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Introduction

Navigation: calculation of position, velocity and attitude over time

Space

Autonomous

Multi robot

Consumer applications

Aerial, underwater, 

ground

Other planets
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Navigation Aiding Concept

� Inertial navigation solution is calculated based on measurements of inertial 
sensors (or other dead reckoning sensors)

� Imperfectness of these sensors leads to developing navigation errors

� Use external sensors to estimate navigation errors and correct navigation 
solution

– Estimate also parameterization of inertial measurement unit (IMU) errors, and 

correct all subsequent IMU measurements

� Most common: GPS

Introduction
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Research Concept

� The GPS is unavailable or unreliable when operating

– Indoors, underwater, in urban environments, and over other planets

� This research – use images captured during motion for navigation aiding

� Research setup

– Platform is equipped only with an inertial navigation system (INS) and a single 

(gimbaled) camera

• No other sensors, no a-priori information (except for initial conditions, camera 

calibration parameters)

– The images captured during motion are stored in a repository, or/and used for 

constructing mosaic images

� Objective:

– Utilize mosaic construction and stored imagery for navigation aiding

– Computational efficiency

Introduction
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Mosaic

� Constructed based on camera-captured images

� Represents the observed-so-far environment

� Encodes information about the platform’s navigation history

Introduction

Source images Mosaic image
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Navigation-Aiding Algorithms

Navigation Aiding Based on Coupled Online Mosaicking and 
Camera Scanning

Vision-Aided Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on 
Three-View Geometry

Calculating Cross-Covariance for a General 
Multi-Platform Measurement Model

1

2

3

3a

Introduction
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Inertial Navigation Errors Model

� State vector (navigation errors, IMU error parameterization)

� Process model (Discrete)

� How can     be estimated only based on INS and incoming imagery?

Introduction

X

T
T T T T T ≡ ∆ ∆ ∆ X P V d bΨΨΨΨ

( ) ( )
a b a bb t t a t t

t t→ →= Φ +X X ωωωω



Navigation Aiding Based on Coupled Online 
Mosaicking and Camera Scanning

“Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning’’, AIAA JGCD, vol. 33, no. 6, 2010, p. 1866-1882

“Real-Time Mosaic-Aided Aerial Navigation: I. Motion Estimation’’, AIAA GNC Conference, 2009

“Real-Time Mosaic-Aided Aerial Navigation: II. Sensor Fusion’’, AIAA GNC Conference, 2009

1
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Motivation and Related Work

� Objective

– Vision-based navigation aiding in challenging scenarios

• Narrow field-of-view camera

• Low texture scenes

• Poor weather conditions

– Utilize online mosaicking and gimbaled camera scanning procedures

� Related Work

– Motion estimation + online mosaicking: “Improving Vision-based Planar 

Motion Estimation for Unmanned Aerial Vehicles through online Mosaicking”, 

Caballero F. et. al., 2006

– Epipolar constraints + INS: “Epipolar Constraints for Vision-Aided Inertial 

Navigation”, Diel D. et. al., 2005

– SLAM: “6DoF SLAM aided GNSS/INS Navigation in GNSS Denied and 

Unknown Environments”, Kim J. and Sukkarieh S., 2005

1. Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning
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Main Idea

� Platform equipped only with an INS and a gimbaled camera

� Couple between

– Camera scanning

– Online mosaicking

� Construct mosaic based on camera-captured imagery

� Mosaic-based motion estimation

� Update INS

1. Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning

Mosaic image constructionCamera scanning image sequence 
(from Google Earth)

Motion 

Heading

Camera 

optical axis

t1

t2

t3

t4

...
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Main Idea (cont.)

Previous mosaicmosaic image

Current image

� Motion estimation between current 

image and previous mosaic image

– Based on the homography model

� Increased overlapping region

– Additional matching features

• Same quality?

� Improved motion estimation in 

challenging scenarios

– Narrow field-of-view camera

– Low-texture scenes

� BUT:

– Translation is estimated up to scale
Allows reducing navigation errors 
normal to the motion heading

1. Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning

Additional area
Original area

What happens when the same scene is observed by several (>2) views?



Vision-Aided Navigation Based on Three-View 
Geometry

“Real-Time Vision-Aided Localization and Navigation Based on Three-View Geometry’’, IEEE TAES, submitted

“Mosaic Aided Navigation: Tools, Methods and Results’’, IEEE\ION PLANS Conference, 2010

2
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Motivation and Related Work

� Objective

– Position and velocity update in all axes

• Setup: INS, camera, online-constructed repository

– Real time navigation aiding

• Efficiently handle loop scenarios

� Related work

– Smoothing + Range: “Improved Real-Time Video Mosaicking of the Ocean Floor”, 

Fleischer D. et. al., 1995

– SLAM: “6DoF SLAM aided GNSS/INS Navigation in GNSS Denied and Unknown 

Environments”, Kim J. and Sukkarieh S., 2005

– Pinhole projection + Multi-view + INS: “A Multi-State Constraint Kalman Filter for 

Vision-Aided Inertial Navigation”, Mourikis A. and Roumeliotis S., 2007

– Multiple-view + Bundle adjustment: “A Dual-Layer Estimator Architecture for Long-

term Localization”, Mourikis A.I. and Roumeliotis S.I., 2008

– Trifocal tensor + Motion estimation: “Recursive Camera-Motion Estimation With the 

Trifocal Tensor”, Yu Y.K., et. al., 2006

2. Vision-Aided Navigation Based on Three-View Geometry
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Concept
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� Coordinate systems

– L - Local Level Local North (LLLN)

– C - Camera

2. Vision-Aided Navigation Based on Three-View Geometry
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Three View Geometry

� - static landmark

� - line of sight (LOS)

� - scale parameter, s.t.           is the range to landmark

� - translation from    to
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Three View Geometry (cont.)

� Position of a static landmark    

relative to camera position at    :
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2. Vision-Aided Navigation Based on Three-View Geometry

� Matrix formulation

� Note:

– Range parameters are unknown

– LOS and translation vectors are expressed in LLLN of

1
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Three View Geometry (cont.)

� Theorem: rank(A)<4 if and only ifif and only if all of the following conditions are satisfied

� First two equations – epipolar constraints

� Third equation – relates between the magnitudes of      and

� Sufficient and necessary conditions

� Reformulating:

12
T

23
T

2. Vision-Aided Navigation Based on Three-View Geometry
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Three View Geometry (cont.)

� Multiple features

– Matching pairs between 1st and 2nd view

– Matching pairs between 2nd and 3rd view

– Matching triplets between the three views
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Fusion with Navigation using Implicit Extended 
Kalman Filter (IEKF)

� Residual Measurement

� Recall 

– All original LOS vectors are expressed in camera system of the appropriate view

– are functions of 
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2. Vision-Aided Navigation Based on Three-View Geometry
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Fusion with Navigation using IEKF (cont.)

� Linearization

( ) ( ) ( ) ( ) ( ) ( ) ( ) { }( )31 2

3 2 1 3 3 2 2 1 1 1 2 3
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, , , , , , , , , ,
i i i
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3
t� is the current time

– needs to be estimated

– are represented by the covariance matrices attached to images

� In a general case,               and        may be correlated

3
X
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2. Vision-Aided Navigation Based on Three-View Geometry
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Fusion with Navigation using IEKF (cont.)

� Since only       is estimated, the Kalman gain is given by:

with

� Problem: how to calculate                    when         are unknown a-priori?

– Inertial navigation is assumed between     and     :

– are neglected

• Valid for                   . e.g.: loop scenarios

� Otherwise, calculate as shown in the sequel
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2. Vision-Aided Navigation Based on Three-View Geometry



22

Results - Experiment

� Experiment Setup

– An IMU and a camera were mounted on top of a ground 

vehicle

– IMU\INS: Xsens MTi-G

– Camera: Axis 207MW

� IMU data and captured images were stored and 
synchronized

– IMU data       @ 100Hz

– Imagery data @ 15Hz

� The method was applied in two scenarios

– Sequential updates

– Loop updates

2. Vision-Aided Navigation Based on Three-View Geometry
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Results – Experiment (cont.)

True trajectory

Recorded imagery

50 100 150 200 250
0

2

4

N
o

rt
h

 [
m

]
True trajectory

50 100 150 200 250
0

5

10

E
a

s
t 
[m

]

50 100 150 200 250
-2

0

2

H
e

ig
h

t 
[m

]

Time [s]
0

2
4

6

0

2

4
-1

0

1

2

A
lt 

[m
]

True Trajectory

East [m]North [m]

2. Vision-Aided Navigation Based on Three-View Geometry
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Results – Experiment (cont.)

Image 1

Image 2

Image 3

Example

� Implementation details (simplified)

– SIFT features extraction from each image

– Feature matching based on their descriptor vectors

– False matches rejection using RANSAC over the 

Fundamental matrix model

• The Fundamental matrix is not required elsewhere

Matching Triplets

Image 1 Image 2

Image 2 Image 3

2. Vision-Aided Navigation Based on Three-View Geometry
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Results – Experiment (cont.)

Sequential upd

Loop upd

2. Vision-Aided Navigation Based on Three-View Geometry
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� Application of three-view constraints for navigation aiding

� New formulation of three-view constraints for a general static scene

� The method allows

– Reduction of position and velocity errors in all axes to the levels of errors 

present while the first two images were captured

– Reduction of attitude errors, partial estimation of bias

� Efficiently handle loop scenarios

� Reduced computational requirements for vision-aided navigation phase

– Environment representation construction (e.g. mosaic) may be executed in a 

background process

� Various potential applications

– Cooperative navigation - next

Conclusions

2. Vision-Aided Navigation Based on Three-View Geometry



Distributed Vision-Aided Cooperative Navigation 
Based on Three-View Geometry

“Distributed Vision-Aided Cooperative Localization and Navigation based on Three-View Geometry’’, IEEE Aerospace 

Conference, submitted

3
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Motivation and Related Work

� Objective

– Navigation update whenever the same scene is observed by different platforms

• Not necessarily at the same time

• The camera is not required to be aimed towards other platforms (in contrast 

to relative pose measurements)

– Properly handle correlation terms involved in the fusion process

� Related work

– Use some robots as landmarks: “Cooperative Positioning with Multiple Robots”, 

Kurazume R. et. al., 1994

– Relative pose measurements between pairs of robots: “Distributed Multirobot 

Localization”, Roumeliotis S.I. and Bekey G.A., 2002

– Direct & indirect encounters between pairs of robots, nonlinear optimization: 
“Multiple Relative Pose Graphs for Robust Cooperative Mapping”, Kim B. et. al., 2010

– Consistent information fusion: “Consistent Cooperative Localization”, Bahr A. et. al., 

2009

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Setup

� Consider a group of cooperative platforms

� Each platform is equipped with its own

– INS

– Camera

– Perhaps, additional sensors or a-priori information

� All\some platforms maintain a repository of stored images associated with 
navigation information

� The platforms are able to exchange navigation and imagery data

� Inertial navigation error of the i-th platform

� Each platform maintains a local graph, required for correlation calculation

( ) ( )
a b a b

i i

i b t t i a t t
t t→ →= Φ +X X ωωωω

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Three-view Geometry – Several Platforms

� This time, each image may be captured by a different platform

� The images are not necessarily captured at the same time

– Some images may be stored in repositories and retrieved upon demand
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Overview
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3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Fusion with Navigation

� Back to the residual measurement model

– represent navigation errors of different platforms 

at different time instances. 

• None of these are known a-priori

– Theoretically, all the participating platforms can be updated

( ) ( ) ( )3 3 2 2 1 1
H t H t H t D H.O.T.≅ + + +III II Iz X X X v +

( ) ( ) ( )3 2 1
, ,t t tIII II IX X X

� Example: 

– Only platform III is updated

– 2 three-view measurements

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Fusion with Navigation (cont.)

� The measurement update step involves cross-covariance terms

– E.g., if only platform III is updated:

• with

• where

� Maintaining all the possible cross-covariance terms – impractical

– In contrast to relative pose measurements

� Therefore: either neglect, or calculate upon-demand
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3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Calculating Cross-Covariance for a General
Multi-Platform Measurement Model

“Graph-based Distributed Cooperative Navigation’’, IEEE ICRA, submitted

3a

Distributed Vision-Aided Cooperative Navigation Based on Three-
View Geometry3
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General Multi-Platform Measurement Model 

� Assume a general Multi-Platform (MP) measurement model that involves 

information from r platforms

� Objective: Calculate 

( ) ( ) ( )
1

r

i i i i i i i

i

H t D t t
=

≅ +∑z X v

3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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Concept

1. Store covariance and cross-covariance terms from all the past Multi-

Platform (MP) measurement updates

2. Express           and             according to the history of MP measurement 

updates

3. Calculate                               based on expressions from step 2.

� Algorithm objective: Automation of the above for general scenarios using 

graph representation

( )i it
%X ( )j j

t%X

3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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General Multi-Platform Measurement Model 

� Assume a general Multi-Platform (MP) measurement model that involves 

information from r platforms

� Objective: Calculate 

� Represent all MP updates executed so far in a directed acyclic graph (DAG) 

– Acyclic graph is assumed                     In a general scenario, allows updating only 

platforms that contribute their current (and not past) information

– For simplicity, we consider updating only one such platform

– Specific scenarios exist in which all the involved platforms can be updated

� A-posteriori estimation error of the updated platform (denoted by q)

( ) ( ) ( )
1

r

i i i i i i i

i

H t D t t
=

≅ +∑z X v

3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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Graph Representation

� Each platform maintains its own DAG G=(V,E)

� A-priori and a-posteriori covariance and cross-covariance matrices are 
stored in G after each MP update

� Two node types in G:

– Nodes representing (a-priori) information participating in an MP measurement

• E.g., an image and navigation data obtained from some platform

– Update-event node, representing a-posteriori estimate of the updated platform

� Each MP update is represented by r+1 nodes
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3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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Graph Representation (cont.)

Each node can be connected to another node by a

� Transition relation between node     and 

– Arc weight:

– The process noise covariance is also stored:

� Example:
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3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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Graph Representation (cont.)

� MP update relation

– : a-priori information of the r participating platforms

– : a-posteriori estimation of the updated platform

– Arc weight

– The measurement noise covariance is also stored:
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Algorithm Concept

� Assume we need to calculate 

– First: construct two inverse-trees containing all the routes in G to the nodes c
and d. Denote the trees as

– Notation:        is the parent of the node    . If several parents exist: 

– Next: Express        using information stored in nodes in 

• Start with 1st level and proceed upwards

T
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3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model
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Algorithm Concept (cont.)

� Start with first-level nodes of          : c and d

� Since               is unknown, proceed to next level in the trees

– According to relation types represented by arc weights

� Assume, e.g., transition relation in both cases

– may now be expressed as

– Are any of the following expressions known (i.e. was stored in the graph)?

– Noise terms?
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Algorithm Concept (cont.)

� If unknown, proceed to next level in trees – the third level

– E.g., assume a transition relation in     and an MP update relation in

• Let           be the nodes representing the a-priori and a-posteriori estimations 

of the updated platform

� Now,                  may be expressed using nodes from the third level and 

lower levels. For example: 
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� Assume                   is known

– The two nodes (    in     and     in    ) 

participated in the same MP update 

in the past

– Or, the two nodes are the same
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Algorithm Concept (cont.)

� The algorithm proceeds to higher levels in     and     until all the terms 
required for calculating                are known

– Or, reaching top level in both trees

� Consider reaching the k-th level and  analyzing some pair             with     
from     and     from

– Look for the pair            or            , so that            or                    is known 

(i.e. stored in G), with smallest j
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Algorithm Concept (cont.)

� Consider that some term                 is known

– No need to proceed to nodes from higher levels, which are related to

– The contribution of             to                 is calculated as

• is the overall weight of the route                  in 

• is the overall weight of the route                  in 

T

c dE   
% %X X( ),j kc d

j k

T

c dE  
 
% %X X

j k

T

c dE  
 
% %X X

( ) ( )
j k j k

T T

c j c d d k c dW c E W d Q  + 
% %X X

( )c jW c jc c→ →L
c

T

( )d k
W d

( ) ( )

( ) ( )

1

2

1

2

,

,

j

c j i i

i

k

d k i i

i

W c w c c

W d w d d

−
=

−
=

=

=

∏

∏

k
d d→ →L d

T

3a. Calculating Cross-Covariance for a General Multi-Platform Measurement Model



46

– Lemma:                only if

• in     does not have any 

descendants that are ancestors 

of     in    , AND

• in     does not have any 

descendants that are ancestors 

of     in

– Otherwise:

– Should be calculated
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Algorithm Concept (cont.)

� The term

– Represents the contribution of process and measurement noise that 

are involved when expressing                 using      and
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…Back to the Three-View Measurement Model

� Measurement model:

� Assume only one platform is updated each time

– e.g. update equations for platform III:

• Calculate gain:

with

• The cross-covariance terms are calculated based on the developed approach

• Standard state and covariance update IEKF equations
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Simulation Results – Leader-Follower Scenario

� 2 platforms: Leader, Follower

– Leader is equipped with a better IMU

– Initial navigation errors and IMU errors:

� Trajectory: Straight and level, north heading flight

– Velocity: 100 m/s

– Leader is 2000 m ahead (2 second delay)

– Height above ground level: 2000±200m

� Follower is updated every 10 seconds

� Leader is not updated (inertial navigation)

� Synthetic imagery

LeaderFollower

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Simulation Results – Leader-Follower Scenario (cont.)

Monte Carlo results (1000 runs): Follower’s navigation errors
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Simulation Results – Leader-Follower Scenario (cont.)
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Simulation Results – Leader-Follower Scenario
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Experiment Results – Pattern Holding Scenario

� The same experiment setup

– Two different trajectories

– IMU and camera were turned off in between

Two platforms with 
identical hardware 

(camera + IMU)
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Experiment Results – Pattern Holding Scenario (cont.)

� Two modes:

– Multi-platform update

– Self update (all images from the same platform)

Images used in the first update:

1
a

2
a

3
a

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Multi platform update

Self update
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Conclusions

� Distributed cooperative navigation aiding

– Allows reduction of navigation errors in some platforms based on other 

platforms in the group

– Three-view constraints are formulated whenever the same scene is observed 

by several platforms

• The camera is no more required to be aimed towards other platforms (as in 

relative pose measurements)

• Range sensor is not required

• The views are not necessarily captured at the same time

� Graph-based approach for on-demand calculation of cross-covariance 
terms

– General multi-platform measurement model

– EKF framework

3. Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry
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Summary

� Vision-aided navigation

– INS, camera

– Utilize incoming imagery, and constructed mosaics, for navigation aiding

� Algorithms

– Coupled mosaicking and camera scanning

• Improved navigation performance in challenging scenarios

• Reduced computational requirements

– Three-view geometry constraints

• Reduction of position and velocity errors in all axes

• Efficient handling of loop scenarios

– Distributed cooperative navigation based on three-view constraints

• Reduction of navigation errors of some platforms based on navigation 

and imagery information obtained from other platforms

• Graph based approach for on-demand calculation of cross-covariance 

terms for a general multi-platform measurement model
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Thank you …


