Navigation Performance
Enhancement Using Online
Mosaicking

Vadim Indelman

Navigation Performance
Enhancement Using Online
Mosaicking

Research thesis

Submitted in Partial Fulfilment of the
Requirement for the degree of
Doctor of Philosophy

Vadim Indelman

Submitted to Senate of
the Technion - Israel Institute of Technology

Nisan, 5771 Haifa April 2011

The research thesis was done under the supervision of Prof. Pini Gurfil, Prof. Ehud
Rivlin and Dr. Hector Rotstein in the Faculty of Aerospace Engineering.

The generous financial help of the Technion is gratefully acknowledged.

I would like to thank my supervisors Prof. Pini Gurfil, Prof. Ehud Rivlin and Dr. Hec-
tor Rotstein for their support and guidance throughout this research.

I would also like to thank my family for the infinite support and care, that has kept
me going through the rough times.

To Peter

Contents

1 Introduction 7
1.1 Related Work 8
1.1.1 Vision Aided Navigation 8

1.1.2 Simultaneous Localization and Mapping 11
1.1.3 Methods for Handling Loop Scenarios 11
1.1.4 Mosaicking and Mosaic-Based Navigation 12

1.1.5 Cooperative Navigation 13

1.2 Research Overview 15
1.3 Preliminaries 17
1.3.1 Coordinate Systems Definition 17

1.3.2 Inertial Navigation Errors Model 18
1.3.3 Navigation Aiding Concept 20

2 Navigation Aiding Based on Coupled Mosaicking and Camera Scanning 23
2.1 Method Overview 24
2.2 Camera Scanning Procedure and Mosaic Construction Method 26
2.2.1 Scanning Procedureo oo 26
2.2.2 Mosaic Construction Method 28

2.3 Image-Based Motion Estimation 33
2.3.1 Implementation of Motion Estimation Assuming a Planar Scene . . 35

2.4 Fusion of Image-Based Relative Motion Estimation with a Navigation System 37
2.4.1 Fictitious Velocity Measurement 40
2.4.2 Computational Requirements 41

25 Results. 42
2.5.1 Mosaic-based Motion Estimation 44
2.5.2 Mosaic-Aided Navigation 46

2.6 Observability Analysis 60
2.6.1 Numerical Investigation 64

2.7 Conclusions L 69

Contents

3 Navigation Aiding Based on Three-View Geometry 71
3.1 Method Overview 72
3.2 Three-View Geometry Constraints Development 74

3.2.1 Multiple Features Formulation 76

3.3 Fusion with a Navigation System, 7

3.3.1 Computational Requirements 81

3.3.2 Extensions 81

3.4 Simulation and Experimental Results 82

3.4.1 Implementation Details 82
3.4.2 Statistical Results based on Simulated Navigation and Synthetic

Imagery 84

3.4.3 Experiment Results 89

3.5 Conclusions 94

4 Cross-Covariance Calculation for a General Multi-Platform Measure-

ment Model 95
4.1 Problem Description 96
4.2 Concept of Explicit Cross-Covariance Calculation 99
4.2.1 A Basic Example o 99
4.2.2 A General Scenario 101
4.2.3 Graph Representation 102
4.3 Graph-based Calculation of Cross-Covariance Terms 104
4.3.1 Rationale 104
4.3.2 Algorithm for Explicit Cross-Covariance Calculation. 106
4.3.3 Formal Algorithms 113
434 Example 115
4.3.5 Computational Complexity 116
4.3.6 Incorporating Other Measurements 116
4.4 Conclusions e 118

5 Distributed Vision-Aided Cooperative Navigation based on Three-View

Geometry 119
5.1 Method Overview 120
5.2 Three-View Geometry Constraints 122
5.3 Three-View-Based Navigation Update 123
5.3.1 All the Involved Platforms are Updated 126
5.3.2 Calculation of the Cross-Covariance Terms P, P3; and Poy 126
5.4 Overall Distributed Scheme 128
5.4.1 Handling Platforms Joining or Leaving the Group 131
5.5 Simulation and Experimental Results 132

5.5.1 Implementation Details 132

Contents

5.5.2 Formation Flying Scenario - Statistical Results. 133

5.5.3 Holding Pattern Scenario - Experiment Results 141

5.6 Conclusions 144

6 Conclusions 149
7 Recommendations for Future Research 151
A Chapter 2 Extras 153
A.1 Translation Measurement Equation 153
A.2 Rotation Measurement Equation 155
A.3 Google Earth Interface 156

B Chapter 3 Extras 159
B.1 Proof of Theorem 3.2.1 159
B.1.1 rank(A) <4=Eqgs. (B2) 0. 159

B.1.2 Egs. (B.2) = rank(A) <4 oo 160

B.1.3 Alternative Proof of rank(A) <4 = Eqgs. (B.2) 162

B.2 IEKF Matrices 165
B.2.1 Calculation of the Matrices H3, Hy and Hy 166

B.2.2 Calculation of the Matrices Dand R 168

C Chapter 4 Extras 171
C.1 Computational Complexity Analysis 171
C.2 Efficient Implementation 173

C.3 Efficient Calculation of Transition and Process Noise Covariance Matrices . 173
D List of Publications 177

Bibliography 179

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9
2.10
2.11

2.12

2.13

2.14

2.15

2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

[Mlustration of the navigation aiding concept. 21
Overview of the system concept. 25
A schematic illustration of the scanning procedure. 27
Diagram of the proposed mosaic construction method. 29
Mosaic images construction example - Part I. 33
Mosaic images construction example - Part 1. 34
Motion sequential estimation vs. standard estimation. 45
Image-based motion estimation accuracy for a low-texture scene and a

narrow-FOV camera. oL Lo 46
Monte-Carlo results of position errors using ideal motion estimation. 48
Monte-Carlo results of velocity errors using ideal motion estimation. 49
Monte-Carlo results of Euler angle errors using ideal motion estimation. . . 50
Monte-Carlo results of drift and bias estimation errors using ideal motion

estimation.o o1

A Google Earth image of a high-texture scene, captured with a wide-FOV

CAMETA. + v v v e v e e e e e e e e e e e e e o1
Experiment with a wide-FOV camera demonstrating the beneficial effect

of the F'V measurement - Position errors. 52
Experiment with a wide-FOV camera demonstrating the beneficial effect

of the FV measurement - Velocity errors. 52
Experiment with a wide-FOV camera demonstrating the beneficial effect

of the FV measurement - Euler angles errors. 53
Mosaic aiding vs. two-view aiding - position errors. 55
Mosaic aiding vs. two-view aiding - velocity errors. 56
Mosaic aiding vs. two-view aiding - Euler angles errors. 56
Mosaic aiding vs. two-view aiding - bias estimation errors. D7
Mosaic aided navigation - filter covariance for position. 57
Mosaic aided navigation - filter covariance for velocity. 58
Mosaic aided navigation - filter covariance for Euler angles. 58

Mosaic aided navigation - filter covariance for bias. 59

List of Figures

2.24
2.25
2.26
2.27

3.1
3.2
3.3
3.4

3.5

3.6

3.7
3.8

3.9
3.10

4.1

4.2
4.3
4.4

4.5

5.1
5.2
2.3
5.4
2.5
2.6
2.7

5.8

5.9

[ustration of the piece wise constant system assumption. 62
State variables of a trajectory containing a maneuver. 65
Singular Values #1 to #150f Qg 67
Unobservable modes behavior vs. number of maneuver segments. 68
Aiding an inertial navigation system with three-view geometry constraints. 73

Three view geometry: a ground landmark observed in three different images. 74

Trajectory used in the statistical study. 84
Monte-Carlo results based on navigation simulation and synthetic imagery
data. 86
Monte-Carlo results based on navigation simulation and synthetic imagery
data. 87
Monte-Carlo results based on navigation simulation and synthetic imagery
data without applying epipolar constraints. 88
Trajectory performed in the experiment. 89
Three camera-captured images used in the first sequential update in the
experiment. L L L e 90
Image matching process based on images shown in Figure 3.8. 91
Experiment results. 93

Measurement schedule example based on a measurement model that in-

volves 3 platforms. 99
Graph representation and the two trees Tb; and Tb;~ 102
[Mlustration of transition and update relations. 104

The node ¢; in T¢. has descendants that appear as ancestors of dj, in the sub-

o T
tree (T,)%, therefore contributing noise terms to the calculated F[X.X].

Update-nodes are not explicitly marked. 109
An example assuming three-view measurements. 115
Multi-platform navigation aiding - querying platform scheme 121
Three-view geometry concept in cooperative navigation. 122
Three-view MP scenario 129
Graph update process.o 130
Three-view measurements schedule assumed in the simulation runs. 134
Graph and trees T; and T, b for the scenario shown in Figure 5.5. 135

Monte Carlo results for a formation scenario - comparison to inertial navi-
gation: Position and velocity errors. oL 136
Monte Carlo results for a formation scenario - comparison to inertial navi-
gation: Euler angles errors and bias estimation errors. 137
Monte Carlo results for a formation scenario - comparison to navigation
errors of Platform I: Position and velocity errors 138

List of Figures

5.10

5.11

5.12
5.13
5.14
0.15
5.16

Al

C.1
C.2

Monte Carlo results for a formation scenario - comparison to navigation

errors of Platform I: Euler angles errors and bias estimation errors 139
Monte Carlo results for a formation scenario - cross-covariance terms are

neglected. 140
Trajectories of vehicles I and II in the experiment. 141
Schematic sketch of the measurement schedule in the experiment. 142
Images participating in measurement a and matched triplets of features. . 144
Position errors of vehicles I and II in the experiment. 146
Velocity errors of vehicles I and II in the experiment. 147

[ustration of an interface between the platform trajectory and Google Earth.157

[Mustration of an implementation of H. 174
Skip list repository database example. 176

List of Tables

2.1 Trajectory Parameters 43
2.2 Initial Navigation Errors and IMU Errors A7
2.3 Analytical observability analysis results for a piece-wise constant system . 64
3.1 Imitial Navigation Errors and IMU Errors 84
5.1 Initial Navigation Errors and IMU Errors in a Formation Scenario 133

5.2 Measurement details in the experiment. 143

Abstract

Autonomous navigation of a platform from one point to another is a challenging task.
One essential capability for successfully performing this task is calculation of an accurate
navigation solution. Since the navigation solution, computed based on either inertial or
odometry measurements, is accompanied by persistently increasing errors, it is common
to utilize measurements from external sensors and additional available information for
correcting the navigation errors, a process called navigation aiding. The Global Position-
ing System (GPS) is undoubtedly the most common approach for navigation aiding or,
alternatively, for a direct calculation of a navigation solution. However, in certain cases,
the GPS is unavailable or unreliable, and therefore alternative methods must be applied
for navigation aiding.

One of the alternatives for navigation aiding is to use cameras, or more generally,
imaging systems, giving rise to wvision-aided navigation (VAN). The navigation aiding
task becomes even more challenging when there is no prior information regarding the
environment in which the platform is required to operate. In these cases, it may be
also needed to construct a map of the observed environment. Performing these two tasks
simultaneously is an approach known as Simultaneous Localization and Mapping (SLAM).

The current research focuses on VAN in unknown environments. It is assumed that
the platform is equipped with a standard inertial navigation system and a single camera
only. The camera-captured images are associated with navigation data and stored in
a repository, which represents a mapping of the observed environment. The repository
can be also used for constructing mosaic images. Consequently, the camera-captured
images are used both for mapping and for navigation aiding. In contrast to SLAM,
the mapping (i. e., mosaic construction and repository refinement), is performed in a
background process, thereby considerably reducing the computational load.

The research described herein provides a few contributions to the vision-aided navi-
gation literature, both theoretical and practical. In the first new algorithm developed in
this research, the main idea is to couple online mosaic construction process to a camera
scanning pattern, assuming that the camera is mounted on gimbals. It is shown that
improved vision-based motion estimation is obtained in challenging operational scenarios
such as when a narrow filed-of-view camera observes low-texture scenes. These motion
estimations are fused with an inertial navigation system, allowing to reduce navigation
errors in some of the navigation parameters, including position and velocity errors normal

2 Abstract

to the motion heading. On the other hand, errors along the motion heading cannot be
reduced using this algorithm, motivating the development of other methods.

Another new method developed in this research utilizes constraints, obtained by ob-
serving the same scene from three different views, for navigation aiding. A new formu-
lation of such constraints is presented and proven, and a Kalman filter formulation is
developed for fusing these three-view constraints with a standard inertial navigation sys-
tem. Given three images with a common overlapping area, two of which were captured in
the past and retrieved from a repository along with the attached navigation data, the new
algorithm reduces the position errors in all axes to the level of errors present while the
first two images were captured. Errors in other navigation parameters are also reduced.
Trajectories that contain loops, in which the platform revisits a scene after some unknown
time, are naturally handled by the new algorithm.

The second part of this research is concerned with cooperative navigation. A general
multi-platform measurement model is considered. This measurement model involves nav-
igation data and readings of onboard sensors from different platforms, possibly taken at
different time instances. Since, in the general case, these various sources of information
are correlated, the appropriate correlation terms must be calculated to obtain a consistent
state estimation. The present research develops a new method for on-demand calculation
of the required correlation terms based on the history of all the multi-platform measure-
ments performed thus far. The newly-developed method relies on graph theory and is
capable of rigorously handling the involved process and measurement noise for general
multi-platform measurement models.

Finally, this research develops a new approach for vision-aided cooperative navigation.
As opposed to the common approach, which is based on relative pose measurements be-
tween pairs of platforms, in the newly-proposed approach a measurement is formulated
whenever the same scene is observed by three views, possibly captured by different plat-
forms, not necessarily at the same time. The captured images, to which some navigation
parameters are attached, are stored in repositories by each, or some, of the platforms in the
group. As in case of a single platform, applying the three-view constraints for cooperative
navigation reduces the position and velocity errors in all axes, as well as other navigation
errors, without utilizing range measurements. As opposed to relative pose measurements,
in the proposed approach the platforms’ cameras are not required to be aimed at other
platforms. Since the three-view measurement is a function of imagery and navigation
information belonging to different platforms, these different sources of information can be
correlated. The required correlation terms in the information fusion phase are explicitly
calculated using the above-mentioned algorithm developed for a general multi-platform
measurement model.

The algorithms developed in this research were examined in statistical simulations
and demonstrated in experiments that involved real imagery and navigation data. The
experiments unequivocally validated the developed methods and algorithms. A complete
list of publications based on this doctoral research are provided in Appendix D.

Abbreviations and Nomenclature

Abbreviations

BTT Bank To Turn

CCD Charged Coupled Device

CDF Cumulative Distribution Function
CN Cooperative Navigation

DAG Directed Acyclic Graph

DCM Directional Cosine Matrix

FOV Field of View

FV Fictitious Velocity

GPS Global Positioning System

IEKF Implicit Extended Kalman Filter
IMU Inertial Measurement Unit

INS Inertial Navigation System
LLLN Local Level Local North

LOS Line of Sight

LS Least Squares

MP Multi Platform

NED North East Down

SL Straight and Level

SLAM Simultaneous Localization and Mapping
SVD Singular Value Decomposition
TOM Total Observability Matrix

VAN Vision Aided Navigation

4 Abbreviations and Nomenclature
Nomenclature

a Estimation of a

a Estimation error of a

at True value of a

b Accelerometer bias vector

ca Transformation matrix from system A to system B

d Gyro drift vector

f Focal length

f.h known nonlinear functions

H Measurement matrix

I Image

K Kalman filter gain matrix or camera calibration matrix
P Covariance matrix

Pk+1|k or Plc_+1

+
Pk+1|k+1 or Pk+1
Pos

L 0
usp

@yQNxx5%<<:ﬁ“ﬁ:@
i <
d

N
€= <

A priori covariance matrix at time instant ¢z,
A posteriori covariance matrix at time instant t;;
Position vector

Process noise covariance matrix

Line of Sight

Line of sight related to the jth feature in the ith view,
expressed in camera

system of ith view

Measurement noise covariance matrix
Translation vector from view i to view j

Time

Time instant ¢;

Velocity vector

Measurement noise vector

Measurements of external sensors
Measurements of inertial measurement unit
Navigation errors state vector

Navigation solution

Residual measurement

Inertial sensors error model

Scale parameter

Euler angles vector

Position vector error

Velocity vector error

Time step

Euler angles vector error

Discrete process noise vector

Abbreviations and Nomenclature 5

We Continuous process noise vector

¢ Navigation solution and inertial sensors error model
P Discrete system matrix

D, Continuous system matrix

Specific nomenclature to Chapter 2:

H Measurement matrix or homography matrix

n Normal to the scene plane vector

Rgf Vision-based estimation of a rotational matrix from camera system
at t9 to camera system at ¢;

f1_>2 Vision-based estimation of a translation vector from first view
to second view

X Image coordinates

Ve Camera pan angle

0. Camera tilt angle

0 Scale constant

Specific nomenclature to Chapters 3 and 5:
N Overall cardinality of matching sets of features

Specific nomenclature to Chapter 4 (see in addition Section 4.3.2):

N Number of cooperative platforms

x;(t;) Navigation solution of the ith platform at time instant ¢,

G=(V,E) Directed acyclic graph, composed of a set of nodes V' and a set of arcs £
(a,b) Weight of an arc connecting the node a to the node b

w
T, = (Vr,, Er,) An inverse tree, constructed from the DAG G, containing all the possible
paths in G to the node a.
Vr, and E7r, are the set of nodes and arcs, respectively, comprising 7},
M, Permutation set of kth level

Coordinate Systems:

Body coordinate system

Camera coordinate system

Earth-fixed coordinate system
Local-level, local-north coordinate system

SEm AW

Chapter 1

Introduction

Contents

1.1 Related Work i i i i 8
1.1.1 Vision Aided Navigation
1.1.2 Simultaneous Localization and Mapping 11
1.1.3 Methods for Handling Loop Scenarios 11
1.1.4 Mosaicking and Mosaic-Based Navigation 12
1.1.5 Cooperative Navigation 13

1.2 Research Overviewt 15

1.3 Preliminaries i i e e e 17
1.3.1 Coordinate Systems Definition 17
1.3.2 Inmertial Navigation Errors Model 18
1.3.3 Navigation Aiding Concept 20

Navigation is an essential capability without which mobile platforms will not be able
to carry out even the simplest mission. At a first glance, navigation seems to be a simple
issue: once a platform is equipped with dead reckoning sensors, and in particular with
inertial navigation sensors, it is straightforward [1] to calculate the navigation solution,
i. e. position, velocity and attitude. However, since the inertial navigation sensors provide
imperfect measurements, the calculated navigation solution contains errors that develop
over time. Depending on the quality of the inertial sensors, after a certain period of time,
this navigation error will reach unacceptable levels.

Consequently, one has to use additional information and sensors in order to mitigate
the developing inertial navigation errors, a process called navigation aiding. Alternatively,
these sources of information and sensors can be used to directly calculate the navigation
solution. Undoubtedly, since the global positioning system (GPS) was established in the

8 Chapter 1. Introduction

1970s, it has become the most common method for navigation and navigating aiding. For
example, the majority of modern airborne navigation systems rely on the GPS signal.
However, the GPS does not work properly in certain scenarios, such as when operating
indoors, underwater, in urban environments and on other planets. Moreover, in certain
situations the GPS signal is susceptible to jamming. In such cases, alternative techniques
are required for navigation aiding. Moreover, it is often desired to have a backup capability
for navigation aiding, in case the GPS signal becomes unavailable at some point during
the mission.

With the rapid development of computational capabilities over the last few decades, a
broad range of methods were proposed utilizing vision sensors for navigation aiding. The
vision-aided navigation methods are considered appealing due to their relatively low cost
and autonomy.

Another issue that has drawn much attention is the ability to operate in an unknown
environment. In such a case, it is often required to map the environment observed by
the platform during its motion. Being able to navigate using the incoming imagery, and
in the same time to construct a map, is an approach known as simultaneous localization
and mapping. The map of the observed environment can be represented by the real world
locations of features extracted from the images, or by a mosaic image (or several mosaic
images) that is constructed from the camera-captured images.

So far, navigation of a single platform was considered. However, many applications
require a group of platforms to work in collaboration to perform a certain mission. Precise
navigation is a key requirement for carrying out any autonomous mission by a group
of cooperative platforms. Assuming the platforms are capable of intercommunication,
cooperative navigation is a promising approach for improving navigation performance of
the platforms in the group.

In the following section, related work on the different topics, briefly mentioned above,
is discussed. In Section 1.2, an overview of the research presented in this dissertation
is given. To make the reading of the rest of this manuscript easier, some preliminary
material is provided in Section 1.3.

1.1 Related Work

1.1.1 Vision Aided Navigation

Navigation aiding deals with improving the performance of some basic inertial navigation
system by fusing measurements from auxiliary sensors or additional, possibly exogenous,
sources of information. In vision-aided navigation (VAN), this process is performed based
on the imagery captured by an on-board camera. A typical VAN algorithm uses the
information extracted from an image registration process, along with the information
available from other sensors, for estimating the platform’s states and possibly additional

1.1. Related Work 9

navigation parameters.

VAN has been an active research field for the last few decades. For example, it
was proposed to integrate the vision-based estimation of the velocity-to-height ratio with
additional on-board sensors [2]; to apply the subspace-constraint approach [3] in order
to partially estimate the states of an aircraft, based on measurements from an image
registration process injected into an implicit extended Kalman filter [4]; and to utilize
epipolar constraints formulated for each pair of matching features to aid the inertial
navigation of a ground vehicle [5]. All the preceding methods rely only on information
available from inertial navigation sensors and an on-board camera, without using a priori
information or additional external sensors. This is also the approach adopted in this
research.

Various methods for vision-aided navigation have been proposed assuming some ad-
ditional external sensors and a priori information. One of the proposed methods used
altimeter measurements for scaling the imaging sensors in order to improve state estima-
tion during the landing phase of a space probe [6]. Others showed that absolute pose
and motion estimation is possible when a digital terrain map (DTM) is available [7], [8].
Another approach is map-based navigation, which assumes that a map of the operational
area is given and that the vehicle navigates by fusing inertial measurements, images of
the environment and a map [9], [10], [11].

Images registration and image-based motion estimation are important constituents
in all VAN methods. The existence of overlapping regions between processed images
is the common assumption to all vision-based motion estimation techniques. A large
overlapping region between two images is likely to yield a larger number of matched
features and therefore should allow a more accurate motion estimation (and navigation)
relying on two-view geometry methods. If a mutual overlapping region for more than two
images can be found, the performance may be further enhanced by applying multi-view-
geometry-based methods.

The two-view-geometry-based methods include relative motion calculation between
two given views based on an estimated essential matriz [12], [13]. The motion parameters
are then used for estimating the state vector, which is an augmented vector comprised of
the vehicle’s current pose and past poses for each captured image. When the observed
scene is planar, the motion parameters can be calculated by estimating the homography
matrix [14], [11], [15], [16]. Having in mind the requirements for real-time performance
and a low computational load, in this research the estimated camera motion is related
to a constant-size state vector comprised of the platform’s current parameters only (in
contrast to [12]).

However, given two overlapping images, it is only possible to determine camera rotation
and up-to-scale translation [13]. Therefore, two-view based methods for navigation aiding
are incapable of eliminating the developing navigation errors in all the states. With no
additional information or sensors for resolving the scale ambiguity, such as range sensors
or stereo vision, the vehicle states are only partially observable (e. g., position and velocity

10 Chapter 1. Introduction

errors along the flight heading are unobservable [12]).

The multi-view-geometry-based methods, in contrast to two-view-geometry, use con-
nections among several images, assuming that a common overlapping region exists. Im-
agery information stemming from multiple images (> 3) with a common overlapping re-
gion enables to determine the camera motion up to a common scale [13]. Indeed, several
multi-view methods for navigation aiding have been already proposed.

For example, some authors derive constraints relating features that are observed in sev-
eral consecutive images, thereby claiming to achieve optimal exploitation of the available
information in the observed scene [17]. These features, observed within multiple images,
and the platform pose are related using an augmented state vector: The state vector con-
tains the current platform pose and the platform pose for each previously-captured image
that has at least one feature that appears in the current image. Once a certain feature,
observed in the previous images, is no longer present in the currently-captured image, all
the stored information for this feature is used for estimating the platform parameters,
and the pose entries that belong to these past images are discarded. However, should
the same feature be re-observed at some later time instant (e. g. whenever loops in the
trajectory are performed), the method will be unable to use the data for the feature’s
first appearance. It was later proposed [18] to cope with loops using bundle adjustment
[13]. This process involves processing all the images that are part of the loop sequence,
and therefore real-time performance is hardly possible. In Ref. [19], the authors use the
rank condition on the multiple-view-matrix [20] for simultaneously recovering 3D motion
and structure during a landing process of an unmanned aerial vehicle, assuming a planar
ground scene is observed.

Yu et al. [21] proposed using a trifocal tensor [13] for motion estimation of a single
mobile camera. First, the relative motion between the two first images, denoted as base
images, is estimated using epipolar geometry. Each next image is then related to the first
two images via the trifocal tensor, which is then used for motion and pose estimation in
a Kalman filter framework. Yet, whenever the currently-captured image does not share
any common features with the first two images, the process is re-initialized by choosing
two new base images. Hence, similar to [17], this method is incapable of handling loops.

Despite the advantages of multi-view methods, assuming that an overlapping region
among several consecutive images exists may be invalid in many practical applications,
such as various airborne applications. Violating this assumption usually degenerates the
multi-view methods into two-view methods.

On the other hand, the platform may return to some area, already observed in the past,
after some a priori unknown time. In this case, several overlapping images exist, yet these
images were not captured simultaneously. Such scenarios, called as loop scenarios, are
potentially useful for both navigation aiding and for refining the environment mapping.
Different state-of-the-art approaches for handling loop scenarios are discussed in Section
1.1.3.

1.1. Related Work 11

1.1.2 Simultaneous Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) approach allows a mobile platform
to construct a map of the observed environment, while at the same time localizing itself
with respect to this map. It is generally assumed that the environment in which the
platform operates is a priori unknown. SLAM methods can be found in a variaty of appli-
cations, including indoor [22], outdoor [23], aerial [24] and underwater [25] applications.
A survey can be found in [26].

In SLAM, the estimation of the platform’s navigation parameters and the construc-
tion of a representation of the observed environment are performed simultaneously. The
general approach for solving the SLAM problem is to use an augmented state vector,
composed of navigation states (e. g. position, velocity) and of parameters describing the
observed environment, which are usually the feature coordinates in the real world. Thus,
upon observing and identifying a new feature, its parameters are augmented into the state
vector. Another variation [27] is to augment the state vector with parameters describing
the camera-captured images locations (and perhaps other parameters) in a constructed
mosaic image.

Several different assumptions regarding the available sensors can be found in the SLAM
literature: Range and bearing measurements [28], [24], [29], bearing-only measurements
[30], [22], and range-only measurements [31]. When processing a measurement, the aug-
mented state vector yields an update both in the navigation states and in the environment
model. Consequently, correlation between the platform’s states and the environment pa-
rameters is consistently maintained. On the other hand, the computational requirements
are constantly increasing as the state vector grows in size.

Different approaches were proposed for handling this computational bottleneck. These
include neglecting low-correlation bonds in the augmented state vector [32], maintaining
only currently-visible features in the state vector [33], and using several submaps, repre-
senting the overall observed environment [34].

In contrast to SLAM, in this research it is proposed to separate the process of con-
structing a representation of the environment (e. g. mapping) from the process of motion
estimation and navigation aiding. Thus, navigation aiding can be performed based on the
current representation of the environment, while this representation is refined in a back-
ground process. Although the obtained navigation performance could be compromised
compared to SLAM, such an approach allows navigation aiding using significantly lower
computational resources, in particular when handling loop scenarios.

1.1.3 Methods for Handling Loop Scenarios

Special research attention has been devoted to developing navigation-aiding methods for
handling loop scenarios, or, in other words, determine how the navigation solution can
be updated when the platform revisits some area. Several approaches were proposed over

12 Chapter 1. Introduction

the years.

Applying smoothing over the images that were captured in the loop chain is one
common approach [35], [36]. By refining the transformations that relate these images with
a common reference, it is possible to considerably reduce the growing image registration
errors, thereby producing a consistent mosaic. Assuming an available range to-the-scene
information allows positioning the platform and hence reduce some of its navigation errors.

Bundle adjustment [13], already mentioned in Section 1.1.1, is another approach for
handling loop scenarios. In this approach, an optimization is performed, seeking to min-
imize a cost function that includes the actual and predicted feature measurements from
all the images captured in the loop chain [18].

Loop scenarios are also naturally handled in SLAM methods, as discussed in Section
1.1.2. The augmented state vector contains the coordinates of the crossover features, i. e.
features that belong to the revisited scene. Re-observing the scene allows to refine both
the coordinates of these features and the platform position, thereby reducing navigation
errors according to the estimation precision of these features.

Although the above approaches for handling loop scenarios are capable of refining the
map and of localizing the platform upon identifying a loop event, real-time performance is
hardly possible due to the involved computational requirements: The smoothing technique
processes all the images in the loop chain; bundle adjustment optimizes all the features
observed in any of the images in the loop chain; while SLAM maintains an augmented
state composed of all the observed features thus far. In addition, SLAM and bundle
adjustment methods share the same common property of estimating the feature locations
in the real world, i. e., structure reconstruction. As opposed to this, in this research it
is proposed to handle loop scenarios (in the context of navigation aiding) by processing
only three images and without structure reconstruction, thereby substantially reducing
the computational requirements and allowing for real-time implementation.

1.1.4 Mosaicking and Mosaic-Based Navigation

Mosaicking is the process of fusing partially overlapping images into a single image. Tra-
ditional methods rely on the homography model [13], which is valid when the platform
performs pure rotation while observing a general scene, or when performing translation
and rotation while observing a planar scene. A tutorial and further details regarding
different methods for mosaic construction can be found in [37].

Alternatively, the mosaic can be represented by a set of original camera-captured
images, assigned with appropriate transformations. Warping each image according to
the assigned transformation and subsequently fusing all the warped images produces the
mosaic image. See, for example, [38], [15].

Navigation based on off-line mosaics has been extensively studied (e. g. [11], [39]).
The more challenging problem, however, is navigation aiding based on online mosaic con-
struction. This problem is strongly related to SLAM (cf. [27], [40]): The objective is to

1.1. Related Work 13

estimate the platform’s location (and perhaps other navigation parameters) when oper-
ating in an unknown environment, while the mapping step is comprised of constructing a
consistent map based on the camera-captured images (instead of extracting features from
these images and trying to estimate their locations in the real world).

Several works have considered navigation based on an online construction of the mosaic
image, including [38], [15], [36], [25], [41]. The common approach, in the context of motion
estimation and navigation aiding, is to assume that the range to the observed scene is
available. This assumption allows scale determination, which cannot be determined based
on pure imagery data [13], thereby providing complete motion estimation. Consequently,
it is possible to obtain a position solution in all axes. Loop scenarios are usually treated
by smoothing the thus-far constructed mosaic image [25], [41], which also yields improved
navigation solution.

1.1.5 Cooperative Navigation

The ability of a group of cooperative platforms to autonomously carry out various tasks
strongly depends on the navigation capabilities of each individual in the group. These
tasks include cooperative mapping and localization [42], [43], [44], formation flying [45],
cooperative tracking [46], autonomous multi-vehicle transport [47], and other applica-
tions. While various methods exist for navigation-aiding of a single platform, collabora-
tion among several, possibly heterogeneous, platforms, each equipped with its own set of
sensors, is expected to improve performance even further [48].

Different methods have been developed for effectively localizing a group of platforms
with respect to some reference coordinate system or with respect to the platforms them-
selves. Most of the proposed methods for cooperative navigation (CN) (including [49],
[48], [50], [47], [51], [52], [53]) assume that each platform is capable of measuring the
relative range and bearing to other platforms that are located nearby.

One of the pioneering works on cooperative localization proposed to restrain the de-
velopment of navigation errors by using some of the platforms as static landmarks for
updating the other platforms in the group [49]. While the method was further improved
by others, all of the derived methods share the same drawback of having to stop the mo-
tion of some of the platforms for updating the others, which is, for example, impossible
for fixed-wing aircrafts.

Another important work is by Roumeliotis and Bekey [48], where a centralized ap-
proach for sensors fusion was applied based on the available relative pose measurements
between the platforms in the group. This architecture was then de-centralized and dis-
tributed among the platforms. Later, an extension was proposed to handle more general
relative observation models [54]. The setup comprising of a group of platforms capable of
measuring relative poses to adjacent platforms have been studied in other works, including
[47], [51], [55], [56] and [57].

A different body of works [58], [59], [60] suggests to maintain in each platform esti-

14 Chapter 1. Introduction

mated parameters for all the platforms in the group. For example, in [58] and [59] each
platform estimates the pose of every other platform relative to itself, while in [60] each
platform estimates the navigation state (position, velocity and attitude) of all the other
platforms by exchanging inertial measurement unit (IMU) information and relative pose
measurements.

Another approach for CN is to identify a common scene observed by different plat-
forms, and to express the resulting constraints as a measurement to the navigation filter.
Such an approach was recently suggested in [61], [44] considering measurements that com-
bine pairs of platforms. Merino et al. [61] suggested using a homography connection for
motion estimation between two aerial platforms observing the same scene, assuming the
range to the scene is available. Kim et al. [44] considered general measurements gener-
ated by pairs of platforms. These may be either relative pose measurements or two-view
measurements. Yet, in the absence of a range sensor, measurements between pairs of
platforms do not allow three-dimensional localization.

Regardless of the approach applied for CN, the navigation information involved in the
measurement is obtained from different platforms, possibly belonging to different time
instances. In the general case, these sources of information can be statistically dependent.
For instance, the navigation information of any two platforms becomes correlated after
the first update is carried out. Ignoring this correlation can result in inconsistent and
over-confident estimations [62].

Several approaches have been proposed for coping with the correlation terms in multi-
platform (MP) systems, assuming relative pose measurements. In [48], an augmented
covariance matrix, comprised of covariance and cross-covariance matrices relating all the
platforms in the group, was maintained in a distributed manner. In [50], this approach was
applied to cooperative mapping and localization. In this case, the augmented covariance
matrix also contains parameters that represent the landmarks observed by each platform
in the group. Howard et al. [58] suggested a method that avoids correlated updates
in certain situations. Similarly, in [62], the cross-covariance terms were not explicitly
estimated. Instead, the authors proposed to maintain a bank of filters, tracking the
origins of measurements and preventing multiple use of measurements. References [63]
and [45] studied the filter inconsistency when correlated measurement sequences are used.

In [44], a method for consistent information fusion was proposed, considering relative
pose measurements and two-view measurements (that involve two images of the same
scene, taken by two platforms). In the general case, the two images may be captured at
different time instances. The authors formulated an optimization problem that involves
the history of the performed measurements between pairs of platforms and measurements
of the proprioceptive sensors of each of the platforms in the group. This problem is solved
each time a new measurement of any kind is received, yielding an updated pose history
of all the cooperative platforms [44].

1.2. Research Overview 15

1.2 Research Overview

This dissertation addresses the problem of VAN in an unknown environment. The plat-
form is assumed to be equipped with a standard inertial navigation system and a single
onboard camera, which can be mounted on gimbals. No additional external sensors are
assumed to exist, and no additional information is necessarily available, except for an
initial navigation solution and camera calibration parameters. In particular, no range
sensor is assumed, as opposed to most of the VAN and SLAM works (cf. Section 1.1). In
addition, it is assumed that the camera-captured images are associated with an appro-
priate navigation solution, stored and maintained in a repository. These images are also
used for online mosaicking.

Despite of the resemblance of the setup described above to SLAM, the approach de-
veloped in this research is different. In the proposed approach, the mapping phase, i. e.
imagery repository maintenance and online construction of a mosaic image, is performed
in a background process, while navigation aiding is performed in the main process using
imagery and associated navigation data taken from the repository. Thus, the imagery
repository is maintained outside the filter, using parameters obtained from the naviga-
tion system, while the filter state vector does not contain representation of the observed
environment. In this research a constant-size state vector, representing only the current
navigation solution is maintained (cf. Section 1.3.2). Such an approach allows to con-
siderably reduce the computational requirements compared to SLAM methods, although
the performance can be somewhat compromised when several images have a common
overlapping area. In particular, the above-mentioned approach of refining the mapping
in a background process allows to efficiently perform navigation aiding in loop scenarios
(see discussion below), in which a platform revisits the same region after some a priori
unknown time.

Chapter 2 presents a method for improving navigation performance while operating in
scenarios that are considered to be challenging in the context of vision-based motion es-
timation, such as when a narrow field of view (FOV) camera observes low-texture scenes.
Using a gimbaled camera, it is proposed to couple the camera scanning and online mo-
saicking processes. This coupling yields increased overlapping regions, which allows to
perform motion estimation with improved accuracy. The estimated motion is then fused
with a navigation system using an implicit extended Kalman filter. An observability anal-
ysis of the proposed method is presented, modeling the linearized system as a piece-wise
constant system.

Similarly to all methods for VAN that are based on two-view techniques (cf. Section
1.1.1), the method presented in Chapter 2 is capable of estimating the translational mo-
tion up to scale, mitigating only some of the navigation errors. For example, position
and velocity errors along the motion heading cannot be reduced. In particular, when loop
scenarios are considered, the method is incapable of fully exploiting the available infor-
mation for navigation aiding, which motivated the development of the method described

16 Chapter 1. Introduction

in the next chapter.

In Chapter 3, a new VAN method is developed. The method formulates new con-
straints that are obtained from observing a general static scene by three different views.
The newly-developed constraints combine imagery and navigation data at the time in-
stances in which the three images were taken. The developed constraints are fused with
an inertial navigation system using an implicit extended Kalman filter, allowing to reduce
navigation errors, in particular position and velocity errors in all axes, each time a set of
three images with a common overlapping area is available. The method requires processing
only three images for the navigation aiding phase, while the environment representation
refinement (e. g. imagery repository, mosaic) can be performed in a background process
by applying various algorithms (e. g. smoothing, bundle adjustment). Loops in the tra-
jectory are naturally handled, allowing navigation aiding by processing only three images
and thereby reducing the computational load compared to the state-of-the-art techniques
(cf. Section 1.1.3). In contrast to SLAM and bundle adjustment, the suggested approach
eliminates the need for an intermediate phase of structure reconstruction. To the best
of the Author’s knowledge, the concept of utilizing three-view geometry constraints for
navigation aiding, including the well-known trifocal tensor, has not been proposed thus
far for navigation aiding, let alone for handling loop scenarios.

In the next chapters, the dissertation focuses on cooperative navigation. A group
of collaborative inter-communicating platforms is assumed, wherein each platform is
equipped with its own dead reckoning or inertial navigation system, onboard camera,
and perhaps additional external sensors and/or information.

A general MP measurement model that can be used for CN is considered (Chapter 4).
This model relates between the navigation information from any number of platforms and
the actual readings of the onboard sensors of these platforms, which are not necessarily
taken at the same time. For example, the considered MP model can represent relative
pose measurements between pairs of platforms or two-view measurements (cf. Section
1.1.5). In the general case, all the involved sources of information can be correlated.

In addition to the a priori unknown identities of the platforms that participate in
an MP measurement, the assumed general MP model contributes a manifold of a priori
unknown parameters - the time instances that participate in the measurement. These
additional unknown parameters render any approach that is based on maintaining the
correlation terms impractical (cf. Section 1.1.5). Another possible approach to tackle
this problem is to avoid explicit calculation of the correlation terms by applying the
covariance intersection (CI) method [64], or its generalization [65]. CI allows consistent
fusion of different, possibly correlative, sources of information, while the actual correlation
is unknown. However, as reported in [66], [62], CI is incapable of handling partial updates,
i. e., cases in which the measurement matrix contains only a partial representation of the
state vector. Thus, although CI was applied in specific applications [67], [68], the CI
method cannot be applied for the considered general MP measurement model.

In Chapter 4, it is proposed to explicitly calculate the required correlation terms

1.3. Preliminaries 17

based on the MP measurements performed thus far, which therefore need to be stored.
The method is capable of handling general scenarios, possibly involving different MP
measurement models and regardless of the MP measurements that were performed thus
far. The developed method utilizes a graph representation of the history of all the executed
MP measurement updates for calculating the correlation terms. It is assumed that this
graph is maintained by every platform in the group. Its construction and the involved
information that need to be transmitted among the platforms in the group is discussed
in the next chapter.

Chapter 5 builds up on Chapters 3 and 4: The three-view geometry measurement,
originally proposed in Chapter 3 for navigation aiding of a single platform, is extended
for cooperative navigation, while using the approach developed in Chapter 4 to obtain
consistent estimation and data fusion. As opposed to CN methods that rely on relative
pose measurements (cf. Section 1.1.5), in the newly-developed approach the platform’s
camera is not required to be aimed towards other platforms. Instead, a measurement
is formulated whenever the same scene is observed by three views taken by at least two
different platforms, i. e. either each view is captured by a different platform, or two of
the three views are captured by the same platform.

Another key aspect of the proposed method, is that the three images of the same region
are not necessarily captured at the same time. All, or some, of the platforms maintain a
local repository of captured images that are associated with some navigation parameters.
These repositories are accessed on demand to check if a region, currently observed by
one of the platforms, denoted as the querying platform, has been observed in the past by
other platforms in the group. Images containing the same region are transmitted, with
the attached navigation data, to the querying platform. The information received from
other platforms, in addition to the navigation and imagery data of the querying platform,
can be used for updating the navigation system of the querying platform. As in the case
of a single platform, the three-view geometry constrains mitigate the secular growth of
navigation errors of the updated platform, including position and velocity errors in all
axes, without any additional a priori information or any other sensors.

1.3 Preliminaries

1.3.1 Coordinate Systems Definition

Throughout this thesis, the following coordinate systems are used:

e F - Earth-centered, Earth-fixed (ECEF) coordinate system. Its origin is set at the
center of the Earth, the Zp axis coincides with the axis of Earth rotation, Xg goes
through the point latitude 0°, longitude 0°, and Yz completes a Cartesian right-hand
system.

18 Chapter 1. Introduction

e L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down
(NED) coordinate system. Its origin is set at the navigation system’s location. X,
points north, Y7, points east and Z; completes a Cartesian right hand system.

e B - Body-fixed reference frame. Its origin is set at the vehicle’s center-of-mass. Xpg
points towards the vehicle’s front, Yz points right when viewed from above, and Zg
completes the setup to yield a Cartesian right hand system.

e (' - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.
X¢ points toward the FOV center, Yo points toward the right half of the FOV and
Z¢ completes the setup to yield a Cartesian right-hand system.

The camera system defined above is used in Chapter 2, while in Chapter 3 the
camera system is redefined.

1.3.2 Inertial Navigation Errors Model

Assuming the platform is equipped with an inertial measurement unit, it is capable of
calculating its navigation solution x, defined as

x = [Pos” V' \IIT}T (1.1)

where Pos, V and ¥ are the position, velocity and angular orientation, respectively. The
position is usually computed in terms of latitude, longitude and height, while the velocity
is expressed in NED system. Denote by x* the (unknown) true navigation solution and let
ymvu represent the IMU measurements. The errors in ypu are modeled by an unknown
vector of parameters 3. Denote by 3 the calculated model of inertial sensor errors, used
for correcting the measurements ymvu (cf. Section 1.3.3). In particular, a simple model
of B can be defined as

T

where d;yr € R3 is the gyro drift, and by € R3 is the accelerometer bias. This model
is used throughout this research, except for Chapter 4, in which a general model of 3 is
assumed.

Letting

C(ty) = [xT(te) BT ()] (1.3)

the navigation solution is given by

Clterr) = £(C(k), Y rarv () (1.4)

As common in navigation-aiding techniques, the nonlinear navigation equations, imple-
mented in the strapdown mechanism [1], are casted into a linearized system, which is

1.3. Preliminaries 19

expressed in terms of navigation errors rather than the navigation parameters themselves.
The following navigation error state vector is defined

- X(t)—Xt(t) — _ it
x() = [50~ 50| = -t 15

The evolution of the state vector X can be modeled by the linear time-varying stochastic
model [69], [1]:
X(t) = Qc()X(t) + we(t) (1.6)

where @, is the continuous system matrix and w, is the process noise, which is assumed
to be white and zero-mean Gaussian. This continuous time model can be replaced by a
discrete model

X(tb) = CI)(tm tb)X<ta) + (.U(ta, tb) (17)

where ®(t,,t,) is the discrete system matrix relating the state between any two time
instances t, and ty, t, > t,, and w(t,,tp) is the equivalent discrete process noise. An
alternative representation for ®(t,,t,) and w(t,,), which is also used throughout this
thesis, is ®, 4, and wy, 4, , respectively.

Letting At = t, — t,, the discrete system matrix @ is calculated according to

P = Pt (1.8)

while the discrete process noise w is given by

wltaty) = /t "Bty T (r)dr (1.9)

This discretization process correctly represents the development of X for small time in-
tervals At, or when considering scenarios for which the system (1.6) is time-invariant.

Assuming the specific model of IMU errors, given in Eq. (1.2), the state vector used
throughout this research, except for Chapter 4, is

X = [APT AVT Aw” 4T b7’ (1.10)

where AP € R3 AV € R} AW = (Ag, A0, Ay)T € [0,27] x [0,7] x [0,27] are the
position, velocity and attitude errors, respectively, and d and b are the residual gyro drift
and accelerometer bias, respectively:

with d’,,;, b%,,y being the unknown true values of dyasr, by, The position and velocity
errors are expressed in the NED system, while d and b are given in the body-fixed reference
frame.

20 Chapter 1. Introduction

The continuous system matrix, valid for short periods of operation, significantly
smaller than the Schuler period (around 84 minutes), is given by [1]:

O3x3 I3x3 0O3x3 0O3x3 Osx3
O3><3 03><3 As O3><3 CE
(I)c = 03><3 03><3 O3><3 _C]LB O3><3 (1.12)
O3x3 03x3 0O3x3 0O3x3 0Oszx3
03x3 03x3 0O3x3 0O3x3 0O3x3

where the matrix C¥ is a directional cosine matrix (DCM) transforming from body system
to LLLN system and A, is a skew-symmetric matrix of the specific force vector f =
(fz fy fZ)T, measured by the accelerometers and expressed in the NED system:

0 —fp [fE In Je
A= | fp 0 —fn fe| =CP|f, (1.13)
—fe I~ 0 Ip Iz

While the scenario examples considered in this research indeed satisfy this condition, one
could adopt less degenerated process models (for medium-term and long-term scenarios
[1]) as well. Tt is worth noting that a similar model of the system matrix is widely used
also in the SLAM community (e. g. [70]).

Based on Egs. (1.7), (1.8) and (1.12), it is possible to obtain the following approxima-
tions to the attitude, velocity and position errors:

AW(t,) = —CPdAt+A¥(L,) (1.14)
AV(,) = —%ASCfd(At)Q + [AA®(L,) + CEB] AL+ AV(L,) (115)
1 1
AP(ty) = —EASCLBd(At)?’ +3 [A,A®(t,) + CPb] (At)? + (1.16)
AV (L)AL + AP(L,)

where CB, A,,d and b are evaluated at t,.

1.3.3 Navigation Aiding Concept

The concept of navigation aiding is illustrated in Figure 1.1. The inertial navigation
system typically consists of inertial sensors, whose measurements, y;,,;7, are processed by
the strapdown into a navigation solution [1]. Since the measurements of these sensors are
imperfect, the calculated navigation solution contains errors which are developing over
time.

In navigation aiding, the navigation errors are estimated based on measurements from
external sensors' and other sources of information (such as DTM). In addition to the

IExternal sensors refer to the onboard sensors apart from the IMU, such as: GPS receiver, altimeter,
camera.

1.3. Preliminaries 21

navigation errors AP, AV AW _ it is also common to estimate a parameterization of IMU
errors 3 (cf. Section 1.3.2). The estimated navigation errors are used for correcting the
navigation solution calculated by the inertial navigation system (INS), while the IMU
readings are corrected according to the estimated IMU errors parameterization. The
latter is performed at the sampling frequency of the IMU, which is typically much higher
than the filter frequency.

Inertial Navigation System Pos Pos

Vv Vv
¥ C % ¥ Corrected
Strapdown

Estimated navigation errors

IMU
measurements

External sensors
and additional
information

A,

- . Estimated IMU errors
Filter parameterization

>)

Figure 1.1: Illustration of the navigation aiding concept.

Chapter 2

Navigation Aiding Based on Coupled
Mosaicking and Camera Scanning

Contents
2.1 Method Overview0ttt i i it 24
2.2 Camera Scanning Procedure and Mosaic Construction Method 26
2.2.1 Scanning Procedure 26
2.2.2 Mosaic Construction Method 28
2.3 Image-Based Motion Estimation 33
2.3.1 Implementation of Motion Estimation Assuming a Planar Scene . 35

2.4 Fusion of Image-Based Relative Motion Estimation with a Nav-

igation System o o o o oo e 37

2.4.1 Fictitious Velocity Measurement 40
2.4.2 Computational Requirements 41

25 Results. i e e e e e 42
2.5.1 Mosaic-based Motion Estimation 44
2.5.2 Mosaic-Aided Navigation 46

2.6 Observability Analysis 0000 60
2.6.1 Numerical Investigation 64

2.7 Conclusions v it e e e e e e e e e e 69

In this chapter it is proposed to utilize an online mosaicking process for vision-aided
navigation, using an on-board gimbaled camera that scans regions in the vicinity of the
platform’s trajectory. Although the developed method can be applied for general cameras
observing general scenes, the focus in this chapter is on cameras with a narrow field of

24 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

view, observing low-texture scenes. Such a constellation is considered challenging, in the
context of motion estimation and navigation aiding, since the typical imagery contains
very limited useful information, e. g. a small number of high-quality features.

The mosaicking and camera scanning processes are coupled, yielding increased over-
lapping regions between the incoming imagery and the mosaic image. This results in im-
proved motion estimation when operating in the challenging scenarios mentioned above.
The mosaic-based estimated motion is fused with an inertial navigation system, thereby
reducing navigation errors in some of the parameters of the state vector.

As discussed in Section 1.2, the environment mapping, represented by a mosaic, is sep-
arated from navigation aiding (in contrast to SLAM), resulting in reduced computational
requirements. Consequently, two types of mosaics are constructed: A small, temporary
mosaic is computed in real-time based on recently captured images, and a larger, main
mosaic is computed in a background process including all the images. The motion es-
timation and navigation aiding are performed on the temporary mosaic, while the main
mosaic may be used for global navigation.

The correlation terms between the navigation system and the mosaic construction
process are not maintained in the proposed approach. The advantage of this architecture
is the low computational load required for navigation aiding. However, the accuracy of
the proposed method could be compromised compared to bearing-only SLAM.

2.1 Method Overview

Figure 2.1 shows the main components of the architecture under consideration. The spe-
cific system assumed in this chapter is an airborne platform equipped with a gimballed
camera and an inertial navigation system. Throughout this chapter, a narrow-FOV cam-
era is assumed, since it is more realistic than a wide-FOV camera for many cases of
practical interest. As mentioned above, a narrow-field makes the VAN and the image-
based motion estimation problems more challenging. However, the proposed method is
not restricted to cameras with narrow FOV, and is valid for other cameras as well. In
addition, it is assumed that the observed ground area is sufficiently close to being pla-
nar, or alternatively, that the flight altitude above ground level is high relative to ground
changes in elevation®.

The INS consists of an inertial measurement unit and a strapdown algorithm. The
strapdown algorithm integrates the accelerations and angular rates (or rather, the ve-
locity and angular increments) from the IMU to produce a navigation solution, which
is comprised of platform position, velocity and attitude. Due to the unavoidable errors

!This assumption is made due to the construction process of the mosaic image, which is based on the
homography transformation. However, the proposed approach for fusing image-based motion estimations
and navigation data may be also applied without constructing a mosaic image, in which case non-planar
scenes can be handled as well (cf. Section 2.5.2.2).

2.1. Method Overview 25

Inertial Navigation System

Scanning | IMU
Procedure measurements

Camera
Angles

Camera
Strapdown

Image -» |EKF

Temporary Mosaic Mosaic
Construction Construction

Motion Estimation o

Image Processing Module

Figure 2.1: Overview of the system concept.

of the IMU sensors, the computed navigation parameters develop errors which increase
unboundedly over time. It is well-known (cf. Section 1.3.2) that for relatively low-grade
inertial sensors, errors grow proportionally to time cubed, and hence an uncompensated
inertial solution becomes useless in a relatively short period of time.

During the flight, an on-board camera captures images of ground regions according to
a scanning procedure. The acquired images are directed to the image processing module
that is accountable for mosaic image construction and for relative motion estimation.
While all the images are used for updating the mosaic image, the motion estimation is
performed at a lower frequency, utilizing only some of the images.

The mosaic construction is coupled with the camera scanning procedure, and is pro-
cessed in two phases: 1) The camera-captured images are used for constructing a small
temporary mosaic image. This temporary mosaic image is used for motion estimation at
appropriate time instances. 2) After each motion estimation event, the temporary mosaic
image is emptied and initialized to the most recent camera-captured image, while the
removed images from the temporary mosaic image are used to update the main mosaic
image in a background process.

The image-based motion estimation is reformulated into measurements, which are then
injected into an implicit extended Kalman filter (IEKF) in order to update the navigation
system and thereby arrest the development of inertial navigation errors.

In this chapter, the camera is assumed to be mounted on gimbals, capable of perform-
ing pan and tilt movements with respect to the platform. The camera pan and tilt angles
between B and C' coordinate systems are denoted by ¢ and 6¢, respectively.

26 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

2.2 Camera Scanning Procedure and Mosaic Con-
struction Method

This section presents a detailed description of the camera scanning and mosaic construc-
tion procedures. Each procedure by itself is simple and several variations have appeared
in the literature before. The section hence focuses on the coupling between scanning and
mosaic image construction, in particular on the aspects that allow improving the accu-
racy of the motion estimation in challenging scenarios such as narrow-FOV cameras and
low-texture scenes. In addition, it will be shown that relatively large ground areas may be
represented in the mosaic image without restricting the trajectory of the platform. More
sophisticated camera scanning methods may be considered, for instance those exploiting
the coupling with the platform trajectory or maximizing the ground coverage, but are left
for future studies.

2.2.1 Scanning Procedure

During flight, the onboard camera captures images of the ground according to commands
either from a human operator, an autonomous tracking algorithm of some features on
the ground, or a scanning procedure. Figure 2.2(a) shows a schematic illustration of the
implemented scan procedure. When captured, each new frame is processed and used to
update the mosaic image of the flight area. A detailed discussion of the on-line mosaic
construction appears in Section 2.2.2.

As can be seen, each image partially overlaps the preceding image as well as images
from the previous scan stripe. The existence of overlapping regions is essential for per-
forming image matching between captured images. In addition, and as opposed to most
motion-from-structure methods, the additional overlapping region, provided by the cam-
era scanning procedure, enables enhancement of motion estimation, as will be seen in
Section 2.3. The proposed scan pattern also allows implementation of improved mosaic
construction methods.

We assume that the scanning procedure modifies the pan angle of the camera, 1., while
keeping the camera tilt angle constant, as shown in Figure 2.2(b). Given camera angles
at the current time instant, the calculation of camera angles for the next time instant is
performed in two steps. First, the line-of-sight (LOS) vector for the next camera aiming
point in the body-fixed reference frame, t7, is determined according to

[f, d-CCDy_/2, 0]"
H[f, d-CCDy,/2, O]TH

¥ = CF (¢.) (2.1)

where C§(1.) is the DCM transforming from the camera reference frame to the body
frame, computed based on current camera angles; f is the camera focal length; d is
the scan direction, so that d = 1 for increasing the camera pan angle and d = —1 for

2.2. Camera Scanning Procedure and Mosaic Construction Method 27

Flight
direction

Camera

aiming poinﬁo/
o<

Flight
direction

Ground
footprint

optical axis
Xe
(a) (b)

Figure 2.2: (a) A schematic illustration of the scanning procedure. (b) Definition of the
camera coordinate system and a schematic illustration of camera angles during the scan
procedure.

decreasing the camera pan angle; and CC Dy, is the size of the camera charged coupled
device (CCD) in pixels along the Y axis.

The next step is to compute the new camera angles from #°. The DCM transforming
from B to C' can be written as

0 sine. cos,
CE(e)= | 0 costp, —sinf, (2.2)
-1 0 0

Since the aiming point vector in C' is, by definition, [1 0 O]T, one can write

22 = CYW)[1 0 0]" = [0 singe cost]’ (2.3)
hence AB(2)
wc = tan~ |:f‘B(3):| (24)

The scanning direction, d, is switched once the camera pan angle, 1., reaches a certain
pre-specified level; this level is constrained by the corresponding gimbal limit but may be
smaller than this mechanical limit.

For simplicity, it is assumed implicitly that the velocity-over-height ratio and the cam-
era sampling frequency provide sufficient overlapping regions between each two adjacent

28 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

images along the flight direction. Thus, the proposed scan methodology moves the cam-
era only in a direction perpendicular to the flight trajectory. Notice that in a practical
application this imposes a complex trade-off among flying altitude over ground, platform
speed, FOV, scanning slant angle and resolution. However, the method presented here
may be adjusted to work with a relaxed version of the assumption. Note also that no
additional or a priori information is required.

2.2.2 Mosaic Construction Method

We shall now present a detailed description of the mosaic construction method using the
camera scanning method described in Section 2.2.1. It is worth stating that, besides being
used for navigation aiding as described in this chapter, a mosaic image of the overflown
ground region constitutes an important aid to surveillance and mission operation.

During the scan, images are captured using varying camera angles. While all the
images contribute to the construction of a mosaic, in the current implementation only
images taken while the camera was pointing downwards are used for motion estimation.
These images are referred to as downward-looking images.

Figure 2.3 provides a block diagram of the implemented mosaic construction process.
Two mosaic representations are constructed in the proposed approach: a temporary mo-
saic image that is used for motion estimation, and the main mosaic image which is the
final mosaic image constructed based on the captured images.

The temporary mosaic image is initialized to a downward-looking image, once such an
image is captured, and is updated with new non-downward-looking images. When a new
downward-looking image is captured, it is matched to a relevant region in the temporary
mosaic image, which is calculated utilizing information from the navigation system. Next,
motion estimation is performed, as will be discussed in Section 2.3.

The temporary mosaic image is expressed in the preceding downward-looking image
system, defined as the coordinate system C' of the previous downward-looking image.
Therefore, the estimated motion describes the relative motion performed by the camera
between two adjacent downward-looking images. This estimation will be used to correct
developing inertial navigation errors (cf. Section 2.4).

Due to the coupling between the scanning procedure and the mosaic construction
process, an enlarged overlapping area between the new downward-looking image and the
temporary mosaic image is achieved. This, and the quality of the constructed temporary
mosaic image, are the two factors that allow better motion estimation in certain scenarios,
as will be demonstrated in Section 2.5.1.

After motion estimation is performed, the temporary mosaic image is reset and ini-
tialized to the new downward-looking image. The images that were removed from the
temporary mosaic image are then used for updating the main mosaic image. Since the
main mosaic image is not used for motion estimation, it may be updated in a background
process. This may be performed by applying various algorithms [37], [71], [72], [73], [41],

2.2. Camera Scanning Procedure and Mosaic Construction Method 29

Im — New image

M — Main mosaic image
L — Temporary mosaic image

L_copy — A copy of L

Downward-Looking

Image ?

No Yes

4

AddIm to L Between |Homography | R Motion
3 Imand L Estimation Estimation
Incremental 5
gtween
Eetimation | mena
Background Process

Set

L=Im

(Previous L) Images Update M with
Fusion

‘ images in L_copy

\

Wait for next
image

Figure 2.3: Diagram of the proposed mosaic construction method.

[74], [75], [13], [36], depending on the available computational resources.

It should be noted that loop scenarios may be also handled in this background process
yielding an improved main mosaic image. In case of a loop in the trajectory, motion
estimation and navigation aiding are performed based on the temporary mosaic image,
following the method suggested herein. However, a different approach is required for
utilizing the full potential of the available information in such an event, which is the
subject of Chapter 3.

An example of the mosaic image construction process, based on real images acquired
using the scanning procedure described above, is given in Figure 2.4 and Figure 2.5.
The images were extracted from Google Earth, as detailed in Section 2.5. Figures 2.4(a)-
2.4(d) show the construction of the temporary mosaic image, involving a camera scanning
procedure that is comprised of two non-downward-looking images in each direction. The
temporary mosaic image is initialized with a downward-looking image (Figure 2.4(a)) and
is updated with images until a new downward-looking image is acquired (Figure 2.4(e)).
One can easily notice the enlarged overlapping region between this new downward-looking
image and the temporary mosaic image (Figures 2.4(d) and 2.4(e)). Figures 2.5(a) and
2.5(b) show the update of the main mosaic image, based on images from the temporary
mosaic image, once a new downward-looking image was captured: Figure 2.5(a) is the

30 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

main mosaic image before the update; Figure 2.5(b) shows the main mosaic image after
the update.

The following sections further elaborate on several aspects of the mosaic images con-
struction process. The first step is to briefly review a standard method for estimating a
homography matrix; this is followed by additional implementation details of the mosaic
construction process.

2.2.2.1 Homography Matrix Estimation

The homography matrix [13] is a transformation that relates two images of a planar scene
for a general camera motion. The homography relation is also valid for a three-dimensional
scene if the camera performs a pure rotation, although this is hardly relevant for fixed-wing
aerial platforms. Given some point x in the first image and a matching point x’ in the
second image, both expressed in homogeneous coordinates® [13], the following constraint
can be written for the homography matrix, H:

X, = Hx; (2.5)

where = denotes equality up to scale. The above equation may be written explicitly as

T} hiv hia has| |@
zh| =2 |har hoa hos| |22 (2.6)
Ifo, hs1 hss D33 €3

The entries of H are related to the observed scene plane parameters and to the trans-
lational and rotational motion [14]. Assuming that x = [z,y,1]7, the second image
coordinates (z/,y’) may be computed based on the inhomogeneous form of Eq. (2.6) as
follows [13]:

, o hux A+ hoy + hig
x_é h31x + haoy + has
,®y ho1x + hogy + haos
513_’3 h31@ + haoy + has

(2.7)

~

(2.8)

The homography matrix is used for updating the mosaic with each new image frame,
and also for performing relative motion estimation between these images. There are
various methods for estimating the homography matrix given two partially-overlapping
images. The method used herein relies on [13]: First, Scale Invariant Feature Transform
(SIFT) [76] features and their descriptors are computed for each of the images. If one of

2A homogeneous representation of a point (z,y) € R? is the vector x = [z1, 29, x3]7 € R?, which is
defined up to scale. The homogeneous point (z1,z2,73) represents the point (r1/x3,72/x3) € R In
particular, the homogeneous point (z,y, 1) represents the point (z,y). Homogeneous points with z3 = 0
represent points which lie on a plane at infinity [13].

2.2. Camera Scanning Procedure and Mosaic Construction Method 31

the images is a mosaic image, an overlapping area between the two images is estimated
based on information extracted from the navigation system, and the computation of SIFT
features is performed only on this part of the mosaic image. Next, features from the two
images are matched based on the minimum Euclidean distance of their descriptor vectors,
which yields a set of matched points, S {(x;,x})}%.

As the set S may contain wrong matches (outliers), a robust estimation technique is
applied, which provides a refined set of matched points, R C S. This is performed by
applying the Random Sample Consensus (RANSAC) algorithm [77] for robust estimation
of the homography matrix [13], as described in the sequel. The final step in the homogra-
phy estimation algorithm is to perform least-squares (LS) homography estimation based
on the subset R of feature matches [13].

RANSAC Algorithm for Outliers Rejection

The RANSAC algorithm is applied for rejecting outliers in the matched features set S
over the homography model, as briefly described below. Full details can be found in [13].

First, four feature matches are drawn from the available matched features set S, based
on which the homography matrix, H, is calculated. This homography matrix is then used
to choose a subset of feature matches 7 C & that lie within a predefined threshold,
tinreshola- More specifically, a pair of point correspondences (x,x’) is chosen if

dE(X7 HilXI)Q + dE (X/7 HX)2 < tfhreshold (29)

where dg(.,.) is the Euclidean distance between two points in the same image. The
number of iterations, M, should be high enough to guarantee with some probability p
that at least one of the subsets {7;}., is free from outliers (usually p = 0.99). Let w
be the probability that any chosen feature match is an inlier. Taking into account the
fact that in each iteration 4 feature matches are drawn, the following equation may be
written:

(1-w)" =1-p (2.10)

Let ¢ = 1 — w, i. e. € is the probability that any chosen feature match is an outlier.
Substituting € into the above equation and performing some algebraic operations yields
an expression for M:
_ log(1—p)

log (1—(1— 6)4)
Since € is unknown, it is evaluated at each iteration based on the believed number of
inliers, which is the cardinality of the subset 7, and the overall number of matched points
(the cardinality of the set §). Let the respective number of matched points in 7 and S
be Ly and Lg. Thus, € is calculated at each iteration according to

(2.11)

e=1--"L (2.12)

and is then used to update the parameter M based on Eq. (2.11).

32 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

After M iterations, the subset with the maximum number of point matches is chosen
among {ﬁ}f\il This subset, denoted by R, contains the set of point matches that were
identified by the RANSAC algorithm as inliers.

2.2.2.2 Non Downward-Looking Images

If the new image is a non downward-looking image, the homography estimation is incre-
mental, as described below. The purpose of the incremental estimation is the reduction
of the accumulated alignment errors in the temporary mosaic image, while updating the
mosaic with new non downward-looking images.

The method proposed here is an adaptation of the procedure suggested by [38], [15]
for the camera scanning method used herein. Denote by r the index of the most recent
downward-looking image, defining the reference frame in which the current temporary
mosaic image is expressed. Each new image [, which is a non downward-looking image, is
matched against the previous image I;,_1, yielding a homography between these two images
Hy_.._1. The next step is to calculate an intermediate homography matrix between the
new image [, and the current temporary mosaic image, relying on information computed
for the previous image I_1:

Hi_, =Hy 1 Hpp (2.13)

where Hj_ 1, is the homography matrix transforming from the previous image, Ij_1,
to the current temporary mosaic image. This homography matrix was calculated and
saved while processing image [,_;. Once this homography is available, the new image
I}, is warped towards the temporary mosaic image using the homography matrix H} ,
yielding the warped image]NIZ

Ideally, the warped image and the temporary mosaic image should be aligned; however,
this is usually not true in practice due to homography estimation errors. To improve
the estimation, a correction homography between the warped image, I, i, and the current
temporary mosaic image, is estimated by applying the standard homography estimation
technique discussed in Section 2.2.2.1 on these two images. This homography, H..., is
used to correct the estimated intermediate homography matrix between the new image
and the temporary mosaic image,

Hk—>'r = Hcorr : Hk/'[*)'," (214)

Finally, the new image, I, is warped towards the current temporary mosaic image using
the improved homography matrix, Hy_,,, followed by an integration of the two images
into an updated mosaic, using one of the available techniques [37], [13]. In addition, Hj_,,
is saved for future use with new non downward-looking images. The process repeats for
an each new image that was not taken when the camera was looking downward.

2.3. Image-Based Motion Estimation 33

2.2.2.3 Downward-Looking Images

Once a new downward-looking image, I, is captured, a direct estimation of the homogra-
phy matrix (cf. Section 2.2.2.1) relating this new image to the current temporary mosaic
image is performed. During this process, only part of the temporary mosaic image is used.
Since height above ground level is unknown, this region may be approximately calculated
based on the platform current heading and altitude. The estimated homography matrix
is then used for motion estimation (cf. Section 2.3). The next step is to remove all the
images from the temporary mosaic image and to initialize it with I;.

Let r denote the index of the previous downward-looking image. Now, the images
{L;}¢, ., should be used for updating the main mosaic image. This may be performed
in a background process, using various approaches, since the main mosaic image is not
required for motion estimation. The approach that was implemented in this work is to
use the incremental homography estimation technique, discussed above, for adding the
images {I;}¢, ., to the main mosaic image.

(e)

Figure 2.4: Mosaic images construction example. (a)-(d) Temporary mosaic image con-
struction. (e) A new downawrd-looking image. An enlarged overlapping area between
this image and the temporary mosaic image is shown in (d) and (e).

2.3 Image-Based Motion Estimation

This section focuses on motion estimation based on a previously-estimated homography
matrix. The camera motion between any two views of a planar scene, related by a

34 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

Figure 2.5: Mosaic images construction example. (a) Previous main mosaic image. (b)
Updated main mosaic image based on images from the temporary mosaic image (Figure
2.4(d)) and the new downward-looking image (Figure 2.4(a)).

homography matrix H, is encoded in H according to [14]:
H=K {R —-n] K (2.15)

where K’, K are the calibration matrices at two image time instances, assumed to be
known, t is the translation vector, R is the rotation matrix, z is the scene depth and
n is a unit vector normal to the scene plane. Since the process of motion estimation is
based only on the information provided by the camera, the translation motion between
two images can be estimated only up to scale (i. e. only the translation direction can be
estimated).

A method for extracting the motion parameters from Eq. (2.15) was suggested in [14],
where it was proven that there are at most two valid sets of solutions (t, R,n). The

2.3. Image-Based Motion Estimation 35

correct solution out of these two alternatives can be chosen based on n while relying
on previous estimates [14]. The implementation of the estimation process in this work
involves yet another phase, which will be described in the next section. This phase allows
improved precision motion estimation assuming a standard approach for estimating the
homography matrix (cf. Section 2.2.2.1).

It should be noted that any two views of a non-planar scene are related through the
more complex epipolar geometry, from which relative motion parameters may be extracted
as well [13] via, e.g., the fundamental matrix. However, when assuming a narrow-FOV
camera, the epipolar geometry method tends to become ill-conditioned, due to the limited
ground information captured by the camera, resulting in a semi-planar scene.

2.3.1 Implementation of Motion Estimation Assuming a Planar
Scene

As mentioned in Section 2.2.2.1, the homography estimation process involves the
RANSAC algorithm for robust outliers rejection. The output of this algorithm is a subset
R = {(x;,x/)}2%, R C S, of feature matches that are considered to be inliers. These
are then used for LS estimation of the homography matrix. When considering ideal fea-
tures, this process yields the same results when executed several times. However, the
solution varies from one execution to another for noisy data (for a given threshold value),
since each execution may yield a different features subset group, and hence a different
estimation of the homography matrix (and motion parameters).

More specifically, assume that the extracted SIFT features image coordinates are cor-
rupted by noise. As a consequence, the computed set of all point matches S = {(x;, x})}**,
is also corrupted by noise, and in addition may contain false matches (outliers). In each
iteration of the RANSAC algorithm, four point matches are drawn and used to compute
a homography matrix, which is then utilized to construct a subset 7 of point matches
that are consistent with this homography matrix. Thus, a pair of point correspondences

(x,x’) is chosen if Eq. (2.9) is satisfied:
dE(X7 H_lxl>2 + dE(X/’ HX)2 < t?hreshold (216)

Consider such two different iterations yielding the subsets 7; and 73, and assume that
these subsets do not contain any false matches. In each of these subsets, the homography
matrix was computed based on a different set of drawn 4 point matches. These two
homography matrices, H; and H,, are expected to be different, despite the fact that they
were computed based on inlier point matches, since all the features in S, and in particular
the drawn features, are corrupted by noise.

In the next step of the RANSAC algorithm, all point matches in S are checked for
consistency with the homography matrix, H;,i = {1,2}, according to Eq. (2.16). Only
point matches that agree with the condition (2.16) are added to the subset 7;. Since both

36 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

homography matrices are legitimate but different, it is obvious from Eq. (2.16) that the
two subsets T; and T, will be identical for a sufficiently large value of ¢ csn0iq- However,
decreasing the value of tipresnoq Will yield different subsets 77, T3, starting from some
critical value. This critical value is influenced by the image features noise characteristics,
and is therefore a function of the observed scene: high-texture scenes are likely to be
corrupted with less noise compared to low-texture scenes, since in the former case the
features can be localized with improved precision. Thus, a specific value of t,,.csnoiq might
yield identical subsets 77, 75 in certain scenarios, and different subsets in other scenarios.

The above conclusion is valid also for the output from the RANSAC algorithm (the
inliers subset, R), as it is merely one of the subsets constructed during its iterations.
Thus, sequential activation of the RANSAC algorithm might give different subsets of R,
meaning that the LS homography estimation will yield a number of different homography
matrices { H;}, and consequently, a set of motion parameters extracted from each homog-
raphy matrix H;. This process of homography matrix estimation, involving a sequential
execution of the RANSAC algorithm, is denoted in this section as sequential homography
estimation.

Given the set of motion parameters, {(t;, R;, ni)}éil, obtained from the sequential
homography estimation process, one can employ different logic for automatically choosing
the most accurate motion estimation. The logic implemented in this work consists of the
following steps.

Denote |q| = |[q1,..., @] £ [lal,- -, lgn|]". Define the mean unit vector normal
to a scene plane, based on the normal unit vectors {nfm”}?;p{“ from estimates of Npye,

previous images, as

ENp're'u prev
nprev _ =1 7 (2 17)
we N, :
’ ’ E) p{‘ev np’l”e’l) ‘
1= (2

Compute a score for each available solution (t;, R;, n;) based on the proximity of its normal
unit vector n; to the mean unit vector nﬁ”e”:

S; = | < nﬁre”,ni > | (218)

where < .,. > is the inner product operator. Calculate the mean and the standard
deviation (s, s,) of the set {s;}1,, and reject all the solutions whose score is lower than
5, — S,. Denote by N; the number of remaining solutions.

Next, a translation matrix A = (Aq, Az, Ag) is constructed from the absolute values of

the translation motion estimation vectors in the set of remaining solutions (A € RM*3):

[t7]
|t

A= ()\1,)\2,)\3) = X (219)

o

2.4. Fusion of Image-Based Relative Motion Estimation with a Navigation System 37

Each of the A columns is examined for outliers based on the distribution of its values.
More specifically, a histogram of the vector A; is computed over N; slots in the range
[min(A;), max(A;)], followed by a rejection of entries in A; which do not appear in clusters.
Denote by N, the number of remaining solutions after this step was applied on all three
columns of A.

Finally, a solution is chosen among the remaining-solutions set {(t;, R;, n;)}~?,, whose
normal is the closest to nf“’, i. e., a solution with the highest score s;.

If the mean normal vector from previous images is unavailable, a solution (t, R, n) is

chosen whose normal vector n is the closest to the mean normal vector of all the other

solutions in {(t;, R;,n;) f.vjl, i. e., a solution 7 that maximizes < n;,n, > where n, is
defined as N
2 21|nz|
n, = (2.20)
S]

The sequential estimation process of the motion parameters described above is sum-
marized in Algorithm 1. The improvement in the estimation precision is demonstrated in
Section 2.5.1.

Algorithm 1 Sequential Estimation of the Motion Parameters
1: Run N times the homography estimation routine, given in Section 2.2.2.1, and cal-
culate the solution set from the estimated homography matrices: {(ti,Ri,ni)}f\il.

2: if at least one image was already processed then
Compute a score s; for each solution, based on Egs. (2.17) and (2.18).
Reject solutions whose score is lower than s, — s,, where (s, s,) are the mean and
standard deviation values of the computed set of scores {31}1111
5. Construct a translation matrix A based on Eq. (2.19) and examine each of its
columns for outliers. Solutions that contain outliers are rejected, yielding a refined
set {(t;, Ri, ;) }2, of solutions.
6: if at least one image was already processed then
7. Choose a solution (t, R, n) € {(t;, R;,n;)}~* with the highest score.
8: else
9: Choose a solution (t, R,n) € {(t;, R;,n;)}~? which maximizes < n,n, >, where
n, is computed according to Eq. (2.20).

2.4 Fusion of Image-Based Relative Motion Estima-
tion with a Navigation System

In this section we present a method for fusing the image-based estimated camera relative
motion with a navigation system of an aerial platform. A measurement model is developed

38 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

that relates the image-based estimated relative motion with the accumulating navigation
errors of a standard inertial navigation system. The data fusion is performed using an
indirect implicit extended Kalman filter [78] that estimates the navigation parameter
errors instead of the parameters themselves. These estimated errors are then used for
correcting the navigation parameters. The state vector is given by Eq. (1.10):

— [APT AVT A®T 47 b7’ (2.21)

Once an estimate of X is available, it is used both to correct the output of the navigation
system, and to provide a feedback to the inertial sensors (cf. Figure 2.1): The estimated
position, velocity and attitude errors are used to correct the INS output. These com-
ponents in the state vector are then reset, since they have been incorporated into the
navigation system, i. e. the first 9 components of the a posteriori estimation at some time
instant ty, Xk|k, are set to zero. The covariance matrix is not changed, so it represents
the uncertainty in the platform’s navigation parameters estimation, i. e. the navigation
errors. In addition, the IMU measurements readings are corrected with the most recent
available estimations of drift and bias parameters at the frequency of the inertial sensors
readings®, which is much higher than the frequency of the IEKF updates.

It is worth stressing that the state vector is a constant-size vector, X € R!. Another
possible approach is to use a direct data-fusion technique and relate the vision-based esti-
mated motion to an augmented state vector comprised of the platform current parameters
(e. g. position, velocity) and past poses for each captured image [12]. Yet, as in the case
of SLAM methods, this approach requires increasing computational resources (since the
state vector size increases with time), and therefore the use of the indirect fusion approach
with a constant-size state vector is preferred.

It is assumed here that the relative motion parameters between each two image time
instances, ¢ = t; and t = t,, were already extracted by the image processing module.
Thus, the camera relative rotation matrix, RC , transforming from the camera axes at
time ¢y to the camera axes at time t;, is known. In addition, the relative translation,
f:lci2, is known up to some scale, 7y

The estimated relative motion is reformulated into residual measurements Z,qnsiations
Zrotation, Which are injected into the filter:

Ne!
Ziranslation = [POSNav<t2) - POSNaU(tl)]L2 X Cg;]v(wtliz (2223)
—1 | D(3,2)
tan [DG 3)} .
Zyotation — —sin~ [()] CCl Nav |:RC’fi| (222b)
—1 | D(1,2)
tan~! [D(1 1)}

3 Another possible variation of this is to estimate the residual bias and drift values, while maintaining
the estimations of actual bias and drift parameters outside the filter, as discussed in Section 1.3.2. In
this case the whole state vector should be reset after each update step.

2.4. Fusion of Image-Based Relative Motion Estimation with a Navigation System 39

where ng is the DCM transforming from C' to LLLN at the time instance t = t; Tgf
is the DCM transforming from C at t = t5 to C' at t = t;; and Pos is the platform’s
position. The subscript Nav denotes the parameters that are taken from the navigation
data.

The state vector and the residual measurements are related via a measurement equa-
tion

Zyotation Voot

7 - (Ztranslation) _ HX+ (V”) (223)

where H is the measurement matrix

Osxs HXy HXy HY HET}
H = , 2.24
|:03><3 Osxz HXG Hi 0O3xs (224)
vy, is given by
~C
Vir = [POSTTUG(tQ) - POSTT’UE(tl)]L2 X [CZC/;Q,Navtliﬂ - ng,Truet?iQ,True]) (225)

and v, represents rotation motion estimation errors and linearization errors. Note that
since an IEKF formulation is used, the measurement noise terms are not necessarily white
[4]. The development of the above measurement equation and the explicit expression for
H are given in Appendix A.

The estimated state vector is initialized to zero, since the actual initial navigation
errors are unknown, while the estimation error covariance matrix is set to the believed
levels of navigation errors. Although these values are usually known from the performance
specifications of the inertial sensors, in all practical applications the initial covariance and
process noise covariance matrices are adjusted during the tunning process.

The propagation step involves computation of an a priori covariance matrix Ppyqx
according to

Prapp = @(k + 1, k) Py ®” (k + 1, k) + Q. (2.26)

where ®(k + 1, k), Py, Q@ are the process discrete system matrix, a posteriori covariance
matrix, and the discrete process noise covariance matrix, respectively. The discrete system
matrix ¢ is given by Eq. (1.8). The discrete process noise covariance matrix () can be
calculated as

Q= / " Bty 1) 0.ty 7Y dr (2.27)

with Q. = Elw.w!] and w, being the continuous process noise (cf. Section 1.3.2). In
practice, however, () is set during the filter tuning process.

The propagation of the state vector is given by

Xirip = Ok + 1, k)X (2.28)

40 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

However, since the first 9 components of Xk‘k are used for correcting the strapdown
integration (see above) after the update step and then reset, and the other 6 components
are random constants (i. e., Xy, = [01x9 d” b?]7), Eq. (2.28) is equivalent to Xy =
Xk|k-

After performing the propagation step, a measurement update is performed given the
motion estimation (t%2,, Rgf) from the image processing module. First, the Kalman filter
gain matrix is computed according to

-1
K1 = Py Hiy [Hesr Poran]y + Riqa (2.29)

The matrix Ry41 in Eq. (2.29) is a measurement noise covariance matrix, which is of the
following block-diagonal form:

(2.30)

Ry = {Rﬁl OBXS]

rot
O3xs 1%

where R, R™" are the translation and rotation measurement noise covariance matrices,
respectively. While R™" is a constant matrix, an adaptive translation measurement noise
covariance matrix R is calculated based on Eq. (2.25):

R" = — [Posk?, (t,) — Poskz, (t,)]" R [Posk2, (t,) — Poskz (,)]" (2.31)

where R®' is a 3 x 3 tuning matrix that represents the level of accuracy in the vision-
based estimation of the translation direction and (.)" denotes the matrix cross-product
equivalent. For example, in the experiments with real imagery presented in Section 2.5.2,
it was assumed to be close to I3x3. It should be noted that the matrices R®*, R™" may
also be estimated as part of the image-based motion estimation procedure [16].

Once the gain matrix K is available, a posteriori values of the state vector and covari-
ance matrix are computed using the standard IEKF formulas [78], [4]:

Xk+1\k+1 = Xk+1|k+Kk+1Zk+1 (2.32)
Peiiprt = [= K1 Hyst] Poyaw [— KprHi]' + K R Ky (2.33)

2.4.1 Fictitious Velocity Measurement

Some of the errors in the image-based relative motion estimation may be projected onto
the unobservable states, analyzed in Section 2.6, and yield poor estimation performance
even when compared with the pure inertial case. In order to mitigate this phenomenon,
several heuristic methods may be considered. For the current implementation, a fictitious
ideal velocity measurement was used in addition to the relative motion measurements to
overcome the scaling ambiguity, so that

(Vi

true

)TAV =0, (2.34)

2.4. Fusion of Image-Based Relative Motion Estimation with a Navigation System 41

Namely, the velocity errors in the direction of the flight are assumed to be zero, and hence
errors from the image-processing block are essentially not projected onto this direction.
The term VI _ refers to the true value of the platform velocity in the LLLN system.
Since this velocity is unknown, it is replaced by the platform velocity V¥ taken from the
navigation system.

A Kalman filter gain matrix, K, is computed according to Eq. (2.29) based on an a
priori covariance matrix Pji1s, an augmented measurement matrix, H,,, = [HT, H!]",

and an augmented measurement noise covariance matrix, R4y, where
Hy, = [01.3 (V) 0O1x3 O1xs Ops) (2.35)

and H is the measurement matrix of Eq. (2.24).
The augmented measurement noise covariance matrix R, is given by
R 0 }

Raug - |:01><3 R»U (236)

where R is given in Eq. (2.31) and R, is the fictitious velocity (FV) measurement noise
covariance matrix, which constitutes a tuning parameter. Small-valued entries in R,
indicate that this additional measurement is reliable, and therefore other measurements
will have a minor influence on the entries of the gain matrix K, corresponding to position
and velocity along the flight heading. This, in turn, prevents from erroneous image-based
relative motion measurements to affect the unobservable states.

Once K is computed, the column related to the fictitious velocity measurement is
discarded; in this way, the measurement limits the corrections in the direction of the
flight but does not render the problem inconsistent, since the measurement is not actually
performed. The advantage of using the FV measurement is demonstrated in Section
2.5.2.2 for vision-aided navigation using two-view based motion estimations; thus, all the
results of mosaic-aided navigation, presented in Section 2.5.2.3, were obtained with the
FV measurement active. Note that the FV measurement does not limit the platform’s
motion to any specific type. This is in contrast, for example, to nonholonomic constraints
that may be applied only for land vehicles [79]. In addition, due to the varying quality
of the image measurements (cf. Section 2.5.1), a measurement-rejection mechanism must
also be used to avoid fusion of low-quality measurements or other outliers.

2.4.2 Computational Requirements

The overall computational requirements of the proposed navigation aiding architecture
consist of applying a standard Kalman filter for constant-size state and measurement
vectors of 15 and 6 elements, respectively, and of the image processing phase. The latter
consists of a temporary mosaic image construction, which is limited to a few images (4 in
the current example), and of motion estimation. The main mosaic image is not used in
the navigation aiding scheme.

42 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

As discussed earlier, the inclusion of a new image into a temporary mosaic image in-
volves the computation of SIFT features, estimation of the homography matrix, warping
the new image and fusing the two images. Only a partial area in the temporary mosaic im-
age is used for calculating SIFT features. These operations require modest computational
resources and pose no difficulties for real-time operation.

In conventional SLAM, as opposed to the proposed method the state vector is aug-
mented with relevant data from each captured image, and thus the whole state vector
needs to be updated each time. Denoting by d the number of elements that are added
to the state vector once a new image is acquired, SLAM generates, after 100 seconds of
flight (assuming the same image sampling frequency of 5 Hz) a state vector of 15 + 500d
elements that should be processed in real time, which is far more demanding than ap-
plying a Kalman filter to a 15-element state vector and constructing a temporary mosaic
image? (cf. Section 2.4.2), as suggested in the new approach.

2.5 Results

This section contains simulation and experimental results of the presented mosaic-aided
navigation method. The simulation is comprised of the following modules: A navigation
module, a camera scanning module, and an image processing module.

The navigation phase consists of the following steps: (a) Trajectory generation; (b)
velocity and angular velocity increments extraction from the created trajectory; (¢) IMU
error definition and contamination of pure increments by noise; and (d) strapdown calcu-
lations. The strapdown mechanism provides, at each time step, the calculated position,
velocity and attitude of the platform. In parallel to the strapdown calculations, at a
much slower rate, Kalman filter calculations are performed based on the available mea-
surements. At the end of each filter cycle, the strapdown output is updated with the
estimated state vector of the filter. See also Section 1.3.3.

The camera scanning module provides camera angle commands that yield a continuous
scan, according to the camera scanning procedure discussed in Section 2.2.1.

The image processing module constructs mosaic images and performs motion estima-
tion each time a downward-looking image is acquired (cf. Sections 2.2.2 and 2.3). The
inputs to this module are real images obtained from Google Earth® based on the proposed
camera scanning procedure. In addition, the module is capable of calculating an ideal
camera motion based on the true platform trajectory, without actually using any real
images. Naturally, in this mode of operation the mosaic images are not constructed. The

4The construction of the main mosaic image in a background process may involve different algorithms.
However, while some of them may be computationally expensive (such as global optimization), they are
to be applied only in case of a loop in a trajectory, or in some low frequency. This is in contrast to the
constantly increasing high-computational requirements of the update step in the SLAM approach.
Shttp://earth.google.com/index.html, last accessed June 2009.

2.5. Results 43

Table 2.1: Trajectory Parameters

Parameter Description Value Units
A Initial latitude 32.8285005298 deg
A Initial longitude 35.1479222075 deg
alt Initial altitude above sea level 1500 m
\%& Velocity in LLLN system (100,0,0)" m/s
Y Platform attitude (0,0,0)" deg

ideal motion estimations are used as baseline for evaluating the best possible performance
of the proposed method, since motion estimation based on real images will be imperfect.

The experiments presented in this section are based on real image sequences acquired
using Google Earth, which contains 3D geo-data of Earth based on real imagery, i. e. a
3D environment based on real images and a digital terrain model. For this purpose, an
interface that bridges between the navigation simulation and Google Earth was developed.
The interface allows to obtain images from Google Earth at specified camera position and
attitude, further details are provided in Appendix A.3.

It should be noted that any two images of the same ground region observed from
different viewpoints will yield a correct relative image transformation. However, this
approach does not mimic real-world images perfectly, since it lacks the effect of lighting
variations when some region is observed from different directions. Yet, since the presented
trajectories do not involve loops®, the implemented camera scanning procedure will take
different images of the same ground region under similar conditions. Thus, the effect of
varying lighting conditions is expected to be marginal.

Unless otherwise stated, the experiments presented in this chapter were conducted
while the platform performed a straight-and-level north-heading trajectory, whose initial
conditions are given in Table 2.1. The observed scene along this trajectory is of a planar
nature with about 50 m elevation above sea level.

The results are presented in the next sections. Improved image-based motion estima-
tion when handling difficult scenarios is demonstrated in Section 2.5.1. Next, results of
vision-aided navigation are shown in several steps. First, statistical results of fusing ideal
motion estimations with an INS are presented. Section 2.5.2.2 demonstrates the improve-
ment in navigation performance when using the FV measurement. Finally, Section 2.5.2.3
presents results of mosaic-aided navigation.

6 As mentioned in Section 2.2.2, the described method in this chapter is not intended for handling loop
scenarios. These scenarios can be handled using the algorithm presented in Chapter 3.

44 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

2.5.1 Mosaic-based Motion Estimation

Before presenting the results for mosaic-based motion estimation, we demonstrate the im-
provement in the precision of motion estimation when applying the sequential estimation
procedure, summarized in Algorithm 1. In the current implementation, this routine was
executed with N = 10.

Figure 2.6 presents the results of translation motion estimation when a low-texture
scene is observed by a narrow-FOV camera. A pair of such images are shown in Figures
2.6(a) and 2.6(b).

The improvement in the estimation precision is clearly evident in Figure 2.6(c), where
the same pair of images was used to perform motion estimation with and without the
sequential estimation procedure. The figure presents a cumulative distribution function
(CDF) of errors in the estimation of the translation direction; the z-axis values represent
different thresholds of errors (in degrees), while the y-axis represents the percentage of
estimations with an estimation error lower than the threshold values.

The results in Figure 2.6(c) were obtained by retrieving motion parameters from a
conventionally-estimated homography matrix (cf. Section 2.2.2.1) and by applying the
sequential estimation procedure of motion parameters (Algorithm 1). Both of the methods
were executed 100 times on a pair of low-texture images taken with a 7° x 4°-FOV camera
(Figures 2.6(a) and 2.6(b)). The advantage of the sequential estimation method is signif-
icant. For example, nearly 80% of the estimation errors were below 20° when applying
sequential estimation, compared to only 50% with a standard homography estimation.

Next, the performance of the proposed mosaic-based motion estimation method is
presented. The results are compared with a standard two-view method, in which the
motion estimation is based on camera-captured images, without constructing the mosaic
image.

In both cases the motion parameters are estimated using the proposed sequential
estimation method. Image sequences were acquired from Google Earth, using the same
trajectory, for each of the examined motion estimation methods: Images for the traditional
two-view motion estimation method were captured using a constant downward-looking
camera at a 1 Hz frequency, while images for the mosaic-based motion estimation method
were captured according to the camera scanning procedure at a 5 Hz frequency. Among
all the images acquired during the camera scanning, the downward-looking images were
captured every second, and therefore motion estimation in the mosaic-based method was
also applied at a 1 Hz frequency (cf. Figure 2.3).

The results are presented in Figure 2.7, showing the CDF of the translation direction
estimation error and of the rotation estimation error. The shown rotation error is the
maximum value of the error in the estimated rotation vector, i. e.

An = max(|Ag|, |Ad|, |AY)| (2.37)

where A¢, A, A are the Euler angle errors of the estimated rotation matrix, computed

2.5. Results 45

(a)

100

—A— Standard estimation D
—O— Sequantial estimation

80

60

CDF [%]

40¢

20¢

5 10 15 20 25 30
Error in translation direction [Deg]

()

Figure 2.6: (a),(b) Images of a low-texture scene captured from Google Earth by a 7° x 4°
FOV camera. (c) Motion sequential estimation vs. standard estimation over the pair of
images presented in (a),(b): CDF of the translation direction estimation error. Signifi-
cantly improved estimation accuracy in favor of sequential estimation.

from the DCM R,,,:
Re'rr = Rtrue : RT (238)

Here Ry and R are the true and estimated values of the rotation matrix, respectively.

It is important to understand when the mosaic-based method is expected to outper-
form the two-view-based method. In the context of motion estimation, the two methods
differ only in the size of the image overlap region. Due to the camera scanning process,
the constructed mosaic image contains an enlarged overlapping region compared to the
overlapping region between two regular images. This region is comprised of the original
overlapping area between two regular images and an additional overlapping region - see
a schematic illustration in Figure 2.2(a) and a mosaic example image in Figure 2.4 and
Figure 2.5. However, since the mosaic construction process is by itself affected by errors,
features from the additional overlapping area tend to be of lower-quality compared to
those from the original overlapping region, while features from the original overlapping
region are of the same quality in both cases (the camera-captured image and the mosaic
image), due to the mosaic construction process (cf. Section 2.2.2). Thus, there is an in-

46 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

herent tradeoff: On one hand, the mosaic provides an increased number of features, while
on the other hand, part of the features are of a lower quality. Hence, the performance
of the mosaic-based method is expected to be superior over the two-view framework in
“difficult” scenarios, in which the overlapping region between the two captured images
yields a small number of high-quality features. In other words, it is expected that the
mosaic will outperform the two-view method for the narrow-FOV camera and low-texture
scenes.

The above observation is clearly evident in Figure 2.7, which describes the scenario
of a narrow-FOV camera (5° x 3°) and a low-texture scene. This relatively small FOV
is common in many airborne applications. It can be seen that the mosaic-based motion
estimation yields considerably better results compared to the two-view motion estimation.
For example, in case of the translation direction estimation (Figures 2.7(a)), 50% of
the estimates using the mosaic method are provided with an accuracy better than 15°,
compared to only 20% using the two-view method. As will be seen in the next section,
these motion estimations can be effectively utilized for improving the performance of
navigation systems.

60

o
o

—7— Mosaic framework

—— Mosaic framework 7
) —6— 2-view framework 1

[| —©—2-view framework

~
o

CDF [%]
w
o
CDF [%]
w B a (o2}
o o o o

N
[=]

10t

l‘O 1‘5 26 25 0 5 iO 1‘5 2‘0 25

Error in translation direction estimation [Deg] Max error in rotation estimation [Deg]
Figure 2.7: Image-based motion estimation accuracy for a low-texture scene and a narrow-
FOV camera of 5°x3° (CDF). The mosaic framework significantly improves the estimation
accuracy compared to a traditional two-view method.

2.5.2 Mosaic-Aided Navigation

This section contains simulation results of the developed mosaic-aided navigation method
following the fusion technique discussed in Section 2.4. First, navigation results are pre-
sented assuming an ideal motion estimation (without using any real images). Next, the
contribution of the FV measurement is demonstrated, followed by results of mosaic-aided
navigation. These results are compared to two-view aided navigation. It is noted that
the simulation runs were performed without a captive flight stage.

2.5. Results 47

Table 2.2: Initial Navigation Errors and IMU Errors
Parameter Description Value Units

AP Initial position error (1) (100,100, 100)% m

AV Initial velocity error (1o) (0.3,0.3,0.3)7 m/s

AW Initial attitude error (1) (0.1,0.1,0.1)7 deg
d IMU drift (1o) (1,1, 1) deg/hr
b IMU bias (10) (1,1, 1) mg

The assumed 1o values of IMU errors and initial navigation errors are given in Table
2.2. Actual values of initial navigation errors and IMU errors in the statistical simulation
runs are determined by drawing samples from a zero-mean normal distribution with a
standard deviation o, that is, the value of some parameter s; is drawn according to
si ~ N(0,04,).

The IMU errors are then used for contaminating the pure IMU readings, while the
initial input to the strapdown module is set according to initial platform parameters and
initial navigation errors (cf. Section 2.5).

2.5.2.1 Navigation Performance Using Ideal Motion Estimation

Figures 2.8-2.11 show Monte-Carlo results for a straight and level north-heading tra-
jectory, in which the measurements based on an ideal motion estimation were injected
into a Kalman filter at a 1 Hz frequency. Each figure contains 4 curves: mean (u),
mean+standard deviation (u + o), and the square root of the filter covariance, defined
for the i-th component in the state vector X as /P(i,7), where P is the a posteriori
covariance matrix. In addition, a comparison is provided to an inertial scenario (¢ + o
inertial).

The velocity errors are presented in Figure 2.9. Velocity errors normal to the flight
heading are significantly reduced relative to the inertial scenario; however, they are not
nullified due to errors introduced by expressing the translation measurement in the LLLN
system (cf. Appendix A). It can also be seen that these errors are constant and do
not grow with time. As a consequence, position errors (Figure 2.8) normal to the flight
heading are considerably reduced compared to an inertial scenario. Velocity errors and
position errors along the flight heading are not reduced due to lack of observability, as
analyzed in Section 2.6.

The roll angle error A® (Figure 2.10) is partially estimated and is kept constant
relative to the increasing error obtained in an inertial scenario. While the pitch and yaw
angles errors (A©, A¥) are not estimated, the error growth is restrained relative to the
inertial scenario. This is due to a precise estimation of the drift state d = (d,, d,, d.)”

48 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

(Figure 2.11), that was obtained since ideal rotation motion estimation is used. However,
when real images are used, the obtained precision of rotation motion estimation, in the
current implementation, is insufficient for estimating the drift state (see also Section
2.5.2.2). The bias state, b = (b,, b,,b.)7, is estimated in the z-direction (Figure 2.11). In
general, the filter covariance is consistent with the actual 1o errors.

—_— +0 = = =Filter == +0 Inertial
_ 2000 al— ‘ a
E,
E 1000t ce=="]
o R - -
z () e st
0 50 100 150 200
—. 1000
E,
@ 500) NS -
. ‘ e mememememeaa
0 50 100 150 200
200 J i ' -
E -l-‘—l-"‘
; 100 L e ey
<
O i . .
0 50 100 150 200
Time [secl

Figure 2.8: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using ideal
motion estimation: Position errors. Errors normal to the flight heading are reduced, errors
along the flight heading are not diminished due to lack of observability.

2.5.2.2 Contribution of the Fictitious Velocity Measurement

This section demonstrates the beneficial effect of the FV measurement on the developing
navigation errors in the unobservable states. Experiment navigation-aiding results are
presented based on Google Earth high-texture imagery, captured by a wide-FOV camera.
Image-based motion estimations, injected to the navigation system, were computed based
on the fundamental matrix model (cf. [13]), without the mosaic construction process.
However, the contribution of the FV measurement is of the same nature when mosaic-
based motion estimations are used.

One of the typical Google Earth images used in the experiment is shown in Figure
2.12. The trajectory in this experiment consists of a straight and level north-heading flight
1600 meters above sea level (height above ground ranges from 600 to 1300 meters) and a
velocity of 150 m/s. The unobservable states for this trajectory are analyzed in Section
2.6. The same IMU errors and initial navigation errors as in Table 2.2 were assumed.

2.5. Results 49

—u

0 50 100 150 200
Time [secl

Figure 2.9: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using ideal
motion estimation: Velocity errors. Errors normal to the flight heading are significantly
reduced relative to the inertial scenario, and are kept constant.

Figures 2.13-2.15 provides the experimental results, comparing between the perfor-
mance with the FV measurement on and off. In addition, an inertial navigation scenario
is presented for reference.

Position and velocity errors (Figures 2.13 and 2.14) normal to the flight heading are
significantly reduced compared to the inertial scenario (regardless of whether the fictitious
velocity measurement was applied or not), as was already demonstrated in Section 2.5.2.1.
The errors along the flight heading (north), which are unobservable, indeed behave as in
the inertial scenario when the fictitious velocity measurement is applied, and are much
degraded when this measurement is not applied. The same applies to the pitch angle
error, AO, as shown in Figure 2.15. It can be concluded that, while the FV measure-
ments prevent the erroneous updates of the unobservable states, they do not deteriorate
estimation of the observable states. Therefore, subsequent results will be presented with
the FV measurement on.

50 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

| —— U =—ut+g = = =Filter 1= = p+o Inertial
3 0.2
T, 0.1 PN i e i o s e e e e e
<3 0
-0.1 ‘ ‘ ‘
0 50 100 150 200
[e— 0_3-------‘------& ----- -ﬁ-m
o 0.2f
S 01
®© 0
-0.1 ‘ ‘ ‘
0 50 100 150 200
0.4 ‘ —— oo e====
§ - Em Em o m W W momom
3, 0.2 .
> 0
0 50 100 150 200
Time [secl

Figure 2.10: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using
ideal motion estimation: Fuler angle errors. Roll angle error, A®, is partially esti-
mated and is kept constant relative to the inertial scenario; pitch and yaw angles errors
(A©, AV), development is arrested.

2.5. Results 51

_ 2 M 2
e 1 —_— (meEmmemeEmeEmeEmmmmEmmm
> 1 wro i 2
T, - = =Filter| =,
== 0 L0
0 100 200 0 100 200
= 2 ‘ S ——
< —
= (@]
g o 0
'c>o 2
-2
0 100 200 0 100 200
—_ 2 21
e — ~
== (@)) S
21 = Mﬂ
g =
o
o 0 >
0 100 200 0 100 200
Time [sec] Time [sec]

Figure 2.11: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using
ideal motion estimation: Drift and Bias estimation errors. Full drift estimation due to

ideal relative rotation measurement. The bias in the z direction is estimated after about
50 sec.

Figure 2.12: A Google Earth image of a high-texture scene, captured with a wide-FOV
camera.

52 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

E 500 - = =Without FV
s Of
g—soo—
=1000 ‘ ‘ >
0 100 200 300 400
£
"r(_é 200 ;’;.— - 4
LLl 0 i
0 100 200 300 400
E 500 —=
= e R
9) -
)
I O ‘ ‘ ‘
0 100 200 300 400
Time [s]

Figure 2.13: Experiment with a wide-FOV camera demonstrating the beneficial effect of
the FV measurement - Position errors. Errors normal to the flight heading are consider-
ably reduced compared to the inertial scenario; inertial behavior of the errors along the
flight heading is obtained if F'V measurement is applied. Significantly larger errors along
the flight heading are obtained if the FV is not applied.

— 20~ " ~Without FV == Inertial —— With FV
% -
E 10 s
> 0 a =~ ‘
0 100 200 300 400
T 0 N~ ———
é _2 i ~.~"~ 4
L \"~
> _4) ‘~, i i
0 100 200 300 400
o
E
) - .-
> _3 i i Nl
0 100 200 300 400

Time [s]

Figure 2.14: Experiment with a wide-FOV camera demonstrating the beneficial effect of
the F'V measurement - Velocity errors. See Figure 2.13 for details.

2.5. Results 53

_ 0.2~ = ~Without FV == Inertial —— With FV L
ﬁ Of
& gL~ T77 ke P =

5 100 200 300 400
= 0
S-02f o omEeeIIiIL ~
© 04 ‘ ‘ R

5 100 200 300 400
= 0
S, -0.2| i
> 04 ‘ ‘ ‘

0 100 200 300 400

Time [s]

Figure 2.15: Experiment with a wide-FOV camera demonstrating the beneficial effect
of the FV measurement - Euler angles errors. Inertial pitch angle error in case the FV
measurement is applied, and enlarged error otherwise (due to enlarged velocity errors
along the flight heading).

54 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

2.5.2.3 Navigation Performance Using Mosaic-Based Motion Estimation

This section demonstrates the superior performance of mosaic-aided navigation over
vision-aided navigation that utilizes two-view motion estimation. The examined sce-
nario consists of a narrow-FOV camera (5° x 3°) and a low-texture scene. The platform
performs a straight and level north-heading flight, as discribed in Section 2.5.

The experiment consisted of 50 seconds of inertial flight, followed by a 50 seconds of
vision-aided phase, during which the mosaic- and two-view-based motion estimations were
injected into the navigation system. The last phase is another inertial navigation flight
segment for 50 seconds. Figures 2.16-2.19 provide the experimental results, comparing
the navigation performance for the two examined methods (mosaic and two-view). In
addition, the development of inertial navigation errors is given for reference.

The enhanced performance of mosaic-aided navigation can be clearly seen. During the
vision-aided phase, the position and velocity errors (Figures 2.16 and 2.17) perpendicular
to the flight heading are significantly reduced. The mosaic-based aiding yields better
results than two-view-based aiding, due to more accurate vision-based motion estimation.
It can be concluded from these graphs that the number of measurements accepted by the
filter is considerably higher in case of the mosaic framework (between 60 sec and 80 sec,
all the measurements in the two-view method were rejected by the filter). As for the roll
angle error (Figure 2.18), although this error is smaller with the two-view method, it is
expected to reach higher values if more measurements were accepted by the filter.

When examining the behavior of navigation errors in an inertial segment (after the
vision-aided phase), one can notice the slow development of inertial errors when using
mosaic aiding. The reason for this is the improved bias estimation compared to the
estimation using the two-view method, as shown in Figure 2.19: b, is almost exactly
estimated and thus it does not contribute to the growth of inertial position and velocity
errors in the down axis. The drift state was not estimated at all, because all the relative
rotation measurements were rejected by the filter due to their low quality.

The relative motion measurements have another interesting effect: Although the po-
sition error state is unobservable (cf. Section 2.6), the measurements still reduce, but not
nullify, the position errors (Figure 2.16), due to the developing cross-covariance terms in
the covariance matrix of the state vector.

Figures 2.20 - 2.23 compare the filter covariance to the actual developed errors. As
seen, the covariance is consistent. However, in the last segment of the inertial flight
(after t=100 sec), the covariance development rate does not match the actual rate of the
developing inertial navigation errors. After the vision-aided segment, part of the IMU
error parameters are estimated by the filter (e. g. b,) and are used to correct the actual
IMU measurements. As a consequence, the actual IMU measurements injected into the
navigation system are corrupted by only the residual IMU errors, resulting in a much
slower development of navigation errors. One possible alternative to account for this
behavior is to perform a dynamic adjustment of the filter noise covariance matrix () as a

2.5. Results 55

function of the actual covariance values of the estimated IMU states.

—— Mosaic - - = Inertial ‘= - 2—view‘
= 150 Inertial % Vision—Aided; Inertial
— 100 1
E \
s 501 : 3
2 0 ‘ ‘
0 50 100 150
E 200} el]
dg —'-/;:_;_.;1 T -
w 100 | | 1
0 50 100 150
— 140 ‘ i >
= 120¢ et e T
=) PV SRR |
% 100 i e PR
80 : :
0 50 . 100 150
Time [s]

Figure 2.16: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Position errors.
Inertial error development in the north direction due to lack of observability. Reduced
errors in the east and down directions, with a significant improvement in favor of the
mosaic aiding.

56 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

| —— Mosaic - - = Inertial "= = 2—view|
Inertial o Vision-Aided, _Inertial

— 2

0 4

E 1f ~
>* Of ; ‘ ’

. 05 w ‘
()
0.5} S TR L J
> _1 LTS ~a
0 50 100 150

Figure 2.17: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Velocity errors.
See Figure 2.16 for details.

0.2 | —— Mosaic - = = Inertial ‘= - 2-view
S ' Inertial % Vision—Aided; Inertial
)
5 0
o
-0.2
0
-0.1 —_—
@_ —
3 0.15¢ 1
® o2 ‘ ‘
0 50 100 150
-0.1 ‘ ‘
'§_ \“
S 0.15 1
> -0.2 : :
0 50 100 150

Time [s]

Figure 2.18: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Euler angle
errors. Roll angle error estimation for both motion estimation methods. Pitch and yaw
angles errors are not reduced due to lack of observability.

2.5. Results

57

—— Mosaic = - 2-view
= 1.1 Inertial 4 Vision-Aided, Inertial
£
aoF !
0.9 : :
0 50 100 150
= ‘ ‘
é 1
Q> 08 B
0
> 1
£
0.5r
_QN
0 T
0 50 100 150

Time [sec]

Figure 2.19: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Bias estimation
errors. Considerably improved b, estimation in favor of mosaic-aided navigation.

——Error == Sqrt Cov
__ 1000 ‘ ;
£ Inertial Vision—Aided Inertial_ -1
£ 50 * + =
]
z
150
- :
b A
L
0 50 100 150
E 150¢ A
= e
[@)] i L VRIS R
D 100fmmmznm = T :
T ; i
0 50 100 150

Time [s]

Figure 2.20: Actual navigation errors vs. filter covariance - Mosaic aiding: Position Errors.

58 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

— Error -~ Sqrt Cov
10 oo
E ——————————————————————
N I, |
>Z Inertial R Vision—-Aided . Inertial
-10 S .
; 5 100 150
@ 2 e :
|§| "",ﬂ‘ "_ ‘‘‘‘‘‘‘‘
w Ok -
> \’J.-—f'_"—_’-ﬁ
_2 |
0 > 100 150
4
E‘ —".ﬂ
é 27 - —'—““‘_l“ 5 —\—\“ H
A e == .
> OF -
: > 100 150
Time [s]

Figure 2.21: Actual navigation errors vs. filter covariance - Mosaic aiding: Velocity Errors.

—Error == Sqrt Cov
0.5 ‘
= El kit TP PR S
(]
S, (0]5 i
e Inertial Vision—-Aided Inertial
-0.5 4 ¢
0 50 100 150
§ 081 e]
o, 0.2} |
© ot]
_02 i "
0 50 100 150
T 04 cimmmimim TR]
S, 0.2} |
> ot]
_02 i "
0 50 100 150
Time [s]

Figure 2.22: Actual navigation errors vs. filter covariance - Mosaic aiding: Euler Angles
Errors.

2.5. Results 59

—Error == Sqrt Cov
2 ‘ ‘
= Inertial . Vision—Aided R Inertial
.g. P B -
_Q><
1 i
0 50 100 150
— L Bf=mim e e LG s s i Cimm e == =
(@)
£
> 1 1
o] H‘\\
0 50 100 150
10 ;
'a I |
'g‘ 5’ ‘‘‘‘‘‘‘‘‘ B R R et T 7
.QN —‘—‘—‘—
O et — i
0 50 100 150
Time [sec]

Figure 2.23: Actual navigation errors vs. filter covariance - Mosaic aiding: Bias Estimation

Errors.

60 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

2.6 Observability Analysis

The observability analysis provided in this section is performed by modeling the system

as a piece-wise constant system, following a variation of a method suggested in [80]. It is

shown that incorporating maneuvers with sufficient duration into the platform trajectory

renders the system observable except the position terms, which are always unobservable.

In addition, the components of the unobservable modes are numerically investigated.
The following system is considered:

X(k+1) = ®k+1,k)X(k) +w (2.39a)
Z(k) = Hk)X(k)+v (2.39b)

where @ and w are the discrete system matrix and discrete process noise, respectively
(cf. Section 1.3.2), H is the measurement matrix, given by Eq. (2.24), and v is the
measurement noise defined as v = [v], Vfot]T

Since the observability analysis does not incorporate process and measurement co-
variance matrices, the noise terms will be omitted, in this section, from the equations
to follow. When a stochastic system is considered, the estimation errors depend on the
involved noise parameters. In particular, when the system is completely observable, the
lower bound of its estimation error depends only on the noise parameters [81], while in
case of an unobservable system, the variance of the estimation error of an unobservable
state cannot be decreased by incorporating measurements [82].

A general discrete time-invariant system

x(k+1) = Ax(k)+ Bu(k) (2.40a)
y(k) = Cx(k) (2.40Db)

is observable [82], [80] if the rank of the matrix @, defined as
Qa=[CT | (CAT | (€A | ... | (carHT" (2.41)

is n, where n is the dimension of the state vector x.
If k£ = rank(Qq) < n, the system has n — k unobservable modes. These modes can be
found by computing the Observability Grammian G (e.g. cf. [70]):

G =Q4Qu (2.42)

The unobservable modes are the non-zero elements of eigenvectors belonging to zero
eigenvalues of G. Thus, one looks for all the vectors a for which Ga = 0, i. e. the
right null-space of the matrix G.

However, the system given in Eq. (2.39) cannot be considered in general as time-
invariant. Instead, it may be expressed as a discrete piecewise constant system [80] as

2.6. Observability Analysis 61

follows
X(k+1) = ®q,X(k) (2.43a)
Z;(k) = H;X(k) (2.43b)
where for each segment j = 1,...,7 the matrices ¢4, and H; are constant.

Following [80], assuming at least n measurements in each segment (cf. Figure 2.24(a)),
the measurements can be expressed as a function of X(1):

Z.(1) = HX(1)
Zl(2) - Hl(I)d1X(1)

Zi(n) = H®;'X(1)
Zo(n) = Hy®j 'X(1)
ZQ(TL—l-l) = HQ(I)d2(I)Z;1X(1)

which can be written as
Z = Qu(r)X(1) (2.44)

here Qq(r) is the Total Observability Matrix (TOM) [80]. Denoting by @4, the observ-
ability matrix, defined for segment j as

T
Qay = |HI | (H;04)" | (H;®3)" | ... | (H;@5)" (2.45)
the TOM can be written as
[le]
W
Qu(r) = | @a®a, Pa (2.46)

Q0,257 2]

However, this derivation of the TOM relies on the assumption that each segment indeed
contains at least n measurements. In practical applications, the time period between
consecutive measurements, At, cannot be considered arbitrarily small. For example, in
the proposed mosaic-aided navigation method At = O(1) seconds. Moreover, in case the
motion estimation is performed based on the fundamental matrix, too small value of At
will lead to a small baseline and thus yield an ill-conditioned problem [13]. On the other
hand, the system matrices ®; and H might undergo some non-negligible changes during
the time period of n measurements, violating the assumption of a time-invariant system
within each segment.

62 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

Assuming at least n measurements in a segment is certainly valid for trajectory seg-
ments for which the system is time-invariant. Otherwise, it makes sense to assume less
than n measurements in a segment. The worst scenario in the observability context, is
to consider only one measurement per segment. Note that all the other scenarios can
be obtained by stacking the one-measurement segments. For example, if a certain phase
in the trajectory is considered to be represented by constant system parameters during
a time period that allows 3 measurements to be taken, the equivalent representation of
such a phase in the proposed analysis would be to take 3 one-measurement segments with
identical system matrices.

It is assumed that the system is time-invariant during the first phase of the trajectory,
and therefore this phase contains at least n measurements. This phase is followed by a
maneuver phase (described in the sequel), which is divided into r — 1 one-measurement
segments, as illustrated in Figure 2.24(b).

«<—Straight and level—«——————Maneuver phase—————

Seg. 1 Seg.2 Seg.3 Seg.4 Seg.r

doo

(a) At least n measurements in the first segment and in each maneuver segment.

«<—Straight and level— «———Maneuver phase——

Seg. 1 Seg.2 Seg.3 Seg.4 Seg.r

¢OO ::# ¢ ¢ ¢ ¢ ¢)

(b) At least n measurements in the first segment, one measurement in each maneuver
segment.

Figure 2.24: First segment - straight and level flight. Maneuver phase is represented by
r — 1 segments. The system is considered to be constant within each such segment.

This model of segments is a variation of the model assumed in the development of
the TOM [80], and thus the matrix that is used for the observability analysis should
be adjusted accordingly. The first segment has at least n measurements, thus the ba-
sic observability matrix for this segment Qg4,, given in Eq. (2.45), is still valid. The
measurement of the second segment can be written as

Zo(n+1) = HoX(n+ 1) = Hy®4,X(n) = Hy®q, @' X(1) (2.47)

2.6. Observability Analysis 63

Consequently, the measurements of all the maneuver segments are

Zg(n+1) = ng)dgq)gl_:lX(l)
Zs(n+2) = chbd3<1>d2q>g;1X(1)

Z(n+r—1) = Hd, .. g 'X(1)

which yields the following variation of the TOM:

Qa,
Hy®q, @0

Qu(r) = | Ha3®a,Pa, @' (2.48)

| H, Dy, ... <I>d2¢>31‘1_

The observability analysis procedure described in the beginning of this section should
be applied now to the matrix Qu(r). An analytical calculation of the nullspace of the
observability Grammian G = QT (r)Qq(r) poses computational difficulties after the first
several segments. Motivated by the relation [83]

rank (A) = rank (A" A) (2.49)

instead of computing the nullspace of G, we focused on calculating the rank of Qg, from
which it is straightforward to derive the number of the unobservable modes (but not their
components).

The observability analysis was applied to a specific family of scenarios, comprised
of a straight and level (SL) flight with a constant acceleration and of several bank-
to-turn (BTT) maneuvers’, characterized by the accelerometer measurements fygp =
[a ~sin(V) —a-cos(V) —g}T, expressed in the NED system, where a is some constant
parameter and g is the gravitational acceleration. During the SL flight the system is
time-invariant®, and therefore at least n measurements are assumed to be carried out in
this phase. As mentioned above, the maneuver phase was divided into one-measurement
segments.

The analysis was carried out assuming general parameters characterizing the consid-
ered scenario (such as the initial velocity and initial heading) and assuming ideal motion
estimation. The results are given in Table 2.3, that provides the rank of Q,(r) and the
number of unobservable modes, including the position state, gradually taking into account

7Skid-to-turn maneuvers were also analyzed, yielding very similar results in the context of observability.

8Since the system matrices ®; and H are actually the Jacobians of non-linear systems, they are
functions of the navigation solution from the preceding time. These matrices, therefore, change with the
accumulation of inertial navigation errors, and thus, even in the case of an SL flight, with a constant
acceleration, the system can be considered to be time-invariant only for a limited amount of time.

64 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

Table 2.3: Analytical observability analysis results for a piece-wise constant system

Number of segments rank of Q; Number of Unobservable modes

SL 7 8
SL + 1 seg 9 6
SL + 2 seg 11 4
SL + 3 seg 12 3

additional maneuver segments. As can be seen, the observability of the system improves
as additional maneuver segments are processed. Thus, there are 8 unobservable modes in
the case of a SL flight, while the number of unobservable modes reduces to 3 after three
one-measurement maneuver segments were incorporated. These 3 modes are the posi-
tion terms, which are always unobservable. This is not surprising, since the vision-based
measurements provide only relative motion information and do not supply any absolute
information.

The obtained unobservable modes in an SL flight scenario (5 modes, not including the
3 unobservable position states), can be compared to the 3 unobservable modes obtained
in in-flight-alignment (IFA) [84]. The difference is due to the measurement model: In TFA,
the measurement is the 3-axis velocity [84], while in the vision-aided navigation method,
the measurement is comprised of up-to-scale translation (which is equivalent to velocity
direction) and of relative rotation (cf. Eq. (2.24)). It is worth stating that in practice, due
to process and measurement noise, not all the observable states can be indeed estimated.
For example, as seen in Section 2.5.2.3, the drift state could not be estimated due to
insufficient precision of the vision-based rotation motion estimation.

2.6.1 Numerical Investigation

As mentioned earlier, the observability analysis requires calculation of the nullspace of the
observability Grammian G = Qg@d. However, since numerical calculations are involved,
instead of calculating the nullspace G, the implemented procedure consists of obtaining
the singular value decomposition (SVD) of Q4 and analyzing the eigenvectors of small
singular values. This procedure is preferable to numerical calculation of G’s nullspace,
since the latter considers only zero eigenvalues while the former takes into account also
infinitesimally small eigenvalues.
The SVD of Q, is given by
Q,=USVT (2.50)

here S is a diagonal matrix of singular values of Q,, which are the square root eigenvalues
of G; U and V are orthogonal matrices comprised of eigenvectors of GT and G, respectively.
Thus, the unobservable modes are the elements of vectors in the matrix V' that correspond
to zero entries in the diagonal of S.

2.6. Observability Analysis 65

The specific trajectory assumed in this section is presented in Figure 2.25. As de-
scribed in the previous section, the trajectory consists of a straight-and-level north-
heading flight phase, followed by several BTT maneuvers. The maneuvers were divided
into one-measurement segments. The duration of each such segment is one second.

1601
S 37.6 —
3 E
3 374 £ 1600
2 @
= T
S 372
—122.2-122-121.8121.6121.4 1599
Longitude [deg] 0 200 400 600
Time [s]
Velocity
200
w L i
E 100
>
2 Ofmmemmy = =V g om Vo oy W o — i
(_C'>) \\ ,, \\ ';\\ l' \ /l N
© -100fF . SO -==E|]
> ‘e o AN /' ot \ L7 E
-200 I i i i = =D -
0 100 200 300 400 500
Euler Angles
_ 50 ‘ ;
(=]
Q
s J_
3 O_E"_",'.'"'!."'?\“‘j.]
=) \ P KN P K Vs '- 4
< _sof | TS NETTT ZETERY RN A WO M
5 sy \ s NS v |Toe
@ M v V B —=y
-100 : : :
0 100 200 300 400 500
Time [s]

Figure 2.25: State variables of a trajectory containing a maneuver.

Figure 2.26 provides the behavior of singular values of the matrix Q4 as a function of
the segments being processed. The singular values, that were identified as numerical zeros
and were further processed for calculating the unobservable modes, are denoted by square
marks. The components of the unobservable modes are given in Figure 2.27 for the first
6 maneuver segments. The components are connected by a line for each unobservable
mode.

Overall, the singular values increase when additional segments are added. Thus, some
of the singular values that were considered as numeral zeros at the beginning, have sig-
nificantly evolved and therefore ceased to be considered as such, reducing the number of
unobservable modes. See singular values number 8-12 (Figure 2.26).

As can be seen, when only SL flight is considered (i. e. first segment only) there are 8
unobservable modes (including the position state). Thus, only AV, AVp,d,,d,,d, and

66 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

b, may be estimated. After considering several maneuver segments, only 3 unobservable
modes were left, which represent the position terms. Figure 2.27 summarizes the number
and the components of the unobservable modes as a function of the involved maneuver
segments.

2.6. Observability Analysis 67

x 10
4 40 0.4
— %) —
—
0 0 0 EE}‘—*/‘—
0 10 20 30 0 10 20 30 0 10 20 30
-4
x 10
10000 3 2

#2
S
S
#7
N
#12
T\;\

0 10 20 30 0 10 20 30 0 10 20 30

#3

& 8
o 8 8

#8
o B N
E \

#13

©
o w

#4

N

o 3

#9

o r
#14

o N

0 10 20 30 0 10 20 30 0 10 20 30
100 2 1
o Lo | —
0 0 -1
0 10 20 30 0 10 20 30 0 10 20 30

Number of Segments

Figure 2.26: Singular Values #1 to #15 of Q4. Singular values that were identified as
unobservable modes are denoted with a SQUARE mark. Singular values #8,#9 and
#10 were considered as unobservable modes in the first 2 maneuver segments, and are no
longer considered as such afterwards due to the increase in the observability of the system.
Singular values #11 and #12 ceased to be identified as unobservable modes after 2 and 4
maneuver segments were processed, respectively. Singular values #13-#15 are identified
as unobservable modes throughout the whole trajectory since they represent the position
error state, which is unobservable.

68 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

ﬁ?i‘f:: YooK s
0.5

0 Il Il Il Il Il 1 Il Il Il Il Il Il
P_N P_.E P.D V.N V.E V.D Phi Theta Psi d_x d.y d_z bx by bz
Il

SL + 1 maneuver segment

Ie o

A

Il Il Il Il
P_N P_.E P.D V.N V.E V.D Phi Theta Psi d_x d.y d_z bx by bz

SL + 2 maneuver segments

1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 J

P_.N P.E P.D V.N V.E V.D Phi Theta Psi d x d.y dz bx by bz
SL + 4 maneuver segments

jing bAe

05

0 1 1 1 1 1 1 1 1 1 1 1 1 1 J

P_.N P_E P.D V.N V_E V.D Phi Theta Psi d x d.y dz bx by bz
SL + 6 maneuver segments

i

0.5F

0 1 1 L L L L L L L L L L L J

P_.N P_E P_.D V.N V.E V.D Phi Theta Psi d x dy dz bx by bz

Figure 2.27: Unobservable modes behavior vs. number of maneuver segments: 8 unob-
servable modes when considering only straight and level flight; 6 when one maneuver
segment is added; 5 when two maneuver segments are processed and 4 after considering
three maneuver segments. Once at least six one-measurement maneuver segments are
processed, the system becomes observable up to the position terms.

2.7. Conclusions 69

2.7 Conclusions

This chapter presented a method for vision-aided navigation for an airborne platform
equipped with an inertial navigation system and a camera with a relatively small field-of-
view. The camera was mounted on gimbals so that it could scan the over-flown ground
regions during flight. The images captured by the camera were used for both constructing
a mosaic image and performing motion estimation. Motion estimation was fused with the
inertial navigation using an implicit extended Kalman filter.

The main idea of the new method was to combine camera scanning and online mosaic
construction, which yielded enlarged overlapping areas. Due to the imperfectness of the
mosaic construction process, features from the additional overlapping area tend to be of
a lower quality compared to those from the original overlapping area. Consequently, the
proposed method allowed to obtain improved-precision image-based motion estimation
when the original overlapping area between the captured images contained only a small
set of high-quality features, which is the case when a narrow field-of-view camera observes
low-texture ground regions.

Two types of mosaic images were constructed. The first type is a small mosaic image
that was used for motion estimation and constructed in real time, thereby allowing real
time navigation aiding. The second type is the main mosaic image, constructed in a
background process from all the captured images.

The proposed method was examined using a statistical simulation study assuming ideal
motion estimations, and experiments involving realistic scenarios based on real imagery
from Google Earth. These experiments included implementation of camera scanning and
mosaic construction. Superior performance was demonstrated, compared to traditional
two-view methods for motion estimation and navigation aiding, for challenging scenarios,
such as cameras with narrow field-of-views and low-texture scenes. In particular, it was
shown that estimation of position and velocity errors normal to the flight heading, as well
as of the roll angle, can be significantly improved.

Since the developed method utilized a two-view technique for motion estimation, the
translation motion was estimated only up to scale, which did not allow reducing some
of the navigation errors, including position and velocity errors along the motion heading.
These insights were also validated by an observability analysis, which modeled the system
as piece wise constant. The analysis indicated that the system becomes observable, up
to position errors, if sufficient maneuver segments are incorporated in the trajectory. As
expected, position errors remain always unobservable.

It was noted that the method is incapable of utilizing the full potential of the available
information in case of loops in the trajectory: While different algorithms can be applied in
such scenarios for refining the main mosaic image in a background process, the navigation
aiding phase treats loop scenarios as any other scenarios, without being able to reduce
the position errors, developed during the loop sequence, in all axes. This observation
motivated the development of a new method, which is described in the next chapter.

Chapter 3

Navigation Aiding Based on
Three-View (Geometry

Contents

3.1 Method Overview it i i i 72
3.2 Three-View Geometry Constraints Development 74
3.2.1 Multiple Features Formulation 76
3.3 Fusion with a Navigation System 77
3.3.1 Computational Requirements 81
3.3.2 Extensions 81
3.4 Simulation and Experimental Results 82
3.4.1 Implementation Details 82

3.4.2 Statistical Results based on Simulated Navigation and Synthetic
Imagery 84
3.4.3 Experiment Results 89
3.5 Conclusions e e e e e e e e 94

In this chapter, a new method for vision-aided navigation is developed. The method
utilizes constraints stemming from a general three-view geometry. A new formulation of
these constraints is developed following the rank condition approach [13] [20], relating
between any three images observing the same static scene and the navigation solutions
present while these images were captured. These constraints include, in addition to the
well-known epipolar constraints [13], a new constraint related to the three-view geometry
of a general scene. The scale ambiguity, inherent to pure computer vision-based motion
estimation techniques, is resolved by utilizing the navigation data attached to each image.

72 Chapter 3. Navigation Aiding Based on Three-View Geometry

The developed constraints are fused with an inertial navigation system using an im-
plicit extended Kalman filter, allowing estimation of the position vector, by reducing the
position errors in all axes to the levels present while the first two images were taken.
Navigation errors of other states are reduced as well, including velocity errors in all axes.

Three, not necessarily consecutive, views with a common overlapping area! constitute
a measurement for navigation aiding. Navigation aiding in case of loops in the trajectory
is handled naturally, also requiring processing only three images and therefore presenting
reduced computational load compared to state-of-the-art techniques for handling loop
scenarios (cf. Section 1.1.3). Following the overall architecture assumed throughout this
thesis (cf. Section 1.2), the refinement of the environment representation can be performed
in a background process by applying different algorithms (cf. Section 1.1.3).

The developed constraints and the well-known trifocal tensor [13] are both constituted
assuming a general three-view geometry. However, while the trifocal tensor utilizes only
features that are observed from all the three images, the developed constraints can be also
separately applied using features that are observed in each pair of images of the given
three images. It should be noted that the trifocal tensor has been suggested for camera
motion estimation [21], [85], and for localization of a robot and observed landmarks while
performing a planar motion [86]. However, the trifocal tensor and the three-view geometry
constraints developed herein have not been proposed so far for navigation aiding, and in
particular for handling loop scenarios.

Consequently, the main contributions of this chapter are: 1) A new formulation of the
constraints stemming from a general static scene captured by three views; 2) application of
the developed three-view constraints for navigation aiding, and in particular for handling
loop scenarios, and 3) reduced computational requirements compared to other methods
capable of handling loops in the trajectory.

3.1 Method Overview

A simplified diagram of the proposed method for navigation aiding is given in Figure 3.1.
The vehicle is equipped with a standard inertial navigation system and a camera (which
may be mounted on gimbals). The INS is comprised of an inertial measurement unit
whose readings are processed by the strapdown algorithm into a navigation solution.
During motion, the camera-captured images and partial navigation data, to be defined
in the sequel, are stored and maintained. When a new image is captured, it is checked
whether this image has a common overlapping area with two previously stored images.
One possible outcome of this step is a set of three overlapping images captured in close
timing. Another possibility is a loop in the vehicle’s trajectory, in which case the new
image overlaps two stored images captured while the vehicle visited the region previously.

IThe term common overlapping area refers to an area that is present in all the three images.

3.1. Method Overview 73

Inertial Navigation System
IMU
New Image measurements
New

PGs
Image \V2
+ 4@ e . _
NavData ¥
A
Find Three Strapdown
Repository ——» Overlapping
Images 1
A
A
New Image! » | Three-View Constraints
Image 1, NavData 1

Image 2, NavData 2 -
9 Image Processing Module

Figure 3.1: Aiding an inertial navigation system with three-view geometry constraints.

Once a set of three images containing a common overlapping area has been identified,
the images and the navigation data associated to each image are used for calculating
the constraints developed in Section 3.2. These constraints are then reformulated into
measurements and injected into an IEKF for estimating the developed navigation error
and IMU errors (cf. Section 3.3). These estimates are ultimately used for correcting the
navigation solution and the IMU measurements.

While some of the images in the repository are eventually used for navigation aiding,
the overall set of stored images may be used for constructing a representation of the
observed environment, e. g. a mosaic. The mosaic can be just a single image constructed
from the set of camera-captured images (e. g. Chapter 2), or alternatively, the mosaic can
be represented by the original images accompanied by homography matrices that relate
each image to a common reference frame [36]. In any case, since the navigation aiding
step does not rely on the mosaic, but rather on the original images and the concomitant
navigation data, the mosaic image construction can be performed in a background (low-
priority) process.

Throughout this chapter, we use the coordinate systems, defined in Section 1.3.1, with
the camera system redefined as follows:

e (' - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.
Z¢ points toward the FOV center, X points toward the right half of the FOV when
viewed from the camera center-of-projection, and Yo completes the setup to yield a
Cartesian right hand system.

74 Chapter 3. Navigation Aiding Based on Three-View Geometry

3.2 Three-View Geometry Constraints Development

We begin by presenting a development of constraints based on a general three-view geom-
etry. Figure 3.2 shows the considered scenario, in which a single ground landmark p is ob-
served in three images captured at time instances ¢, t and t3, where t; < t5 < t3. Denote
by T;; the camera translational motion from the ith to the jth view, with i, j € {1,2,3}
and ¢ # j. Let also q; and \; be a line of sight vector and a scale parameter, respectively,
to the ground landmark p at time ¢;, such that ||\;q;|| is the range to this landmark. In
particular, if q; is a unit LOS vector, then); is the range to the ground landmark.

Figure 3.2: Three view geometry: a ground landmark observed in three different images.

Assuming t3 — t9 > ty — t1, the translation vectors between the different views, when
calculated solely based on the navigation data, will be obtained with different accuracy due
to the developing inertial navigation errors: T, contains navigation errors developed from
t1 to tg, while Ty3 (and T3) is mainly affected by position errors developed from ¢5 (or ¢;)
to t3. Since t3 —ty > to —ty, the accuracy of Tag is deteriorated compared to the accuracy
of T15. The purpose of this section is to formulate constraints for determining Ts3 based
on information extracted from the three images and partial navigation information (from
which T, may be calculated), thereby improving the accuracy of Tas, bringing it to the
accuracy levels of T1s.

The position of a ground landmark p relative to the camera position at ¢;, expressed
in the LLLN system of ¢5, can be written as:

MCITT = COTS + MCi2gy? (3.1a)
MO = COTS + Op2T9: 4+ AC5 e gs® (3.1b)

where qlc is a LOS vector to the ground feature at ¢;, expressed in a camera system at

ti; C’f; is a DCM transforming from the camera system at t; to the LLLN system at ty;
and ng is the platform translation from time ¢; to ¢;, expressed in the camera system at
t;. Here i,j € {1,2,3},i # j.

3.2. Three-View Geometry Constraints Development 75

Subtraction of Eq. (3.1a) from Eq. (3.1b) and some basic algebraic manipulations

give
0 = MCTQl" — MWCP2g8? — O TS (3.2a)
0 = M0OPqS? — \CTqS" — C2TS (3.2b)

Since the scale parameters Ai, Ay, A3 are neither required nor known, we wish to form
constraints on Ta3 without using these parameters, or in other words, avoid structure
reconstruction. For this purpose, Eq. (3.2) is rewritten into the matrix form

A1
— 0 -T A

[qQ de Usxa 12} 2 — Oy (3.3)
031 ay —as —Tas], , [As
1

4x1

For the sake of brevity, the superscript L, was omitted, e. g. q; = qu = C’g; qlcl.
Let
— —T
A= { @ ~% O 12} e RO (3.4)
031 92 —ag3 —Ty

In a similar manner to Refs. [13] and [20], since all the components in [A; Ay As 1]T
are nonzero, it follows that rank(A) < 4. The following theorem provides necessary and
sufficient conditions for rank deficiency of A.

Theorem 3.2.1 rank(A) < 4 if and only if all the following conditions are satisfied:

qf (Tia X qy) = 0 (3.5a)
Q5 (Tos X q3) = O (3.5b)
(gy x Ch)T(% x To3) = (q X T12)T(Q3 X) (3.5¢)

The proof of Theorem 3.2.1 is provided in Appendix B.

The first two constraints in Eq. (3.5) are the well-known epipolar constraints, which
force the translation vectors to be co-planar with the LOS vectors. Given multiple match-
ing features, one can determine from Eqs. (3.5a) and (3.5b) the translation vectors Tho
and T3, respectively, up to scale. In general, these two scale unknowns are different. The
two scales are connected through Eq. (3.5¢), which relates between the magnitudes of T3
and Ti5. Consequently, if the magnitude of T, is known, it is possible to calculate both
the direction and the magnitude of Ts3, given multiple matching features. To the best of
the Author’s knowledge, the constraint (3.5¢) has not appeared in previous publications.

Several remarks are in order. First, Eq. (3.5) also contains rotation parameters,
since all the quantities are assumed to be expressed in the LLLN system at t5. Second,
structure reconstruction is not required. As shown in the sequel, this allows to maintain
a constant-size state vector comprised of the vehicle’s parameters only, resulting in a
reduced computational load.

76 Chapter 3. Navigation Aiding Based on Three-View Geometry

3.2.1 Multiple Features Formulation

In typical scenarios there is a set of matching pairs of features between the first two views,
another set between the second and third view, and a set of matching triplets between all
the three Views which is the intersection of the previous two sets. These sets are denoted
by {a{’,qs’ }f“f,{qg Lq5° 1 and {qf, q5°,q5° }3°, respectively, where Nya, Nag and
Njo3 are the number of matching features in each set, and q](ij is the ith LOS vector in the
jth view, j € (1,2,3). Note that each LOS vector is expressed in its own camera system.
These LOS vectors can be expressed in the LLLN system at 9, as was assumed in the
development leading to Eq. (3.5), using rotation matrices whose entries are taken from
the navigation system. Thus, omitting again the explicit notation of the LLLN system at

t2, we have the matching sets {O.h » da; }z 19 {QQ » ds; N23 and {(h » Ao, 7Q31}N123

7%, Obviously,
(@1, @) € {a1, @y @3, 10 = (@, @) € {au, a0, s
(dg,q3) € {qha‘h,-?%i}fv:lf?’ — (a9, q3) € {qu,qgi}ivjf

The matching sets are assumed to be consistent in the following sense. Denote by

(a1, a3, q3) the jth element in {q;,,qs, ,qu}lei”. Then, the matching pairs (qf, q3) and

(d5,q3) appear in the matching pairs sets {q, q,, M2 and {a,,, q;;i}f\ff, respectively, in
the jth position as well.
Since the constraints in Eq. (3.5) are linear in Tis and Ths, it is convenient to re-

organize the equations into the following form:

(ar X @2)"[a3]xTas = (a4 X q3)"[a41]x T2 (3.6)
(dp X @3)"Tos = 0
(@ X @) Ty = 0 (3.8)
Here [.],, is the operator defined for some vector a = [a; ay as]” as
0 —as as
al,=|a3 0 —a (3.9)
—as a1 0
Defining the vectors f, g, u,w € R3*! as
7 = (qyxq;)" (3.10)
g = (i xq)" (3.11)
u' = (g % qp) " [ag)x = g7 [as) (3.12)
W= (dy % qy)" [ar)x = £ ay) (3.13)
and considering all the matching pairs and triplets, Egs. (3.6) - (3.8) turn into
[]1><3T23 - [Lxs Tho (3.14)
[£5],; T = 0 (3.15)

[gi], ;T2 = 0 (3.16)

3.3. Fusion with a Navigation System 77

withi=1... N9z, j=1...No3, k=1... Ny5. Stacking these equations together yields

U w
F Ty = | 0 Ty, (3.17)
0 Nx3 G Nx3

where N = ng + N23 + N123 and

U = [ul uNm}T W:[Wl Wleg]T (318)
F o= [f ... fag] G=[g ... gn.] (3.19)

If T5 and the rotation matrices are given (e. g. by the navigation system), the minimum
number of matching features required for determining the vector T3 are a single matching
pair between the second and the third views, and one matching triplet that may be utilized
both in the trifocal constraint (3.6) and in the epipolar constraint (3.7). Moreover, since
T2 is known with a certain level of accuracy, it is not essential to use the epipolar
constraint for the first two views. Application of this constraint, however, is expected to
improve the a priori accuracy of T1,, and therefore reduce the estimation error of Tas.
An alternative formulation of the constraints induced by three-view geometry of a gen-
eral scene is described by the trifocal tensor [13]. Indeed, the application of the trifocal
tensor was already suggested for estimating the camera motion [21], [85]. However, three-
view geometry, and in particular the trifocal tensor and the constraints proposed herein,
have not been used thus far for navigation aiding. Moreover, while the trifocal tensor
approach is solely based on matching triplets, the constraints formulation presented in
Eq. (3.17) allows using matching pairs as well. This is expected to improve the state esti-
mation accuracy, since in typical applications the cardinality of the sets of matching pairs

12 Nag

{ay,. a0, }i2 and {qy,, qs, }1% is much larger than the cardinality of the set of matching
triplets {ay,, da,, 3, } '3

While the development of the constraints in Eq. (3.17) assumed a general ground
scene, when a planar scene is under consideration, an additional constraint, expressing
the fact that all the observed features are located on the same plane [20], [19], can be
incorporated.

One may estimate T3 based on Eq. (3.17) using standard techniques (e. g. SVD)
and then fuse Ty3 with the INS. However, a better alternative is to utilize the implicit
nature of Eq. (3.17) using an implicit extended Kalman filter [78], as discussed in the
next section.

3.3 Fusion with a Navigation System

In this section we present a technique for fusing the three-view geometry constraints with
a standard navigation system, assuming three images with a common overlapping area

78 Chapter 3. Navigation Aiding Based on Three-View Geometry

had been identified. The data fusion is performed using an indirect IEKF that estimates
the navigation parameter errors instead of the parameters themselves. These estimated
errors are then used for correcting the navigation solution computed by the navigation
system (cf. Figure 3.1).

When real imagery and navigation data are considered, the existence of navigation er-
rors and image noise renders the constraints of Eq. (3.17) inaccurate. Thus, the following
residual measurement is defined:

U W
z= |F T23 - 0 T12 = AT23 - BTlg (320)
0 G

Nx3 Nx3

Since Ty = Pos(t2) — Pos(t;) , Ta3 = Pos(t3) — Pos(tz), and the matrices F, G, U, W
are functions of the LOS vectors, the residual measurement z is a nonlinear function of
the following parameters®:

z = h (Pos(t3), ¥(t3), Pos(ts), ¥ (ta), Pos(ty), ¥(ty), {qlc}, qgj’, qgcf}) (3.21)

Here (t3,t2,t1) denote the time instances in which the three overlapping images were
captured, with £3 being the current time.

We now recall the definition of the state vector, given in Eq. (1.10):

X = [APT AVT A®T 4T bT]" (3.22)

Since it is unknown a priori which three images will have a common overlapping area,
and in order to maintain a constant-size state vector, each captured image should be
stored and associated with the relevant navigation information. The navigation data that
should be attached to each image are the platform position, attitude, gimbal angles and
the filter’s covariance matrix.

Linearizing h about Pos(t3), ¥(t3), Pos(ts), ¥(ts), Pos(t1), ¥(¢;) and {qIC;, qgf, q%},
and keeping the first order terms yields

where Hs, Hy, Hy € RV*' are defined as
H3 = vg(t3)h B HQ = vc(tz)h , H1 = VC(tl)h (324)

while ¢, defined in Eq. (1.3), is comprised of the navigation solution x and IMU errors
parametrization 3.

’In Eq. (3.21), the notation {qi%q%,q&} refers to the fact that LOS vectors from all the three

images are used for calculating the residual measurement z. Note that each of the matrices F,G,U, W is
a function of a different set of matching points.

3.3. Fusion with a Navigation System 79

The terms X(t3), X(t2) and X(#;) in Eq. (3.23) are the navigation errors at the three
time instances; in general, X(¢;), X(t2) and X(¢3) may be correlated.

Noting that we are only interested in estimating the navigation errors at the current
time instant, X(¢3), the navigation errors at the first two time instances are consid-
ered as random parameters in the measurement equation. Therefore, since X(t2) and
X (t;) are not estimated, the estimation error X = X — X in these two time instances is
X (t3) = X(t3) and X (t1) = X(t1), respectively. These errors are represented by the filter
covariance matrices P(t1), P(t2), respectively, which are attached to the first two images.

The matrix D in Eq. (3.23) is the gradient of h with respect to the LOS vectors, i. e.

D=V (a1 qS2 53 h, and v is the image noise associated with the LOS vectors, having a
1, 92, 93,

3

covariance matrix R. Thus, the measurement noise is modeled as a combination of image
noise, with the appropriate Jacobian matrix D, and the estimation errors X (£5) and X(t;)
with the Jacobian matrices Hy and Hy, respectively. The development of the matrices
Hj, Hy, Hy, D and R is given in Appendix B (Section B.2).

The propagation step of the filter is carried out using the matrix ¢, and the state vector
X € RY¥%*1 as explained in Section 2.4. The update step is executed only when a set of
three overlapping images becomes available. In this step the current state vector, X(t3),
is estimated based on the LOS vectors and the first two state vectors X(t;), X(t2), as
explained next. This is in contrast to the SLAM approach, in which both the propagation
and update steps of the filter are performed on a state vector that constantly increases in
size.

The Kalman gain matrix is given by

K = Pxugutsisin) Pty i) = EX #'\Ezz" " = (3.25)
= E[(X-X)(z-2)"E[(z—2)(z—2)"]"

where the explicit time notations were omitted for conciseness.

A —

Since z = H3X (tg)

Z=12z—72=H;X (t3) + H,X(ts) + HX(t1) + Dv (3.26)
Hence

PX(tS)Z(tS’t%tl) = P37H3T + P?EHZT + PSEHf (3'27)

Pattstony = HsPy HS + [Hy Hi) [Pg; P

] (H, H,]" +DRD"T (3.28)

where P, = E[X;X,] and P; = E[X;X; |.

As the measurement noise, HoX(t2) + H1X(t1) + Dv, is statistically dependent with
the state vector to be estimated, X(t3), the basic assumption of the Kalman filter is
contradicted. Egs. (3.27) and (3.28) are an ad-hoc approach for taking into consideration

80 Chapter 3. Navigation Aiding Based on Three-View Geometry

this dependence within the Kalman filter framework, that has given good results. Note
that if all the three state vectors, X(t3),X(t2) and X(¢;1), were to be estimated, the
measurement noise in Eq. (3.23) would be Dv, which is still statistically dependent with
the state vectors. However, this dependence would only be due to the Jacobian D, as
modeled by a standard IEKF formulation [78], [4]. Explicit equations in such case are
given, in the context of cooperative navigation, in Chapter 5 (Section 5.3.1).

Referring to Egs. (3.27) and (3.28), while the matrices Py, P, and P, are known,
the cross-correlation matrices Ps,, Py; and P, are unknown, and therefore need to be
calculated. However, since X(t2) and X(¢;) are stored outside the filter, these terms
cannot be calculated without additional information or assumptions. In Chapter 4, a
method is developed for calculating the cross-covariance terms assuming information from
all past navigation updates is stored.

Alternatively, this issue can be handled as follows. Inertial navigation between t; and
ty is assumed. Denoting by ®(t2,t1) the transition matrix between X(¢;) and X(¢3), the
term P»; may be calculated as

= T

Py = E[X ()X (t)] = ®(to, 1) P (3.29)

The other two cross-correlation terms, P, = E[X_(tg)XT(Q)] and P; =

EX (tg)XT(tl)], may be neglected if t3 > t5 (e. g. loops), or when the first two images
and their associated navigation data have been received from an external source (e. g.
some other vehicle).

Several approaches exist for handling all the other cases in which t3 — t5 is not con-
siderably large. One possible approach is to keep a limited history of the platform nav-
igation parameters by incorporating these parameters into the state vector each time a
new image is captured within a certain sliding window [17]. This approach is capable of
handling scenarios in which all the three images are captured within the assumed sliding
window. Another alternative would be to develop a bound on ¢3 — t5 under which the
cross-correlation terms P, and P, can be considered negligible, and select sets of overlap-
ping images accordingly. These two approaches may also be jointly applied. Covariance
intersection (CI) [64], [66] could also be potentially used to deal with the cross-correlation
terms. However, CI is incapable of handling cases in which the measurement matrix con-
tains only a partial representation of the state vector [66], [62], which is the situation in
the present case.

In this chapter, it is assumed that the current navigation parameters are not correlated
with the navigation parameters that are associated with the first two images, i. e. Py, =0
and Py = 0.

In case the above assumptions regarding Pj,, P;; and Ps, are not satisfied, these terms
can be explicitly calculated using the method developed in Chapter 4.

After the residual measurement and the gain matrix have been computed using Egs.
(3.21) and (3.25), respectively, the state vector and the covariance matrix can be updated
based on the standard equations of the IEKF.

3.3. Fusion with a Navigation System 81

3.3.1 Computational Requirements

A single filter update step, given three images with a common overlapping area,
involves computation of the matrices A,B and the Jacobian matrices Hs, Ho, Hq
and D. These calculations are linear in N, the overall size of the matching sets
{qlcil,qgf,q%}jv:? , {qil,qgf}jilf and {qgf,q%}jvj. Noting that the state vector is
constant in size, the most computationally expensive operation in the filter update step
is the inversion of an N x N matrix required for the calculation of the gain matrix.

The computational load of the proposed method does not change significantly over
time (depending on the variation of V), regardless of the scenarios in which the algorithm
is applied to (including loop scenarios). Moreover, if the computational capability is
limited, it is possible to utilize only part of the available matching pairs and triplets (cf.
Section 3.2.1), or eliminate the epipolar constraint for the first two views, thus reducing
the computational load even further.

3.3.2 Extensions

It is straightforward to extend the developed method for handling more than three over-
lapping images, which may improve robustness to noise. In the general case, assume k
given images, such that each three neighboring images are overlapping (a common over-
lapping area for all the k images is not required). Assume also that all these images
are associated with the required navigation data. In the spirit of Eq. (3.5), we write
an epipolar constraint for each pair of consecutive images, and a constraint for relating
the magnitudes of the translation vectors (similar to Eq. (3.5¢)) for each three adjacent
overlapping images. Next, the residual measurement z is redefined and the calculations
of the required Jacobian matrices in the IEKF formulation are repeated.

For example, consider the case of four images captured at time instances ti,..., 1y,
with ¢4 being the current time, and assume existence of common overlapping areas for
the first three images and for the last three images. Omne possible formulation of the
constraints is

(q; x Q2)T[Q3]XT23 = (qgy X Q3)T[Q1]XT12 (3.30)
(dy X q3)"Ta3 = 0 (3.31)
() X qy) Ty = 0 (3.32)
(qy ¥ Q3)T[CI4]XT34 (g3 x Q4)T[C12]XT23 (3.33)
(a3 x Q4>TT34 =0 (3.34)

Considering all the available matches and following the same procedure as in Section 3.3,
the residual measurement z will assume the form

z=JTg4 — VT — LT,

82 Chapter 3. Navigation Aiding Based on Three-View Geometry

where the matrices J, V), £ are constructed based on Eqgs. (3.30)-(3.34).

Since Tis, To3 and all the rotation matrices that implicitly appear in Egs. (3.30)-
(3.34) can be calculated based on the navigation data associated with the images, the
residual measurement z is given by

z=h (Pos(t4), W(ty), Pos(t3), ¥(t3), Pos(ta), ¥(ts), Pos(t1), ¥(ty), {qil, q%, q3ci3, qg“})

in which Pos(t4), ¥(t4) are part of the current navigation solution. This measurement
may be utilized for estimating the developed navigation errors in the same manner as
discussed in Section 3.3. The involved computational requirements will increase only in
the update step, according to the total size of the matching sets. The propagation step
of the filter remains the same.

3.4 Simulation and Experimental Results

This section presents statistical results obtained from simulated navigation data and syn-
thetic imagery data, as well as experimental results utilizing real navigation and imagery
data.

3.4.1 Implementation Details
3.4.1.1 Navigation Simulation

The navigation simulation is described in Section 2.5. Once a set of three images with
a common overlapping area is available, the developed algorithm is executed: the state
vector is estimated based on the developed algorithm using IEKF, which is then used for
updating the navigation solution (cf. Figure 3.1). The estimated bias and drift are used
for correcting the IMU measurements.

3.4.1.2 Image Processing Module

Given three images with a common overlapping area, the image processing phase includes
features extraction from each image using the SIFT algorithm [76] and computation of

sets of matching pairs between the first two images, {xﬁ,x’é}fv:lf, and between the last
two images, {x3, x5} %, where x’ = (2%,)7 are the image coordinates of the ith feature.
This computation proceeds as follows. First, the features are matched based on their

descriptor vectors (that were computed as part of the SIFT algorithm), yielding the sets
{xt, x4} {xh,x4}*. Since this step occasionally produces false matches (outliers),
the RANSAC algorithm [77] is applied over the fundamental matrix [13] model in or-
der to reject the existing false matches, thus obtaining the refined sets {Xﬁ,xé}fﬁf and
{x5, Xg}f\ff . The fundamental matrices are not used in further computations.

3.4. Simulation and Experimental Results 83

The next step is to use these two sets for calculating matching triplet features, i. e.
matching features in the three given images. This step is performed by matching all x; €
{xt, x5} with all x5 € {x},x3}12, yielding a set of matching triplets {x?,x}, x3} 112,
The matching process includes the same steps as described above.

When using synthetic imagery data, a set of points in the real-world are randomly
drawn. Then, taking into account the camera motion, known from the true vehicle tra-
jectory, and assuming specific camera calibration parameters, the image coordinates of
the observed real-world points are calculated using a pinhole projection [13] at the ap-
propriate time instances. See, for example, Ref. [4] for further details. Consequently,
a list of features for each time instant of the three time instances, which are manually
specified, is obtained: {x!}, {x}} and {x}}. The mapping between these three sets is
known, since these sets were calculated using the pinhole projection based on the same

real-world points. Thus, in order to find the matching sets {x’i,xg,xg}f\gf?’ , {xﬁ,xg}f\[j

and {x?, Xé}ZNjf it is only required to check which features are within the camera FOV of
the appropriate views.

Finally, the calculated sets of matching features are transformed into sets of matching
LOS vectors. A LOS vector, expressed in the camera system for some feature x = (x,y)7,
is calculated as q© = (x,y, f)¥, where f is the camera focal length. As a result, three
matching LOS sets are obtained: {qﬁl,q%,qgf}iv:ll%, qil,qgi Q}jvj and {q%,q%}j\[j’.
When handling real imagery, the camera focal length, as well as other camera parameters,
are found during the camera calibration process. In addition, a radial distortion correction
[13] was applied to camera-captured images, or alternatively, to the extracted feature

coordinates.

84 Chapter 3. Navigation Aiding Based on Three-View Geometry

Table 3.1: Initial Navigation Errors and IMU Errors
Parameter Description Value Units

AP Initial position error (1) (100,100, 100)% m

AV Initial velocity error (1o) (0.3,0.3,0.3)7 m/s

AW Initial attitude error (1) (0.1,0.1,0.1)7 deg
d IMU drift (1o) (10,10,10)" deg/hr
b IMU bias (1o) (10,10, 10)T mg

3.4.2 Statistical Results based on Simulated Navigation and
Synthetic Imagery

In this section, we present statistical results obtained by applying the developed algorithm
to a trajectory containing a loop based on a simulated navigation system and synthetic
imagery data. The assumed initial navigation errors and IMU errors are summarized in
Table 3.1. The synthetic imagery data was obtained by assuming a 20° x 30" camera
FOV, focal length of 1570 pixels, and image noise of 1 pixel. The assumed trajectory,
shown in Figure 3.3(a), includes a loop that is repeated twice (see also Figure 3.3(b)).

2001

@
E
B
‘©
k)
— (]
= ps
= -200 : :
£ 0 200 400 600 800 1000
T
I —_—
S 2007 - - 9
§ 1 "\ ! \'\ ---0
= 1 .~ 1 e .
3 i i v
10000 = e =t v oo :
5000 s e R
5000 k) _‘I \v\l
2 200 ‘ ‘ ‘
West [m] 0 0 North [m] 0 200 400 600 800 1000
Time [s]
(a) Position. The filled circle indicates the initial (b) Velocity and Euler angles.

position.
Figure 3.3: Trajectory used in the statistical study. The vehicle performs the loop twice.

The three-view navigation-aiding algorithm was applied twice, at t = 427 seconds and
at t = 830 seconds; each time a specific point along the trajectory was revisited. The true
translation vectors are T, = [100 0 0]” and Tk = [500 0 0]”. No other updates of
the navigation system were performed, i. e. inertial navigation was applied elsewhere.

Figures 3.4-3.5 provides the Monte-Carlo results (100 runs). As seen, with the help of
the three-view update, the position error (which has grown to several kilometers because

3.4. Simulation and Experimental Results 85

of the inertial navigation phase) is reset in all axes to the levels of errors at ¢, and ¢ (see
Figure 3.4(b)). The velocity error is also considerably reduced in all axes as a result of
the algorithm activation, while the accelerometer bias is estimated mainly in the z axis
(cf. Figure 3.5(b)).

Assuming at least three matching triplets of features exist, the proposed method can
be applied without using the epipolar constraints, utilizing only the constraint relating the
magnitudes of translation vectors (Eq. (3.14)). In this case the accuracy of the method
will degrade, mainly in a direction normal to the motion heading, as shown in Figure 3.6.
The position error in the north direction, which is the motion heading at the time of the
algorithm activation, is roughly the same as in the case where all the constraints in Eq.
(3.17) are applied. However, in the east direction the accuracy of the position state is
considerably degraded, with an error of around 900 meters, compared to an error of about
100 meters (Figure 3.4(b)), which is the initial position error (cf. Table 3.1). Observe
also that although the error in the down direction has not significantly changed, the filter
covariance is no longer consistent (the same filter tuning was used in both cases). The
absolute reduction of position and velocity errors in all axes is not possible when applying
two-view based techniques for navigation aiding, since the position and velocity along the
motion direction are unobservable (cf. Section 2.6). In practical applications each of the
two approaches may be applied, depending on the number of available overlapping images.
Whenever a set of three images with a common overlapping area becomes available,
the proposed method will reduce the navigation errors that two-view navigation aiding
methods were unable to estimate (e. g. errors along motion heading) in accordance with
the quality of navigation data attached to the first two images in the set.

86 Chapter 3. Navigation Aiding Based on Three-View Geometry

E 5000 e 1
E - ""
S =
pa 0 i N ‘ :
0 200 400 600 800 1000
E 5000 ‘”‘ :
'.(7; 7~ R "‘I
© b -
w g Tl
O e - I I ol
0 200 400 600 800 1000
10000 w w w
—_ 4 o+
e 1 LA --
= 5000} Sqrt cov. |
< i
0 . — o S
0 200 400 600 800 1000
Time [sec]
(a) Position errors.
300 ‘ ‘ ‘ ‘
£ 200 / l/ o+ L]
< \J - Y |=-— Sartcov. | |_.z
c 100f e ’ 1
= H
0 e . 1 1
0 200 400 600 800 1000
300 ‘ Tk ‘ ‘
=l y]
@ 100f* ‘ AR
w
0 e . I I
0 200 400 600 800 1000
300— ‘ ‘ -7 :
L | y \’
E 200 -/ ’ L 1
< 100]
0 e . I I
0 200 400 600 800 1000
Time [sec]

(b) Position errors - zoom.

Figure 3.4: Monte-Carlo results of the three-view navigation-aiding algorithm based on
navigation simulation and synthetic imagery data.

3.4. Simulation and Experimental Results 87

20 ‘ :
) PSSt =1)
E 10} :
P4
> |
O — i . i
0 200 400 600 800 1000
20 ‘ ‘ ‘ =
E L
E 10} Ny Pa]
>I.IJ W s ‘-L—
0 - ‘ i -
0 200 400 600 800 1000
50
7 = o
E = | |- Sqrt cov.
> ——oH
0 — i T e Sy
0 200 400 600 800 1000
Time [sec]
(a) Velocity errors.
15
E 10 _ 1
S 4l 1
0 — i . i
0 200 400 600 800 1000
15
=) . .]
g 10pmmmmmimmmmey
_Q> 57 » L]
0 — I . I
0 200 400 600 800 1000
15 ‘ ‘ o
g 10 P r—————y - Sqrt cov. 1
o~ 5f : ---u]
0 — I . o e
0 200 400 600 800 1000
Time [sec]

(b) Bias estimation errors.

Figure 3.5: Monte-Carlo results of the three-view navigation-aiding algorithm based on
navigation simulation and synthetic imagery data.

88

Chapter 3. Navigation Aiding Based on Three-View Geometry

Figure 3.6: Monte-Carlo results of the three-view navigation-aiding algorithm based on a
navigation simulation and synthetic imagery data without applying epipolar constraints.

"= 5000} s]
£ s e
= .
z 0 i - ‘ ‘
0 200 400 600 800 1000
'E 5000} —~ ¢ 1
7 A S
© < -~
Lu . - —
O e - i i
0 200 400 600 800 1000
10000 e o+l
= A== Sqrt cov.
= 5000} ---u 1
< | = | '
O i I Xl -t
0 200 400 600 800 1000
Time [sec]
(a) Position errors.
E ar o+ L}]
s /Y |- Sqrt cov. | £
E -~ A
200 400 600 800 1000
E]
17
cﬁ -
w
200 1000
E |
i 4
0 . I e I
0 200 400 600 800 1000
Time [sec]

(b) Position errors - zoom.

3.4. Simulation and Experimental Results 89

3.4.3 Experiment Results

An experiment was carried out for validating the proposed method. The experimental
setup contained an MTi-G Xsens® IMU/INS and a 207TMW Axis network camera® that
were mounted on top of a ground vehicle. The vehicle was manually commanded using a
joystick, while the camera captured images perpendicular to the motion heading. During
the experiment, the inertial sensor measurements and camera images were recorded for
post-processing at 100 Hz and 15 Hz, respectively. In addition, these two data sources
were synchronized by associating to each image a time stamp from the navigation timeline.

Since the experiment was carried out indoors, GPS was unavailable, and therefore
the MTi-G could not supply a valid navigation solution for reference. However, the true
vehicle trajectory was manually measured during the experiment and associated with
a timeline by post-processing the inertial sensors readings. The reference trajectory is
shown in Figure 3.7. The diamond markers denote the manual measurements of the
vehicle position, while the solid line represents a linear interpolation between each two
markers. The vehicle began its motion at ¢ ~ 76 seconds. As can be seen in Figure 3.7(a),
the vehicle performed the same closed trajectory twice.

0 100 150 200 2

£

North [m]
N

50

-
Sy

East [m]
a1
<;
4
4

[N Ee)
S
=
o
S
=

1 a
o
N
(=]
S
N
a1
S

Height [m]
<)

4

2
East [m]

50 100 150 200 250 North [m] 0 o0
Time [s]

(a) True trajectory (b) True trajectory - 3D view

Figure 3.7: Trajectory performed in the experiment.

The recorded inertial sensor measurements were processed by the strapdown block
yielding an inertial navigation solution. Sets of three images with a common overlapping
area were identified and chosen. The proposed algorithm was applied for each such set and
used for updating the navigation system. Two different update modes are demonstrated
in this experiment: a) “Sequential update”, in which all the three images are acquired
closely to each other, and b) “Loop update”, in which the first two images are captured
while the platform passes a given region for the first time, whereas the third image is

3http://www.xsens.com/en/general /mti-g.
4http://www.axis.com/products/cam_207mw /index.htm.

90 Chapter 3. Navigation Aiding Based on Three-View Geometry

obtained at the second passing of the same region. The algorithm application is the same
in both cases.

Figure 3.8: Three camera-captured images used in the first sequential update in the
experiment.

The image matching process for the first set of three overlapping images is shown
in Figures 3.8 and 3.9: Figure 3.8 shows the camera-captured images, while Figure 3.9
provides the set of matching triplets {x!, x5, xg}f\[ji showing matches between each pair
of images. For example, Figure 3.9(a) shows the matches between the first and second
image, such that (x1,%,) € {xi,x%, x5} As seen, the three images have a significant
common overlapping area, and thus it is possible to obtain a large number of matching
triplets. About 140 matching triplets were found for the three images shown in Figures
3.8(a)-3.8(c); however, only a few of them are explicitly shown in Figures 3.9(a)-3.9(c),
while the rest of the matches are denoted by various markers.

The localization results are shown in Figure 3.10. Figure 3.10(a) presents the estimated
position compared to the true position. In addition, inertial-navigation-based position
estimation is shown for comparison. Figure 3.10(b) depicts the position estimation errors
(computed by subtracting the true position from the estimated position) and the square
root of the filter covariance. The update mode is presented in both figures: until ¢ ~ 150
seconds sequential updates were performed, while loop updates were applied after the
platform has completed a loop, starting from ¢ ~ 158 seconds.

During the sequential updates phase, the time instances (t,ts,t3) were chosen such

that to — t; =~ 1 seconds and t3 — 5 &~ 5 seconds. As seen in Figure 3.10, while sequential

3.4. Simulation and Experimental Results 91

Figure 3.9: Image matching process based on images shown in Figure 3.8. (a) Matching
triplets between image 1 and 2: (x1,x3) € {x}, x4, x5}2*: (b) Matching triplets between

i=1>
image 2 and 3: (x3,%3) € {x1,x%, x5 }'%; (¢) Matching triplets between image 1 and 3:
(x1,%3) € {x},x}, x5} % For clarity, only the first few matches are explicitly shown; the

rest of the matches are denoted by marks in each image.

updates are active, the position is estimated with an accuracy of several meters, whereas
the inertial solution rapidly diverges. The consistent behavior of the filter covariance
indicates that the correlation between X(¢3) and X(ts), which is not accounted for in the
current filter formulation (cf. Section 3.3), is not significant.

Although the position error is significantly reduced during the sequential updates of
the algorithm (until ¢ ~ 120 seconds), its development is mitigated during this phase but
not entirely eliminated, as clearly evident in the height error. Two main reasons for this

92 Chapter 3. Navigation Aiding Based on Three-View Geometry

phenomenon are: a) Imperfect estimation of the actual IMU errors; b) In each update,
the algorithm allows reducing current position errors only to the level of errors that were
present while the first two images of the three, were taken. Because each update in the
sequential mode uses a different set of three images, and because the development of
inertial error between these images, the error — although considerably mitigated — will
continue to develop.

After the vehicle had completed its first loop, it became possible to apply the algorithm
in a “loop update” mode. As seen in Figure 3.10, the loop updates were applied at a
varying frequency, which was typically lower than the frequency of sequential updates.
Referring to Figure 3.7, the vehicle completed its first loop at ¢ ~ 158 seconds and
performed the same trajectory once again, completing the second loop at ¢ &~ 230 and
afterwards continuing the same basic trajectory for another 10 seconds. In these last 10
seconds the vehicle began performing a third loop.

Each loop update significantly reduces the inertially-accumulated position error, yield-
ing a small error of several meters after over 150 seconds of operation. For comparison,
the inertial error approaches 1100 meter (in the north axis) over this period of time, in-
dicating the low quality of the inertial sensors. Note that the position error is reduced in
all axes, including along the motion direction, which is not possible in two-view methods
for navigation aiding.

As seen in Figure 3.10, although each loop update drastically reduces the developed
position error, the rate of the inertially-developing position error between each two loop
updates has not been arrested compared to the pure inertial scenario (cf. Figure 3.10(a)),
leading to the conclusion that the IMU errors parametrization (drift and bias) were not
estimated well in the experiment.

Note also that as additional loop updates are applied and until reaching ¢t ~ 230
seconds, the update accuracy deteriorates. For example, the east position error is reduced
to —1.5 meters at the first loop update (¢ = 158 seconds), while in the loop update at
t = 201 seconds the east position error was reduced only to 6 meters. The reason for this
accuracy deterioration is that each loop update is performed using the current image and
two images of the same scene that had been captured while the platform visited the area
for the first time. As already mentioned, each update allows to reduce the current position
error to the level of errors that were present while the first two images were captured.
However, as can be seen from Figure 3.10, the position error in the sequential updates
phase, although considerably arrested, gradually increases over time, and hence the loop
updates are capable of reducing the position error to the level of errors that increase
with time. For example, the first two images participating in the first loop update at
t = 158 seconds were captured at t = 77 and t = 78 seconds, while the first two images
participating in the loop update at ¢ = 201 seconds were captured at t = 131 and ¢t = 132
seconds. Since the position error at ¢ = 131 and ¢ = 132 seconds was larger than the
position error at ¢ = 77 and ¢t = 78 seconds (cf. Figure 3.10(b)), the position error after
the loop update at ¢ = 201 seconds was accordingly larger than the position error after

3.4. Simulation and Experimental Results 93

the first loop update (at t = 158 seconds).

After t =~ 230 seconds, the platform began its third loop and thus the loop updates from
t =~ 230 and on were performed using images (and the attached navigation data) captured
at the beginning of the platform’s trajectory (around ¢t = 80 seconds). Therefore, the
obtained position error at these loop updates is of accuracy comparable to the accuracy
of the first loop updates (starting from ¢ = 158 seconds), and hence to the accuracy of
the navigation solution calculated in the beginning of the trajectory.

Analyzing the experiment results, it is also tempting to compare the performance
obtained in the sequential and loop update modes. However, because these two modes of
algorithm activation were not applied in the same phase, a quantitative analysis cannot
be performed. Nevertheless, regardless of the sequential update mode, it is safe to state
that activation of the algorithm in a loop update mode reduces the position errors in all
axes to prior values while processing only three images.

1007 100,
E E
£ 50 £ 50
S 5
z P4
of ‘ . ‘ 1 or
100 150 200 250
40 -
_ 7 _ 20t
E 20} E, .
% 5 7
i g °
ol
. — — Estimated -20 i i
100 150 | _ _ nertial 250 Nav.error | 150 200 250
e Sqrt. cov.
15 - —o—True 20| % Seq.upd. T
’ % Seq. upd. < Loop upd P B
E 101 XX Loop upd. E —= A L
s 10 g
k=) f=)
(] <5}
I O I ol
5 ‘ ‘ ‘ ‘ ‘ ‘
100 150 200 250 100 150 200 250
Time [s] Time [s]
(a) Estimated position. (b) Position estimation error vs. filter uncertainty
covariance

Figure 3.10: Experiment results. A small position error (several meters) is obtained while
sequentially activating the algorithm. The position error is reset to its prior levels each
time a loop update is applied.

94 Chapter 3. Navigation Aiding Based on Three-View Geometry

3.5 Conclusions

This chapter presented a new method for vision-aided navigation based on three-view
geometry. Camera-captured images were stored and associated with partial navigation
data taken from the inertial navigation system. These images were used for constructing a
representation of the observed environment, while some of them were also incorporated for
navigation aiding. The proposed method utilized three overlapping images to formulate
constraints relating between the platform motion at the time instances of the three images.
A new formulation of such constraints was developed. The associated navigation data
for each of the three images allowed to determine the scale ambiguity inherent to all
pure computer vision techniques for motion estimation. The constraints were further
reformulated and fused with an inertial navigation system using an implicit extended
Kalman filter. A single activation of the method over a set of three overlapping images
reduces the inertially developed position errors in all axes to the levels present while the
first two images were captured. Navigation errors in other states were also reduced.

The developed method for vision-aided navigation may be used in various applications
in which three overlapping images, and the required navigation data, are available. In this
chapter the method was applied to maintaining small navigation errors, while operating
in a GPS-denied environment, accomplished by engaging the algorithm over sequential
overlapping imagery, and utilizing the overlapping images in case a loop in the trajectory
occurs. In contrast to the existing methods for vision-aided navigation, which are also
capable of handling loops, such as bundle adjustment and SLAM, the computational
requirements of the proposed algorithm allow real-time navigation aiding, since a constant-
size state vector is used, and only three images are processed at each update step of the
IEKF. The refinement process of the environment representation, such as mosaic image
construction, may be performed in a background process.

The method was examined based on real imagery and navigation data, obtained in an
experiment, and in a statistical study using simulated navigation and synthetic imagery.
The results showed that reduced position and velocity errors can be maintained over time,
thus allowing operation without relying on the GPS signal. Specifically, the position errors
obtained in the experiment, in which a low-grade IMU was used, were reduced to several
meters each time the algorithm was applied, while the inertial position error has reached
over 1000 meters in 150 seconds of operation. The implication of this result is important
for various applications, in which the GPS signal is unavailable or unreliable. Among
these is a holding pattern mission, in which the platform has to perform the same loop
trajectory numerous times. Satellite orbit determination is another possible application.

Chapter 4

Graph-Based Cross-Covariance
Calculation for a General
Multi-Platform Measurement Model

Contents
4.1 Problem Description 96
4.2 Concept of Explicit Cross-Covariance Calculation 99
4.2.1 A BasicExample o o 99
4.2.2 A General Scenario 101
4.2.3 Graph Representation 102
4.3 Graph-based Calculation of Cross-Covariance Terms 104
4.3.1 Rationale 104
4.3.2 Algorithm for Explicit Cross-Covariance Calculation 106
4.3.3 Formal Algorithms 113
434 Example. 115
4.3.5 Computational Complexity 116
4.3.6 Incorporating Other Measurements 116
4.4 Conclusions o i i i e e e e e 118

This chapter addresses the problem of consistent distributed cooperative navigation.
A group of collaborative platforms, capable of intercommunication, is assumed. Each
platform is equipped with its own dead reckoning or inertial navigation sensors, and
with additional onboard sensors. For a general multi-platform measurement model that
involves both inertial navigation data and other onboard sensor readings, taken at different

96 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

time instances, the various sources of information become correlated. Thus, in the process
of information fusion, this correlation should be solved for to obtain consistent state
estimation.

The common approach for obtaining the correlation terms is to maintain an augmented
covariance matrix. This method works for relative pose measurements (e. g., [48]), but is
impractical for a general MP measurement model, because the identities of the platforms
involved in generating the measurements, as well as the measurement time instances, are
unknown a priori.

As mentioned in Section 1.1.5, several methods were proposed to avoid correlated
updates [58], or eliminating the need in calculating the correlation terms by tracking the
origins of measurements [62]. However, such methods do not utilize the full potential of
the available measurements, since not all the measurements are actually incorporated.

In this chapter, it is proposed to explicitly calculate the required correlation terms
based on the history of all the thus-far performed MP measurements. As common in
many CN methods, including [48],[50],[52],[62], an extended Kalman filter is used for data
fusion. The proposed approach relies on graph theory. The graph is locally maintained
by every platform in the group, representing all the MP measurement updates. The
developed method calculates the correlation terms in the most general scenarios of MP
measurements while properly handling the involved process and measurement noise.

In contrast to [44] (cf. Section 1.1.5), the proposed method explicitly calculates the
required correlation terms, allowing to perform navigation updates without applying
smoothing over the past navigation history of the cooperative platforms, and is there-
fore computationally efficient.

Consequently, the main contributions of this chapter are twofold. First, a graph-
based method for an explicit calculation of cross-covariance terms, required for consistent
CN, is developed. The method assumes a general MP measurement model, relating any
number of platforms that may contribute information from different time instances. The
identities of these platforms and the time instances are a priori unknown. Second, the
effect of process and measurement noise on the calculated cross covariances is analyzed
and a method for incorporating these noise terms into the calculated cross-covariance
terms is developed.

4.1 Problem Description

Consider a group of N cooperative platforms capable of intercommunication. Each plat-
form is equipped with inertial navigation sensors and hence is capable of calculating its
own navigation solution, comprised of position, velocity and angular orientation. Similarly
to Section 1.3.2, denote by x; and x! the calculated and the (unknown) true navigation
solutions of the ith platform, respectively, and let y; ;) represent the measurements
of the platform’s inertial navigation sensors. The errors in y; ;) are modeled by an

4.1. Problem Description 97

unknown vector of parameters 8. Denote by 3, the calculated model of inertial sensor
errors, used for correcting the measurements y; ;5. For instance, the vector B includes
a collection of accelerometer and gyro biases.

Let
] ewsf]

and N = {1,...,N}. Then

Ciltrr1) = £(Ci(te), yirmu(te)) » i € N (4.2)

The following navigation error state vector is defined

.| xi(t) = Xt(t)} i
X, (t) = =) = Ut 4.3
0= 50 50| = a0 -ao (43
As discussed in Section 1.3.2, the evolution of the state vector X; can be modeled by the
linear time-varying stochastic model:

X,(t) = ()X, (1) +w'(t) , i €N (4.4)

where ®° is the continuous system matrix and w' is the process noise, which is assumed
to be white and zero-mean Gaussian. This continuous time model can be replaced by a
discrete model

Xi(ty) =@}, Xi(ta) + Wi, , €N (4.5)

where ®; _, is the discrete system matrix relating the state between any two time in-
stances ¢, and ty, t, > ¢4, and wj__,, is the equivalent discrete process noise.

In addition to the inertial sensors, each platform is equipped with its own set of
onboard exogenous sensors. The readings of the exogenous sensors of the jth platform at
some time instant ¢, are denoted by y;(t4) (as opposed to y; 15, that denotes the IMU
measurements). These measurements are corrupted by a Gaussian white noise v;(t,). Let
Y§ (ta) . Yj(ta) - Vj<ta>-

Consider a general measurement model that relates the navigation data and onboard
sensor measurements of several platforms, possibly taken at different time instances. Let
j denote the identities of the platforms involved in this measurement model, j € N.

The considered measurement model can be formulated in an implicit form as

z(t) = h({¢;(t:), y;(ti)}ic) » JeN (4.6)

where z is the residual measurement, which is a function of {;(t;), representing the nav-
igation solution x;(¢;) and parametrization of the inertial sensors errors 3,(t;), and the
onboard sensor readings yj(ti) of the jth platform at time t;, with t; < ¢ and t be-
ing the current time. The parameter r denotes the overall number of information sets
(¢;(ti),y;(t:)) constituting z. If each of the participating platforms contributes only a

98 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

single information set, r represents the number of platforms involved in the residual mea-
surement z. However, in the general case, each platform may contribute information from
several time instances. For example, if some platform j contributes information from
two time instances t; = t; and t7 = t5, then z will be a function of (¢;(t}),y;(t;)) and
(¢ (), y,(t9)).

To simplify the notation, it is assumed from this point onward that the identity of the
platforms forming z is given by 1,...,r; cases in which a platform contributes information
from several time instances are treated as if this information was provided by different
platforms. Thus, the residual measurement z can be written as:

z(t) = h({C;(t:), yi(t:) Yizr) (4.7)

Linearizing Eq. (4.7) about ¢}(t;) and y(t;) gives

i=1
where
Hi(t;) = Veuyh o Di(ti) = Vyegyh (4.9)

since ¢} (t,) and y(t;) are unknown, the Jacobian matrices are approximated by
Hi(t;) = Ve,aoh . Di(ti) = Vy @b (4.10)

The update step of the Kalman filter involves cross-covariance terms relating the different
state vectors that appear in the measurement model (4.8). Denoting by X the estimation

error of X, the required cross-covariance terms are E[Xz(tZ)XJT(t])] withi,7 =1...ri#
j. If these terms are known, a consistent measurement update can be employed.

The purpose of this chapter is to present an efficient method to compute the cross-
covariance matrices on-demand while the identity of the involved platforms, i. e. the
indices ¢ and j, and the time instances ¢; and ¢; are unknown a priori. It is tempting to
apply the common approach, used when considering relative pose measurements for CN
[48], wherein an augmented covariance matrix is maintained, consisting of the covariance
matrices of all the platforms in the group and of cross-covariance matrices relating any
pair of platforms. However, this approach can be only applied when the measurement
model involves concurrent information from different platforms, as indeed is the case with
relative pose measurements.

In the case of a general measurement model (4.8), in addition to the a priori unknown
identity of the r platforms contributing to the multi-platform measurement, the involved
time instances are also unknown a priori. Therefore, maintaining all the possible cross-
covariance terms is not a practical solution in terms of both computational load and
storage requirements. Instead, it is suggested to calculate the required cross-covariance
terms on-demand for a general MP measurement model.

4.2. Concept of Explicit Cross-Covariance Calculation 99

4.2 Concept of Explicit Cross-Covariance Calcula-
tion

Before presenting the general concept behind the proposed approach, the calculation of
cross-covariance terms is illustrated in the following basic example.

4.2.1 A Basic Example

In this example, a measurement comprised of information obtained from three different
platforms, i. e. » = 3, is considered. The residual measurement z may therefore be written
as

2~ Hy(t3)Xs(ts) + Ho(t2)Xo(ts) + Hy(£1)X, (1) + Dv (4.11)

with D = [Dy(ts) Ds(ta) Di(t)] and v = [VI(ts) vI(t2) vI(t)]"

Figure 4.1 shows a scenario wherein information transmitted by platforms I and II,
with the current information of platform III, is used for updating platform III. Circles
denote a priori information, while squares denote update events. Two update events are
shown in the figure. While a;, as and a3 represent information used in the first update,
b1, be and bs represent information used in the second update. Let ¢,, and ¢, represent
the time instances corresponding to a; and b;, respectively, with ¢ = 1,2, 3.

Assume that the first update was carried out and that the a priori covariance ma-
trices of the 3 platforms and all the cross-covariance matrices between these platforms,
at the time instances t,,,t,, and t,,, were stored. Assume also that the required in-
formation for the second update is available. The key question is how to calculate the
cross-covariance terms required for executing the second update, i. e. E[X;;(t5,)X 1 (t5,)],

E[Xp(ty,) X (t,)] and E[X; ()X (t,)].

aq b1
| @ @ >
as b2
] O @ >
asz b3
] on— ol —

Figure 4.1: Measurement schedule example based on a measurement model that involves
3 platforms. Platform III is updated based on information transmitted by platforms I and
II. The circles denote information included in the measurement, squares indicate update
events.

In particular, consider the calculation of E[X,;;(t,)X;(ts,)]. Since no updates of any

100 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

kind were performed between a, and bs:

X;I(tbz) = (paQ%bQXII(az) T wgabg (4.12)

In a similar manner, it is possible to write a transition relation between the a posteriori
estimation error at as and the a priori estimation error at bs:

- — +
Xorr(tes) = <Da3—>b3XIH(ta3) + wgf_% (4.13)

Thus,

- - . _ T
EX (o)X 1 (t,)] = E |:<(I)££I—>b3XHI(ta3) + wéél—ﬂ)3> <(I)a2—>b2XII(ta2) + wg—>b2> (}4-14)
while the a posteriori estimation error at as is given by

~ + ~ ~
XII](ta:s) - (] - Kag Ha3) XIII(ta:s) - Kag HG2XI](t02)
KoyHy X, (ta,) — Koy Dava (4.15)

where K, is the Kalman gain matrix, calculated by platform 771 at the first measurement
update.

Since w!! . is statistically independent of X ;;(ta,), X;;(tay), X; (ta,), and since

w!Il, is statistically independent of X, (t,,) and wll ., (cf. Figure 4.1):
B Xii(ta) @il)" | = 0 (4.16)
B [wttl, (¥4 Xinlt) + wlls,) | =0 (4.17)
In addition,
B |va (B2 X lt) +0ll) | =0 (4.18)

Let X, (t,,) be represented by X, and denote P, = E[(X,)(X;)7]. Incorporating
Egs. (4.15)-(4.18) into Eq. (4.14) yields

Pb;bg = ®£§[—)b5 {(I - KQSHQS) Po;ag K Ha2 Pa_2a2 Ka3 al alag} ®a2—>b2 T 4 19)
Thus, P, is expressed via the filter gain matrix, the measurement matrices, covariance
and cross-covariance matrices from the past MP updates, which therefore need to be

stored. The other two required cross-covariance terms in this example can be calculated
using the same process, yielding an equivalent expression for P, , while P, = 0.

4.2. Concept of Explicit Cross-Covariance Calculation 101

4.2.2 A General Scenario

The approach discussed above can be generalized to any number of MP measurement
updates based on the general measurement model formulated in Eq. (4.8).

The general cross-covariance term E [Xz(tz)f(;[(tj)] can be found by expressing each
of the two state vectors X,(t;) and X;(t;) according to the history of the MP measure-

ment updates, and then calculating F [Xl(tz)f(JT(tj)] based on the resulting expressions,
while judiciously handling the involved noise terms. In contrast to the example from the
previous section, in the general case the process and measurement noise terms are not
necessarily statistically independent of the involved state vectors.

Clearly, sustaining the aforementioned approach requires storing the information in-
volved in all the past MP measurement updates, including the filter gain, measurement,
covariance and cross-covariance matrices. If this information is available for a specific
sequence of MP measurement updates, the required cross-covariance terms can be calcu-
lated based on the process demonstrated in the previous section. In the following sections,
however, a method for on-demand calculation of the cross-covariance terms for a general
case is developed. The method uses a graph representation, locally maintained by every
platform in the group, containing the information from all the past MP measurement
updates.

The proposed graph topology relies upon a directed acyclic graph (DAG). Denote by
tMP the most recent time instant in which the ith platform was updated by any MP
measurement. In a general MP system, the DAG topology is representative if each MP
measurement is utilized for updating only the platforms i € {1,...,r}, which contributed
their navigation data from the time instant ¢; > tM¥ and assuming these platforms con-
tributed a single information set ({,(;),y;(t;)) (cf. Section 4.1). In particular, the graph
remains acyclic when only platforms that contributed their current navigation informa-
tion, i. e. t; = t, are updated. For simplicity, in this chapter we consider only one such
platform.

It is worth noting that if some platform i contributed [> 1 information sets (¢;(¢}),
y:(t), (C;(#2), y;(t2),. .., (C:(t), y;(8)), with ¢} < t? < .-+ <t} to the MP measurement
(4.6), this platform can be updated, while sustaining an acyclic graph, at the time instant
t!, provided that ¢\ > tMP.

Denoting by ¢ the identity of the updated platform, its a posteriori estimation error
in a general MP measurement model, formulated in Eq. (4.8), can be expressed as

X:(tq) = (I B Kqu) X;(tq) - K, Z HzXz_<tZ) — Ky ZDiVi(ti) (4-20)
i=1 , i#q i=1
where K, is the Kalman gain matrix computed for the gth platform. The a priori esti-
mation error of some platform i, based on Eq. (4.5), is given by
Xz‘ (tb) = @ia*)th. (ta) + wiaﬁtb (421)

(3

102 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

4.2.3 Graph Representation

Every platform in the group locally maintains its own copy of the DAG G = (V, E'), where
V' is the set of nodes and F is the set of directed weighted arcs. The weight of each arc
reflects the information flow between the two connected nodes.

Two type of nodes exist in V. Nodes of the first type represent a priori information
obtained from different platforms in the group, constituting the MP measurements. These
nodes are called a priori nodes. A single such node represents, therefore, ¢;(t;) and y,(t;)
— navigation data and readings of onboard sensors of the ith platform from time instant ¢;,
respectively. This information is transmitted by the ith platform to the updated platform
q at the current time ¢ (cf. Eq. (4.7)). In the general case, t; < t. Nodes of the second type
represent update events, i. e. the a posteriori information of the updated platform. Such
nodes are called a posteriori nodes. Thus, each MP measurement update is represented
by r + 1 nodes. Figure 4.2(a) shows the graph obtained for the 3-platform measurement
example considered in Section 4.2.1. A priori nodes are indicated in the graph by circles,
while a posteriori nodes are designated by squares.

(&) N
KaHa, 1 -K H,
& a &
¢a3_>b3 ¢az—>bl

RGO (o)

(a) (b)

Figure 4.2: (a) Graph representation for the scenario shown in Figure 4.1. (b) The trees
Tb; and Tbl— required for calculating P, , .

We proceed by presenting the following definitions.

Definition 4.2.1 A thread of the ith platform is a sub-graph of G, containing all the nodes
iV that represent information of the ith platform and arcs in E connecting between these
nodes.

Each platform in the group has its own thread in G.

4.2. Concept of Explicit Cross-Covariance Calculation 103

Definition 4.2.2 The transition relation is given by

v Fi
Xb - q)taatb

X+ W (4.22)

where a,b € V' are any two adjacent a priori nodes in the ith thread, representing X; (ta)

and X, (t,), respectively.

The transition relation connects between the a priori estimation errors of the ith
platform at two different time instances ¢, and t,, as expressed by Eq. (4.21). The nodes a
and b, both located in thread i, are connected by an arc, weighted by the transition matrix
w(a,b) = ®; _,, . The noise process covariance matrix Qi _,, = Elw} , (w; ,)"] is
associated to this arc as well. For example, the nodes a; and by in Figure 4.2(a) are
connected by an arc representing a transition relation.

Each thread in G can also contain a posteriori nodes. In such a case, G will contain
r a priori nodes that are connected to an a posteriori node, located in the thread of the

updated platform ¢, by an update relation, defined as follows (cf. also Eq. (4.20)).

Definition 4.2.3 Denote by o the a posteriori node, representing X(—;(ta), and by B; the

a priori nodes, representing X; (tg,), withi=1,...,r. The update relation is given by:
Xa - (I o KaHﬁq) Xﬁq - Kq Z H&Xﬁi - Kq ZD&V&' (4.23)
i=1 , i#q i=1

where K, is the Kalman gain computed by the updated platform.

The transition and update relations are illustrated in Figures 4.3(a) and 4.3(b), respec-
tively.

The arc weight w(f;, a), connecting the a priori node f; with the a posteriori node «
is

| I-K,H, ifi=q
w(fBi, a) = { K, H, else (4.24)

In addition, each arc is associated with a measurement noise covariance matrix
KaDgiR5i<KaDgi)T, with ¢ = 1, e, T and R@i = E[Vﬁivgi].

For instance, in Figure 4.2(a), the a priori information stored in the nodes aj ,a, and
az is connected to the node ag that represents a posteriori information.

As mentioned in Section 4.2.2, the a priori and a posteriori covariance and cross-
covariance terms between the nodes, which participated in the same MP update in the
past, are known (this information can be stored in the nodes themselves). The con-
struction process of the graph and the communication protocol among the platforms is
discussed in Chapter 5.

104 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

. -w—a .

I

1 q

P T
P
7

coe
. .

@ @
©

(a) (b)

Figure 4.3: (a) The node a is connected to the node b via a transition relation. (b) The
nodes f3;, with ¢ = 1,...,r, are connected to the node o via an update relation.

4.3 Graph-based Calculation of Cross-Covariance
Terms

For a given DAG G, we wish to calculate [Xi(t,-)f(?(tj)], the cross-covariance between
the ith platform at ¢; and the jth platform at ¢;. In this section we use the notation X,

as an alternative to X, (¢;) or Xj(tz), where a is an a priori or a posteriori node in G,
respectively. Let the nodes ¢ and d in G represent X, (¢;) and X, (¢;), respectively. Thus,

the goal here is to calculate F [chz], which is equivalent to calculating [Xz(tz)XjT(tj)]

4.3.1 Rationale

The first step is to construct two inverse-trees 17, = (Vr,,Er,) and Ty = (Vr,, Er,),
containing all the possible paths in G to each of the nodes ¢ and d. This can be performed
as follows. The first tree, T,, is initialized with the node ¢. Each next level is comprised
of the parents of the nodes that reside in the previous level, as determined from G. For
example, the second level of T, contains all the nodes in G that are directly connected to
c. The same process is executed for constructing a tree Ty for the node d. Note that every
node in 7, and 7y has only one child but may have one or r parents. In the latter case,
the node represents an MP update event. Figure 4.2(b) shows an example of such trees,
constructed based on the graph shown in Figure 4.2(a) for calculating the cross-covariance
E[Xb?TXZ;—], i.e. c=b; and d =0b;.

The convention used here is that if some node a; has several parents, the jth parent

4.3. Graph-based Calculation of Cross-Covariance Terms 105

is denoted as a],,. Also, a = a1, as shown in Figure 4.4.

Given the two trees T, and Ty, the cross-covariance term E [XCXdT] can be computed
by expressing X, and X, using information stored in the nodes from upper levels in the
two trees. We start with the first level in the two trees, which is comprised of the node ¢
in 7,, and the node d in 7};. Since the cross-covariance E [XCXdT] is unknown, we proceed
to the parents of these nodes, i. e. to the next level in the trees, according to the relation
type represented by the arc weights.

> oT
Having reached the second level, the term E[X X,]| can be expressed using information
stored in nodes from the current (second) level and lower levels. For example, assuming

a transition relation (4.22) connecting the first two levels in the two trees, E [XCXdT] can
be written, according to Eq. (4.22), in three different forms:

(M. - T
E X, <q)dgadXd2 + wdgﬁd) }
E (o, X, + wcﬁc> Xﬂ (4.25)

~ ~ T
<®CQ~>CXCQ + wCQ*}C) ((bdzﬁdxdg + wdg*}d)]

\ L

where ¢y and dy are the parents of ¢ and d, respectively.

Since the expression from the previous (first) level was already checked, it is now
required to examine whether any of the expressions involving nodes from the current level
are known. In other words, the question is whether any of the pairs E[XCX§2], E [XCQXdT]

and F [XCZXdTQ] are known. In addition, it is also required to know the correlation between
the noise terms and the state vectors.

Since, in general, these pairs are unknown, we proceed to the next (third) level in the
trees according to the relation type represented by the arc weights. Now, each of the
expressions for F [5(65(5] obtained while processing the previous (second) level, may be
further expanded using information stored in the nodes of the current (third) level.

Continuing the previous example, assume the second and third levels are connected
by a transition relation (4.22) in 7. and an update relation (4.23) in 7}, and assume the

third platform is updated (¢ = 3). Then one of the possible expressions for £ [XCXdT]
would be obtained from X, = &.,,.X,, + w,. and

Xy = Dyra [(I - KaHg) Xy = Koy > HyXg — Kay > DygVas | + waa
=1, i#3 i=1
(4.26)
Note that, compared to Eq. (4.23), a = dy and 3; = dj.
Once again, the question is whether the different cross-covariance terms that appear
in the new expressions involving current and lower levels are known (had been stored in
G in the past). All the expressions from the previous level (the second level) were already

106 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

analyzed. Ignoring for the moment terms that involve noise, it is obvious that less terms
are to be analyzed when nodes closer to ¢ or d are considered. Therefore, it is preferred
to start analyzing from the lower level upward.

If, for example, E[X%XdTé], is known, then the nodes c3 € Vr, and d} € Vr, are
either identical (c3 = d}) or represent state vectors that had been used in the same MP

> oT
measurement. Otherwise, £ [X%Xd%] would not have been stored in G. In any case, the

known term E [X@)Xé], properly weighted, is part of E [XCXZ;]. Having a known term
also means that there is no need to proceed to nodes of higher levels related to this term.

The procedure continues to higher levels in the two trees until either all the terms
required for calculating the cross-covariance E[XCXCZIF] are known, or the top level in both
trees has been reached. In the latter case, the unknown terms of the cross-covariance are
zZero.

The process noise terms are assumed to be statistically independent,
Elwi sipw! 5] = 0, if w;_;, and wj_,; belong to different platforms, or, if
Wi i, and wj, ,j, belong to the same platform at non-coinciding time instances, i. e.,
(tiy, ti,) N (t5,,t5,) = ¢. The measurement noise is assumed to be statistically independent
of the state vectors involved in the measurement. On the other hand, the process and
measurement noise terms may be statistically dependent on the involved state vectors
(see Section 4.3.2.3).

In the following sections, the above rationale is transformed into an algorithm for

. . o T . .
calculating the cross-covariance E[X.X,] in a general scenario.

4.3.2 Algorithm for Explicit Cross-Covariance Calculation

Let T, = (Vr,, E,) be a tree containing all the paths in G = (V, E)) to some node b € V,
and let a € V5, and a, 8 € V. The following notations are used in the remainder of this

chapter:
mp(a) Parents of node a in tree T,
Ap(a) Ancestors of node a in tree Ty
Dy(a) Descendants of node a in tree Tj,

ak%a Path ap, — -+ — ay — a in tree T},
{ag EIN a} Group of nodes in the path ay, LN

Definition 4.3.1 A pair of nodes («,) is said to be known, if E[Xaxg] is known, 1. e.,
if it can be retrieved from the data stored in G. A known pair (o, B) is denoted by ©(a,).

Definition 4.3.2 Given the location of node a in the tree Ty, (1y)* is defined as the
sub-tree of Ty, containing all the ancestors of a in T, and the node a itself.

Let T. = (Vr,, Br,) and Ty = (V,, E7,) be two trees constructed from G, and let ¢5,¢, €
Vr, and d,,d; € Vr,, where the indices 0, p, 7, ¢ indicate the level in which each node is
located.

4.3. Graph-based Calculation of Cross-Covariance Terms 107

Definition 4.3.3 The pair (cs,d,) is said to be younger than the pair (c,,d¢) if
min(d,n) < min(p, ¢) (4.27)

The algorithm for calculating cross covariance terms gradually processes pair permu-
tations between nodes in T, = (Vr., E7.) and nodes in T, = (Vr,, Er,) at different levels,
starting from the first level. The permutation set of the kth level is denoted by My, with

M; = {(c,d)}. The next sections describe an algorithm for calculating [ch(dT] based

on My, from different levels. The value of E [XCXZ] is initialized to zero.

4.3.2.1 Processing a single member of M,

In the general case, when processing the permutation set M, from level k, all the nodes
on the path to the leaf (which is ¢ € Vi, and d € V7)) should be considered, starting from
the leaf and going up until reaching the current level k. For example, assume that for
some member (¢, di) € My, the paths to the leaf nodes are ¢, e cand d, i g, Figure
4.4(a) schematically illustrates a general path ¢ e ¢ Start by checking whether (cg, d)
or (c,dy) are known in the sense of Definition 4.3.1, i. e., whether ®(c,d) or ©(c, dy). If
not, then check whether ®(cy,ds) or ®(cg,dy), and so on. The procedure ends when a
known pair of nodes is found, or when reaching and analyzing the pair (c¢x, d;). When a

known couple of nodes is discovered, its contribution to the cross-covariance E [XCXS] is
calculated.
Denote the overall weight of the paths ¢ Lo ¢ and dy, LN by We(ex) and Wy(dy),

respectively. If ®(c¢;,dg), with 1 < j <k, then E [XCXdT] is updated according to:
BX.X,] ¢ EXXy] + Weley) EX e, X g W (i) + Quya, (4.28)
Similarly, if ®(cg, d;), with 1 < j <k, then E [XCXdT] is updated according to:
E[X.X,] BXXy] + Weler) BXo Xy W] (d;) + Quya (4.29)

The noise covariances Q).,q4; and Q,q, are analyzed in Section 4.3.2.3. If w(a,b) is the arc
weight connecting the node a to node b in GG, then

Weler) = ILyw(c, ¢i1) (4.30)
Walde) = T_yw(ds, d;i 1) (4.31)

After finishing analyzing the member (¢, dy) € My, the permutation set M, is up-
dated as follows.

{(d,dy) | ¢ €me(ey), (d,dp) € My} it ©(cy, dy)

(end) | & € maldy) , (co,d) € My} if ey, dy) (4.32)

108 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

4.3.2.2 Calculation of M,

Having described how each level in the trees T, and Ty is handled, the next step is to
address the mechanism for advancing to the next level. After finishing processing all the
members in My, as discussed in Section 4.3.2.1, the only members left in M, are those for
whom the procedure did not find any known pair. If My = ¢, the algorithm terminates.

The set of permutations in the next level, M, 1, is constructed based on the parents
of each of the nodes that appear in My: For each member (a,b) € My, the groups m.(a)
and 74(b) are obtained. Then, a set of all the possible pair permutations between m.(a)
and 74(b) is constructed and added to My ;:

My = {(Ck+1>dk+1) | Chiy1 € Te(a) ,d};H € mq(b) , V(a,b) € /\/lk} (4.33)

where s and ¢ distinguish between several parents.

4.3.2.3 Effect of Noise Terms

In this section, we discuss the effect of process and measurement noise terms on the
cross-covariance F [chcdr], when expressing E [XCXdT] via Xck and Xdk‘

Let T, = (Vr,, E7,) be a tree constructed for some node a € V', and let a;,a;1 € Vr,
be some nodes from levels [and | — 1, respectively. These nodes are connected either by
a transition relation (4.22) or an update relation (4.23). In the first case, the two nodes
belong to the same thread, while in the second case, the nodes may be from different
threads.

Denote by n,,.,, , the noise related to expressing X, , via Xal. Then n,, ., , can be

aj—1
either process or measurement noise, depending on the relation type:

Wa,—a,_, transition relation

D, v, update relation (4.34)

lr’al:al,l = { -K

arj—1

Let ¢, and d, be some nodes in the trees 7, and Ty, respectively, and recall Definition
4.3.2.

Lemma 4.3.1 If (T;)% does not contain any nodes from the path c, — -+ — ¢, —
- cinTe, thenm, .. and Xq, are statistically independent for any v € {1,...,m}.

-1

Proof Suppose that 7, e, and Xd are statistically dependent for at least a single value
of y € {1,...,m}. Then there must exist some node ¢, on the path ¢,, = -+ — ¢, —

- — ¢ in TC, representing XCT, such that Xd can be expressed in terms of XC , and
perhaps other state vectors, i. e. Xd is a descendant of X . Thus, ¢, is an ancestor of
d,, and therefore will appear in (Td)dp, thereby contradlctmg the assumption. [|

Corollary 4.3.1 If T, does not contain any nodes from the path c,, N c, thenm, ..
and X4 are statistically independent for any v € {1,...,m}.

4.3. Graph-based Calculation of Cross-Covariance Terms 109

(a) The tree T, (b) The tree Ty

Figure 4.4: The node ¢; in T, has descendants that appear as ancestors of dj, in the sub-

- o7
tree (T;)%, therefore contributing noise terms to the calculated E[X.X,]. Update-nodes
are not explicitly marked.

Lemma 4.3.1 and Corollary 4.3.1 are also valid, with the proper adjustments, when con-
sidering (7,)" and T, respectively.

At this point assume, without loss of generality, that in the process of analyzing the
member (cg, di,), described in Section 4.3.2.1, the pair (c;, d;) was discovered as known in
the sense of Definition 4.3.1. Since nodes from lower levels are analyzed first, no other
known pair (¢, dg) or (cg,d,) exists with r < j.

Lemma 4.3.2 The path dy, 24 d does not contain any node c, from the path c; — --- —
¢ — - —=cinT, foranyl <r <j. If r = j, the node ¢, = c¢; can only appear in the
path dy, Lo d as dy,.

Proof Suppose that the path d 4. 4 does contain a node ¢, from the path c; Lo, c,

110 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

with 1 <1 < j. Thus, there is a pair of nodes (a,b), with a = ¢, € Vg, and b = ¢, € V7,
such that E[Xaf(bT] =F [XCTXZ'] is known.!

However, since r < j, ¢, is closer to ¢ than ¢;. Therefore, the pair (a,b) is younger,
in the sense of Definition 4.3.3, than the pair (¢;,dy), and thus should have been found
while the algorithm processed the rth level. Consequently, this member would have been
removed from the permutation set of the rth level, M, (cf. Section 4.3.2.1). Hence, if such
a pair indeed existed, then upon reaching the kth level, the permutation set My would not
have contained the member (¢, dy), since ¢, € A.(a) = Ac(c,), and dy, € Aq(b) = Aylc,)
(cf. Eq. (4.33) for calculating My). Since it is given that (cg, di) € My, the node ¢, does
not exist.

Using the same reasoning, when r = j, the node ¢, = ¢; cannot appear in the path

dy—1 — --- — d. However, it is possible that ¢; = dj, since each node in G' may have
two children (and only one child in each of the trees). In this case, one of the children is
located in T, while the other is located in Tj. |

Lemmas 4.3.1 and 4.3.2 lead to the following corollary.

Corollary 4.3.2 If (T;)% does not contain any nodes from the path c; Loy ¢, then
U/ forany v € {1,...,7}, is statistically independent of all the states represented by

the nodes {dx N d} U (Ty)%.

Note that 7, .. may still be statistically dependent, for at least a single value of

v € {1,...,7}, on states represented by the nodes in T;\{dx L2, dIN(T,)%, if among

these nodes there is at least one node from the path ¢; L . This leads to the following
corollary.

Corollary 4.3.3 If for all the discovered pairs ®(a,b) with a € Vg, and b € Vr,
D.(a) N Ay(b) = ¢ (4.35)

then all the noise terms from T, involved in the calculation of E[chg}, are statistically-
independent of Xy, and all the involved noise terms from Ty are statistically-independent

of X..

In other words, when the conditions of Corollary 4.3.3 are satisfied for all members in
My, for all considered k, the calculated cross-covariance E [ch{f] will not contain any
noise terms. However, when the conditions of Corollary 4.3.3 are not satisfied, £ [XCXdT]
will contain noise covariances from different time instances and platforms. Returning to
the discovered pair ®(c;, dy), we now assume that there are descendants of ¢; in 7, that

'Recall that the covariance of each of the nodes in G is stored (cf. Section 4.2.3).

4.3. Graph-based Calculation of Cross-Covariance Terms 111

appear as ancestors of dy in Ty: D.(c;) N Aa(dy) # ¢. Consequently, Q.,q, 7# 0 and, thus,

the objective in the remainder of this section is to calculate Q.,q4, (cf. Eq. (4.28)).
Among the nodes in D.(c;) N Aq(dy) , denote by ¢;, 1 < i < j, the descendant of ¢;

that is closest to ¢, as illustrated in Figure 4.4. The child of ¢; in T} is denoted by d,,.

Lemma 4.3.3 The path c; Loy c; appears in (Ty)%.

Proof ¢; € Ay(d},), and therefore ¢; € (Ty)%. Since ¢; may be reached from any node on
the path ¢; = --- = ¢;, and ¢; leads to dj, any node from ¢; — --- — ¢; also leads to dy.
Therefore, ¢; — - -+ — ¢; appears in (T)%. [|

Observe that Lemma 4.3.3 is also valid for any sub-path c; N c; of the path ¢; N Ci,
with ¢ < i’ < j. Furthermore, (T;)% might contain several appearances of the sub-paths
c; Lo .

Now we analyze the correlation between the noise term 7, .. , related to any two
adjacent nodes ¢; and ¢;— in the path ¢; — -+ = ¢ — ¢-1 — -+ = ¢;, and Xy,. The
term E [nqiqflfcgk], with i + 1 <[< j, may be calculated as follows.

Assume for the moment that (Td)dk contains only a single appearance of ¢; — ¢;_1.
Then Xy, is given by (cf. Figure 4.4)

n—1

Xdk = de (CZ)XCZ + Z de (dr)ndr+1:dr +

r=k
-1

+ de (dn)nci:dn + Z de (Cr)ncr+1lcr + Vd (436)

r=i

where vy is composed of state vectors and noise terms represented by nodes in
(T))\{e, = ¢4 — -+ — di}. Here, Wy (a) is the overall weight of the path
a—...— dk in (Td)dk.

Since it was assumed that ¢; — ¢,_; appears only once in (Ty)%, (Ty)%\{c; — ¢-1 —
-++ — di} does not contain ¢; — ¢;_;. Therefore, according to Lemma 4.3.1, .., , and
v, are statistically independent and thus, from Eq. (4.36),

- T
E[ncl:cl_lxdk] = E[ncl:cl_lngzcl,l]wg; (Cl*1> (437>

The term E [nq:q_lng:clil] is equal to the process or measurement noise covariances,

depending on the relation type between X, , and X,, (cf. Eq. (4.34)):

Cl—1
Qcyc,, transition relation

D))" update relation (4.38)

T
E[ncl:cl,llr’cl:cl_l] = { Kcl_chchl;cl_l(K

Cl—1

Recall that the matrices in Eq. (4.38) were stored as part of the arc weights (cf. Section
4.2).

112 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

In the general case, (T;)%* may contain several appearances of ¢; — ¢;_1, each ap-
pearance with its own path ¢; — ¢,y — --- — dg. Letting u distinguish between these
different appearances of ¢; — ¢;_; in (T)%, and denoting by W¥(a) the overall weight of

the uth path a =% b, Eq. (4.37) becomes:

T u T
E[T’cl:cl_lxdk] = E[’r’clscl_lng:cl,l] Z (de (cl—l)) (439)

u

Furthermore, when considering the whole tree Ty, ¢; — ¢;_1 may appear not only
in (Ty)%. According to Lemma 4.3.2, ¢, — ¢_1 ¢ dy La g, Thus, in addition to
(Ty)%, ¢, — ¢ may be also found only in T;\ (Ty)*\{dx EEN d}. However, the
contribution of the correlation between 7, ., , and the state vectors represented by nodes

in Ty\(Ta) " \{dx EEN d} will be calculated when processing other members in M.
In a similar manner to Eq. (4.36), X, can be expressed as (cf. Figure 4.4)

-1
Xe = Wele)Xe, + > Wele)e,, 1, + Ve (4.40)

r=g

where v, is composed of state vectors and noise terms outside the path ¢; Lo, ¢ Lo e

. . . > ~~1 .
Therefore, the contribution of the noise term 1, , to E[X.X,], due to the nodes in
D.(c;) N Aa(dy), is:

Q1(1) = Welar1) EMypey e] > (Wi(ern))” (4.41)

u

for each i +1 <1 <.
Yet, in addition to the above, the nodes Dy(dy) N A.(c;) also appear in expressions

that constitute Q,q,. This situation may be handled in a similar manner. Among all the
nodes in Dy(d;) N Ac(cj), denote by ds, 1 < s < k, the node that is closest to d. Thus,

the contribution of noise terms to F [XCXdT], due to the nodes Dy(dy) N Ac(c;), is:
Qa(m) =Y W (dm1)EMyy a0 Miyar Wi (dii1) (4.42)

for each s+1<m <k.
In conclusion, the noise covariance @).,q, for a discovered ©(c;, di) is:

Qdek = Z Ql(l) + Z QQ(m) (443)

l=i+1 m=s+1

In practice, the calculation of ()., 4, requires processing all the nodes in (T,;)%, checking

if they appear in ¢; Loy ¢, and processing all the nodes in (7,)%, checking if these nodes

4.3. Graph-based Calculation of Cross-Covariance Terms 113

appear in dy 4. 4. Tf such nodes were found, the contribution of the involved noise terms
is computed using Eq. (4.43). A similar process should be carried out for calculating Q.4
in case ®(cy, d;) is discovered (cf. Eq. (4.29)).

The above calculations are required only upon discovering a known pair. A formal
algorithm for calculating Q.4+ for some discovered pair ®(c*,d*) is given in the next
section.

4.3.3 Formal Algorithms

Algorithm 2 summarizes the developed approach for calculating the cross covariance
E [XCXdT] given the trees T, and T,;. The notation card(A) denotes the cardinality of
the set A.

The process of analyzing a single permutation (cg,dy) from My, discussed in Section
4.3.2.1, is presented in Algorithm 3, while Algorithm 4 implements the technique, devel-
oped in Section 4.3.2.3, for calculating the effect of the noise terms on the calculated cross
covariance E [XCXdT].

Algorithm 2 Calculation of E[(X.)(X4)7]
1: Input: Trees T,,Ty. h. = height(7.), hq = height(T})
2: Initialization: k = 1, E[(X.)(X4)"] =0, M; = {(c,d)}.
3: while k£ < max(h,, hq) do
4: for r =1 to card(My) do

5: Let (cx,dr) = M(r). Execute Algorithm 3 on (cx,dy). Let the output be
c*, d*, Weg, flag.

6: if flag then

£ E[(Xe)(Xa)"] = E[(Xe)(Xa)"] + Wesa-

8: Update M, according to Eq. (4.32)

9: if My is empty then

10: return F[(X,)(Xq)7]

11: else

12: Construct My based on Eq. (4.33)

13: kE=k+1

14: return E[(X.)(Xy)7]

114

Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

Algorithm 3 Processing a single member (¢, di) from My,

1:
2:
3:

o>

10:
11:
12:
13:
14:

Input: Trees T,.,7T,;, node ¢; in T, and node dj, in Ty
Initialization: | =1, ¢* = d* = Wy = {}, flag=10
while [< k do
if E[Xckf(dTl] is known, i. e., ®(cg, d;) then
cF=cp, d"=d;, flag=1
break
if E[XCZX;] is known, i. e., ®(c;, di) then
ct = c, d* = dk, ﬂag =1
break
l=1+1
if flag then
Calculate Q.4+ by executing Algorithm 4
Woeae = Wo(€) EX o X JWE (d*) + Queae
return c*,d*, W4, flag

Algorithm 4 Calculation of . g-.

© ®

10:

11:

Input: 7,,T,, ¢, d*, s.t. E[XC*XdT*] is known.
Initialization: Uy = (Ty)?, Us = (T,)¢", Qegq- = 0.
while Uy is not empty do
Uge = UgpN\{l;}, where {l;} are the leafs of Uy-.
Check if any leafs of Uy« appear in c* Lo e,
for each such leaf 8 of Uy do
Denote ¢* — -+ — f as uy, — --- — wy, then E[n._mk_ 5 =
Zzzz Wﬁ(uc—l)E["?gacq"??ﬁgfl] (WB(UC—l))T
Qg = Qerar + Wc(ﬁ)E[mungmg]Wf(ﬁ)
Ug = Up\(T)?
Repeat Steps 3-9, replacing: Uy« by U.; ¢* by d*; ¢ by d; T, by Ty; instead of Step 8
perform Qeege = Qerar + We(B)E[ng-_,sm5_5|Wq (5).
return Q). g-

4.3. Graph-based Calculation of Cross-Covariance Terms 115

4.3.4 Example

In this example, the proposed method is demonstrated for an MP measurement model
comprised of information obtained from three different platforms, i. e. r = 3. Such a
measurement model was already considered in Section 4.2.1. The residual measurement
z is given by Eq. (4.11). As will be seen in Chapter 5, this MP measurement model
represents vision-based three-view MP updates. Further results involving the developed
method for calculating cross-covariance terms, are therefore provided in Chapter 5.
Consider the problem of calculating the term E [X;B(X;)T] in the example shown

in Figure 4.5(a). The trees T,. and T.- are shown in Figure 4.5(b). In this example,
E[X_,(X.,)"] can be calculated based on the known term E[X, (X,,)"], which is analyzed

upon reaching the fourth level in the two trees. As can be seen, a;,ay € D, (b) and also
ay,a, € Ac; (b7). Thus, according to Section 4.3.2.3, the noise terms associated with the

path b; — a] — a, are not statistically independent of X;.

(a) Graph (b) The trees T, and T,

Figure 4.5: An example assuming three-view measurements.

Applying the proposed algorithm, the term E[X;(X;)T] is calculated as

E[X05 (X;)T] = ®£QI£)CJE[XI7_2 (Xb_l)T] <(b£1—>cl)T + (bCIL-QI-[—)C$ (111—)a2Ag(®(€3—>C1)T +
+ ol @il (A1 + 42050) (D,)" (4.44)

with Ay = —K,,H,, and Ay = —K,,H,,.

116 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

4.3.5 Computational Complexity

As seen in Section 4.2, the computational complexity depends on the particular scenario
being considered. In Appendix C, an analysis of the computational complexity is provided.
It is shown that the worst-case computational complexity is bounded by O (n%log(rn)),
where n is the number of the performed MP measurement updates, represented in G.
Appendix C (Section C.2) also suggests an efficient implementation method, which allows
to considerably reduce the actual computational complexity.

If a platform has limited computational resources, it is possible to approximate the true
cross-covariance terms by maintaining a limited history of the MP measurement updates.
In this case, the graph G may be treated as a constant-size buffer, where upon reaching
a maximum size, the nodes representing information contained in old MP measurement
updates? are removed from the graph G, thereby neglecting the contribution of those
updates on the cross-covariance terms to be computed in the future.

It is worth noting that in practice, specific scenarios exist in which the worst-case
computational complexity is significantly less. One example is the scenario considered
in Figure 4.1, which requires processing only 3 levels in each tree, assuming the efficient
implementation discussed in Appendix C.

Appendix C (Section C.3) also suggests an efficient method for calculating the tran-
sition and process noise covariance matrices, required by the developed method in this
chapter.

4.3.6 Incorporating Other Measurements

The proposed technique for calculating cross-covariance terms can be also applied when, in
additional to the MP measurement updates, other measurements should be incorporated
as well. These measurements can be produced by additional sensors, that the platforms
are equipped with and using additional available information (e.g. DTM). For instance,
each platform can apply epipolar-geometry constraints based on images captured by its
own camera.

For simplicity, a standard measurement model is assumed for these additional mea-
surement types:

z=HX+v (4.45)

This measurement model will be termed in this section as basic measurement model. Next,
it is shown how the basic measurement model can be incorporated with the developed
approach for calculating the cross-covariance terms.

For simplicity, the concept is demonstrated for the three-platform scenario, considered
in Section 4.2.1, 1. e. r = 3. Refer to the simple scenario shown in Figure 4.1, and assume a
single basic measurement update was performed by platform I1] between the first update

2Different logic may be applied for choosing the nodes to be removed from the graph.

4.3. Graph-based Calculation of Cross-Covariance Terms 117

event, at as, and the second update event, at b3. Denote by t, the time instant of this

additional update, ¢, € (tq,,ts,). The a posteriori estimation error® Xj is given, due to
Eq. (4.45), by

~ + ~
X, = (I - K,H)X, — K,v, (4.46)

where K, and H, are the Kalman gain and measurement matrices, respectively, computed
for the basic measurement model (4.45) at ¢,.

Consequently, Xb_g is no longer inertially propagated from)N(;, but instead can be
expressed as

o ot
ng = ¢7—>ng7 +w7_>b3 (447)
Based on Eq. (4.46), 5(,,_3 can be expressed as

ot
Py [(I - K, H,) <¢a3—an3 + wa3—>v> - vav} + Wybs (4.48)

or, alternatively:

v * v *
Xb3 = ¢a3—>nga3 + wa3—>b3 (449)

where
¢Z3—>b3 = ¢7—>b3 (] - K“/Hv)gbag—w (4.50)

is the equivalent transition matrix and

wag%bg ¢7—>b3 (I K H)was—w ¢7—>53K’7V’7 + Wy —b3 (4'51)
is the equivalent noise term with noise covariance Q.. given by

Qag b3 T (b’yﬁbs([K H)QGS’Y [(b’YHlB(I K H)] +¢’Yﬁb3K RK (b’yﬁbg +Q’Yibs(4'52>
where R = E[v,v!].
Thus, for example, P, , is given by (cf. Eq. (4.19)):
Pb;bg = a3—>b3 {(I KGSHQS) P K H Pi Ka3 ai a1a2} ®a2—)b2

aza a2~ agas

In the general case, there might be a number of basic updates in each of the platforms.
However, these updates are treated in a similar manner, by calculating the equivalent
transition matrix ®* and noise covariance matrix (Q* between the time instances that par-
ticipate in the MP measurement. The repositories maintained by the platforms (cf. Section
C.3 in Appendix C) should be also accordingly updated.

3Explicit identities of the involved platforms are not indicated.

118 Chapter 4. Cross-Covariance Calculation for a General Multi-Platform Measurement Model

4.4 Conclusions

In this chapter, a new method was proposed for on-demand, explicit calculation of correla-
tion terms, required for consistent extended Kalman filter-based data fusion in distributed
cooperative navigation. The method assumed a general multi-platform model, involving
navigation information and readings of onboard sensors of any number of platforms, pos-
sibly obtained at different time instances.

Each platform in the group maintained a state vector comprised only of its own nav-
igation parameters, while the required correlation terms with other platforms were cal-
culated based on a graph, representing all the multi-platform measurement updates per-
formed thus far. This graph was locally maintained by every platform in the group. The
developed method is capable of handling the most general scenarios of multi-platform
measurements by properly taking into account the involved process and measurement
noise terms.

The proposed method was demonstrated in a synthetic example in which the multi-
platform measurement is constituted upon information obtained from three different plat-
forms. Such a measurement model is used in Chapter 5, in which the three-view navigation
aiding method, that was developed in Chapter 3 for a single platform, is extended to co-
operative navigation. Additional discussion and results regarding the proposed method
for calculating cross-covariance terms are given in Section 5.5 and in Appendix C. In
particular, it is shown that applying the proposed method for calculating the correlation
terms allows to obtain consistent and unbiased estimation, which becomes biased and
inconsistent when these terms are neglected.

Chapter 5

Distributed Vision-Aided
Cooperative Navigation based on
Three-View (Geometry

Contents
5.1 Method Overview i i i
5.2 Three-View Geometry Constraints
5.3 Three-View-Based Navigation Update

5.3.1 All the Involved Platforms are Updated
5.3.2 Calculation of the Cross-Covariance Terms P39, P31 and Py
5.4 Overall Distributed Scheme
5.4.1 Handling Platforms Joining or Leaving the Group
5.5 Simulation and Experimental Results
5.5.1 TImplementation Details
5.5.2 Formation Flying Scenario - Statistical Results
5.5.3 Holding Pattern Scenario - Experiment Results

5.6 ConclusSions . . . v v v v v v i e

This chapter presents a new method for vision-aided cooperative navigation, which
is based on three-view geometry. This result is an extension of the method developed
in Chapter 3 for cooperative navigation of multiple autonomous platforms. A group of
cooperative platforms is assumed, each platform is equipped with a standard inertial
navigation system and an on-board, possibly gimbaled, camera. The platforms are also

assumed to be capable of intercommunicating.

120 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

In contrast to the common approach for cooperative localization that is based on
relative pose measurements between pairs of platforms (cf. Section 1.1.5), the method
developed in this chapter formulates a measurement whenever the same scene is observed
by different platforms. The camera, therefore, is no longer required to be aimed towards
other platforms. Each measurement is constituted upon identifying three images with
a common overlapping area. These images can be captured by different platforms, not
necessarily at the same time. The three-view constraints, developed in Chapter 3, are
reformulated into a measurement, which is then used for performing navigation aiding.

A similar concept has been already proposed in Refs. [44] and [61] regarding two-
view measurements between pairs of platforms. However, in contrast to these works,
application of the three-view geometry constraints allows to reduce position and velocity
errors in all axes without assuming a range sensor (cf. also Chapter 3). This is not possible
with relative pose measurements and two-view measurements.

The three-view measurement is a function of imagery and navigation information be-
longing to different platforms. In the general case, these different sources of information
can be statistically dependent. Ignoring this dependence can result in inconsistent and
overconfident estimation [62]. In this chapter, it is proposed to explicitly calculate the
correlation terms required in the Kalman-based information fusion phase. This is per-
formed by adjusting the approach, developed in Chapter 4 for a general multi-platform
measurement model, to the specific three-view measurement model considered herein.
Consequently, only platforms that contribute their current image and navigation solution
to the three-view measurement can be actually updated (as discussed in Chapter 4). In
contrast to [44], explicit calculation of the cross-covariance terms eliminates the need in
the smoothing phase each time a new measurement is to be executed.

5.1 Method Overview

Figure 5.1 shows the overall concept of the proposed method for multi-platform vision-
aided navigation. The proposed method assumes a group of cooperative platforms capable
of inter-communication. Each platform is equipped with a standard inertial navigation
system and an onboard camera, which may be gimbaled. Some, or all, of the platforms
maintain a local repository comprised of images captured along the mission. These images
are attached with navigation data when they are captured. The INS is comprised of an
inertial measurement unit whose measurements are integrated into a navigation solution.

In a typical scenario, a platform captures an image and broadcasts it, along with
its current navigation solution, to other platforms in the group, inquiring if they have
previously captured images containing the same region. Upon receiving such a query, each
platform performs a check in its repository looking for appropriate images. Among these
images, only images with a smaller navigation uncertainty compared to the uncertainty
in the navigation data of the query image, are transmitted back. Platforms that do not

5.1. Method Overview 121

maintain a repository, perform the check only on the currently-captured image.

The process of the querying platform is schematically described in Figure 5.1. After
receiving the images and the attached navigation data from other platforms in the group,
two best images are chosen and, together with the querying image, are used for formulating
the three-view constraints (Section 5.2). These constraints are then transformed into a
measurement and are used for updating the navigation system of the querying platform, as
described in Section 5.3. Since the navigation data attached to the chosen three images
can be correlated, a graph-based method is applied for calculating the required cross-
covariance terms for the fusion process. This method was developed in Chapter 4 for a
general MP measurement model. Details regarding the specific implementation of this
method for the considered three-view MP measurement model are given in Section 5.3.2.
The overall protocol for information sharing among the platforms in the group is discussed
in Section 5.4.

New @ Inertial Navigation System
Image é :

+ IMU
NavData measurements

Repository

.

A

A
/%roadcast (%)
- New Image+NavData

Receive é) 3
Images and
NavData - Image 1, «[[BJ

f
@< g

Strapdown

NavData 1, Platform i , - |[EKF
| - Image 2, Image Processing Module
NavData 2, Platform j .
Choose two Y ’ Filter
. Three-View Constraints ;
best images »& matrices

Graph Representation of Multi-platform updates

Compute Cross-
Covariance Terms

Update Graph

A

» Broadcast L_lpdate «——(C) Filter matrices
Information

7

Figure 5.1: Multi-platform navigation aiding - querying platform scheme

122 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

5.2 Three-View Geometry Constraints

Assume some general scene is observed from three different views, captured by different
platforms. Figure 5.2 depicts such a scenario, in which a static landmark p is observed in
the three images I, Iy and I3. The image I3 is the currently-captured image of the third
platform, while I; and I, are two images captured by the first two platforms. These two
images can be the currently-captured images of these platforms, but they could also be
captured in the past and stored in the repository of each platform, as is indeed illustrated
in the figure. Alternatively, I; and I5 could also be captured by the same platform.

Figure 5.2: Three-view geometry: a static landmark p observed by three different plat-
forms. Images I; and I, were captured by the first two platforms in the past, while image
13, is the currently-acquired image by the third platform.

The notations in Figure 5.2 are similar to those defined for a single platform (cf. Figure
3.2). The constraints resulting from observing the same landmark from three different
views are given by Theorem 3.2.1 in Section 3.2:

qf (T2 xqy) = 0 (5.1a)
3 (Tas X q3) 0 (5.1b)
(a2 ¥ a;)" (g3 x Taz) = (q; X T12)"(q3 X qy) (5.1c)

All the parameters in Eqs. (5.1) should be expressed in the same coordinate system
using the appropriate rotation matrices taken from navigation systems of the involved
platforms. It is assumed that this coordinate system is the LLLN system of the platform
that captured the second image at t,.

Taking into account that, in practice, multiple matching features will be obtained, we

5.3. Three-View-Based Navigation Update 123

use the formulation derived while considering a single platform:

U w
F T23 - 0 T12 (52)
0 Nx3 G Nx3

where N and the matrices U, F', G and W are defined in Section 3.2.1.

5.3 Three-View-Based Navigation Update

Define the state vector of each platform to be its own navigation errors and IMU error
parameterization, as given by Eq. (1.10):
X = [APT AVT AwT dT bT]"
The process equation for the ith platform is given by
X,(t) = B, Xilt) + i, (5.3)

where the transition matrix ®; _,, and the discrete process noise wy,_, are discussed in
Section 1.3.2.

When real navigation and imagery data are considered, the constrains in Eq. (5.2)
will not be satisfied. In a similar manner to Section 3.3, a residual measurement z is

defined:

U 44
z= | F T23 — 0 T12
0 G

which is a nonlinear function of the position and attitude of the involved platforms, and
of the LOS vectors from the three views. The involved information can be taken, in
the general case, from different time instances. Note, that the identity of the involved
platforms, and the time instances are unknown a priori. Denoting the identity of the
involved platforms in the current measurement by the indices 1,2 and 3, and the time
instances by %1, %5 and t3, the residual measurement is given by:

z(t) = h (Poss(t3), W5(ts), Posa(ts), Wsa(ts), Pos (t1), Ui (th), {af, a5, a5° }) (5.4)
Linearizing Eq. (5.4) we obtain, similarly to Eq. (3.23):
z ~ Hj3(t3)X;5(t3) + Ho(te)Xa(tz) + Hi(t1)X4(t1) + Dv (5.5)
where the Jacobian matrices Hs, Hy, H; and D in the above equation are defined as

H; = ng(tg)h , Hy= VC2(t2)h , Hy = VC1(t1)h , D= V{qlcl qCQan(‘rig}h (56)

2 .
7 24

124 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

with {;(;) being the navigation solution and IMU errors parametrization (cf. Sections
1.3.2 and 3.3), and v is the image noise associated with the LOS vectors appearing in
Eq. (5.4).

From now on, we will use the notation X; to denote X;(¢;). Thus, X; is the state
vector of the appropriate platform at the capture-time of the ¢th image, as defined by
Eq. (5.3). This state vector models the errors in the navigation data attached to this
image.

As can be seen, the residual measurement is a function of all the three state vectors,
which in the general case can be correlated. Assuming the correlation terms relating
the three state vectors are known, all the involved platforms in the measurement can be
updated by applying standard equations of the IEKF, as detailed in Section 5.3.1%.

However, the calculation of the correlation terms is not trivial for the considered three-
view measurement model. The difficulty comes from the fact that it is a priori unknown
which platforms and what time instances will participate in a three-view measurement.

The common approach for calculating the cross-covariance terms in CN is to use
an augmented covariance matrix, which contains cross-covariance terms between all the
possible pairs of platforms in the group. As discussed in Chapter 4, this is indeed an
approach used in some works (e. g. [48]), in which the measurement is a function of
the navigation parameters at the current time of several platforms (as in relative pose
measurements between pairs of platforms). Assuming M platforms in the group, and
an m X m covariance matrix P; for each platform ¢, the total covariance matrix of the
group, containing also all the cross-covariance terms among platforms in the group is an
Mm x Mm matrix

P P - Py

Py P, - Py
7)Total ==

Pyvi Py -+ Py

where P, = E[XZXZT] and P;; = FE [XZX]T] The matrix Proa can be efficiently calculated
in a distributed manner (i. e. calculated by every platform in the group) [48].

Yet, the measurement model in Eq. (5.5) involves data from different platforms and
from different, unknown time instances. Maintaining a total covariance matrix Proal
containing a covariance for every platform and cross-covariance terms between each pair
of platforms in the group for any two time instances along the mission duration is not
practical. Thus, an alternative technique should be used.

As a solution to the aforementioned problem, it is proposed to explicitly calculate the
required cross-covariance terms based on an approach developed in Chapter 4 for a general
MP measurement model. This approach represents the MP updates in a directed acyclic

LAs shall be seen in the sequel, the actual update equations are, in the general case, different
(cf. Egs. (5.7)-(5.10)).

5.3. Three-View-Based Navigation Update 125

graph, locally maintained by every platform in the group. The required cross-covariance
terms are computed based on this graph representation, going back and forth in the time
domain according to the history of the so-far performed MP updates.

Another possible approach for consistent data fusion has been recently developed in
[44], considering relative pose and two-view measurements between pairs of platforms.
However, in this approach a smoothing over the navigation solutions of all the platforms
is performed whenever any kind of measurement is received. In contrast to this, the
approach proposed herein allows on-demand calculation of the required cross-covariance
terms, without refining the navigation history, thereby being computationally efficient.

The graph needs to be acyclic, since otherwise, a measurement might trigger recursive
updates in past measurements. In a general scenario involving three-view measurements
among different platforms at different time instances, the graph is guaranteed to be acyclic,
particularly if only platforms that contributed their current (and not past) image and
navigation data are updated (see a further discussion in Section 4.2.2, page 101). For
simplicity, we consider only one such platform, which is the querying platform, i. e. the
platform that broadcasted the query image to the rest of the platforms in the group.
Moreover, without loss of generality, it is assumed that the querying platform captures
the third image, as illustrated in Figure 5.2. Thus, referring to Eq. (5.5), only X3(t3) is
estimated, while Xy () and Xy (¢;) are modeled as random parameters.

An TEKF is applied, whereby the Kalman gain matrix is computed as (cf. Section 3.3)

Ks = Px,, P, (5.7)

where
Px,, = Py H] + PypH] + Py HT (5.8)
P, = HyPy HI +[H, H] L]D:% 1;211} [H, H,]" +DRD" (5.9)

The update equations are the IEKF standard equations. In particular, the a posteriori
estimation error of the querying platform is given by:

X;_ = [[- KSHS] X; - KSHZXQ_ - K3H1X1_ - KgDV (5.10)

where X denotes the estimation error of X.

It should be noted that the remark regarding the ad-hoc approach in the above cal-
culation of the Kalman gain, which appears in Section 3.3 (page 80) in the context of a
single platform, is relevant in the current case as well.

As can be seen from Egs. (5.8) and (5.9), the cross-covariance terms Psy, P3; and Psg
indeed participate in the update process, and therefore these terms need to be calculated.
Additional discussion regarding calculation of these terms using the approach developed
in Chapter 4 is given in Section 5.3.2.

126 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

It is worth mentioning that there are specific cases, in which all the platforms par-
ticipating in the measurement can be updated, since it is guaranteed that the graph will
always be acyclic. In these cases, the filter formulation changes as described next. An
example of such a scenario is given in Section 5.5.2.

5.3.1 All the Involved Platforms are Updated

The following augmented state vector is defined:
x =[x x7 x1" (5.11)
with an augmented covariance matrix P = E[X X T], where a denotes the estimation error

of a. Let also H = [Hs H, H,] and K = [K] K7 [v(ﬂT The augmented Kalman
gain matrix K is computed as

K =P H" (HP H" + DRDT)™ (5.12)
The a posteriori estimation error of the augmented state vector X is
x" = [I - KH] X — KDv (5.13)
while the augmented covariance matrix is updated according to
Pt =[I-KH|P [I-KH]" + KD R[KD]" (5.14)

The a posteriori estimation errors of the three state vectors in X can be explicitly written
based on Eq. (5.13) as:

Xo = |1 - KyH| X, — KyHoX, — KyH X, — KyDv (5.15)
Xy = |1 - KolL| X, — KoHy X, — KoH X, — KyDv (5.16)
X[=1 - ko X] - R\ HX, — K\ HX, — K Dv (5.17)

5.3.2 Calculation of the Cross-Covariance Terms Psy, P3; and Py

The required cross-covariance terms in each three-view update are Pso, P31 and Ps;. These
terms can be calculated by adjusting the method for calculating the cross-covariance terms
for a general MP measurement model, which was developed in Chapter 4, to the specific
measurement model of three-view measurements (5.5).

Since the residual measurement z is constituted upon navigation and imagery data
of three views, Eq. (5.4) can be expressed in a similar manner to Eq. (4.7) with r = 3
(cf. Section 4.1):

z(t) = h(x1(t1), y1 (1), X2(t2), ¥2(t2), x3(t3), y5(ts)) (5.18)

5.3. Three-View-Based Navigation Update 127

In the general case, y,(t;) denotes the external sensors readings of the ith platform at some
time instant ¢;. These readings are corrupted by a Gaussian white noise v;(¢;). In the
current case, the camera is the only required external sensor, and thus, y,(¢;) represents
the pixel coordinates of the image captured by the ¢th platform at time ¢;. Consequently;,
the linearized measurement equation (5.5)

z =~ H3(t3)X5(t3) + Ho(t2)Xa(ta) + Hy(t1)X1(t1) + Dv (5.19)
can be interpreted in terms of Eq. (4.7), so that
Hi(t:) = Veuoh . i=1,23 (5.20)
and D = [Dy(t) Da(ts) Ds(ts)], v=[vT(tr) vE(ts) vI(ts)]" with
D;(t;) = Vy. @oh (5.21)

Now, the only missing part for applying the graph-based method for calculating the cross-
covariance terms (cf. Chapter 4) is calculation of the noise covariance between some two
adjacent nodes ¢;_; and ¢; in any of the two trees that are constructed from the graph G
(cf. Section 4.3.2.3): E[n,,.., M) This term is given in the general case by Eq. (4.38):

Qe transition relation
EMeer Mier) = te : 5.22
Meer s Meer] { K. DyReye (K., D.)" update relation (5-22)
While in case of a transition relation, E[n,.., M.c_,] = Qcsc_, 18 calculated from the

process noise w of the appropriate platform, a clarification is required for calculating
EMeper Mo,] in the case of an update relation. For an update relation, ¢,_1 is an a
posteriori node, while ¢; is an a priori node representing one of the three images that
participate in a given three-view measurement. Thus, the node ¢;_; has three parents,
one of which is the node ¢;.

Recall the term DRD?T which participates in the update step of the querying plat-
form (cf. Eq. (5.9)). This term represents the noise covariance of all the three images
constituting a given three-view measurement. An explicit expression for DRD? is given

by Eq. (B.90) (cf. Appendix B):

. Ni23+AN12 oh ahT Ni23+AN12+AN23 oh 6hT
DRD - Z) ClRVa C +) Ca Va C2
i—1 i, i, =1 2, a2,
N123+AN23 T
oh oh
+ e Ryt (5.23)
; dqs! Ods

However, the term E [nqzcz_lnch:lel] represents the noise covariance of only one of the
three images. Therefore, only part of the ingredients that appear in Eq. (5.23) should be

128 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

taken when calculating £ [nclzclflnch:Cl_l]. Let the contribution of the sth view, s = 1,2, 3,
to the term DRDT be denoted as (DRDT)

view s’

N123+AN12 T
h h
(DRD") ., = D a—clea—Cl (5.24)
i=1 aqli aqli
Ni23+AN12+AN23 T
oh oh
(DRDT)VieWZ = : : —CQRv—CQ <525)
i=1 aq?i 8q2¢
N123+AN23 T
oh oh
(DRDT) s = 2 sooBvocs (5.26)
i=1 8q3i aq3i

Then, E[n,.., M., ,]is given in the case of an update relation by

E[nq:cl_l"?ch;cl,l] = KCZADCLRCNCZA(KCZADCL)T =
= K3 (DRD") .~ Ki , se{1,2,3} (5.27)
where K., = Kj is the Kalman gain computed by the querying platform according to

Eqs. (5.7)-(5.9).

5.4 Overall Distributed Scheme

Assume a scenario of M cooperative platforms. Each, or some, of these platforms maintain
a repository of captured images attached with navigation data. All the platforms maintain
a local copy of the graph, that is updated upon every multi-platform update event. This
graph contains M threads, one thread for each platform in the group. The graph is
initialized to M empty threads. The formulation of a single multi-platform update event
is as follows.

The querying platform broadcasts its currently-captured image and its navigation
solution to the rest of the platforms. A platform that receives this query, performs a
check in its repository whether it has previously captured images of the same region.
Platforms that do not maintain such a repository perform this check over the currently
captured image only. Different procedures for performing this query may be devised.
One possible alternative is to check only those images in the repository, which have a
reasonable navigation data attached, e. g. images that were captured from a vicinity of
the transmitted position of the querying platform.

Among the chosen images, only images that have a smaller uncertainty in their at-
tached navigation data, compared to the uncertainly in the transmitted navigation data
of the querying platform, are transmitted back to the querying platform. More specifi-
cally, denote by FPg the covariance matrix of the querying platform, and P the covariance
matrix attached to one of the chosen images from a repository of some other platform in

5.4. Overall Distributed Scheme 129

the group. Then, in the current implementation, this image is transmitted back to the
querying platform only if its position uncertainty is smaller than the position uncertainty
of the querying platform, i. e.:

where (A);; is the member from the ith row and jth column of some matrix A, and « is
a constant satisfying 0 < a < 1. Naturally, other criteria can be applied as well.

The chosen images, satisfying the above condition are transmitted to the querying
platform, along with their attached navigation data. In addition, a transition matrix
between the transmitted images, should more then one image is transmitted by the same
platform, is sent. In case the replying platform has already participated in at least one
multi-platform update of any platform in the group, its thread in the graph will contain
at least one node. Therefore, transition matrices bridging the navigation data attached
to the images being transmitted in the current multi-platform update to the closest nodes
in this thread are also sent.

As an example, consider the scenario shown in Figure 5.3. Figure 5.4 presents the
construction details of the graph for this scenario, for each of the executed three-view
measurement updates. Assume the first update, aj, was executed, and focus on the
second update, b . As shown in Figure 5.4(b), platform I transmits two images and
navigation data, denoted by the nodes b; and b, in the graph. However, in addition to
the transmitted transition matrix and process noise covariance matrix between these two
nodes, ¢p, b, and Qp,.,, the transition matrix and noise covariance matrix between the
nodes by and as, @p,—q; and Qp,.q4, are transmitted as well.

b1 b, as C1
| o—©O ol @ >
Co
| - >
aq dy bs C3
ll o—©O ol ol >

Figure 5.3: Three-view MP scenario

Upon receiving the transmitted images and the navigation data, two best images are se-
lected?, the cross-covariance terms are calculated based on the local graph, as discussed in
Chapter 4, followed by computation of all the relevant filter matrices: Hs, Hy, Hy, A, B, D.

2The selection is according to some criteria, e. g., Eq. (5.28). Alternatively, the proposed approach
may be also applied on more than three images.

130 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

Next, the update of the querying platform is carried out based on Section 5.3. Now,
it is only required to update the local graphs of all the platforms in the group by the
performed update event. The querying platform broadcasts the following information: a)
identity of the involved platforms in the current update; b) time instances (or some other
identifiers) of the involved images; required transition matrices of the involved images; ¢)
a priori and a posteriori covariance and cross-covariance matrices involved in the current
update event; d) filter matrices K3, Hs, Hy and H;. Then, each platform updates its own
graph representation.

The process described above is summarized in Algorithms 5 and 6. Algorithm 5
contains a protocol of actions carried out by the querying platform, while Algorithm 6
provides the protocol of actions for the rest of the platforms in the group.

/

—KaSH%L) %ﬁas \\\Xi/ Pa, o,
|_I‘<a3Ha3 ///// ¢aiaa2 @ /////\;\\\\\ I _Kbsth
Ak e N

_Ka3Haz _KbsHb\z

Figure 5.4: Graph update process: a) update event a3 ; b) update event b3 ; c) update
event cj .

5.4. Overall Distributed Scheme 131

Algorithm 5 Querying Platform Protocol

1:

Notations:) - Querying platform; A, B - two other platforms.

2: Broadcast current image I9 and current navigation data.

Receive a set of images and associated navigation data from other platforms. See
steps 2-9 in Algorithm 6.
Choose two best images 14, I”? transmitted by platforms A and B, respectively.

: First graph update:

e Add a new node for each image in the appropriate thread (A, B and Q).

e Denote these three new nodes in threads A, B and () as 1, 8> and 3, respec-
tively.

e Connect each such node to previous and next nodes (if exist) in its thread by
directed arcs associated with the transition matrices and with the process noise
covariance matrices.

6: Calculate cross-covariance terms based on the local graph.
7: Calculate the measurement z and the filter matrices K3, Hs, Hy, Hi, D based on the

three images I4, I®, I? and the attached navigation data.

8: Perform navigation update on platform Q).
9: Final graph update:

e Add an update-event node, denoted by «, in the thread Q).

e Connect the nodes i, f> and 3 to the update-event node a by directed arcs
weighted as —K3H,, —K3H, and I — K3Hs, respectively. Associate also mea-
surement noise covariance matrix to each arc (cf. Egs. (5.24)-(5.26)).

e Store a priori and a posteriori covariance and cross-covariance terms (e. g. in

the nodes [, B2, B3 and «).

10: Broadcast update event information.

5.4.1 Handling Platforms Joining or Leaving the Group

Whenever a platform joins an existing group of cooperative platforms, it must obtain the
graph describing the history of multi-platform updates among the platforms in the group.
This graph can be transmitted to the joining platform by one one of the platforms in the
group. Departure of a platform from the group does not require any specific action.

An interesting scenario is one in which there are several groups of cooperative plat-

forms, and a platform has to migrate from one group to another. Refer to the former
and the latter groups as the source and destination groups, respectively. For example,

132 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

Algorithm 6 Replying Platform Protocol

1: Notations:) - Querying platform; A - current platform.

2: if a query image and its navigation data are received from platform () then

3: Search repository for images containing the same scene.

4: Choose images that satisfy the navigation uncertainty criteria (5.28).

5. For each chosen image, captured at some time instant k, look among all the nodes
in thread A in the local graph, for two nodes with time [and m that are closest to
k, such that | < k < m.

6: Calculate transition matrices ¢;,, and ¢i_.,, and noise covariance matrices ;..

and ka
7: if more than one image was chosen in step 4 then
8: Calculate transition matrices and noise covariance matrices between the adjacent

chosen images.
9: Transmit the chosen images, their navigation data and the calculated transition
and noise covariance matrices to the querying platform Q).
10: if update message is received from () then
11: Update local graph following steps 5 and 9 in Algorithm 5.

this might be the case when each cooperative group operates in a distinct location and
there is a need to move a platform within these groups. In these scenarios the migrating
platform has already a local graph representing the multi-platform events of the source
group, while the destination group has its own graph.

These two graphs have no common threads only when each platform is assigned only
to one group, and, in addition, no migration between the groups have occurred in the
past. In any case, upon receiving the graph of the destination group, the joining platform
must fuse the two graphs and broadcast the updated graph to all the platforms in the
destination group.

5.5 Simulation and Experimental Results

In this section the developed method for vision-aided cooperative navigation is studied
in two different scenarios. First, a formation of two platforms is considered. Statistical
results, based on simulated navigation data and synthetic imagery are presented (Section
5.5.2). Next, a holding pattern scenario is demonstrated in an experiment using real
imagery and navigation data (Section 5.5.3).

5.5.1 Implementation Details

The navigation simulation for each of the two platforms consists of the steps described in
Section 3.4.1.1.

5.5. Simulation and Experimental Results 133

Table 5.1: Initial Navigation Errors and IMU Errors in a Formation Scenario

Parameter Description Platform I Platform II Units
AP Initial position error (1) (10,10,10)" (100, 100, 100)” m
AV Initial velocity error (1) (0.1,0.1,0.1)" (0.3,0.3,0.3)" m/s
AP Initial attitude error (1) (0.1,0.1,0.1)” (0.1,0.1,0.1)T deg

d IMU drift (o) (1,1,1)7 (10,10,10)" deg/hr
b IMU bias (1o) (1,1, 1) (10,10, 10)T mg

Each platform is handled independently based on its own trajectory. Once a platform
obtains three images with a common overlapping area, the developed algorithm is exe-
cuted: cross-covariance terms are computed, followed by estimation of the state vector.
The estimated state vector is then used for updating the navigation solution and the IMU
measurements (cf. Figure 5.1). Next, the update information is stored and delivered to
the second platform. The image processing module is identical to the one described in
Section 3.4.1.1.

5.5.2 Formation Flying Scenario - Statistical Results

In this section the proposed method for vision-aided cooperative navigation is applied on
a formation flying scenario, comprised of two platforms. Each of the platforms is equipped
with its own navigation system and onboard camera. The navigation system of Platform I
is of a better quality, compared to the navigation system of Platform II. Table 5.1 presents
the assumed initial navigation errors and the errors of the IMU of the two platforms.

The two platforms performed the same straight and level north-heading trajectory at a
velocity of 100 m/s, with Platform I being 20 seconds ahead of platform II. The synthetic
imagery data was obtained by assuming a 20° x 30° field of view, focal length of 1570
pixels, and image noise of 0.5 pixel. The ground landmarks were randomly drawn with
a height variation of 200 meters relative to the mean ground level. In the considered
scenario, Platform I transmitted information (images and navigation data) to Platform
IT, thereby allowing to update the navigation system of Platform II using the three-
view measurement model. Platform IT was updated using the proposed method every 10
seconds, with the first update carried out after 27 seconds of inertial flight. The navigation
system of Platform I is not updated, and it therefore develops inertial navigation errors
over time.

Figure 5.5 summarizes the assumed measurement schedule. The true translation mo-
tion between any three views participating in the same measurement is 712 = 200 meters
and Th; = 400 meters, in the north direction. In each update, two of the three images?

3Since in this section a synthetic imagery data is used, the term “image” refers to a synthetic data,

134 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

that participate in the measurement, were taken from Platform I. Since the two platforms
perform the same trajectory, with a 20 seconds time delay, these two images have been
acquired by Platform I 20 seconds before the measurement. Therefore they were stored
in Platform I's repository and retrieved upon request.

Figure 5.6(a) shows the equivalent graph that was used for calculating the cross-
covariance terms in each update event of Platform II, based on the graph-based method
proposed in Chapter 4 (cf. Algorithm 2). For example, the two trees Ty~ and T, con-
structed for calculating Pb; po are given in Figure 5.6(b). In the considered scenario, the
conditions of Corollary 4.3.3 (cf. Section 4.3.2.3) are satisfied, as can be seen in Figure
5.6(b). Therefore, the computed cross covariances do not involve any noise terms. The
obtained cross-covariance terms in the considered scenario maintain a constant structure
regardless of how many MP updates were performed so far. For example, the cross-
covariance term P, , required for the second MP update, is similar to Eq. (4.19):

Pb;b2 = ¢a3_>b3 {(I - Ka3Ha3) PG;QQ K HGQPa_gaQ Kag al ala2} ®a2_>b2 T 5 29)
while the terms P, and P, are given by

Pb;bl = (ba3—>b3 {(I - KQSHGB)P_ K H P, Ka?) ail a1a2} ®a2—>b1 ,{530)

azaz a2+ asag
Py = @b, (5.31)
a; a by b, ci G vee
Platform| —@—@ o—© o—0 —»
as b3 eeoo
Platform I om—on >

Figure 5.5: Three-view measurements schedule assumed in the simulation runs.

Figures 5.7 and 5.8 present the Monte-Carlo results (1000 runs) for Platform II, in
terms of the mean navigation error (1), standard deviation (o) and square root covariance
of the filter. As seen, the position and velocity errors (Figures 5.7(a) and 5.7(b)) are
significantly reduced, compared to the inertial scenario, in all axes. The bias state is
estimated also in all axes, while the drift state is only partially estimated. The updates
yielded a mild reduction in Euler angle errors as well.

Figures 5.9 and 5.10 compare between the navigation errors of Platform II and Plat-
form I. Although Platform II is equipped with an inferior navigation system, its perfor-
mance is not inferior to the performance of Platform I. After several updates, Platform
IT actually outperforms Platform I. For example, the position errors of Platform II are
smaller than the position errors of Platform I. The reason for this phenomenon is that

i. e. (noisy) features coordinates.

5.5. Simulation and Experimental Results 135

Platform | Platform Il

\
g ‘¢a3—>b3 ¢32_’b1
(b)

Figure 5.6: (a) Equivalent graph for the scenario shown in Figure 5.5. (b) The trees 7T, by
and T, b required for calculating Pbg b

while the measurement is based upon three images, which were obtained from two plat-
forms, only one of the platforms is actually updated. Updating both platforms would
yield an improvement in both platforms [48]. Referring to Section 4.2.2, since Platform
I contributes two sets of information to each MP measurement (e. g., at t,, and t,,), the
graph will remain acyclic, if Platform [is updated at t,, and ¢, (and not at t,, and t;,).

The importance of incorporating the cross-covariance terms in the update process is
clearly evident when comparing the results of Figures 5.7 and 5.8 with Figure 5.11, that
presents Monte-Carlo results when the cross-covariance terms are neglected. As seen in
Figure 5.11, neglecting the cross-covariance terms results in a biased and inconsistent
estimation of position and velocity errors along the motion heading.

It is also worth mentioning that should the leader perform self-updates based on
the available sensors and information (e. g. epipolar constraints, GPS, DTM), improved
navigation errors will be obtained not only in the leader but also in the follower navigation
system.

136 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

North [m]

0 |===y=—=g ==Sqrtcov. - - Inertial| 150

East [m]

Alt [m]

0 i --—-‘---_'----

0 50 100 150
Time [sec]

(a) Position errors.

VN [m/s]

VE [m/s]

VD [m/s]

_5 I i
0 50 100 150
Time [sec]

(b) Velocity errors.

Figure 5.7: Formation scenario - Monte Carlo (1000 runs) results; Platform IT navigation
errors compared to inertial navigation: Reduced position and velocity errors in all axes.

5.5. Simulation and Experimental Results 137

@ [deq]

=)
@
K=}
O]
"0 50 100 150
— 0.4f ‘ |
o
=} 0.2r
3 O-----—----—l---------—-----
-0.2 : :
0 50 100 150
Time [sec]
(a) Euler angles errors.
— 15 |---u—0'-‘-'8qrtcov.‘
< ‘ . R ‘ . ,
S 10 —iai g 10 -
g 5 = 5 =
—_ X
< O---------_. o 0--_--------
° -5 -5
0 50 100 150 0 50 100 150
— 15 15
z —
> 10 - 2 10
S5 = 9 ==
= 5 >
- o O-----------
© O - W m mm mow _5
0 50 100 150 0 50 100 150
— 15
< X :
g 5
'_'N O == ™ mm=
© _5 L
0 50 100 150 0 50 100 150
Time [sec] Time [sec]

(b) Drift and bias estimation errors.

Figure 5.8: Formation scenario - Monte Carlo (1000 runs) results; Platform IT navigation
errors compared to inertial navigation: Bias estimation to the bias levels of Platform I
(see also Figures 5.9 and 5.10).

138 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

E

S

S

z
O|= == ===g = =:Sqrtcov. - - o Platform | |50

E

0

©

Lu - o B B S B . N om w=-
0 50 100 150

200 ‘

E 100

<_(0 4-----‘-‘:‘------—!----
0 50 100 150

Time [sec]

(a) Position errors.

VN [m/s]

VE [m/s]

_2 i i
0 50 100 150

% 2 \ﬂf__,__\-\‘_I_“_,‘:\‘: ‘‘‘‘‘‘‘‘‘
— NN ol b B R R I T L I W prepeny
>D 0
_2 i i
0 50 100 150

Time [sec]
(b) Velocity errors.
Figure 5.9: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors compared to navigation errors of Platform I: Position and velocity errors are reduced
below the level of errors of Platform I.

5.5. Simulation and Experimental Results 139

§ 0.2r

S, 01

6 O ==mmmmem st —— L
-0.1 . ‘

O|m ==y =g = =:Sqrtcov. == o Platform | |50
§0.4’ e i
S, 0.21
O (QFmcmmmmemcm—=em-———————=—

0 50 100 150

0.4 -
& 0.2} T L =
E ’ o o 2N R R R I - Do
> 0_______--,-—|__________'----

0 50 100 150

Time [sec]

(a) Euler angles errors.

Time [sec]

(b) Bias estimation errors.

Figure 5.10: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation
errors compared to navigation errors of Platform I: Bias estimation to Platform I bias
levels (1 mg). Euler angles are also reduced, however do not reach Platform I levels due
to poor estimation of the drift state (cf. Figure 5.8(b)).

140 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

0 50 100 150
400 ‘ |
£ 200
2 0 . OB OB S WO W
0 50 100 150

Time [sec]

(a) Position errors.

VN [m/s]

o
E 7 A
W O e e T e e e e e e
_5 L i
0 50 100 150
10 ‘ ‘
w
E ’
>D 0 - W m
_5 L i
0 50 100 150

Time [sec]

(b) Velocity errors.

Figure 5.11: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation
errors when cross-covariance terms are neglected: Biased estimation along the motion

heading.

5.5. Simulation and Experimental Results 141

5.5.3 Holding Pattern Scenario - Experiment Results

In this section the proposed method for vision-aided cooperative navigation is demon-
strated in an experiment. The experiment setup is identical to the setup that was used
in Chapter 3: A single manually-driven ground vehicle attached with a wireless camera
and an IMU. Refer to Section 3.4.3 for additional details.

The vehicle performed two different trajectories. The IMU and the camera were turned
off between these two trajectories, thereby allowing to treat each trajectory as if it were
performed by a different vehicle, equipped with a similar hardware (IMU and camera),
as opposed to Section 5.5.2, where one of the vehicles was assumed to be equipped with
a better navigation system. Thus, we have two ground vehicles, each performing its own
trajectory and recording its own IMU and imagery data.

The two trajectories represent a holding pattern scenario. Each platform performs
the same basic trajectory: Vehicle I performs this basic trajectory twice, while vehicle 11
performs the basic trajectory once, starting from a different point along the trajectory, and
reaching the starting point of vehicle I after about 26 seconds. The reference trajectories of
vehicle I and II are shown in Figure 5.12. These ground-truth trajectories were measured
manually as the GPS was unavailable in the experiment (cf. Section 3.4.3). The diamond
and square marks denote the manual measurements of the vehicles position. Each two
adjacent marks of the same platform are connected using a linear interpolation.

£

North [m]

0 50 100 150 200

East [m]
Height [m]

0 50 100 150 200

Height [m]
N 1 N
R 3
h 4
&

0 50 100 150 200 North [m] 0o
Time [sec]

(a) (b)

Figure 5.12: Trajectories of vehicles I and II in the experiment. Diamond and square
marks indicate manually-measured vehicle locations. Circle and star marks in (b) denote
the starting point of each platform.

The proposed method for multi-platform three-view based updates was applied several
times in the experiment. In addition, the method was executed in a self-update mode, in
which all the images are captured by the same vehicle (cf. Chapter 3). The required cross-
covariance terms were calculated using the graph-based method developed in Chapter 4.

142 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

A schematic sketch of the measurements schedule is given in Figure 5.13. Table 5.2
provides further information, including the time instances of each participating triplet
of images in the applied measurements. As seen, vehicle I is updated twice using data
obtained from vehicle II (measurements c and e), and four times based on its own images
(measurements f, g, h and i). Vehicle II is updated three times utilizing the informa-
tion received from vehicle I (measurements a, b and d). The vehicles performed inertial
navigation elsewhere, by processing the recorded IMU data.

f1. f ar a2 o1 O b1 b di d hi hy ¢3
|l 00— *—© o—© *—©@ o—© @ —0 Ol — eoo
Ci C e € as b; ds
Il *—©O o—©O { of Ol oo
e: i io f3 Jds h; i3
| ece —OH—O O ON L L ol—>
Il (YY) .

Figure 5.13: Schematic sketch of the measurement schedule in the experiment. Further
information regarding each measurement is given in Table 5.2.

The images participating in each three-view update were manually identified and cho-
sen. Figure 5.14 shows, for example, the three images of measurement a: images 5.14(a)
and 5.14(b) were captured by vehicle I, while image 5.14(c) was captured by vehicle II.
Features that were found common to all the three images (triplets) are also shown in
the figure. Note that two objects (a bottle, and a bag) that appear in images 5.14(a)
and 5.14(b) are missing in image 5.14(c). These two objects were removed between the
two trajectories. Therefore, as seen in Figure 5.14, these two objects are not represented
by matched triplets of features (but can be represented by matched pairs of features be-
tween the first two views). Additional details regarding the image processing phase in the
experiment can be found in Section 3.4.3.

The experiment results are given in Figures 5.15 and 5.16: Figures 5.15(a) and 5.15(b)
show the position errors for vehicle I and II, while Figures 5.16(a) and 5.16(b) show
the velocity errors. Each figure consists of three curves: navigation error, square root
covariance of the filter, and navigation error in an inertial scenario (given for reference).
The measurement type (MP-update or self-update) is also denoted in the appropriate
locations.

5.5. Simulation and Experimental Results 143

Table 5.2: Measurement details in the experiment.

Notation Type Querying vehicle t3 [sec] Replying vehicle t;,t5 [sec]

a MP update II 32.6 I 8.4, 14.2
b MP update IT 53.2 I 35.9, 39.1
c MP update I 60.0 II 2.3, 5.6

d MP update II 60.6 I 47.9, 49.2
e MP update I 66.8 II 10.3, 12.1
f Self update I 81.1 I 0.3, 1.3

g Self update I 97.0 I 22.8,24.3
h Self update I 124.7 I 54.3, 55.6
i Self update I 142.0 I 70.8, 72.1

The position error was calculated by subtracting the navigation solution from the true
trajectories (cf. Figure 5.12). In a similar manner, the velocity error was computed by
subtracting the navigation solution from the true velocity profiles. However, since velocity
was not measured in the experiment, it was only possible to obtain an approximation of
it. The approximated velocity was calculated assuming that the vehicles moved with a
constant velocity in each phase?.

As seen from Figures 5.15(a), the position error of Vehicle I was nearly nullified in
all axes as the result of the first update, which was of MP type. The next update (also
MP) caused to another reduction in the north position error. After completing a loop in
the trajectory, it became possible to apply the three-view updates in a self-update mode
for Vehicle I, i. e. all the three images were captured by Vehicle 1. Overall, due to the
applied 6 three-view updates, the position error of Vehicle I has been confined to around
50 meters in north and east directions, and 10 meters in altitude. As a comparison, the
position error of vehicle I in an inertial scenario reaches, after 150 seconds of operation,
900,200 and 50 meters in north, east and down directions, respectively. The position
error of Vehicle II (cf. Figure 5.15(b)) has been also dramatically reduced as the result
of the three-view multi-platform updates. For example, after the third update (¢ ~ 60
seconds), the position error was nearly nullified in north direction and reduced from 50 to
20 meters in east direction. One can observe that the velocity errors are also considerably
reduced in all axes (cf. Figures 5.16(a) and 5.16(b)).

4The phase duration and the translation that each vehicle has undergone in each phase are known
from analyzing the IMU measurements and from the true trajectories.

144 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

Figure 5.14: Images participating in measurement a and matched triplets of features.
Images (a) and (b) were captured by vehicle I; Image (c) was captued by vehicle II. The
images (a),(b) and (c) are represented in Figure 5.13 as ay, as and as.

5.6 Conclusions

This chapter presented a new method for distributed vision-aided cooperative navigation
based on the three-view geometry constraints that were developed in Chapter 3. A group
of collaborative platforms was assumed. Each platform was equipped with an INS and
a camera. The platforms were also assumed to be capable of communicating between
themselves.

In the proposed method, a measurement was formulated whenever the same general
scene was observed by different platforms. Three images of a common region were required
for each measurement. These images were not necessarily captured at the same time. All,
or some, of the platforms maintained a local repository of captured images, that were
associated with some navigation parameters. In a typical scenario, a platform captured
an image and broadcasted it, along with its current navigation solution, to other platforms
in the group, inquiring if they had previously captured images containing the same region.
Upon receiving such a query, each platform performed a check in its repository looking
for appropriate images. Among these images, only images with a smaller navigation
uncertainty compared to the uncertainty in the navigation data of the query image, were

5.6. Conclusions 145

transmitted back.

The three-view geometry constraints, formulated based on the currently-captured im-
age by the broadcasting platform and the imagery and navigation data obtained from
different platforms, allowed reducing navigation errors of the broadcasting platform. In
particular, position and velocity errors were reduced in all axes, without assuming a range
sensor. Since the navigation parameters associated with the three images participating in
the same measurement can be correlated, the required correlation terms were computed
using the approach developed in Chapter 4.

The proposed method was studied in a simulated environment and in an experiment.
Statistical results were presented, based on simulated navigation and synthetic imagery
data, for a formation scenario of two platforms, in which Platform I was equipped with
a higher quality INS compared to the INS of Platform II. The developed method allowed
to reduce the rapidly-developing navigation errors of Platform II to the level of errors of
Platform I. Applying the method for calculating the correlation terms allowed to obtain
a consistent and unbiased estimation. It was shown that neglecting the correlation terms
yields biased and inconsistent estimations of position and velocity. A holding pattern
scenario was demonstrated in an experiment, involving two ground vehicles, equipped with
identical inertial measurement units and cameras. Significant reduction in the navigation
errors of both of the vehicles was obtained as a result of activating the proposed method.

146 Chapter 5. Distributed Vision-Aided Cooperative Navigation based on Three-View Geometry

100y

51:1 ,0 (o] (o] O]

North [m]
a1
o

150
100

East [m]
al
o O

|

3
o
6]
o
=

4 o -
o
|
a
o

w
o

20

Height [m]

I
= =
=X=X=)

100 150
Time [sec]

o
6]
o

(a) Position errors - vehicle T

(l Nav. error === Sgrt. Cov. = = =Inertial O MP ‘
T 100 ‘ o o o -
= 50f L smEE - 1
5 " ‘I - '
6 0 —_— M-_L\
z
_50 i I i i
0 20 40 60 80 100
E 200 /‘/ :
"(7) 1007 '—o' ‘‘‘‘‘‘‘‘‘‘‘
© - = T
w o = A
0 20 40 60 80 100
E 40, X - =
E 20’ ———— - -7 7
.09)7 Q=== = V== s -
T 20 ‘ ‘ ‘ ‘
0 20 40 60 80 100
Time [sec]

(b) Position errors - vehicle IT

Figure 5.15: Position errors of vehicles I and II in the experiment.

5.6. Conclusions

147

— Nawv. error == Sgrt. Cov. = = =Inertial O MP O Self

oo & O

0 50 100 150
Time [sec]

(a) Velocity errors - vehicle T

0 20 40 60 80 100
Time [sec]

(b) Velocity errors - vehicle II

Figure 5.16: Velocity errors of vehicles I and II in the experiment.

Chapter 6

Conclusions

The research presented in this dissertation focused on utilizing computer vision techniques
for improving the performance of standard inertial navigation systems. Motivated mainly
by the fact that in the absence of a GPS signal, or when such a signal is unreliable,
the computed navigation solution is accompanied by unbounded errors that drastically
increase over time, the main goal was to develop methods for eliminating, or at least
reducing, these errors based on the imagery information acquired by a camera. The
developed algorithms assumed that the platform was equipped with an inertial navigation
system and a single onboard camera, possibly mounted on gimbals. In addition, the images
were used for constructing a representation of the observed environment, i. e., mapping.

The fundamental approach of this research was to decouple the navigation aiding
and mapping processes. This enables updating the navigation system in real time, while
the mapping phase, such as mosaic construction, was executed in a background process.
A constant-size state vector, comprised of the current navigation information only, was
used by the navigation filter. The camera images, associated with the current navigation
solution, were stored in a repository and retrieved upon demand later on for carrying
out navigation aiding. The images stored in the repository were also used for online
mosaicking.

The first algorithm dealt with improving navigation performance while operating in
challenging scenarios, characterized by a narrow field of view camera observing low-texture
scenes. It was proposed to couple between the mosaic construction and camera scanning
processes, resulting in improved vision-based motion estimation. The estimated motion
was fused with an inertial navigation system using an implicit extended Kalman filter,
allowing to reduce some of the navigation errors, including position and velocity errors
perpendicular to the motion heading. However, since the camera translation motion was
estimated only up to scale, it was not possible to reduce position and velocity errors along
the motion heading.

A special attention was given to scenarios, in which the platform visits the same regions
more than once. Since the trajectory is usually unknown a priori, the actual regions to

150 Chapter 6. Conclusions

be revisited and the time instances are also unknown. The loop scenarios hold great
potential both for navigation aiding and for refining the constructed map. The common
approaches for handling loops, such as bundle adjustment and simultaneous localization
and mapping, require processing all the images captured during-loop, which is a costly
operation.

In the second algorithm, it was proposed to utilize constraints, stemming from observ-
ing a general static scene by three distinct views, for navigation aiding. A new formulation
of such constraints was developed and fused with the navigation system. The algorithm
performed navigation aiding each time three images with a common overlapping area were
obtained, without reconstructing the observed scene. Given three images with a common
overlapping area, position errors in all axes were reduced to the levels of errors present
while the first two images were captured. Other navigation errors were reduced as well.
As opposed to navigation aiding, the map refinement can be executed in a background
process, as discussed above. Such an approach is in particular notable when considering
loops.

The second part of the thesis was devoted to cooperative navigation. A group of collab-
orating platforms, capable of intercommunication, was assumed, each platform equipped
with its own inertial navigation system, a single camera and perhaps other external sen-
Sors.

Regardless of the method applied for cooperative navigation, the involved information,
obtained from different platforms, can be in the general case correlated. This correlation
should be taken into account for obtaining consistent information fusion. A new graph-
based approach was developed for explicitly calculating the required correlation terms,
assuming a general multi-platform measurement model, involving navigation information
and readings of onboard sensors of any number of platforms, possibly obtained at different
time instances.

Finally, it was proposed to extend the three-view geometry navigation aiding algo-
rithm, originally developed for a single platform, to cooperative navigation. Thus, a mea-
surement based on the three-view constraints was formulated whenever the same static
scene was observed in three views, possibly captured by different platforms, not neces-
sarily at the same time. Since information from different platforms was involved, the
required correlation terms were calculated using the above-mentioned method, that was
adapted to the specific three-view multi-platform measurement model. This approach for
cooperative navigation reduced the navigation errors, in particular position and velocity
errors in all axes, without requiring a range sensor.

Chapter 7

Recommendations for Future
Research

The research presented herein can be extended in several directions. Some suggestions
appear in the following list.

e Utilization of the three-view constraints for identifying and tracking dynamic ob-
jects, while performing navigation aiding using static landmarks. In particular, one
can refer to tracking the dynamic objects as a sort of mapping and investigate if
there are scenarios in which representing all the dynamic objects in an augmented
state vector, such as in SLAM, is advantageous over tracking each dynamic object
on its own.

e In this research, it was assumed that the platform is equipped with an INS and a
single camera only. However, as discussed in Section 1.1, different methods have
been developed for navigation aiding assuming existence of additional information
(e. g. DTM) and additional external sensors (e. g. range sensor). In this context, it
would be interesting to investigate whether applying the three-view constraints in
conjunction with these methods can improve the performance. For example, would
the constraints enhance the performance if they were to be applied in addition to the
DTM-based pose and motion recovery method developed in [8]7 Another interesting
issue is utilization of the three-view constraints as part of the SLAM approach.

e Using the techniques developed in this research thesis, several interesting problems
can be addressed:

— Several platforms, each equipped with an INS and a single camera, observe
some other platforms which are equipped only with an INS. Refer to the former
as group A and to the latter as group B. As seen in Chapter 5, it is possible
to perform CN for the platforms in group A. Now, the question is whether

152 Chapter 7. Recommendations for Future Research

platforms from group B can be also updated within the CN framework of
group A

— Autonomous return home upon identifying GPS dropout, using the so-far con-
structed mapping/mosaic and utilizing the VAN methods developed in this
research.

— Satellite orbit determination/navigation and cooperative navigation.

e A more direct continuation of this research thesis is: 1) To investigate how the
three-view constraints are related to the trifocal tensor, and to perform a compara-
tive performance analysis for both of them; 2) Further investigate the approach of
performing the mapping in a background process, adopted in this research thesis
(cf. Section 1.2), as opposed to the SLAM approach.

e Application of the approach for explicit calculation of cross-covariance terms, de-
veloped in Chapter 4, to other problems that involve information fusion of possibly
correlated data.

e Application of advanced filtering methods such as particle filtering for naviga-
tion data fusion of multiple cooperative platforms relying on the three-view aiding
method developed in this research.

Appendix A

Chapter 2 Extras

This appendix presents a development of a measurement model used in the method for
mosaic-aided navigation, described in Chapter 2. The model relates between the image-
based estimated camera relative motion tlciQ, jo and the developing navigation errors
of a standard INS and the parameters that model the IMU errors. The state vector is

defined in Eq. (1.10):
X = [APT AVT Aw” 4T b7’ (A1)
Under ideal conditions, i. e. when there are no navigation errors and t$2,, Rgf are
perfectly estimated, the following can be written:

Lo Lo _ CQ C’2
POSTrue (tQ) - POSTrue (tl) - ’yCLQ ,Truet 1—-2,True

(A.2a)

Cgf,TTue - Rgf,T'rue (AZb)

where C’f; is the DCM transforming from C' to LLLN at the time instance ¢ = t;
Tgf is the DCM transforming from C' at t = t5 to C' at t = t;; and PosL(tQ)(tl) is the
platform’s position at t = t; expressed in the LLLN system at t = t,, so that Pos” (tQ)(tl) =
Cf((g)) Pos™)(t,). The subscript (-)7ye in Bq. (A.2) indicates ideal conditions as defined
above.

The DCM ng is required since the extracted translation t2,, is given in the camera

reference frame, while the left side of Eq. (A.2a) is expressed in the LLLN system.

A.1 Translation Measurement Equation

In an ideal situation, with no navigation and image processing errors, the two sides of
Eq. (A.2a) constitute parallel vectors. Thus, this equation yields the following constraint:

L L C C:
[POSTf"ue (tg) - POST?‘ue (tl)} X CL;,Truet liZ,True

~0 (A.3)

154 Appendix A. Chapter 2 Extras

In reality, there are navigation errors that increase with time, moreover, the estimated
camera matrix contains errors due to image noise. Thus, Eq. (A.3) no longer holds.
Denoting by Nav parameters that are taken from the navigation data and by flciQ the
actual estimated translation vector obtained from the image processing module, Eq. (A.3)
becomes

[POS%%W (tg) - POS]LVQM(tl)] X ng,]\/avflciz = Zyranslation (A4)
where Zi qnsiation denotes the residual measurement vector.

Taking into account the fact that Pos}?, (.) = Posk?

22 () + AP™(.) and subtracting
(A.3) from (A.4) results in

~C:
[AP(tQ) — AP(tl)]LQ X Cg;,NavtliZ + Vir = Ztranslation (A5)
where vy, = [Posrye(ta) — Postyye (tl)]L2 X [CLCQQ Navffig — CLC;Tmetfisze} . The vector

vy, is due to imperfect translation measurements (which are image-based estimations) and
navigation errors. One may verify that in ideal conditions this term is nullified.

The inertial position error for a sufficiently small At = t5—t; or for a straight and level
flight is given by Eq. (1.17) (the Nav subscript is omitted for simplicity from here on;
thus, all parameters are computed based on the navigation system data, unless otherwise
specified):

1
AP(ty) = Cf! —éAs(tl)CLBlld(At)3

1

+ 3 [A,(t1) AT (1) + C7'b] (AL + AV () At + AP(tl)] (A.6)
Note that a transformation matrix, C’le, was added to express the position error at ¢t = ¢
in LLLN coordinates.

Substituting Eq. (A.6) into Eq. (A.5), canceling position errors at ¢t = ¢; and denoting

L2 0, ~C2 .
150 = CL, Navbi 5o yields

1 1 oL
{Cf; {—gAs(tl)Cflld - (At)? + 3 [As(t1) AT (t1) + CP'b] (AL)? + AV (tl)AtH £,

+Vi = ZtranslatierA- 7)

where (.)" denotes the matrix cross-product equivalent. One can see from Eq. (A.7) that
the translation measurement equation is of the form z:.ansiation = H X + vr,, where

After some algebraic manipulations on Eq. (A.7), the submatrices of H" can be rendered
into

N

~L
tr 2
HAV - |:t1—>2

A 1 A
| chiae HEy = =5 [62] ChA) (a2

~Lo ~Lo

r 1 A 1 1 T 1 " L 1
iy =g [t chagmcian® my =~ [i.] chekian?

A.2. Rotation Measurement Equation 155

A.2 Rotation Measurement Equation

Recall Eq. (A.2b), written under the assumption of ideal conditions: gf True = Rgf True

When taking into account navigation errors and errors in the estimated rotation matrix,
this equation no longer holds. Instead, we define a residual error angle vector, Z,otation-
Under the assumption of small angles, this vector can be written as

N T
I— Zﬁ\otation,A = Oglz,Ncw [R(Cji] (Ag)

Here Cgf Naw denotes the DCM transforming from C' at ¢ = ¢; to C at t = 5, computed
by the navigation system of the platform. This matrix differs from the true DCM due to
platform navigation errors. The matrix Rgf is the estimated rotation matrix. One can
verify that under ideal conditions, CgiTme = jome, and thus the rotation error angle

ZRotation 15 €qual to zero. We omit the subscript (Nav) for simplicity, and write simply

C
Cre c
In general, C'z? can be written as follows:

TG = TETE TR T: (A.10)

where the matrices Tg ' and ng are assumed to be known precisely — or at least with
much more precision compared to the developing attitude errors. Thus, C'§ = C’gvae.

The errors in the ECEF-to-body rotation matrix stem from two sources: position
errors and attitude errors. Denote by Lg the correct LLLN system at the platform
estimated position, and by L the LLLN system estimated by the navigation system.
Thus, CF = CECE,, where CF is erroneous due to attitude errors and C is erroneous
due to position errors. When these errors are not present, L. = Lo = Lpyye, where Loy,
is the true LLLN system.

The errors in C’fc are assumed to be negligible, since they depend on the position
errors, which are small relative to Earth’s radius. Thus, Lo = L7, and therefore CLEC =
C'ETW. However, the attitude errors do not allow a perfect estimation of the DCM
transforming from LLLN to B, since the estimated LLLN system is erroneous. Hence,
CkL=CpeCt .

Assuming small attitude errors, we write Wyq, = Wrre + AW to obtain Cfc =
I — AW”". Taking all the above into consideration, Eq. (A.10) turns into

TG = THTR (1= AWM TE, T, [T+ AW (1) T2 T (A1)

For a sufficiently small t—t, or for a straight and level flight, one can use the approximation
of Eq. (1.14): AW(ty) = —C’flldAt + AW(¢y). Substituting this into Eq. (A.11), ignoring
second-order terms and carrying out some additional algebraic manipulations we get

L L
Tgf = TngBlcleclTEc2Tf;2Tg§+ (A.12)

TS | TE, T (AR () - CPaA) — AWM)TE, T, | T2 15

156 Appendix A. Chapter 2 Extras

As was mentioned before, the rotation matrix that was estimated by the image pro-
cessing module differs from the true matrix. Let T, be the DCM transforming between

the true rotation matrix and the estimated one: R =Trp,. RC1 True-

1T
Multiplying Eq. (A.12) by [Rgf] from the right and noting that

BiploypE plcy By nCy ; Co
T\ Ty, T, Ty T2 Th, s the nominal value of Cg

 True and hence also of Rgf
yields

,True

A T
5 [RG] = {1+ rhm [TE, T (A () - ¢fraar)
_ A\II/\(tl)TECl Técg] TBz TCQRC2 TTue} Tg@w (A13)

Assuming small estimation rotation errors v,,;, one can write Tgm =1 — v/, Thus,
substituting Eq. (A.13) into Eq. (A.9) yields

Z?otation = Vrot Tngéfl |: TLC TLC2 (A‘I’(tl) — Cfll dAt)/\
L 2 2 2 » 2 T
AW (1) TE, T5° } TP TS [Rgl} (A.14)

Using Eq. (A.10), one can write the following two relations:

Le

TOTEOTE, Ty = RGCECE? . TETR" = RGCECCE Cp™ (A15)

Substituting Eqs. (A.15) into Eq. (A.14) and using the fact that for any matrix A and
any vector £, A& AT = (A¢)", Eq. (A.14) transforms into

Zrotation R O OLC2 (OLC CLcl - I) AlI’(tl) +
+ RGCECL2CP ANt + vy (A.16)
One can see that Eq. (A.16) is of the form z,oation = H™*X + V,1, where

H™ = [03x3 Osxs H% H 033)
HEgy = RECECy: (CEL G = 1) Hy = RECEC ClIAt

A.3 Google Earth Interface

Given a platform trajectory and measurement settings (such as measurement frequency),
a command is sent to Google Earth through the interface to display a region at a specified
position (latitude, longitude and altitude) and inertial orientation. These are computed
based on the current platform position, attitude and camera angles.

Since the current version of Google Earth allows changing only the camera heading
and tilt angles, special care was taken to allow roll motion in Google Earth, that is

A.3. Google Earth Interface 157

required for implementing the camera scanning procedure. This was achieved by shifting
the yaw angle by 90° relative to the flight heading angle and adjusting the camera system
accordingly. As a result, camera/platform roll motion is obtained through tilt motion
(handled automatically by the interface).

In the current implementation, the image acquisition through Google Earth is per-
formed offline, i. e., this command is sent according to the measurement’s frequency and
the acquired images are saved into some repository. The images are injected into the
image processing module in the simulation at appropriate time instances.

Platform Trajectory

Measurements Time| Position | Welocity | Aftitude

2 Measurement #i
Settings

Parameters

Y S— Position
Aftitude

Camera Angles

- Frequency
- Start Time
- End Time

—

Kml file

]

Image #i

Google Earth

Figure A.1: A schematic illustration of an interface between the platform trajectory and
Google Earth.

Appendix B

Chapter 3 Extras

B.1 Proof of Theorem 3.2.1

Recall the matrix A,

A=| @ "% Osa ~Tul o poa (B.1)

and the constraints

i (T2 X qy) 0 (B.2a)

Q3 (Tas X q3) = 0 (B.2b)

(a2 ¥ a;)" (g3 x Taz) = (q; X T12)" (g3 X q) (B.2¢)
)

B.1.1 rank(A) <4 = Eqgs. (B.2)
Since rank(A) < 4, there exists a nonzero vector 8 = (31, Ba, 83, 84)7 such that A3 = 0.

The explicit equations stemming from A3 = 0 are
Q1051 —Qpfe —Ti2fy = 0 (B.3)
Qa2 —q3fs — T3y = O
Cross-multiplying Eq. (B.3) by q; and Eq. (B.4) by q; yields
(a1 X a)B2 + (@ X T12)Bs = 0 (B.5)
(a3 X gz)P2 — (a3 X Ta3)fs = 0 (B.6)
If q, X q, # 0 and q; X q, # 0, then performing an inner product of Eq. (B.5) with
(qs X qy) and of Eq. (B.6) with (q; X q,) yields
(a3 X do)"(a; X @) B2 + (A3 X d2)"(a; X T12)Bs = 0 (B.7)
(a1 %)" (d X dp) B2 — (ay X @) (a3 X Ta3)B = 0 (B-8)

160 Appendix B. Chapter 3 Extras

Noting that (q3 X q5)7 (q; X q3) = —(q; X q5)7 (g3 X q,) and adding Egs. (B.7) and (B.8)
gives the constraint (B.2c).

The first two constraints may be obtained similarly: Cross-multiplying Eq. (B.3) by q,
and then taking an inner product with q; gives the constraint (B.2a). Cross-multiplying
from the right Eq. (B.4) by g3 and then taking an inner product with q, gives the
constraint (B.2b). [|

Degenerate Cases

q; Xqy, =0o0rg;xqy, =0, or both,i.e. q, || g, or g, || 3, or q; || Qs || g3. Consider the
case q, || q,. Since both q; and q, point to the same ground point, it may be concluded
that T, is parallel to q; and q,. More formally, if 7 and 7, are the scale parameters such
that ||r;q;|| is the range to the ground point, then Ty = roqy, — riqy = maq; — 11q; =
(rea — r1)qy, where a is a constant. Hence Tis || q; || q,- Consequently, Eq. (B.2b) is
the only constraint from the three constraints in Eq. (B.2) that is not degenerate. This
constraint may be obtained as explained above. The case q, || g5 is handled in a similar
manner.

The last degenerated case is q; || q, || 43, which occurs when the vehicle moves along
the line of sight vectors. In this case all the constraints in Eq. (B.2) are degenerate.

Note that in the first two degenerate cases (q; || g, or q, || Q3), it is possible to write
another set of three constraints. For example, if q; || q, (but not to q;), we can formulate
two epipolar constraints between views 1 and 3, and between views 2 and 3, and provide
the equivalent constraint to Eq. (B.2c¢) relating between T3 and Tos.

B.1.2 Egs. (B.2) = rank(4) <4

The proof is based on steps similar to the previous section, in a reverse order. Recall the
constraint (B.2¢), multiplied by some constant 5, # 0:

(ay x ay)" (a3 x Tas)Bs = (q; x T12)" (a3 X qy)Bs (B.9)

Since (g, X q;)% (g3 X qy) is a scalar and Eq. (B.9) is a scalar equation, there exists some
B2 # 0 such that

Tlag x @) = (du x qp)" (g3 x Ta3) 4 (B.10)
T(Qs X dy)Bs = (q; x T12)T(Q3 X)4 (B.11)

(a2 X q)
(a2 X q)

The above equation may be rewritten into

(ay x ay)" (a3 X @y)B2 — (ay x q;)" (g5 x T23)B1 = 0 (B.12)
(a3 X d2)" (ay X @)z + (43 X)" (qy X T12)s = 0 (B.13)

B.1. Proof of Theorem 3.2.1 161

or equivalently

(e X ap)" [(a5 X q9)B2 — (a3 x Te3)Bs] = 0 (B.14)
(a5 X @) [(ay X @3)B2 + (ay x T12)Bi] = 0 (B.15)

At this point it is assumed that q; X q; # 0 and g3 x q, # 0. The proof for cases in
which this assumption does not hold is given in the sequel.

Noting that q2(q; X q,) = 0, and since the constraint (B.2b) is satisfied, the vectors
(d3 X Qs)Pa — (g3 X Ta3) B4 and (g, X q;) are not perpendicular. In the same manner, since
g2 (q; X) = 0 and the constraint (B.2a) is met, the vectors (q; X qy)f2 + (q; X T12)54
and (q3 X q,) are not perpendicular as well. Therefore the last two equations lead to

(a3 X @)B2 — (qs X Ta3)Bs = O (B.16)

(a1 X @)B2 + (a; X T12)Bs = 0 (B.17)
that me by rewritten as

d3 X (82 — Tos3fBs +a3f3) = O (B.18)

a; X (@B + Ti2fs+q;51) = 0 (B.19)

for any [, #3. Consequently,

QP2 + a0 — Tasfy = 0 (B.20)
Q11+ Qb+Teb = 0 (B.21)

In order to obtain the same expression for the matrix A, the vector a = (v, g, a3, oy
is defined as

=01, axg=—Po , ag=pf3 , ou=—Pu (B.22)

so that Egs. (B.20) and (B.21) turn into

— Qoo +qza3 + Tosas = 0 (B.23)
qia1 — gty — Trpay = 0 (B.24)
The above may be rewritten as
Aa =0 (B.25)
and since a is a nonzero vector, one may conclude that rank(A) < 4. |

Note that the epipolar constraints (B.2a) and (B.2b) only guarantee that the matri-

ces [ql —q, —Tlg] and [q2 —qs —ng] are singular, which not necessarily leads to
rank(A) < 4.

162 Appendix B. Chapter 3 Extras

Degenerate Cases

Next we prove that rank(A) < 4 also when q; || g5 or q, || 43, or q; || 95 || Q5.
Let q; || g, while gy is not parallel to q;. As proven above, q; || q, || T12, and thus,
the matrix A is of the form

q; aqq; 0O3x1 bq
A— B.26
0351 aq; q3 Ta ()

for some scalars a,b. In order to prove that rank(A) < 4, we need to show that A3 =0
for some nonzero vector 3 = (81, 2, 33, 4)7. Assume a general vector 3 and explicitly
write A3 = 0:

q,61 +aq; P2 +0q,8: = 0 (B.27)
aqy B2 +qsfs + TPy = 0 (B.28)

Observe that the second equation leads to the epipolar constraint q3 (qs x Ta3) = 0. Since
the constraints (B.2) hold, it follows that the matrix [q, —qy —Tas] is singular, and
since q, = aq,, it is possible to find nonzero entries for Sy, f3 and 54 so that Eq. (B.28)
is satisfied. From Eq. (B.27) it is easy to see that 8; = —afy — bf;. Thus, a nonzero
vector was found such that AB@ = 0, which leads to the conclusion that rank(A) < 4.
A similar procedure may be applied when q, || q; while q; is not parallel to qs.

The last degenerate case is when all the three vectors are parallel. As already men-
tioned, both of the translation vectors in this case are parallel to the line of sight vectors,
i.e.q;]l as]l as| Tia || Tas. The matrix A is then of the following form:

A | @ aa Opa ba (B.29)
03x1 —aq; cq; dq;

where a, b, c and d are some constants. Since one may find some nonzero vector 3 such

that AB =0, (e. g. 8= (b,0,d/c,—1)T), the conclusion is that rank(A) < 4.

B.1.3 Alternative Proof of rank(A) < 4 = Egs. (B.2)

Since rank(A) < 4, the determinant of any 4 x 4 submatrix of A should be equal to zero.
A careful examination of all such possible submatrices of A will give a complete set of
constraints derived from a general three-view geometry.

All the 4 x 4 submatrices of A comprised of the first three rows with any of the other
rows of A yield the epipolar constraint for the first two views, i. e., Eq. (B.2a):

ql (T3 x gy) =0 (B.30)

In the same manner, the last three rows, with any of the first three rows of A, provide
the epipolar constraint for the second and the third views, i. e., Eq. (B.2b):

dz (T23 X q3) =0 (B.31)

B.1. Proof of Theorem 3.2.1 163

The more interesting result, however, stems from analyzing the determinants of all
the other possible submatrices of A. There are nine such submatrices, which consist of
the following row permutations of A:

727 75; ? 7 ? ’ ? 7 ? ’
2,3, 4,5 ; 2,3, 4, 6 ; 2,3,5, 6 ; (B.32)
Y) Y ? Y) Y ? 17) Y
Let
o100 .1 0o .1 0o
Br= [0 0 1} Bz = {0 0 1} By = {0 1 0} (B.33)

so that the matrix F;a removes the ith element of any a € R3**!. Consider, for example,
the submatrix comprised of rows 1,2,4,5 of A. This 4 x 4 matrix, denoted by A, is

x Fsq, —FEs3q, 0241 —E3T12]
A= B.34
|:02><1 E3qy, —Es3q; —E3Tas ()
Therefore
i - 0 —(T12)2 —(dy)1 0 —(Ti2)
det(A) = (%)2 12)2| ‘ 2 —0
(4) = (@) FE3q, —Es3qy —E3To3 (d1)2 FEsq, —E3q; —E3T;
(B.35)

where (a); denotes the ith element of some vector a. After some algebra, we obtain
T T
“E3Q1 —Equ] ’ }E3q3 E3T23| = ME?,Oh E3T12]) ‘E:’,QQ —E3OI3} (B.36)

Similarly, the remaining submatrices (cf. Eq. (B.32)) yield

[Biq, —Biay]’||Bsqy BsTos| = |[Evay ExTwl”||Esq, —Fsas| (B.37)
[Bsqy —Foqy]' ||Bsay EsTas| = |[Baqy EsTio]'||Esqy —Esqs| (B.3%)
[Bsq, —EBsqy] ||Fray EaTas| = |[Esqy EsTil' ||Fiay —FEiqs| (B.39)
[Bra, —Ea)"||Biay ETos| = |[Bray ETo]||Eia, —Eiqy| (B.40)
[Baqy —Faay]’ ||Brvay BxTos| = |[Boay EoTwl”||Eva, —Fiqs| (BA1)
[Bsq, —FEsqy] | |Baay EaTos| = |[Bsay EsTio]'||Eaqy —Faqs| (B.42)
[Eiq, —Eway] ||Bsay ExTas| = |[Bray EiTiol' | |Eaqy —Esqs| (BA43)
[Baqy —Faay]’ || Baay BoTos| = |[Boay EoTwo]”||Eaq, —Faqs| (B.A44)

164 Appendix B. Chapter 3 Extras

However, although there are nine scalar constraints, given by Eqs. (B.36-B.44), only one
scalar constraint is actually contributed. To see this, write a compact version of the above
equations:

a by = c1dy a1by = c1dy Cllb3 = C1d3
asb; = cady asby = cady agbs = cads

agbl = C3d1 a3b2 = ngg 0,3b3 = ngg
Since all the parameters are scalar, it may be concluded that

dk k’CLQ =a , k’CQ =
Jk -];fCLgZCL17 /2303201
dn an = b1 s nd2 = d1

dn ﬁbgzbl,ﬁdgzdl

From here it follows that all the nine equations are equivalent. For example, multiplying
the equation aszbs = c3ds by kn yields the equation a1b; = c1d;:

];}agflbg = %Cgfldg, & arby = cdy

Thus, all the row permutations that do not yield the epipolar constraint give a single
scalar constraint. This scalar constraint may be expressed in a more compact form, which
is developed next.

Reformulating the Scalar Constraint

The scalar constraint induced by any of the nine equations (or a combination thereof)
may be written in a compact form. For example, consider Eq. (B.36). Since

MEsql —E3OI2}T‘ = (g X qy)3
|Esqs E3Ta3] = (a3 x Tas)s
‘[qul EgTuﬂ — (q, x Ti)s
|Esq, —Esqs] = (g3 X qy)s

It follows that Eq. (B.36) can be rewritten as

(a2 X ap)3(as X Ta3)3 = (q; X T12)3(qs X ds)3 (B.45)

B.2. IEKF Matrices 165

Following the same procedure, it is possible to express Eqgs. (B.37-B.44) in terms of vector
cross products:

(dy x @p)i(az x Ta3)3 = (a; X Ti2)1(as X qy)s (B.46)
(dy X dp)2(as x Taes)s = (a; X Ti2)2(as X qy)s (B.47)
(a2 X ay)3(as X T23)1 = (a3 x Tr2)s(a; X qy)1 (B.48)
(dy x ap)i(as X Ta3)1 = (a; X Ti2)1(az X az)1 (B.49)
(dy X dy)2(as X Ta3)1 = (a; X Tiz2)2(ds X d9)1 (B.50)
(ds X d;)3(ds x Ta3)2 = (g1 X T12)a(as X ds)2 (B.51)
(dz x @p)i(as x Ta3)2 = (a; X Ti2)1(az X dy)2 (B.52)
(ds x qy)2(as x Ta3)2 = (a; X T12)a(as X dy)2 (B.53)

Egs. (B.45-B.53) contribute only one constraint, which may be also written as any linear
combination of these equations. In particular, adding Eqs. (B.49), (B.53), and (B.45)
yields

(a X ay)1(ag X Tas)1 + (dg X qy)2(ds X Taz)a + (g X qp)3(g3 X Taz)3 =
(ap X Ti2)1(as X g9)1 + (dy X Ti2)2(as X gs)2 + (dy X Ti2)3(as X 9y)3

which can be written as Eq. (B.2¢):

(a2 ¥ ay)" (a3 x Tas) = (q; x T12)" (g5 X qy) (B.54)

B.2 IEKF Matrices

In this appendix we present the development of the IEKF matrices Hs, Hy, Hy, D and R.
Recall the residual measurement definition (cf. Egs. (3.20), (3.21) and (3.23))

ZNx1 = AT23—BT12:
= h(POS(tg),\Il(t3)7POS(t2),ql(tQ),POS(tl) (t1), {q1 ,q2 ,qgl })

where
U w
A= |F ., B=10 (B.56)
0 Nx3 G Nx3

and X is the state vector defined in Eq. (1.10):

X501 = [APT AVT A®T 47 b7’ (B.57)

166 Appendix B. Chapter 3 Extras

Recall also that the time instant of the third image, t3, of the three overlapping images
is the current time. Therefore, in Eq. (B.55) X(t3) is the state vector to be estimated,
while X (£,) = X(t;) and X(t1) = X(t;) are the estimation errors at the first two time
instances represented by the filter covariance attached to each image. These last two
terms, accompanied by the Jacobian matrices H, and H; and the image noise v along
with the Jacobian matrix D, constitute the measurement noise. Since navigation and
imagery information is independent of each other, these two sources of information will
be analyzed separately.

B.2.1 Calculation of the Matrices Hs, Hy, and H;
The matrices Hs, Hy and Hy, are N x 15 and are defined as
H3 =V¢uph , Hy=V¢uyh |, Hy=V¢eph (B.58)

where ¢ is defined in Eq. (1.3).
From Eq. (B.55) it is clear that these matrices are of the following form:

H; = [HFst) 0 HY®) 0 0] (B.59)
with 7 =]_, 2, 3. Since T23 = POS(tg) — POS(tQ) and T12 = POS(tQ) — POS(t1)7
HPo) = A (B.60)
HPst2) — (A4 B) (B.61)
HP M = B (B.62)

Note that the influence of position errors on the LOS vectors that appear in the matrices
A and B is neglected: the position errors affect only the rotation matrices transforming
the LOS vectors to the LLLN system at ¢5. These errors are divided by the Earth radius,
and therefore their contribution is insignificant.

Calculation of H¥(3) H¥(2) and H¥®)
Recall the definition of the matrices F,G,U and W

U = [w ... un] F=[f ... fa,] (B.63)
W= [wi ... WNHJT G=[g ... gNm}T (B.64)
with
W= wi(q,,d, ds) = = (a5, 4], @ (B.65a)
wi = wia, dy,,d3) = = [ady,], [as,] a5, (B.65D)
fi = fiay,a5) = [a,], qs, (B.65c¢)
g = gl a,)=[ay], @, (B.65d)

B.2. IEKF Matrices 167

Since the development of expressions for the matrices H¥) H¥(2) and HY) ig similar,
we elaborate only on the development process of H¥®). This matrix is given by

H¥®) — V‘I’(tg)h = V\p(t?,) [»AT23} - V‘I'(t3) [BTlQ] <B66)

We start by developing the first term in Eq. (B.66). According to the structure of the
matrices U and F', the following may be written:

Ni23 Nos
0AT 0AT
V() [AT23] = S Vet Y e Ve fi (B.67)
i=1 v i=1 t

. . T
Since u; and f; are independent of each other, and % = T2T3 for any vector x, we have

OAT 93
- e; T2, (B.68)
(9AT23
eN123+iTg3 (B69)
of;
where e; is a [N x 1 vector that is comprised of zero entries except for the jth element

which is equal to one. Note also that the size of the matrices 8“33?3, ag% is N x 3. The

remaining quantities in Eq. (B.67), Vi) and Vg, f;, can be calculated as

Voi)u = W&V‘I’(tg)q?)i (B.70)
of;
Vet = 9, Vi (t5)ds, (B.71)

here q3, refers to the LOS vector of the sth feature in the third view.

Analytical expressions for 2L, 28 0u Ow g, i — 1 9 3 are easily obtained based

dq,;’ 9q,’ 9q,’ q,’
on Eq. (B.65) as

% = [ag), [qa), 827‘” = [lao], as], a?%fl = Oss aZTg = — [,
%_ql; = - [Q3]>< [ql]x %_(;VQ = [ql]x [CI3]>< a_q(%f: - [Q3]>< %_(i = [ql]x (B72)
b [la], 9] « ba T 1] [da] I [da] 3_<i, = Osxs

As for Vg (4,)qs, recall that the LOS vectors in f, g, u, w are expressed in the LLLN system
at to. Thus, for example, for some LOS vector from the first view

a = Ciqf'=CrepCgidf’ =Cp [[+ A]CP Coaft (B.73)

Ll,True
~ q - Criar] <A, (B.74)

here q is the true value of q. In a similar manner we get:

qy ~ Qy— [QSQ]XA‘Iﬁ (B.75)
ds3 as — Cfs [q§3]XA\II3 (B.76)

Q

168 Appendix B. Chapter 3 Extras
Consequently,
Vewa = —Crlar]« (B.77)
Vaud: = —[a°]x (B.78)
V\I’(t3)q3 = —Cfi [qgg]x (B-79)
Incorporating all the above expressions, Eq. (B.67) turns into
Nias ou. Nas 8f
Vo [ATos) = =) eiTzTga ~Crlas ZeNerz % Hg. Cf;’ [a5?)« (B.80)
=1 i
Noting that g is not a function of q; and following a similar procedure we get
Nia2s
V) BT = Z e; T 128 Cf; [Q3 Jx (B.81)
qs,
In conclusion, H¥®) may be calculated according to
Ni2s3
ow ou;
H‘I’(tg) |N><3 = Z |:T’{28 T;—'Sa :| Cfs [q31] -
i=1
N23 f
- Z eN123+Z 238 0523 [qélf]x <B82)
Applying the same technique, the matrices H¥#) and H¥®) were obtained as
Ni23
HYW =3 e [TE Sa.~ Thag] a5?]. -
i=1
N23 N12
- Z eN123+zTg3a 5 x T Z eN123+N23+ZT{28 []>< <B83)
i=1 i=1
Niags Ow o,
) Z [Tga T;@,a] Criart]« +
i=1 i,
Ni2 ag
- Z eN123+N23+ZT{28 - CLl[]>< <B84)
B.2.2 Calculation of the Matrices D and R
The matrices D and R are given by:
ID = V{ 1 Cg 03} (B.85)
R = cov ({q1 ,45%,d5°}) (B.86)

B.2. IEKF Matrices 169

D reflects the influence of image noise on the measurement z, while R is the image noise
covariance for each matching LOS vector in the given images. Assuming that the camera
optical axis lies along the z direction, a general LOS vector is contaminated by image
noise v = (v,,v,)7, according to

@ =a"+ (v, v, 0) (B.87)

where q© is the true value of the LOS vector, without noise contamination. Note that
thus far we have omitted the explicit notation in the LOS vectors, thereby assuming that
all the vectors are given in the LLLN system of 5.

Recall that the sets of matching triplets and matching pairs

{qli’ q2i }7{\212) {quy qBZ}i\Ei’) {qL;? q2i7 q3z};N:1%3 <B88)
were assumed to be consistent (cf. Section 3.2.1). Thus, for example, the matrices U and
F, which are part of the matrix A, are comprised of

U=[w ... uny,] F=[f ... fa,] (B.89)

with u; and f;, constructed using the same LOS vectors, for i < Nis3. We define ANy
and ANy as the number of additional pairs in {q, ,dy, }; and {qs,, g3 }~% that are not
present in {q; , qs,,, qgi}fv:lf?’: Nis = Niog + ANjp and Nog = Nigz + ANos. Although the
overall number of matches in the above sets (Eq. (B.88)) is N = Njog + Nig + Nag, the
actual number of different matches is Nio3 + ANjs + ANos.

Assuming that the covariance of the image noise is the same for all the LOS vectors
in the three images, and recalling the structure of the matrices A, B that are used for
calculating h, we can write

. Ni23+AN12 oh 8hT N123+AN12+ANa3 oh ahT
DRD" = 3y —GRo_et), Rt
i=1 8q1¢ aq]-i i=1 aq?i aq?z’
N123+ANa23 T
oh oh
LD DR e e (B.90)
i=1 aqi’n 8q3i

In the above equation, each summation refers to all the LOS vectors from the relevant
image that participate in the calculation of h. For example, the first summation refers to

the first image. R, is a 3 X 3 covariance matrix of the image noise

R, 0 0
0 R, O
0 0 Ry

R, = (B.91)

with R, = E(v,v]) and R, = E(v,v)). Ry represents the uncertainty in the camera focal
length. Assuming the focal length is known precisely, it can be chosen as zero.

170 Appendix B. Chapter 3 Extras

Next we develop expressions for ai‘gk for each image (i. e. k =1,2,3). We begin with
oh g
8qf1
oh 0AT oBT
|Nx3 = AT _ = (B.92)

8qi1 aqi1 6qlc:

Since the matrices U, W and G contain LOS vectors from the first view while the matrix
F does not, the above equals to

N N N
oh Z OATy; duy, Oay? Z 0BTy, 0wy, dar? Z 0BT 13 Ogy Oy o
i, L C L C L %B
dqy} —~ duy, dq,? Oqy! — OwWr Oqy? dqy} — 08, Oqy? dqy;
: . Ou ow og . . 8011L.2 C
Noting that Vi # k | 5 s = o = —45 = 0, and taking into account that — = C7},
1, Bqli Bqli 8q1i
the above turns into
oh ’ . (9.AT23 8ui 0BT12 8W1 (9BT12 (9gz 3q1Lf .
C; INx3 — - — o=
dqyt | 0w Oqr? 0w 9qrr 08 dqr? | Oy
(
_ {ei [T23 Bq?f — T 8(;%_2 - eN123+N23+iT12‘8q1Li2 } Cr, i < Nios
dg;, ~C .
\ _eN123+N23+iTr{2$CL; Nigg <@ < Nigz + ANy
where the derivatives 88“;2 : ;VZ; and ;gLiQ were already computed (cf. Eq. (B.72)).
Chi qli ‘hi
Using the same procedure we get the following expressions for the N x 3 matrices 3622
QQZ.
oh
and aqff
.
T du, T ow; C
€; [Tzzs aql;Lf - Ty, 8(:51_2} CL22+
T of; T Og; 16 .
dh . + |:eN123+iT23@ - eN123+N23+iT12$:| CL; it < Niog
9952 ' . ~C ' .
A2 eN123+iT53%CL22 Nizz <1 < Nigz + ANy
dg; ~C .
\ —62N123+1T{2@CL; N123 + ANQg <1 < N123 + ANQ?, + Ang
(
T o, T ow; T of; C: -
812 _ {ei {T23 8(;:%2_2 - Ty, 6%2} + eN123+iT235q§i2 } Cry i < Nias
3 ;. ~C .
aqSi eN123+iTg3%CL§ N123 <1< N123 + AN23
34

\

Appendix C

Chapter 4 Extras

C.1 Computational Complexity Analysis

As seen in Section 4.2, the computational complexity changes from one scenario to an-
other. Therefore, the analysis of the computational complexity is given here in terms of
worst case.

Assume that n — 1 MP update events have been carried out and currently the nth
update event should be performed. Since each MP measurement is represented in the
graph G by r + 1 nodes, prior to the nth update event the graph G will contain (r +
1)(n—1) = (r+1)n—r—1 nodes. These nodes are scattered among the platform threads
in G. Since each node in the two trees may have one or r parents, the number of nodes
in the ith level is bounded by 771

A tighter bound can be obtained by noting that at least one level should separate
between two update-event nodes. Therefore, if a node has r parents, each of these parents
nodes will have only one parent. Consequently, the number of nodes in the ¢th level is
bounded by rl0-5¢=11],

The analyzed worst case is comprised of the following assumptions: (i) The number
of nodes in each level 4 in the two trees is r*~!; (ii) known pairs of nodes, in the sense of
Definition 4.3.1, are found only upon reaching the top level in both trees, thereby ensuring
maximum-size permutation sets M, and that all the levels are processed by Algorithm 2;
(iii) the computational cost of checking whether ®(a, b), i. e. whether E[f{af(:] is known,
is O(1).

Following these assumptions, the height A of each of the two trees can be calculated

from
h

(r+1)n—r—1:2ri_1:rh—1 (C.1)
i=1
which implies
h = log,(rn + n) (C.2)

172 Appendix C. Chapter 4 Extras

In addition,
card(M) < r2k=D (C.3)

The complexity of processing a single member from M, is bounded by 2i. Thus,
without taking into account the involved complexity of Algorithm 4 for calculating the
contribution of noise terms, the overall computational complexity is bounded by

h

h
Z r2) 9 = 2 Z'r’% - 21 (C4)
i=1

i=1
Letting 5 = 21,
h 2h
7,—2 Zrm . 2% = T*Q erj _ 7»*1 (CS)
i=1 Jj=1

Now, using the relation

> irt = G _T o (1—r™ —mr™ +mr'™™) ~ % [mr™(r = 1) = (™ = 1)) (C.6)

and recalling that h = log,(rn + n) gives

2% 2h
r2 5 gr? —r b < 2 E gr?
=1 j=1

= 77 [log.(rn+n)*- (rn+n)*(r —1) — ((rn +n)* = 1)]
~ r3(r+1)%(r — 1)n’log,(rn + n)*> ~ O (n*log(rn)) (C.7)

The computational complexity cost of calculating the contribution of the noise terms
to the cross-covariance (Algorithm 4) can be bounded as follows. It is assumed that
Algorithm 4 is carried out each time a pair from M, is processed. Note that in practice,
Algorithm 4 should be executed only upon finding a known pair of nodes. A single
execution of this algorithm for a pair of nodes (¢;, d;) from the ith level requires checking
for each a € D.(c¢;) whether a € Ay(d;), and for each b € Dy(d;) whether b € D.(c;).
This procedure is therefore bounded by 2ir"~%. Thus, processing a single member from
M, is now bounded by 2i + 2ir"~* instead of 2i. The overall computational complexity,
including the complexity of Algorithm 4, is therefore bounded by

h
Z r20=D (24 + 24 ~ O (n*log(rn)) (C.8)
i=1
In conclusion, the worst-case complexity of calculating a cross-covariance term in a
general scenario is bounded by O (n?log(rn)).

C.2. Efficient Implementation 173

C.2 Efficient Implementation

The computational load can be significantly reduced by efficient implementation methods.
One possible implementation is described next.

A meta-structure H is created and maintained when constructing the two trees T,
and Ty. This structure is comprised of a header containing the details of all the nodes
participating in either of the two trees. Each cell in the header, representing some node
b, has also a flag indicating whether b appears in both of the trees. In addition, each cell
points towards a structure that contains the following fields: The name of the tree in which
b appears; height of the node b; link to the location of b in the tree. The structure contains
also pointers to nodes u!, ...« !, if such nodes exist, such that b and the nodes u!, ... u !
belong to the same MP measurement update (and therefore, E [beifi], 1=1,...,r—1,
are known). If b appears in the trees several times, a linked list is used in which each
cell is a structure representing a single appearance of b in the trees. Figure C.1 shows
schematically such a structure for r = 3.

This implementation allows processing each member (¢, d) € M; more efficiently,
although the worst-case computational complexity does not change. Instead of looking for
®(ck, dj) or ®(cj, dy), by going over the nodes in ¢, 22 ¢ and dy, Y d, the following may
be performed: Check in the meta-structure H whether ¢ is linked to any other nodes,
which were part of the same MP update. For each such node u (there are only r — 1 such
nodes), check if v € Vr, by going over the linked list of u in H. For each appearance
u € Vp,, check if hy(u) < k, and then check if dy € Aq(u). Choose the node u with the
smallest height. Repeat the process for d; with the proper adjustments.

Assume that ®(cj,d;). When computing the contribution of the noise terms (cf.
Section 4.3.2.3), instead of processing all the nodes! in (T;;)% and (7.)%, checking whether

they appear in ¢; 2o ¢ and dy, EEN d, respectively, the following may be performed. For

each node ¢, € ¢; =% ¢, check in H whether it appears in T} (indicated by flag = 1).
If it does, go over the linked list of ¢, in H and choose only the appearances of ¢, in T,
which are higher than k. For each chosen appearance of ¢, verify that dj, is a descendant.

Repeat the process for d LN (with respect to Tt).

C.3 Efficient Calculation of Transition and Process
Noise Covariance Matrices
The problem this section refers to is of calculating transition and process noise covariance

matrices between some two time instances which are unknown a priori. These matrices
participate in calculation of the cross-covariance terms (cf. Section 4.2).

IThe number of nodes in (Ta)b is bounded by rh=h where h is the height of the tree T,, and hy, is
the height of node b in Tj,.

174 Appendix C. Chapter 4 Extras

X

\
\

\
Flag ™ 1

N\ 7/

Pointers to nodes |« e
in the same update

Pointer to instances | ¢

Tree name T

height 3

Pointer to node in -
tree

/v l
a; (2,)
/1
Pointer to next . e
instance 4

Treename ||

height 2

Pointertonodein | | ___--—-- -
tree

Pointer to next
instance

— e

Figure C.1: Schematic illustration of a possible implementation of H for the scenario
shown in Figure 4.2. Only the structure for the node a; is shown. Note that flag’s value
is 1 since a, appears in both trees.

In addition to the graph G, locally constructed by every platform in the group, each
platform (or some of the platforms) is assumed to maintain a repository composed of
external sensors readings and of navigation data at different time instances. Thus, the
1th platform maintains a repository storing ¢, and y, at different time instances. The
platforms’ repositories are used for calculating the MP measurement z (cf. Eq. (4.7)).

We first discuss calculation of transition matrices. Consider calculation of a transition
matrix for the ith platform relating X;(t;) with X;(¢x4s), i. €., q)ik_)tHS. The parameter s
is any positive number for which Eq. (4.5) correctly represents the relation between X; ()
and X;(tg1s). Assume that the information sets (¢;(tx),y;(tr)), - - -, (¢;(trrs), y;(tkrs)) are
stored in the repository of the ith platform.

C.3. Efficient Calculation of Transition and Process Noise Covariance Matrices 175

A naive approach for calculating ®? would be based on

tp—tys
i & R
(Dtkﬁthrs - ®tk+s‘>tk+571 et q)tk%thrl (09)
However, a much more time-efficient alternative is to calculate ®; _,, using transition

matrices bridging between several time instances. For example, if we had available the

. Z . Z'
matrix ¢ _,, , the computation of ®; _,, would require multiplication of only two
matrices:
i _ i Lo
(I)tk—ﬁms - q)tk-s-s—l—ﬁfk-s-s ®tk_>tk+s—l (C.lO)

This concept can be obtained by maintaining a skip list [87] type database. The lowest
level is comprised of the stored images and its associated navigation data, including the
transition matrices between adjacent stored images. This level is a possible implementa-
tion of the repository maintained by all/some platforms. Each next level is constructed by
skipping several nodes in the lower level, and assigning the appropriate transition matrix,
transferring from previous node to next node in the same level. No other data is stored
outside the first level nodes.

An example of this concept is given in Figure C.2, in which every two nodes in some
level contribute a node in the next level. A simplified notation is used in this figure, where
@ik trs is represented by @45 (the platform identity notation is omitted). Thus, for
instance, calculation of ®5_,5 can be performed by searching for the appropriate route in
the skip list formation, which will yield ®5_ .5 = $3_,5P5 3, instead of carrying out the
three matrix multiplications ®o_,5 = ®4_,5 P34 Po_,3.

The process noise covariance matrix between any two time instances can be efficiently
calculated following a similar approach. For example, Qik’:tk-ks is given by

Qik5tk+s = Qik+s—l5tk+s+ (C.ll)

7 % % T % A 7 T
+ ¢tk+sfl—>tk+s th+572:tk+sfl ((I)tk+sf1—>tk+s) + + (I)tk+1 —tkts thitk+1 ((I)thrl —>tk+s)

However, if each node in the skip list database contains the noise covariance matrix
between the previous node in the same level, Q%k5tk+s can be also calculated, for instance,
as

i _ % A % 7 T
th:thrs o th+sfl5tk+s + ¢tk+sflg>tk+s@tk5tk+sfl(Q)tlﬂ»sfl"tlwrs) (C'12>

Appendix C. Chapter 4 Extras

176
1 n
¢l—>n’Ql'n
| |
° ° °
. . :
1 5 n
> >
¢1ﬁ5’ Q]_-5 ooe ¢n—4—>n ' Qn—4:n
1 3 % 5 N n
" ¢1_>3’ Q]_-3 o ¢3_>5; Q3;5 oo ¢n—2an ' Qn—2:n
1 > 2 » 3 » 4 » 5 ee® —» n
- Image 2 - Image 3 - Image 4 - Image 5 - Image n
- lmage 1 4, b " 1, vee i
_ I:lav data . ¢1—>2 ’ Ql'z . ¢2—>3’ Q2:3 - ¢3—>4 ’ Q34 - ¢4_>51 Q4;5 - ¢n—1—>n ’ Qn—:l_'n
) - Nav. data - Nav. data - Nav. data - Nav. data - Nav. data

Figure C.2: Skip list repository database example.

Appendix D

List of Publications

This appendix lists the journal and conference papers published based on this PhD re-
search.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Distributed Vision-Aided Co-
operative Localization and Navigation Based on Three-View Geometry”, submitted
to Journal of Field Robotics.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Graph-Based Distributed Co-
operative Navigation for a General Multi-Robot Measurement Model”, submitted
to International Journal of Robotics Research.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Real-Time Vision-Aided Lo-
calization and Navigation Based on Three-View Geometry”, IEEE Transactions on
Aerospace and Electronic Systems, accepted.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Graph-based Distributed Coop-
erative Navigation”, Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, May 2011.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Distributed Vision-Aided Coop-
erative Localization and Navigation based on Three-View Geometry”, Proceedings
of the IEEE Aerospace Conference, Montana, USA, March 2011.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Navigation Aiding Based on
Coupled Online Mosaicking and Camera Scanning”, Journal of Guidance, Control
and Dynamics, Vol. 33, No. 6, 2010, pp. 1866-1882.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Mosaic Aided Navigation:
Tools, Methods and Results”, IEEE/ION Position Location and Navigation Sys-
tem (PLANS) Conference, California, USA, May 2010.

178 Appendix D. List of Publications

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Real-Time Mosaic-Aided Aerial
Navigation: 1. Motion Estimation”, ATAA Guidance, Navigation and Control Con-
ference, Chicago, USA, Aug. 2009.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Real-Time Mosaic-Aided Aerial
Navigation: II. Sensor Fusion”, AITAA Guidance, Navigation and Control Confer-
ence, Chicago, USA, Aug. 2009.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Navigation Aiding Using On-
Line Mosaicking”, IEEE/ION Position Location and Navigation System (PLANS)
Conference, California, USA, May 2008.

e V. Indelman, P. Gurfil, E. Rivlin and H. Rotstein, “Navigation Performance En-
hancement Using Rotation and Translation Measurements from Online Mosaick-
ing”, AIAA Guidance, Navigation and Control Conference, Hilton Head, SC, USA,
Aug. 2007.

Bibliography

1]

2]

Titterton, D. H. and Weston, J. L., Strapdown Inertial Navigation Technology, ATAA,
2004.

Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from Visual Terrain
Information Part 1: Recursive Image Registration,” IEFE Transactions on Aerospace
and Electronic Systems, Vol. 22, No. 5, 1986, pp. 583-587.

Soatto, S. and Perona, P., “Recursive 3-D Visual Motion Estimation Using Sub-
space Constraints,” International Journal of Computer Vision, Vol. 22, No. 3, 1997,
pp- 235-259.

Gurfil, P. and Rotstein, H., “Partial Aircraft State Estimation from Visual Motion
Using the Subspace Constraints Approach,” Journal of Guidance, Control and Dy-
namics, Vol. 24, No. 5, July 2001, pp. 1016-1028.

Diel, D., DeBitetto, P., and Teller, S., “Epipolar Constraints for Vision-Aided Inertial
Navigation,” Proceedings of the IEEE Workshop on Motion and Video Computing,
Vol. 2, 2005, pp. 221-228.

Roumeliotis, S., Johnson, A., and Montgomery, J., “Augmenting Inertial Naviga-
tion with Image-Based Motion Estimation,” Proceedings of the IEEE International
Conference on Robotics and Automation, Vol. 4, 2002, pp. 4326-4333.

Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from Visual Terrain
Information Part 2: Ground Velocity and Position Estimation,” IEEE Transactions
on Aerospace and Electronic Systems, Vol. 22, No. 5, 1986, pp. 588-604.

Lerner, R., Rivlin, E., and Rotstein, H., “Pose and Motion Recovery from Feature
Correspondences and a Digital Terrain Map,” IFEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol. 28, No. 9, September 2006, pp. 1404-1417.

Sim, D., Park, R., Kim, R., Lee, S., and Kim, I., “Integrated Position Estimation
Using Aerial Image Sequences,” IEEFE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 24, No. 1, January 2002, pp. 1-18.

180

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gracias, N., Zwaan, S., Bernardino, A., and Santos-Victor, J., “Results on Under-
water Mosaic-based Navigation,” IEEFE OCEANS, Vol. 3, 2002, pp. 1588-1594.

Gracias, N. and Santos-Victor, J., “Underwater Video Mosaics as Visual Navigation
Maps,” Computer Vision and Image Understanding, Vol. 79, 2000, pp. 66-91.

Eustice, R. M., Pizarro, O., and Singth, H., “Visually Augmented Navigation for
Autonomous Underwater Vehicles,” IFEE Journal of Oceanic Engineering, Vol. 33,
No. 2, 2008, pp. 103-122.

Hartley, R. and Zisserman, A., Multiple View Geometry, Cambridge University Press,
2000.

Tsai, R., Huang, T., and Zhu, W., “Estimating Three-Dimensional Motion Parame-
ters of a Rigid Planar Patch, II: Singular Value Decomposition,” IEEE Transactions
on Acoustics, Speech and Signal Processing, Vol. 30, No. 4, 1982, pp. 525-534.

Caballero, F., Merino, L., Ferruz, J., and Ollero, A., “Improving Vision-based Pla-
nar Motion Estimation for Unmanned Aerial Vehicles through Online Mosaicing,”
Proceedings of the IEEE International Conference on Robotics and Automation, Or-
lando, Florida, May 2006, pp. 2860—2865.

Caballero, F., Merino, L., Ferruz, J., and Ollero, A., “Vision-Based Odometry and
SLAM for Medium and High Altitude UAVS,” Journal of Intelligent and Robotic
Systems, Vol. 54, No. 1-3, March 2009, pp. 137-161.

Mourikis, A. and Roumeliotis, I., “A Multi-State Constraint Kalman Filter for
Vision-aided Inertial Navigation,” Proceedings of the IEEE International Conference
on Robotics and Automation, Roma, Italy, April 2007, pp. 3565-3572.

Mourikis, A. and Roumeliotis, 1., “A Dual-Layer Estimator Architecture for Long-
term Localization,” Proceedings of the IIEEE Computer Vision and Pattern Recog-
nition Workshops, June 2008, pp. 1-8.

Shakernia, O., Vidal, R., Sharp, C., Ma, Y., and Sastry, S., “Multiple View Motion
Estimation and Control for Landing an Unmanned Aerial Vehicle,” Proceedings of
the IEEFE International Conference on Robotics and Automation, Washington, D.C.,
USA, May 2002, pp. 2793-2798.

Ma, Y., Huang, K., Vidal, R., Kosecka, J., and Sastry, S., “Rank Conditions on the
Multiple-View Matrix,” International Journal of Computer Vision, Vol. 59, No. 2,
May 2004, pp. 115-137.

Yu, Y. K., Wong, K. H., Chang, M. M. Y., and Or, S. H., “Recursive Camera-Motion
Estimation With the Trifocal Tensor,” IEEE Transactions on Systems, Man, And
Cybernetics - Part B: Cybernetics, Vol. 36, No. 5, October 2006, pp. 1081-1090.

Bibliography 181

[22]

[25]

[26]

[29]

[30]

[31]

Davison, A. J., Reid, I. D.; and Molton, N. D.; “MonoSLAM: Real-Time Single
Camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 29, No. 6, 2007.

Liu, Y. and Thrun, S., “Results for outdoor-SLAM using sparse extended infor-
mation filters,” Proceedings of the IEEE International Conference on Robotics and
Automation, 2003, pp. 1227-1233.

Kim, J. and Sukkarieh, S., “6DoF SLAM aided GNSS/INS Navigation in GNSS
Denied and Unknown Environments,” Journal of Global Positioning Systems, Vol. 4,
No. 1-2, 2005, pp. 120-128.

Garcia, R., A proposal to estimate the motion of an underwater vehicle through visual
mosaicking, Phd thesis. University of Girona, Spain, 2002.

Durrant-Whyte, H. F. and Bailey, T., “Simultaneous Localisation and Mapping
(SLAM): Part I The Essential Algorithms,” IEEE Robotics and Automation Mag-
azine, Vol. 2, 2006.

Garcia, R., Puig, J., Ridao, P., and Cufi, X., “Augmented State Kalman Filtering
for AUV Navigation,” IEEE Proceedings on International Conference Robotics and
Automation, Vol. 4, 2002, pp. 4010— 4015.

Leonard, J. J. and Durrant-Whyte, H. F., “Simultaneous Map Building and Localiza-
tion for an Autonomous Mobile Robot,” Proceedings of the IEEE/RSJ International
Workshop on Intelligent Robots and Systems, Osaka, Japan, November 1991.

Bryson, M. and Sukkarieh, S., “Active Airborne Localization and Exploration in
Unknown Environments using Inertial SLAM,” Proceedings of the IEEE Aerospace
Conference, Montana, USA, 2006.

Bryson, M. and Sukkarieh, S., “Bearing-Only SLAM for an Airborne Vehicle,” Syd-
ney, Australia, 2005.

Leonard, J. J., Rikoski, R. J., Newman, P. M., and Bosse, M., “Mapping partially
observable features from multiple uncertain vantage points,” International Journal
of Robotics Research, Vol. 21, 2002, pp. 943-975.

Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., and Durrant-Whyte, H.,
“Simultaneous Localization and Mapping with Sparse Extended Information Filters,”
The International Journal of Robotics Research, Vol. 23, No. 7-8, 2004, pp. 693-716.

George, M. and Sukkarieh, S., “Inertial Navigation Aided by Monocular Camera Ob-
servations of Unknown Features,” Proceedings of the IEEE International Conference
on Robotics and Automation, April 2007.

182

Bibliography

[34]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

Leonard, J. J., Jacob, H., and Feder, S.; “A computationally efficient method for
large-scale concurrent mapping and localization,” Proceedings of the Ninth Interna-
tional Symposium on Robotics Research, Springer-Verlag, 1999, pp. 169-176.

Fleischer, S., Marks, R., Rock, S., and Lee, M., “Improved Real-Time Video Mosaick-
ing of the Ocean Floor,” Proceedings of the Oceans Conference, Vol. 3, San Diego,
California, USA, October 1995, pp. 1935-1944.

Caballero, F., Merino, L., Ferruz, J., and Ollero, A., “Homography Based Kalman
Filter for Mosaic Building. Applications to UAV Position Estimation,” Proceedings of
the IEEE International Conference on Robotics and Automation, Roma, Italy, April
2007, pp. 2004-2009.

Szeliski, R., Image alignment and stitching: A tutorial, Tech. Rep. MSR-TR-2004-92,
Microsoft Research, 2005.

Negahdaripour, S. and Xu, X., “Mosaic-Based Positioning and Improved Motion-
Estimation Methods for Automatic Navigation of Submersible Vehicles,” IEEE Jour-
nal of Oceanic Engineering, Vol. 27, No. 1, 2002, pp. 79-99.

Gracias, N., Zwaan, S., Bernardino, A., and Santos-Victor, J., “Moasic Based Navi-

gation for Autonomous Underwater Vehicles,” IEEE Journal of Oceanic Engineering,
Vol. 28, No. 4, 2003, pp. 609-624.

Lovegrove, S. and Davison, A. J., Real-Time Spherical Mosaicing Using Whole Image
Alignment, Vol. 6313, Lecture Notes in Computer Science, ECCV 2010, Part III,
Springer Berlin Heidelberg, 2010.

Richmond, K. and Rock, S., “An Operational Real-Time Large-Scale Visual Mo-
saicking and Navigation System,” OCEANS, Portugal, September 2006, pp. 1-6.

Madhavan, R., Fregene, K., and Parker, L. E., “Distributed Cooperative Outdoor
Multirobot Localization and Mapping,” Autonomous Robots, Vol. 17, 2004, pp. 23—
29.

Nettletona, E., Thrun, S., Durrant-Whyte, H., and Sukkarieh, S., “Decentralised
SLAM with Low-Bandwidth Communication for Teams of Vehicles,” Proceedings of
the International Conference on Field and Service Robotics, Lake Yamanaka, Japan,
2003.

Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., and Teller, S.,
“Multiple Relative Pose Graphs for Robust Cooperative Mapping,” Proceedings of

the IEEFE International Conference on Robotics and Automation, Anchorage, Alaska,
May 2010.

Bibliography 183

[45]

[48]

[49]

[50]

[51]

[52]

[53]

Lazaro, M. T. and Castellanos, J. A., “Localization of Probabilistic Robot Forma-
tions in SLAM,” Proceedings of the IEEE International Conference on Robotics and
Automation, Anchorage, Alaska, May 2010.

Shaferman, V. and Shaferman, T., “Unmanned Aerial Vehicles Cooperative Tracking
of Moving Ground Target in Urban Environments,” Journal of Guidance, Control
and Dynamics, Vol. 31, No. 5, 2008, pp. 1360-1371.

Smaili, C., Najjar, M. E. E., and Charpillet, F., “Multi-sensor Fusion Method Using
Bayesian Network for Precise Multi-vehicle Localization,” Proceedings of the IEEE
International Conference on Intelligent Transportation Systems, Beijing, China,
2008, pp. 906-911.

Roumeliotis, S. I. and Bekey, G. A., “Distributed Multirobot Localization,” IEEFE
Transactions on Robotics and Automation, Vol. 18, No. 5, 2002, pp. 781-795.

Kurazume, R., Nagata, S., and Hirose, S., “Cooperative Positioning with Multiple
Robots,” Proceedings of the IEEE International Conference on Robotics and Automa-
tion, San Diego, CA, May 1994, pp. 1250-1257.

Fenwick, J. W., Newman, P. M., and Leonard, J. J., “Cooperative Concurrent
Mapping and Localization,” Proceedings of the IEEE International Conference on
Robotics and Automation, Washington, USA, May 2002.

Knuth, J. and Barooah, P., “Distributed collaborative localization of multiple vehi-
cles from relative pose measurements,” Forty-Seventh Annual Allerton Conference,
Ilinois, USA, 2009, pp. 314-321.

Sharma, R. and Taylor, C. N.; “Vision Based Distributed Cooperative Navigation
for MAVs in GPS denied areas,” Proceedings of the AIAA Infotech@Aerospace Con-
ference, Washington, USA, April 20009.

Huang, G. P., Trawny, N., Mourikis, A. I., and Roumeliotis, S. I., “Observability-
based Consistent EKF Estimators for Multi-robot Cooperative Localization,” Auton.
Robots, Vol. 30, January 2011, pp. 99-122.

Martinelli, A., Pont, F., and Siegwart, R., “Multi-Robot Localization Using Rela-
tive Observations,” Proceedings of the IEEE International Conference on Intelligent
Robots and Systems, Barcelona, Spain, 2005, pp. 2797-2802.

Caglioti, V., Citterio, A., and Fossati, A., “Cooperative, Distributed Localization
in Multi-robot Systems: a Minimum-entropy Approach,” Proceedings of the IEEE
Workshop on Distributed Intelligent Systems, 2006, pp. 25-30.

184

Bibliography

[56]

[57]

[61]

[62]

Nerurkar, E. D., Roumeliotis, S. I., and Martinelli, A., “Distributed Maximum A
Posteriori Estimation for Multi-robot Cooperative Localization,” Proceedings of the
IEFEFE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp.
1402-14009.

Nerurkar, E. D. and Roumeliotis, S. 1., “Multi-Centralized Cooperative Localiza-
tion under Asynchronous Communication,” Department of Computer Science and
Engineering, University of Minnesota, Technical Report, March 2010.

Howard, A., Mataric, M. J., and Sukhatme, G. S., “Putting the ‘I’ in ‘Team’ -
an Ego-Centric Approach to Cooperative Localization,” Proceedings of the IEEFE
International Conference on Robotics and Automation, Taipei, Taiwan, 2003, pp.
868-874.

Karam, N., Chausse, F., Aufrere, R., and Chapuis, R., “Localization of a Group of
Communicating Vehicles by State Exchange,” Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 519-524.

Sharma, R. and Taylor, C., “Cooperative Navigation of MAVs In GPS Denied Ar-
eas,” Proceedings of the IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Seoul, Korea, 2008, pp. 481-486.

Merino, L., Wiklund, J., Caballero, F., Moe, A., Ramiro, J., Forssen, E., Nordberg,
K., and Ollero, A., “Vision-Based Multi-UAV Position Estimation,” IEEFE Robotics
and Automation Magazine, September 2006, pp. 53—62.

Bahr, A., Walter, M. R., and Leonard, J. J., “Consistent Cooperative Localiza-
tion,” Proceedings of the IEEFE International Conference on Robotics and Automa-
tion, Kobe, Japan, May 2009, pp. 3415-3422.

Mourikis, A. I., Roumeliotis, S. I., and Burdick, J. W., “SC-KF Mobile Robot Lo-
calization: A Stochastic Cloning Kalman Filter for Processing Relative-State Mea-
surements,” IEEE Transactions on Robotics, Vol. 23, No. 4, 2007, pp. 717-730.

Julier, S. J. and Uhlmann, J. K., “A Non-divergent Estimation Algorithm in the
Presence of Unknown Correlations,” Proceedings of the American Control Confer-
ence, Albuquerque, New Mexico, June 1997, pp. 2369-2373.

Xu, X. and Negahdaripour, S.; “Application of extended covariance intersection
principle for mosaic-based optical positioning and navigation of underwater vehi-
cles,” Proceedings of the IEEE International Conference on Robotics and Automa-
tion, Seoul, Korea, May 2001.

Bibliography 185

[66]

[67]

[68]

Arambel, P. O., Rago, C., and Mehra, R. K., “Covariance Intersection Algorithm
for Distributed Spacecraft State Estimation,” Proceedings of the American Control
Conference, Arlington, VA, USA, June 2001, pp. 4398-4403.

Julier, S. J. and Uhlmann, J. K., “Using covariance intersection for SLAM,” FElsevier
Robotics and Autonomous Systems, Vol. 55, 2007, pp. 3—20.

Lazarus, S. B., Tsourdos, A., Silson, P., White, B., and Zbikowski, R., “Unmanned
aerial vehicle navigation and mapping,” Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering, Vol. 222, No. 4, 2008, pp. 31—
548.

Farrel, J. A. and Barth, M., The Global Positioning System and Inertial Navigation,
McGraw-Hill, 1998.

Bryson, M. and Sukkarieth, S., “Observability Analysis and Active Control for Air-
borne SLAM,” IEEFE Transactions on Aerospace and Electronic Systems, Vol. 44,
No. 1, January 2008, pp. 261-280.

Fleischer, S., Wang, H., and Rock, S., “Video Mosaicking Along Arbitrary Vehicle
Paths,” Proceedings of the Symposium on Vehicle Technology, 1996, pp. 293-299.

Gracias, N., Costeira, J., and J.Santos-Victor, “Linear Global mosaic For Underwater
Surveying,” Symposium on Intelligent Autonomous Vehicles, Portugal, 2004.

Shum, H. and Szeliski, R., “Systems and Experiment Paper: Construction of Pan-
roamic Image Mosaics with Global and Local Alignment,” International Journal of
Computer Vision, Vol. 36, No. 2, 2000, pp. 101-130.

Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., and Garcia, R., “Large-Area
Photo-Mosaics Using Global Alignment and Navigation Data,” OCEANS, Portu-
gal, September 2007, pp. 1-9.

Zhang, P., Milios, E. E., and Gu, J., “Graph-based Automatic Consistent Image
Mosaicking,” Proceedings of the IEEE International Conference on Robotics and
Biomimetics, Shenyang, China, 2004, pp. 558-563.

Lowe, D., “Distinctive Image Features from Scale-Invariant Keypoints,” International
Journal of Computer Vision, Vol. 60, No. 2, November 2004, pp. 91-110.

Fischler, M. and Bolles, R., “Random sample consensus: a paradigm for model

fitting with application to image analysis and automated cartography,” Commun.
Assoc. Comp. Mach., Vol. 24, 1981, pp. 381-395.

Soatto, S., Frezza, R., and Perona, P., “Motion Estimation via Dynamic Vision,”
IEEE Transactions on Automatic Control, Vol. 41, No. 3, March 1996, pp. 393-413.

186

Bibliography

[79]

[30]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

Dissanayake, G., Sukkarieh, S., Nebot, E., and Durrant-Whyte, H., “The Aiding of
a Low-Cost Strapdown Inertial Measurement Unit Using Vehicle Model Constraints

for Land Vehicle Applications,” IEEFE Transactions on Robotics and Automation,
Vol. 17, No. 5, October 2001, pp. 731-747.

Goshen-Meskin, D. and Bar-Itzhack, 1., “Observability Analysis of Piece-Wise Con-
stant Systems - Part I. Theory,” IEEE Transactions on Aerospace and FElectronic
Systems, Vol. 28, No. 4, 1992, pp. 1056-1067.

Bryson, M. and Sukkarieh, S., “Observability Analysis and Active Control for Air-
borne SLAM,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 44,
No. 1, January 2008, pp. 261-280.

Bryson, A. E. J. and Ho, Y., Applied Optimal Control: Optimization, Estimation
and Control, Blaisdell Publishing Company, Waltham, Massachusetts, 1969.

Horn, R. and Johnson, C., Matriz Analysis, Cambridge University Press, 1992.

Goshen-Meskin, D. and Bar-Itzhack, 1., “Observability Analysis of Piece-Wise Con-
stant Systems - Part II: Application to Inertial Navigation In-Flight,” IEEE Trans-
actions on Aerospace and FElectronic Systems, Vol. 28, No. 4, 1992, pp. 1068-1075.

Yu, Y. K., Wong, K. H., Or, S. H., and Chang, M. M. Y., “Robust 3-D Motion
Tracking From Stereo Images: A Model-Less Method,” IEFEE Transactions on In-
strumentation and Measurement, Vol. 57, No. 3, March 2008, pp. 622—-630.

Guerrero, J. J., Murillo, A. C., and Sagities, C., “Localization and Matching Using the
Planar Trifocal Tensor with Bearing-Only Data,” IEEE Transactions on Robotics,
Vol. 24, No. 2, April 2008, pp. 494-501.

Pugh, W., “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Commumni-
cations of the ACM, Vol. 33, No. 6, 1990, pp. 668-676.

902 N TY WY NMYN MNNBVOON P2 MTTNN 9D NN I¥»ND NMAY DNININD
2IYON AWANND DIININD .ANIAPI MNIDVINN NNN DI YT DY THINNNY 77N PIMNND
DY DOTIN DMIZWNN DMIDD DXININT MY 9T THD DY DINIMNP-DIPN M DY ¥ NN

LONYYD DNINTL WAV NINY MNNAVYL P2 MTTH DY

Sy DONIDIND MADNNN NMITTNI WHNYND YXIM DT IPNN2 NNMIBY OWAIN ONINONIA
MNYN DNIMONNND POND INM YN DINDN DDVINNIP VMY MNHNN YITY NMIVNIN
DONDN DINNVIN 1OV ,9MUNN NONT MN MDY NMINNNN NVIDY ,NYD .55 ONNY
NMNNNN PONY NIPNI .0 DNINTIY NMY MNOVYY T DY MNINN NPNY M YN
DYPIMNNN DINNIN MNNND TINN D30V ,)IPON DITHXIND VINI NN NMNNN ,IIY2 DI
PN I YN NNOSND PON 2NN MTTHD TN .NNIAPA NINYN MNNIVLN T DY
NMYN MINNAVZNN VIPIN NN NN .IINK MNNAVYI 995 NIMNDN NPND NIDIND
DYVUITIN DININP-DIIPN MDN ,PVDYOLO OMDN NPNY DI NTTH NNINI DANNYNN
1Y DINIMP-DIPN M2DN IWIND DNINONN THD DY DXAWINKD VN NOIYN NITY ADWa
NTTNN DTIND DORMN NT DNINVON .(DPY0 ININNDN) NNV 1901 P2 00D DTN DTN
,NTTIA NNNOVD DY NIPND NNYTA .MNNN YIDY NMIVNIND DY DINDIN T HY ann
DIPM MNNOY 991D, NIDTIVIN NNMNMAVD VIV MNNY PLPNY DIVAND WNR DINDN

ANWYD QO YT NODY (NNV TH 11DD) D90 DY 110 WIDY DD 071NN D2 MM

iv

DVIPIN NIWN PNITY YSIAD IWAND DIINIONRD .YPI TONNA YNINNY 91D (DD MNHN
MYOIT PN T52) TaY2 NINNN VIOV DY MDY TIN ,INK YWNIN D92 10D DN S¥nIina

DONDN DY ,72NNnN DY 201D (SLAM 115) MS2pn My 0nda Mo NN

NY 1902 V>N OmMN trifocal tensor-N Y915 ,0M02N NVYY DY MIVMINND DIVIAND
20p1 %ININA DIV TNXD VI VIPIN NIIWN NITY TNXD NI TY YNIN

MNMILYS NNIAP JNPND SDVIMNIPN VIMIN NMYIAL DN IPNNN DY NV PN
DTN ODINY NNINN ,TPININIPN VIV NIIWYNI NTINN NNNX DI)72 IWPNY MONDNN
122 NDWH NIPY YT DY NIV MNNIVDHN DY DININ MNINIT NDOYH NIVIY MNMON ,0°9DN

.NXIPA MNNOVIN

YONY YN AN DIPII HY MTTHI WIDY NN YDVINNIP VINID MIADA NP NYNIN
PAOIINT IN) NNV TR DY DY MNMIN YN MTTNA .NNIVOI DY MNT P2 (PN 281 ond)
YDVINNIP VINID NINN MY .DPNN DO DIPM 1OTYY I KDY PTYOL GUN ,(MNOSN N
DOYANN DIIDIND NN DNIDY MNNOVYA N T DY AN MISD MNID NN ININKD NYNINY
Y VN 009N .NMNNAVYIN DY DIPIN NOIYN PNITY TIXD MNNN SNV DY DI0NDININ
,TUNNA ININNY 295 DY DI DIPMD NITY MIVAND 1IN MTTHN ,AN0 10 ITYN2
NOD ,DYPNN D02 NMIVPIY DIPMIN NNV N ODVINNIP VIPID NV NYNIN N IpHNa

ANV TR VIDOY

MNMNALYLAL VN NN P NVDXLVLON MONN NN NYTN NN TPYY NN YWY NIDN TPND
990117 VI NN OIADYNN VINI MNITY VINA INRD NNNANN 1T MON NP NMVN
NIPNA IPOPVIINI MIAPY KXY TIIVYD DXND NVY NXT NVLDLVD MON DY NNNN .NMNNAVD
2N NON N PNDA DALY NONPNRN YN ,NIDINOVD DY MNT P2 YON> AN MPTN DY
MNMNMAVLANN NNX U HY DININPN NN NDINN ,NTNIRD DINIMNP NXIVN HY NPRNM
TN NIAY DHIRNN JPON T Y .NXIAPA NINIIDVLIN NMINT DI P2 DINIMP-DIIP DN
SV NIPNI MNINAVIA 1T) NMYN MNNAVIIN DY SNONN PYITNN VI MM DY MNNVIND
JUN NINY MNNAVDI HY VI NI DY NNVIND MTTN DTN 00N 00N> A8ND MTTH
MM DY DY I0IND QONA : NIOINRNND XY 1T W) ,I2900 MPY DPYNY YNONN PITNN OPON
2WON LYNIND DY DIR VNN ONNI DY J3N YT O ,NTTHI MONNYNT MNNIVIIN
95 P2 OINMP-DIIP MIDN D) G0N NYSION NTMIRD DINOMP NXVN DY DPRNM

DY NN NPNR DMIVANRD JITN MWD TAN D52 NMIYN MINNAVIIN

NN AYND WSN DMINORD T 7YY PIND W8N AT IPNNI NMIDY SYOVUN DIMININD
DTN DTN Y VIPIN NOIWN NITY 25V DIVITIN DINIMP-DIIPN DN NN NYNIMN
DY DY NPT VIV MM DY NNNVIN NTTNRN DT DTN NNV 190N P2 D05
SV DINIIND NIAOMNN NTTH DMWY DN NPDIND DD AUN MNNIVYY 190010
DTN DT DY NIPN DT DTIND TPVID PINT NN L,DOYD NIDNNY ,NINNN SNY NMIVNIND
LDV OMYN NPNY DN NTTHI MANNYNN MNNAVIAN DN VIPIN MNM 05D

11

nyawnn MwATN N SLAM nwna pipan aRNy 09X .92y NndIN 72O5W 1IND
N2V, NPIVINN MYITN MLVPNY MANPN MLV 1901 INMOY MINY .J0TH OY MDTHN

SLAM nwoa NN PYTY NN TYIND 1T TIND NHN 02

MOTY YNaAY NwaNND L,SLAM nvnid nmon mMnvoa NUNIN IPONA [Tpnnn 1Y 9pnn
TIONININPN VIV NN PN TR NTIND NNTNOVYHN D NMINT NNN PITA VIV NOIWN
2OV NN YNID YN IPNNL .DOD2D%) 02X DY NIAONN NN DD IWNR NTTIA NNONN
mM2apNNN MNNN ANX I XPNT XD (background process) ¥ypI TONNI MNNHN
INMN T OINNI NVNRM VI NN SVIMNDT YN OY TN, 0N NN NN NNINNNIN
YNIND VNN NIIWYN NITY DD MNNN DY MM TN D) WNYD 9100 NdNN DY NN
MASWIN ,JPON DYTHXIIN VI INNN ,MNNDNNIN NNINNIN XNDN YN THD DY NNN T2
NITY 25V NPIWINN MYIITN NN NI DTN POPNY NIYIRND 1T DY) .DINMN INNDD

SLAM nwaia mvdaTn nniyv vIvn Nowwvn

,DMNMNND DIWININT VIV ONNA NBOWA TPHNHN DT IPNNI NMOY NIYNRIN DIININN
YTY DY DMIMANND NYT MND DN D ,NIYMNHD XTI DI IYNN IWY DV wpna
TN DY 192 TIXY MYVNYN NNYNNNND MZAPNN IR NNN I8 NMORI NTY DY NNOSN
NNYNNN D NNINA VN MNITY YINAD NYHWYNI NINT I NIXA0N NN NN MINMNN , 0D
.DY2NM) DXNIN DY N IWINNDN NPXID DY TONN NYNIN NNOSNN 00210 %2 DY NN
090N NNNN N PONN PAD NNYNNN DY NPAMION TONN P2 THXY YN DNININI
,INTIPN DD NNNINY PNV NNNRND P2 NAND MINN NN DITHIND IWINRD NT TINdN

implicit ,aN7 DIND YIYP PON NDVH ,TYHN .AYNNT TIYY OPPTI NDY INN 12T

PONA NN NYNNN DY VIPIN NN NITY TN L(IEKF) extended Kalman filter
VNN XD NN NN NTTHN IRNWN ;M

YNV DX0AN MNWN WIND YN DY MOINNDNN VIPIN NIIWN NITYD MOYOWN HH55 NNYTa
WP T TY P NNONNN DY PXDDINVN NYNN TIIYY YN HNDN DT OMINONX D) ,(MNNN
MPNNN DIPIAN MNNAY ,HUND .0IIN MINAVN PON P DY NMIVPN NYIDD DIINPHN JaT
NN DY HNON PN ONINOND ,GONL .NPIIANITIN DN 2PY MIVPIIN PN NYNNN P12
11952371 7PN .D2¥0 YIONNVY DHYN PWININ DY NIPNA PRIY YN PNHDVN NNV RIDND

TP DNINON DY MNdad

Ton DWANN DINDN ADVWD INYNRID YN ,NT IPNN NNDNI NMAY VN DIMINONI
Y WIN MDY NMH .DIMN NN NITY TN ,00NY DNNT NYIZVA NDINI NVLD NINOY
NMNNNNI PON) JPHN DX THXINT LI NN DNNTN NVIVWN MNNN 2OVNN IN DININ
YIN MDD NITYA VIPIN NOIYN DY 1291 DINDIND .(DOYD 9DTINN OIMN DXRNDN MDY
992 MPNNY DIPYD MNNY 1IN, VIV MNNY YW MOVPN WIND ONINOND IEKF Sv
VIR TNXD MADN NMINNN MYITI XY .GMYN NN NN DY MNNN VDY RPN 01NN
YT DY IN DN NDNNI NNNANN YT DY IXPNIN) NPNT APLY TIYA VIVIN NIWN NITY

11

80N

T MMMV YT DY NIWN DY AN PMIND VINA TNXD NYITIN NPDD2 NDID I VI
AN MMNN LI DY DY IRYN PA,2PNN TN NONN 02y TP NMIPIN YayNn
: VIV NNOWN IND IR PN DMIVNIY NN ,NIYNRT VN .NY DI NNNAVDIN DY I
PN AT 992 VPN PING L(IMU) OPORONIPN VIV YTITNA NTIND NNNIVDHN YD NNINA
Tonn 05w IMU-n S¥ NYNONH MR OTIPN I3 DVIMIN PNIND TAD DY 1WND JM)
MXNY 55100 VM PINS 1) L(INS) TIONININNRA VIIN NIWN T DY yIanpn ,m
SY MTTNI MXNY NPN YN MNXNOYY 1IN NDON 0N DY MITANNY MOV
My IMU-n moMNXa IRUD P2 9NN ,01I00 9T P19 INRD .DMIONININND DY TIN

YN DY TIND 2N PN MDXP SNDA PIY NN W NPONININND VIPIN

NN PLPNY NMNAY IN ,DIND TN DY DD DITFTNI) YN NYND NN ,TIN IRNIND
.(navigation aiding) VPIN NIIWN NITY NIPIN PONN ,NVPIONOXINND VIMN MNNY
-1 NOIYN .OIMN PIND DY PY 2WOND WNRYD D915 DX DXTTNY YN NNPN ,PNIND
NYNPNN NVXWN POD XYY NN ,20-N NINNN DY 70-N NNYA N9 NoNo NN ,GPS
PING DY PY 2N VIMIN NN NITY N TNND NPITIND VIPIN MIIYHN NN
N2WI 1D , 00NN PHNNA PN INX PN N L,PNPT IR GPS-N MmN 00X 07N
TN ¥ IR DMIPNA .OMINN NOY 11010 N DY) NNPY NI ,MIAN TN ,0MI5 NNNN
-1 N2IYNY 727D WNYO MDY IR MOV Q0N .27 VI DAPD MN DY NYAON MVIVIA
NDD DYNd) NOWNN ToNNA ONDN 25V PNY KO T9M GPS-n MmN ona onpnd ,GPS

AN OINPY MND

Ma7 MOLWY MMAY 1NN OININNRD DINYYN MY NN NN MNNONM T NN
’2)0 MMNN2 MOTI) MVLIVN .NIAVNNN DX DY MINNDNN VIPIN NIIWN NITY NNIAD
oMYN 0PN L(DTM) MavNmmnn NPSINNL MO PO ,NIIYNI YRIN OOPN YN

ANV TN, MNONN 9900 IN DT NNOSN N ,NTINN NNNOVDIN DNINY

12°20 MY , NI NPNY 122202 DD NYID NN THYN WXT DYIN NININND DNV
AN MONY YT , 0NN PIND WMDY GONI ,DONYD .WUNIN YYD YN DD XD MDY
12,2979 VIV ,IOND MVOYNN SNY WINL .DOWNN TYNI NNDNNN YT DY NPANIN N2XA0N
nann .(SLAM) Simultaneous localization and mapping N2 YYD NI NOD 1PN
YTY DY IN TN NONN OYIYA PIY MNP DY OINPM T HY MINPN NPNY N9 7NN
MLV . NNINNNN PVIAPNNY NMNNN THD JY NN (DD NMNNN 190M IN) DD NN
NNONN ,NTTA NNONN :DVYND) OOPNHONN DXTTHN 12X0 MNINL N P ,m>T71) SLAM

5905 NN N AN P2 ,RVANN SLAM N 5w phin .(MNosN N3 ,AN0 10 NTNHA
DOND ,WURIN YIT IPNRY AT P39 INNRD ,NININ N1HNOVDHN DN ,DIVN YYWONINA NdXAPY NN

NVIPHA PIPVLYYIT MOLPN V7T PH TINN DI ,D2991) M N/ NNINA NV IPNIN
29N NPPVINNNIND

SMNYNYNA NXTIN MADIN NDHNN HY DV TN NN

NMYSNNI DY99IVN 1VI9%) YYIN’]
PNIN 1372 7NN Y0909 NHIa

APNN TY NN

ININD NJAPY MYIITN DY SPoN NN ovd

191019295 NNV

DTN DTN

DNIYIY 29179390 19919 — 112901 VIV YN

2011 99N 9N N7yVUn 19

NMYSNNI DY99IVN 1VI97) YYIN’]
PNIN 1372 7MHNH X090 NH)a

DTN DTN

