l, γk+l = j) =

b[Xj
k+l−1]P(xk+l|xk+l−1, uk+l−1).

Assuming data association is known, one can consider
for each specific value of zk+l the corresponding observed
scene Ai, and express the posterior (5) recursively in terms
of b[X−k+l] as

b[Xk+l] = ηb[X−k+l]P(zk+l|xk+l, Ai). (7)

Letting u
.
= uk:k+L−1, the optimal control problem is

defined as u? .
= arg minu J(u).

IV. NONMYOPIC DATA ASSOCIATION AWARE BSP

The non-myopic objective function (4) can be written as

J(uk:k+L−1) =

∫

zk+1:k+L

L∑

l=1

(a)︷ ︸︸ ︷
P(zk+l | H−k+l) cl




(b)︷ ︸︸ ︷
P(Xk+l|H−k+l, zk+l)


 ,

(8)

where the expectation over future observations is written
explicitly, accounting for all possible realizations of these
unknown observations. Although dropped to reduce clutter,
the history H−k+l includes future observations zk+1:k+l−1 up
to the lth look ahead step (see definition in Section III).

Similarly to the myopic case [14][13], the two terms (a)
and (b) in Eq. (8) have intuitive meaning: for each considered
value of zk+l, (a) represents how likely is it to get such
an observation, while (b) corresponds to the posterior belief
given this specific zk+l. However, the difference in a non-
myopic case is that both terms are conditioned on the history
H−k+l which is a function of zk+1:k+l−1; hence, the above
reasoning is valid for all possible realizations of zk+1:k+l−1
and the corresponding posterior beliefs P(Xk+l−1|Hk+l−1).

Assuming data association is given, implies that for each
possible observation zk+l ∈ {zk+l} the corresponding ob-
served scene Ai ∈ A is known, making it possible to express
the posterior recursively as in Eq. (7). Yet, it is unknown from
what future robot pose xk+l the actual observation zk+l will
be acquired, since the actual robot pose xk at planning time
k is unknown and the controls are stochastic. Indeed, as a
result of actions uk:k+l−1, the robot actual (true) pose xk+l
can be anywhere within the propagated belief b[x−k+l], which
according to Eq. (6) is a GMM.
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Fig. 2: (left) Real-world experimental setup. (middle) Schematics of the same world. Current belief is a 2-modal GMM with mean position depicted by xinit. Ground truth
robot position is indicated with C; arrows indicate orientation (and not motion). Positions of goal xgoal, obstacles xob and scenes Ai are also shown. (right) An 11-step
nominal trajectory, shown relative to two GMM components.

In contrast to the above, our approach relaxes the data
association assumption and instead reasons about possible
scenes that a future observation zk+l could be generated
from, see Figure 1. Such an explicit reasoning about data
association within the belief would seem to incur significant
additional computational complexity. However, while this
would be the case with naı̈ve permutational approaches, our
framework is scalable in practice due to parsimonious data
association (see Section IV-B). Moreover, our formulation
can accommodate situations where due to perceptual alias-
ing, the number of components in a GMM belief (either in
inference or planning) can increase. The weights of these
components allow us to re-use some known merging and
pruning approaches and hence further reduce the computa-
tional gap between data-association aware non-myopic BSP
and the usual non-myopic BSP (Section IV-C). Finally, in
Section IV-D we briefly describe the seamless integration of
DA-BSP with passive inference, thus facilitating a unified
framework for robust passive and active perception.

A. Calculating Terms (a) and (b) in Eq. (8)

The terms (a) and (b) in Eq. (8) can be calculated in a
similar fashion to the myopic case [14][13]. We now discuss
these calculations for the lth look ahead step (l ∈ [1, L]),
given a propagated belief b[X−k+l] and a future possible
observation zk+l ∈ {zk+l}, where the set {zk+l} is generated
as in [14].

1) Computing the term (a) - P(zk+l|H−k+l):: Applying
total probability over non-overlapping scene space {AN} and
marginalizing over all possible robot poses, yields

P(zk+l|H−k+l)≡
|AN|∑

i

∫

x

P(zk+l, x, Ai |H−k+l)
.
=

|AN|∑

i

wik+l. (9)

As seen from the above equation, to calculate the likelihood
of obtaining some observation zk+l, we consider separately,
for each scene Ai ∈ {AN}, the likelihood that this ob-
servation was generated by scene Ai. This probability is
captured for each scene Ai by a corresponding weight wik+l;
these weights are then summed to get the actual likelihood
of observation zk+l. As will be seen below, these weights
naturally account for perceptual aliasing aspects for each
considered zk+l.

In practice, instead of considering the entire scene space
{AN} that could be huge, the availability of the belief
b[X−k+l] makes it possible to consider only a small subset
of {AN}. See further discussion in Section IV-B.

Proceeding with the derivation further, using the chain rule
we compute

∑

i

∫

x

P(zk+l | x,Ai,H−k+l)P(Ai, x | H−k+l) (10)

As P(Ai, x | H−k+l) = P(Ai|x | H−k+l)b[x
−
k+l = x], we get∑|AN|

i wik+l, with

wik+l
.
=

∫

x

P(zk+l|x,Ai,H−k+l)P(Ai|H−k+l, x)b[x−k+l=x]. (11)

Since the propagated belief (6), from which b[x−k+l] is
calculated, is a GMM, we can replace b[x−k+l = x] with∑Mk+l−1

j=1 ξj−k+lb[x
−
k+l,j = x].

Here, P(zk+l | Ai, x,H−k+l) ≡ P(zk+l | Ai, x) is the stan-
dard measurement likelihood term, while P(Ai | H−k+l, x)
represents the event likelihood, which denotes the probability
of scene Ai to be observed from viewpoint x. In other words,
this scenario-dependent term encodes from what viewpoints
each scene Ai is observable and could also model occlusion
and additional aspects. As such, this term can be determined
given a model of the environment; in this work, we consider
this term to be given.

The weights wik+l from Eq. (11) naturally capture percep-
tual aliasing aspects: consider some observation zk+l and
the corresponding generative model zk+l = h(xtr, Atr) +
v with appropriate unknown true robot pose xtr and
scene Atr ∈ {AN}. Clearly, the measurement likelihood
P(zk+l | x,Ai,H−k+l) will be high when evaluated for Ai =
Atr and in vicinity of xtr. In case of perceptual aliasing,
however, there will be also another scene(s) Aj which could
generate the same observation zk+l from appropriate robot
pose x′. Thus, the corresponding measurement likelihood
term to Aj will also be high for x′. However, the actual value
of wik+l (for each Ai ∈ {AN}) depends, in addition to the
measurement likelihood, also on the mentioned-above event
likelihood and on the GMM belief b[x−k+l], with the latter
weighting the probability of each considered robot pose x.
This correctly captures the intuition that those observations
z with low-probability poses b[x−k+l = xtr] will be unlikely



to be actually acquired, leading to low value of wik+l with
Ai = Atr. See also the discussion in Section IV-B.

2) Computing the term (b) - P(Xk+l|H−k+l, zk+l):: The
term (b) represents the posterior probability conditioned on
observation zk+l. This term can be similarly calculated, with
a key difference: since the observation zk+l is given, it
must have been generated by one specific (but unknown)
scene Ai according to measurement model (1). Hence, also
here, we consider all possible such scenes and weight them
accordingly, with weights w̃ik+l representing the probability
of each scene Ai to have generated the observation zk+l.
As will be seen next, the posterior P(Xk+l|H−k+l, zk+l) is a
GMM with Mk+l components.

Applying total probability over non-overlapping
{AN} and chain-rule, we get P(Xk+l|H−k+l, zk+l) =∑|AN|
i=1 P(Xk+l | H−k+l, zk+l, Ai) · P(Ai | H−k+l, zk+l). The

first term, P(Xk+l | H−k+l, zk+l, Ai), is the posterior belief
conditioned on observation zk+l, history H−k+l, as well as a
candidate scene Ai that supposedly generated zk+l. It is not
difficult to show that this posterior is actually the GMM

P(Xk+l | H−k+l, zk+l, Ai) =

Mk+l−1∑

j=1

ξjk+l−1b[X
j+
k+l|Ai],

(12)
where b[Xj+

k+l|Ai]
.
= P(Xk+l|H−k+l, γ = j, Ai, zk+l) is the

posterior of the jth GMM component of the propagated
belief b[X−k+l], see Eq. (6).

Plugging-in Eq. (12) into P(Xk+l|H−k+l, zk+l) ≡ b[Xk+l]
from Eq. (7) yields:

b[Xk+l] =

|AN|∑

i=1

Mk+l−1∑

j=1

ξjk+l−1P(Ai | H−k+l, zk+l)b[X
j+
k+l|Ai].

(13)
The term, P(Ai | Hk, uk, zk+l), is merely the likelihood of
Ai being actually the one which generated the observation
zk+l. This term can be evaluated, similarly to Section IV-A.1.
Accounting for b[xj−k+l] for each considered jth component
as P(Ai | H−k+l, zk+l) =

∫
x
P(Ai, x | H−k+l, zk+l), and ap-

plying Bayes’ rule yields

w̃ijk+l
.
=η′

∫

x

P(zk+l|Ai, x,H−k+l)P(Ai|H−k+l, x)b[x
j−
k+l=x],

(14)
with η′ = 1/P(zk+l | H−k+l). Note that for each component
j,

∑
i w̃

ij
k+l = 1. Finally, we can re-write Eq. (13) as

b[Xk+l] =

Mk+l∑

r=1

ξrk+lP(Xk+l|Hk+l, γ = r)=

Mk+l∑

r=1

ξrk+lb[X
r+
k+l],

(15)
where ξrk+l

.
= ξijk+l ≡ ξjk+l−1w̃

ij
k+l and b[Xr+

k+l]
.
=

P(Xk+l|Hk+l, γ = r). As seen, we got a new GMM with
Mk+l components, where each component r ∈ [1,Mk+l],
with appropriate mapping to indices (i, j) from Eq. (13),
is represented by weight ξrk+l and posterior conditional
belief b[Xr+

k+l]. The latter can be evaluated as the Gaussian

b[Xr+
k+l] = N (X̂r

k+l,Σ
r
k+l), with mean X̂r

k+l and covariance
Σrk+l.

B. Parsimonious Data Association

According to Eq. (15) one may think the number of
components grows unboundedly with the planning horizon.
However, in practice this is not the case due to parsimonious
data association (see Figure 1): Only the aliased scenes
within the uncertainty region according to the propagated
belief b[X−k+l] should be accounted for. This can be also seen
from Eq. (14), where distant viewpoints x from the mean of
the Gaussian b[xj−k+l] naturally get negligible probabilities,
limiting the scope of aliased scenes to be considered from
{AN} in practice.

Moreover, only some of the weights of the Mk+l compo-
nents of posterior b[Xk+l] will be typically non-negligible,
which corresponds to full or partial disambiguation. In
particular, if the environment has only distinct scenes, then
for each specific value of zk+l, there will be only one
scene Ai that can generate such an observation according
to the model (1). From Eq. (15) it can be seen that in
this fully-disambiguating case Mk+l = Mk+l−1; yet, only
one of the weights ξrk+l will be non-negligible. In Section
IV-C we exploit this observation to prune negligible belief
components.

To conclude this section, we note that a unique aspect of
our approach is that the number of components adaptively
changes (in planning and, similarly, in inference), i.e. the
number of components can go down in the case of full
or partial disambiguation, and can also go up when incor-
porating a new observation of aliased scenes. This is in
contrast to existing approaches (e.g. [1]) where the number
of components can only be reduced.

C. Evaluating data associations

In order to evaluate the effectiveness of data association,
we note the averaged number of component in the mixture,
denoted by m̃. Also, we define a suitable metric ηda as
follows: ηda(z) =

∑
Mk+l

wij · c(z,Ai) where c(z,Ai) is
an indicator function of the true data association, given the
observation z and considering a scene Ai i.e., c(z,Ai) is
1 if the data association is correct and 0 otherwise. Since
during planning we simulate the observations, ηda(z) can
be computed and averaged over all observations i.e., ηda =∑

z∈Z ηda(z)

|Z| . For example, under absence of perceptual alias-
ing and with only correct associations being made, ηda = 1,
whereas with increasing aliasing this quantity tends to 0.
Similarly, with growing number of incorrect associations
(provided their respective posteriors are with non-negligible
weights) ηda diminishes.

In order to compare DA-BSP with the approaches that
consider a given data-association, we consider a configura-
tion for known data association BSP-u. Here, we determine
(heuristically and simulataneously) the chosen scene as well
as the chosen component of the propagated belief. We
take the closest (under a suitable distance metric) scene Ãi
from all the components of the propagated belief and their



respective detectable scenes. Even for a GMM prior and
under presence of aliasing, this approach yields a unimodal
posterior. We define η(z) = c(z, Ãi). Like before, in case
of many observations (such as during planning), we average
η(z) over all observations. Furthermore, we define a param-
eter ε such that with a probability of ε, the associated scene
(and the component) is guaranteed to be the ground truth.

D. Robust Passive Perception

Our approach seamlessly integrates within inference. To
see that, consider the GMM belief at the current time step
k, which is used by DA-BSP to determine the best actions
u?k:k+L−1. Given the latter, the robot executes the first action
u?k (or a sequence of actions), and gets a new observation
zk+1. While in planning we had to consider, conceptually,
all possible realizations of future observations, in inference
the observation is acquired in practice. However, calculating
the posterior belief b[Xk+1] in inference involves exactly the
same equations as in planning (term (b) in Section IV-A) con-
sidering the acquired observation zk+1 and the propagated
belief due to action u?k. Once b[Xk+1] is available, one can
either continue execution of the next optimal action(s) from
u?k:k+L−1, or resort to model predictive control (MPC) and
use DA-BSP to calculate an updated sequence of optimal
actions. In our implementation we follow the latter case.

V. EXPERIMENTS

In this section, we seek to evaluate various facets of data
aware belief space planning or DA-BSP. We use heuristic
BSP-u which uses minimum distance to chose the correct
association. Also, we consider ε = 0.5 i.e., at each detection,
with equal probability the planner is either given the correct
association or has to choose using BSP-u heuristic.
DA-BSP is a general framework and can handle any cost

function of the form Eq. (8). However, for the sake of sim-
plicity, in the computation of cost due to belief, we consider
the usual reaching of the goal as well as data association.
The latter is measured by noting how far (the more is this
divergence, the lower is the cost) a multimodal distribution
is from a perfectly uniform one, through measuring negative
KL divergence of the weights from the uniform weights, and
is denoted by KLu.

A. Real world outdoor

In order to elucidate the crucial properties of non-myopic
DA-BSP, we consider a real world experiment as shown
in the Figure 2 (left) with a single robot R. The set of
control trajectories is finite and known a priori; one of
which is shown in the Figure 2 (right). The state space
X ∈ R3 consists of 2D coordinates as shown, as well as the
orientation of the robot. Here, Ai denotes an Apriltag with
the index i. This enables us to simulate perceptual aliasing.1

To ensure robustness, the tag Ai is considered detected
only if it is also within a closed sub-space XAi

⊂ X .
The action space of the robot comprises of a ∈ {north,

1Though not the focus here, any object detector can be easily incorporated
in our general framework of DA-BSP.

Algorithm Epoch L = 2 L = 4 Inference
t(s) (ηda,m̃) DA t(s) (ηda,m̃) DA t(s) (ηda,m̃) DA

DA-BSP

1 0.19 (-,2) - 0.36 (-,2) - 0.03 (-,2) -
6 6.24 (0.18,4) X 13.81 (-,1) - 0.03 (-,2) -
7 23.70 (0.26,4) X 8.06 (-,1) - 3.09 (0.56,4) X
10 1.00 (1,1) X 1.71 (1,1) X 0.99 (1,1) X

t(s) η DA t(s) η DA t(s) η DA

BSP-u

1 0.19 - - 0.36 - - 0.03 - -
6 0.34 0.5 × 1.94 1 X 0.03 - -
7 0.34 0 × 0.87 0 × 0.27 0 ×
10 0.25 0 × 0.03 0 × 0.24 0 ×

TABLE I: Evaluating DA-BSP in several steps of planning and inference, with
L = 2 and L = 4. The times in seconds spent in planning and in inference is denoted
by t, while average modes are denoted by m̃. DA denotes correct data association;
refer Sec. V-A.

east, west, south}, along with the known motion uncertainty.
Initially, the belief of the robot is a multi-modal distribution,
represented by a GMM with 2 components having equal
weights and centered around each xinit. The objective of the
robot is to both localize itself and to reach the goal xgoal. The
L-step planning, followed by enacting one optimal control
action and the consequent inference, shall together be called
an epoch. Note that this simple representation of the world
is very general. Indeed, real world complications – such as
the state space being of higher dimension, different levels
of ambiguities between the scenes and planning problem of
longer time-scales – can all be easily incorporated into it.

The left column of Figures 3a–3c shows the evolution of
belief at the end of various decision epochs of DA-BSP.
Initially, the belief is a multi-modal GMM with progressive
steps reducing the number of components of this GMM. The
right column of Figures 3a–3c show the evolution of the
posterior under a different assumption of data association
– BSP-u. Full disambiguation might occur sooner here,
however unless the ε is very high i.e., the correct ground
truth association is made frequently, the posterior may get
really far away from the actual position of the robot, such
as seen in Figure 3c for BSP-u, where ε = 0.5.

Since our approach provides a uniform framework for
plan-act-infer, we can study the hypotheses generation dur-
ing planning in similar ways to inference. As seen in Figure 4
(left), the cardinality of components in the GMM varies
during planning, across the different samples considered.
Given a particular GMM during planning, we calculate the
KL-divergence of it from a uniform distribution and denote
it by KLu, as seen in Figure 4 (right).

In the presence of data association challenges, the quality
of planning can be roughly assessed by considering if at
least one of the posterior contains correct data association.
This is represented by DA in the Table I. Here, ηda which
also considers the weight of such associations, is also shown.
Naturally, reasoning over all possible associations results in
greater computational effort. We measure the run-time of the
algorithm as a proxy for effectiveness. Both these measures
along with the number of hypotheses in the beliefs are shown
in the Table I where we can see the effect of non-myopic
DA-BSP with two different planning horizons.

B. Gazebo Simulation

To demonstrate our concept in a more realistic simula-
tion, we considered a Pioneer robot in an aliased 2 floor
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Fig. 3: (a)-(c) Evolution of inferred belief as decision epoch progresses with L = 3;
epochs depicted are {1,4,7}. Left and right columns depict evolution of propagated
beliefs as well as inferred one (the larger and the smaller ellipses respectively),
for different planning algorithms, i.e. DA-BSP and BSP-u, respectively. GMM
components and associated weights are designated with different colors. For clarity,
only the detected scene(s) are shown. In (c), while BSP-u fully disambiguates (only
one component), the chosen component is wrong due to incorrect data association.
(d) Evolution of GMM components weights during some epochs of these approaches.
Note that the number of components increases from 2 to 4 and then decreases to 1.
Here, L = 2.
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Fig. 4: Evolution of belief as decision epoch progresses during DA-BSP planning.
Average number of components in the belief mixtures and the KLu metric are
depicted in left and right respectively.

office room environment within the Gazebo simulator. The
robot is fitted with realistic sensors enabling laser scans
and odometric estimation. Our implementation uses ICP for
laser scan matching and GTSAM [7] for inference (both in
passive and active perception) within ROS framework. This
implementation is sufficiently realistic to be used also in real
world experiments, which are planned in the near future.

The considered scenario is shown in Figure 5 (left), with
numbers indicating different places. The two floors are very
similar in appearance except for the printer p1 (Figure 5,
left). Also there is aliasing within each floor due to the
way the cubicles are arranged. The goal for the robot is
to reach the seating area near the vending machine and to
disambiguate between the floors. Initially the robot wakes up
to find itself either at place 1 (in the direction 1–2) or 6 (in
the direction 6–7). Hence its initial belief is modeled as a
4-component GMM (due to inter-floor aliasing).

In total the robot takes 7 steps (actions) to fully disam-
biguate. From the places 1 and 6 the set of trajectories
taken are respectively given by the segments, 1-2-3-4-5-
12-11-8 and 6-7-8-9-10-11-12-3. Intra-floor disambiguation
occurs along the path 4–5 (or 9–10) and inter-floor (or
full disambiguation) occurs at 8 (or 3). For a planning
horizon of 2 look ahead steps (L = 2), the evolution of
weights of the components in the GMM after inference
are shown in Figure 5 (center). As seen in the figure,
there are 4 components initially, due to intra and inter-
floor aliasing, which disambiguates to 2 after the 3rd step
(intra-floor disambiguation) and finally to 1 component (full
disambiguation) at the 7-th step. Figure 5 (right) shows the
cardinality of components in the GMM during planning, for
L = 1, 3 and 5. If we have a longer horizon, then planning
leads to reduction in the number of components in a fewer
steps and this is seen in Figure 5; graph gets steeper as L
increases.

Table II gives a comparison of DA-BSP and BSP-u
(see section IV-C for definition) at 4 different steps of
planning and inference for L = 2 and 3. In DA-BSP after
the first step we have ηda = 0.25 as we consider all the
four associations that are equally likely. ηda is close to
0.5 when intra-floor disambiguation occurs (see step 5 for
L = 2 and step 2 for L = 3) and finally ηda = 1 once
the robot fully disambiguates and identifies the floor it is
in. However BSP-u is sometimes correct and sometimes
wrongs depending on which association it chooses as the
correct one. As seen in the table II, η = 0 at the end of the
7-th step in all the columns, indicating that with the BSP-u
approach, the robot would have inferred itself to be at the
wrong floor and/or wrong place. DA-BSP is computationally
more expensive, however it is much more likely to perform
the correct data association as seen from the ηda metric.

VI. CONCLUSIONS

State-of-the-art belief space planning (BSP) approaches
typically assume data association to be given and perfect.
In this work, we developed a nonmyopic data association
aware belief space planning (DA-BSP) approach that relaxes
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Algorithm Epoch L = 2 L = 4 Inference
t(s) (ηda,m̃) DA t(s) (ηda,m̃) DA t(s) (ηda,m̃) DA

DA-BSP

1 81.04 (0.25,4) X 307.95 (0.25,4) X 4.95 (0.25,4) X
2 64.41 (0.27,4) X 97.60 (0.35,2) X 5.05 (0.25,4) X
5 4.91 (0.51,2) X 8.56 (1,1) X 1.03 (0.49,2) X
7 0.57 (1,1) X 0.57 (1,1) X 0.54 (1,1) X

t(s) η DA t(s) η DA t(s) η DA

BSP-u

1 2.86 1 X 4.84 1 X 0.88 1 X
2 0.56 1 X 0.91 0 × 0.32 1 X
5 0.54 1 X 0.89 0 × 0.33 1 X
7 0.20 0 × 0.24 0 × 0.16 0 ×

TABLE II: Evaluating DA-BSP in several steps of planning and inference, for
L = 2 and L = 4. The times in seconds spent in planning and in inference is denoted
by t, while average modes are denoted by m̃. DA denotes correct data association;
refer Sec. V-A

this assumption while considering different sources of uncer-
tainty (uncertainty in robot motion, sensing and possibly in
the observed environment). As such, it is capable of better
coping with ambiguous, perceptually aliased, situations by
appropriately calculating belief evolution and expected cost
due to candidate actions, and in particular, could be used
for active disambiguation. Importantly, DA-BSP seamlessly
integrates with inference, thereby providing a unified frame-
work for robust active and passive perception. We show key
aspects of DA-BSP and compare it with the state-of-the-art
through experiment using Pioneer robot as well as through
the Gazebo simulation. We are currently investigating the
theoretical aspects of greedy data association by reasoning
over relevant properties – such as submodularity and optimal
substructure – of an appropriate objective function in this
context.
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