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Abstract

Autonomous navigation of a platform from one point to another is a challenging task.

One essential capability for successfully performing this task is calculation of an accurate

navigation solution. Since the navigation solution, computed based on either inertial or

odometry measurements, is accompanied by persistently increasing errors, it is common

to utilize measurements from external sensors and additional available information for

correcting the navigation errors, a process called navigation aiding. The Global Position-

ing System (GPS) is undoubtedly the most common approach for navigation aiding or,

alternatively, for a direct calculation of a navigation solution. However, in certain cases,

the GPS is unavailable or unreliable, and therefore alternative methods must be applied

for navigation aiding.

One of the alternatives for navigation aiding is to use cameras, or more generally,

imaging systems, giving rise to vision-aided navigation (VAN). The navigation aiding

task becomes even more challenging when there is no prior information regarding the

environment in which the platform is required to operate. In these cases, it may be

also needed to construct a map of the observed environment. Performing these two tasks

simultaneously is an approach known as Simultaneous Localization and Mapping (SLAM).

The current research focuses on VAN in unknown environments. It is assumed that

the platform is equipped with a standard inertial navigation system and a single camera

only. The camera-captured images are associated with navigation data and stored in

a repository, which represents a mapping of the observed environment. The repository

can be also used for constructing mosaic images. Consequently, the camera-captured

images are used both for mapping and for navigation aiding. In contrast to SLAM,

the mapping (i. e., mosaic construction and repository refinement), is performed in a

background process, thereby considerably reducing the computational load.

The research described herein provides a few contributions to the vision-aided navi-

gation literature, both theoretical and practical. In the first new algorithm developed in

this research, the main idea is to couple online mosaic construction process to a camera

scanning pattern, assuming that the camera is mounted on gimbals. It is shown that

improved vision-based motion estimation is obtained in challenging operational scenarios

such as when a narrow filed-of-view camera observes low-texture scenes. These motion

estimations are fused with an inertial navigation system, allowing to reduce navigation

errors in some of the navigation parameters, including position and velocity errors normal
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to the motion heading. On the other hand, errors along the motion heading cannot be

reduced using this algorithm, motivating the development of other methods.

Another new method developed in this research utilizes constraints, obtained by ob-

serving the same scene from three different views, for navigation aiding. A new formu-

lation of such constraints is presented and proven, and a Kalman filter formulation is

developed for fusing these three-view constraints with a standard inertial navigation sys-

tem. Given three images with a common overlapping area, two of which were captured in

the past and retrieved from a repository along with the attached navigation data, the new

algorithm reduces the position errors in all axes to the level of errors present while the

first two images were captured. Errors in other navigation parameters are also reduced.

Trajectories that contain loops, in which the platform revisits a scene after some unknown

time, are naturally handled by the new algorithm.

The second part of this research is concerned with cooperative navigation. A general

multi-platform measurement model is considered. This measurement model involves nav-

igation data and readings of onboard sensors from different platforms, possibly taken at

different time instances. Since, in the general case, these various sources of information

are correlated, the appropriate correlation terms must be calculated to obtain a consistent

state estimation. The present research develops a new method for on-demand calculation

of the required correlation terms based on the history of all the multi-platform measure-

ments performed thus far. The newly-developed method relies on graph theory and is

capable of rigorously handling the involved process and measurement noise for general

multi-platform measurement models.

Finally, this research develops a new approach for vision-aided cooperative navigation.

As opposed to the common approach, which is based on relative pose measurements be-

tween pairs of platforms, in the newly-proposed approach a measurement is formulated

whenever the same scene is observed by three views, possibly captured by different plat-

forms, not necessarily at the same time. The captured images, to which some navigation

parameters are attached, are stored in repositories by each, or some, of the platforms in the

group. As in case of a single platform, applying the three-view constraints for cooperative

navigation reduces the position and velocity errors in all axes, as well as other navigation

errors, without utilizing range measurements. As opposed to relative pose measurements,

in the proposed approach the platforms’ cameras are not required to be aimed at other

platforms. Since the three-view measurement is a function of imagery and navigation

information belonging to different platforms, these different sources of information can be

correlated. The required correlation terms in the information fusion phase are explicitly

calculated using the above-mentioned algorithm developed for a general multi-platform

measurement model.

The algorithms developed in this research were examined in statistical simulations

and demonstrated in experiments that involved real imagery and navigation data. The

experiments unequivocally validated the developed methods and algorithms. A complete

list of publications based on this doctoral research are provided in Appendix D.
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Abbreviations

BTT Bank To Turn

CCD Charged Coupled Device

CDF Cumulative Distribution Function

CN Cooperative Navigation

DAG Directed Acyclic Graph

DCM Directional Cosine Matrix

FOV Field of View

FV Fictitious Velocity

GPS Global Positioning System

IEKF Implicit Extended Kalman Filter

IMU Inertial Measurement Unit

INS Inertial Navigation System

LLLN Local Level Local North

LOS Line of Sight

LS Least Squares

MP Multi Platform

NED North East Down

SL Straight and Level

SLAM Simultaneous Localization and Mapping

SVD Singular Value Decomposition

TOM Total Observability Matrix

VAN Vision Aided Navigation
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Nomenclature

â Estimation of a

ã Estimation error of a

at True value of a

b Accelerometer bias vector

CA
B Transformation matrix from system A to system B

d Gyro drift vector

f Focal length

f ,h known nonlinear functions

H Measurement matrix

I Image

K Kalman filter gain matrix or camera calibration matrix

P Covariance matrix

Pk+1|k or P−
k+1 A priori covariance matrix at time instant tk+1

Pk+1|k+1 or P+
k+1 A posteriori covariance matrix at time instant tk+1

Pos Position vector

Q Process noise covariance matrix

q Line of Sight

qCi
ij

Line of sight related to the jth feature in the ith view,

expressed in camera

system of ith view

R Measurement noise covariance matrix

Tij Translation vector from view i to view j

t Time

ti Time instant ti
V Velocity vector

v Measurement noise vector

y Measurements of external sensors

yIMU Measurements of inertial measurement unit

X Navigation errors state vector

x Navigation solution

z Residual measurement

β Inertial sensors error model

λ Scale parameter

Ψ Euler angles vector

∆P Position vector error

∆V Velocity vector error

∆t Time step

∆Ψ Euler angles vector error

ω Discrete process noise vector
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ωc Continuous process noise vector

ζ Navigation solution and inertial sensors error model

Φ Discrete system matrix

Φc Continuous system matrix

Specific nomenclature to Chapter 2:

H Measurement matrix or homography matrix

n Normal to the scene plane vector

R̂C2
C1

Vision-based estimation of a rotational matrix from camera system

at t2 to camera system at t1
t̂1→2 Vision-based estimation of a translation vector from first view

to second view

x Image coordinates

ψc Camera pan angle

θc Camera tilt angle

γ Scale constant

Specific nomenclature to Chapters 3 and 5:

N Overall cardinality of matching sets of features

Specific nomenclature to Chapter 4 (see in addition Section 4.3.2):

N Number of cooperative platforms

xi(tj) Navigation solution of the ith platform at time instant tj
G = (V,E) Directed acyclic graph, composed of a set of nodes V and a set of arcs E

w(a, b) Weight of an arc connecting the node a to the node b

Ta = (VTa , ETa) An inverse tree, constructed from the DAG G, containing all the possible

paths in G to the node a.

VTa and ETa are the set of nodes and arcs, respectively, comprising Ta
Mk Permutation set of kth level

Coordinate Systems:

B Body coordinate system

C Camera coordinate system

E Earth-fixed coordinate system

L Local-level, local-north coordinate system
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Navigation is an essential capability without which mobile platforms will not be able

to carry out even the simplest mission. At a first glance, navigation seems to be a simple

issue: once a platform is equipped with dead reckoning sensors, and in particular with

inertial navigation sensors, it is straightforward [1] to calculate the navigation solution,

i. e. position, velocity and attitude. However, since the inertial navigation sensors provide

imperfect measurements, the calculated navigation solution contains errors that develop

over time. Depending on the quality of the inertial sensors, after a certain period of time,

this navigation error will reach unacceptable levels.

Consequently, one has to use additional information and sensors in order to mitigate

the developing inertial navigation errors, a process called navigation aiding. Alternatively,

these sources of information and sensors can be used to directly calculate the navigation

solution. Undoubtedly, since the global positioning system (GPS) was established in the
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1970s, it has become the most common method for navigation and navigating aiding. For

example, the majority of modern airborne navigation systems rely on the GPS signal.

However, the GPS does not work properly in certain scenarios, such as when operating

indoors, underwater, in urban environments and on other planets. Moreover, in certain

situations the GPS signal is susceptible to jamming. In such cases, alternative techniques

are required for navigation aiding. Moreover, it is often desired to have a backup capability

for navigation aiding, in case the GPS signal becomes unavailable at some point during

the mission.

With the rapid development of computational capabilities over the last few decades, a

broad range of methods were proposed utilizing vision sensors for navigation aiding. The

vision-aided navigation methods are considered appealing due to their relatively low cost

and autonomy.

Another issue that has drawn much attention is the ability to operate in an unknown

environment. In such a case, it is often required to map the environment observed by

the platform during its motion. Being able to navigate using the incoming imagery, and

in the same time to construct a map, is an approach known as simultaneous localization

and mapping. The map of the observed environment can be represented by the real world

locations of features extracted from the images, or by a mosaic image (or several mosaic

images) that is constructed from the camera-captured images.

So far, navigation of a single platform was considered. However, many applications

require a group of platforms to work in collaboration to perform a certain mission. Precise

navigation is a key requirement for carrying out any autonomous mission by a group

of cooperative platforms. Assuming the platforms are capable of intercommunication,

cooperative navigation is a promising approach for improving navigation performance of

the platforms in the group.

In the following section, related work on the different topics, briefly mentioned above,

is discussed. In Section 1.2, an overview of the research presented in this dissertation

is given. To make the reading of the rest of this manuscript easier, some preliminary

material is provided in Section 1.3.

1.1 Related Work

1.1.1 Vision Aided Navigation

Navigation aiding deals with improving the performance of some basic inertial navigation

system by fusing measurements from auxiliary sensors or additional, possibly exogenous,

sources of information. In vision-aided navigation (VAN), this process is performed based

on the imagery captured by an on-board camera. A typical VAN algorithm uses the

information extracted from an image registration process, along with the information

available from other sensors, for estimating the platform’s states and possibly additional
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navigation parameters.

VAN has been an active research field for the last few decades. For example, it

was proposed to integrate the vision-based estimation of the velocity-to-height ratio with

additional on-board sensors [2]; to apply the subspace-constraint approach [3] in order

to partially estimate the states of an aircraft, based on measurements from an image

registration process injected into an implicit extended Kalman filter [4]; and to utilize

epipolar constraints formulated for each pair of matching features to aid the inertial

navigation of a ground vehicle [5]. All the preceding methods rely only on information

available from inertial navigation sensors and an on-board camera, without using a priori

information or additional external sensors. This is also the approach adopted in this

research.

Various methods for vision-aided navigation have been proposed assuming some ad-

ditional external sensors and a priori information. One of the proposed methods used

altimeter measurements for scaling the imaging sensors in order to improve state estima-

tion during the landing phase of a space probe [6]. Others showed that absolute pose

and motion estimation is possible when a digital terrain map (DTM) is available [7], [8].

Another approach is map-based navigation, which assumes that a map of the operational

area is given and that the vehicle navigates by fusing inertial measurements, images of

the environment and a map [9], [10], [11].

Images registration and image-based motion estimation are important constituents

in all VAN methods. The existence of overlapping regions between processed images

is the common assumption to all vision-based motion estimation techniques. A large

overlapping region between two images is likely to yield a larger number of matched

features and therefore should allow a more accurate motion estimation (and navigation)

relying on two-view geometry methods. If a mutual overlapping region for more than two

images can be found, the performance may be further enhanced by applying multi-view-

geometry-based methods.

The two-view-geometry-based methods include relative motion calculation between

two given views based on an estimated essential matrix [12], [13]. The motion parameters

are then used for estimating the state vector, which is an augmented vector comprised of

the vehicle’s current pose and past poses for each captured image. When the observed

scene is planar, the motion parameters can be calculated by estimating the homography

matrix [14], [11], [15], [16]. Having in mind the requirements for real-time performance

and a low computational load, in this research the estimated camera motion is related

to a constant-size state vector comprised of the platform’s current parameters only (in

contrast to [12]).

However, given two overlapping images, it is only possible to determine camera rotation

and up-to-scale translation [13]. Therefore, two-view based methods for navigation aiding

are incapable of eliminating the developing navigation errors in all the states. With no

additional information or sensors for resolving the scale ambiguity, such as range sensors

or stereo vision, the vehicle states are only partially observable (e. g., position and velocity
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errors along the flight heading are unobservable [12]).

The multi-view-geometry-based methods, in contrast to two-view-geometry, use con-

nections among several images, assuming that a common overlapping region exists. Im-

agery information stemming from multiple images (≥ 3) with a common overlapping re-

gion enables to determine the camera motion up to a common scale [13]. Indeed, several

multi-view methods for navigation aiding have been already proposed.

For example, some authors derive constraints relating features that are observed in sev-

eral consecutive images, thereby claiming to achieve optimal exploitation of the available

information in the observed scene [17]. These features, observed within multiple images,

and the platform pose are related using an augmented state vector: The state vector con-

tains the current platform pose and the platform pose for each previously-captured image

that has at least one feature that appears in the current image. Once a certain feature,

observed in the previous images, is no longer present in the currently-captured image, all

the stored information for this feature is used for estimating the platform parameters,

and the pose entries that belong to these past images are discarded. However, should

the same feature be re-observed at some later time instant (e. g. whenever loops in the

trajectory are performed), the method will be unable to use the data for the feature’s

first appearance. It was later proposed [18] to cope with loops using bundle adjustment

[13]. This process involves processing all the images that are part of the loop sequence,

and therefore real-time performance is hardly possible. In Ref. [19], the authors use the

rank condition on the multiple-view-matrix [20] for simultaneously recovering 3D motion

and structure during a landing process of an unmanned aerial vehicle, assuming a planar

ground scene is observed.

Yu et al. [21] proposed using a trifocal tensor [13] for motion estimation of a single

mobile camera. First, the relative motion between the two first images, denoted as base

images, is estimated using epipolar geometry. Each next image is then related to the first

two images via the trifocal tensor, which is then used for motion and pose estimation in

a Kalman filter framework. Yet, whenever the currently-captured image does not share

any common features with the first two images, the process is re-initialized by choosing

two new base images. Hence, similar to [17], this method is incapable of handling loops.

Despite the advantages of multi-view methods, assuming that an overlapping region

among several consecutive images exists may be invalid in many practical applications,

such as various airborne applications. Violating this assumption usually degenerates the

multi-view methods into two-view methods.

On the other hand, the platform may return to some area, already observed in the past,

after some a priori unknown time. In this case, several overlapping images exist, yet these

images were not captured simultaneously. Such scenarios, called as loop scenarios, are

potentially useful for both navigation aiding and for refining the environment mapping.

Different state-of-the-art approaches for handling loop scenarios are discussed in Section

1.1.3.
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1.1.2 Simultaneous Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) approach allows a mobile platform

to construct a map of the observed environment, while at the same time localizing itself

with respect to this map. It is generally assumed that the environment in which the

platform operates is a priori unknown. SLAM methods can be found in a variaty of appli-

cations, including indoor [22], outdoor [23], aerial [24] and underwater [25] applications.

A survey can be found in [26].

In SLAM, the estimation of the platform’s navigation parameters and the construc-

tion of a representation of the observed environment are performed simultaneously. The

general approach for solving the SLAM problem is to use an augmented state vector,

composed of navigation states (e. g. position, velocity) and of parameters describing the

observed environment, which are usually the feature coordinates in the real world. Thus,

upon observing and identifying a new feature, its parameters are augmented into the state

vector. Another variation [27] is to augment the state vector with parameters describing

the camera-captured images locations (and perhaps other parameters) in a constructed

mosaic image.

Several different assumptions regarding the available sensors can be found in the SLAM

literature: Range and bearing measurements [28], [24], [29], bearing-only measurements

[30], [22], and range-only measurements [31]. When processing a measurement, the aug-

mented state vector yields an update both in the navigation states and in the environment

model. Consequently, correlation between the platform’s states and the environment pa-

rameters is consistently maintained. On the other hand, the computational requirements

are constantly increasing as the state vector grows in size.

Different approaches were proposed for handling this computational bottleneck. These

include neglecting low-correlation bonds in the augmented state vector [32], maintaining

only currently-visible features in the state vector [33], and using several submaps, repre-

senting the overall observed environment [34].

In contrast to SLAM, in this research it is proposed to separate the process of con-

structing a representation of the environment (e. g. mapping) from the process of motion

estimation and navigation aiding. Thus, navigation aiding can be performed based on the

current representation of the environment, while this representation is refined in a back-

ground process. Although the obtained navigation performance could be compromised

compared to SLAM, such an approach allows navigation aiding using significantly lower

computational resources, in particular when handling loop scenarios.

1.1.3 Methods for Handling Loop Scenarios

Special research attention has been devoted to developing navigation-aiding methods for

handling loop scenarios, or, in other words, determine how the navigation solution can

be updated when the platform revisits some area. Several approaches were proposed over
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the years.

Applying smoothing over the images that were captured in the loop chain is one

common approach [35], [36]. By refining the transformations that relate these images with

a common reference, it is possible to considerably reduce the growing image registration

errors, thereby producing a consistent mosaic. Assuming an available range to-the-scene

information allows positioning the platform and hence reduce some of its navigation errors.

Bundle adjustment [13], already mentioned in Section 1.1.1, is another approach for

handling loop scenarios. In this approach, an optimization is performed, seeking to min-

imize a cost function that includes the actual and predicted feature measurements from

all the images captured in the loop chain [18].

Loop scenarios are also naturally handled in SLAM methods, as discussed in Section

1.1.2. The augmented state vector contains the coordinates of the crossover features, i. e.

features that belong to the revisited scene. Re-observing the scene allows to refine both

the coordinates of these features and the platform position, thereby reducing navigation

errors according to the estimation precision of these features.

Although the above approaches for handling loop scenarios are capable of refining the

map and of localizing the platform upon identifying a loop event, real-time performance is

hardly possible due to the involved computational requirements: The smoothing technique

processes all the images in the loop chain; bundle adjustment optimizes all the features

observed in any of the images in the loop chain; while SLAM maintains an augmented

state composed of all the observed features thus far. In addition, SLAM and bundle

adjustment methods share the same common property of estimating the feature locations

in the real world, i. e., structure reconstruction. As opposed to this, in this research it

is proposed to handle loop scenarios (in the context of navigation aiding) by processing

only three images and without structure reconstruction, thereby substantially reducing

the computational requirements and allowing for real-time implementation.

1.1.4 Mosaicking and Mosaic-Based Navigation

Mosaicking is the process of fusing partially overlapping images into a single image. Tra-

ditional methods rely on the homography model [13], which is valid when the platform

performs pure rotation while observing a general scene, or when performing translation

and rotation while observing a planar scene. A tutorial and further details regarding

different methods for mosaic construction can be found in [37].

Alternatively, the mosaic can be represented by a set of original camera-captured

images, assigned with appropriate transformations. Warping each image according to

the assigned transformation and subsequently fusing all the warped images produces the

mosaic image. See, for example, [38], [15].

Navigation based on off-line mosaics has been extensively studied (e. g. [11], [39]).

The more challenging problem, however, is navigation aiding based on online mosaic con-

struction. This problem is strongly related to SLAM (cf. [27], [40]): The objective is to
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estimate the platform’s location (and perhaps other navigation parameters) when oper-

ating in an unknown environment, while the mapping step is comprised of constructing a

consistent map based on the camera-captured images (instead of extracting features from

these images and trying to estimate their locations in the real world).

Several works have considered navigation based on an online construction of the mosaic

image, including [38], [15], [36], [25], [41]. The common approach, in the context of motion

estimation and navigation aiding, is to assume that the range to the observed scene is

available. This assumption allows scale determination, which cannot be determined based

on pure imagery data [13], thereby providing complete motion estimation. Consequently,

it is possible to obtain a position solution in all axes. Loop scenarios are usually treated

by smoothing the thus-far constructed mosaic image [25], [41], which also yields improved

navigation solution.

1.1.5 Cooperative Navigation

The ability of a group of cooperative platforms to autonomously carry out various tasks

strongly depends on the navigation capabilities of each individual in the group. These

tasks include cooperative mapping and localization [42], [43], [44], formation flying [45],

cooperative tracking [46], autonomous multi-vehicle transport [47], and other applica-

tions. While various methods exist for navigation-aiding of a single platform, collabora-

tion among several, possibly heterogeneous, platforms, each equipped with its own set of

sensors, is expected to improve performance even further [48].

Different methods have been developed for effectively localizing a group of platforms

with respect to some reference coordinate system or with respect to the platforms them-

selves. Most of the proposed methods for cooperative navigation (CN) (including [49],

[48], [50], [47], [51], [52], [53]) assume that each platform is capable of measuring the

relative range and bearing to other platforms that are located nearby.

One of the pioneering works on cooperative localization proposed to restrain the de-

velopment of navigation errors by using some of the platforms as static landmarks for

updating the other platforms in the group [49]. While the method was further improved

by others, all of the derived methods share the same drawback of having to stop the mo-

tion of some of the platforms for updating the others, which is, for example, impossible

for fixed-wing aircrafts.

Another important work is by Roumeliotis and Bekey [48], where a centralized ap-

proach for sensors fusion was applied based on the available relative pose measurements

between the platforms in the group. This architecture was then de-centralized and dis-

tributed among the platforms. Later, an extension was proposed to handle more general

relative observation models [54]. The setup comprising of a group of platforms capable of

measuring relative poses to adjacent platforms have been studied in other works, including

[47], [51], [55], [56] and [57].

A different body of works [58], [59], [60] suggests to maintain in each platform esti-
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mated parameters for all the platforms in the group. For example, in [58] and [59] each

platform estimates the pose of every other platform relative to itself, while in [60] each

platform estimates the navigation state (position, velocity and attitude) of all the other

platforms by exchanging inertial measurement unit (IMU) information and relative pose

measurements.

Another approach for CN is to identify a common scene observed by different plat-

forms, and to express the resulting constraints as a measurement to the navigation filter.

Such an approach was recently suggested in [61], [44] considering measurements that com-

bine pairs of platforms. Merino et al. [61] suggested using a homography connection for

motion estimation between two aerial platforms observing the same scene, assuming the

range to the scene is available. Kim et al. [44] considered general measurements gener-

ated by pairs of platforms. These may be either relative pose measurements or two-view

measurements. Yet, in the absence of a range sensor, measurements between pairs of

platforms do not allow three-dimensional localization.

Regardless of the approach applied for CN, the navigation information involved in the

measurement is obtained from different platforms, possibly belonging to different time

instances. In the general case, these sources of information can be statistically dependent.

For instance, the navigation information of any two platforms becomes correlated after

the first update is carried out. Ignoring this correlation can result in inconsistent and

over-confident estimations [62].

Several approaches have been proposed for coping with the correlation terms in multi-

platform (MP) systems, assuming relative pose measurements. In [48], an augmented

covariance matrix, comprised of covariance and cross-covariance matrices relating all the

platforms in the group, was maintained in a distributed manner. In [50], this approach was

applied to cooperative mapping and localization. In this case, the augmented covariance

matrix also contains parameters that represent the landmarks observed by each platform

in the group. Howard et al. [58] suggested a method that avoids correlated updates

in certain situations. Similarly, in [62], the cross-covariance terms were not explicitly

estimated. Instead, the authors proposed to maintain a bank of filters, tracking the

origins of measurements and preventing multiple use of measurements. References [63]

and [45] studied the filter inconsistency when correlated measurement sequences are used.

In [44], a method for consistent information fusion was proposed, considering relative

pose measurements and two-view measurements (that involve two images of the same

scene, taken by two platforms). In the general case, the two images may be captured at

different time instances. The authors formulated an optimization problem that involves

the history of the performed measurements between pairs of platforms and measurements

of the proprioceptive sensors of each of the platforms in the group. This problem is solved

each time a new measurement of any kind is received, yielding an updated pose history

of all the cooperative platforms [44].
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1.2 Research Overview

This dissertation addresses the problem of VAN in an unknown environment. The plat-

form is assumed to be equipped with a standard inertial navigation system and a single

onboard camera, which can be mounted on gimbals. No additional external sensors are

assumed to exist, and no additional information is necessarily available, except for an

initial navigation solution and camera calibration parameters. In particular, no range

sensor is assumed, as opposed to most of the VAN and SLAM works (cf. Section 1.1). In

addition, it is assumed that the camera-captured images are associated with an appro-

priate navigation solution, stored and maintained in a repository. These images are also

used for online mosaicking.

Despite of the resemblance of the setup described above to SLAM, the approach de-

veloped in this research is different. In the proposed approach, the mapping phase, i. e.

imagery repository maintenance and online construction of a mosaic image, is performed

in a background process, while navigation aiding is performed in the main process using

imagery and associated navigation data taken from the repository. Thus, the imagery

repository is maintained outside the filter, using parameters obtained from the naviga-

tion system, while the filter state vector does not contain representation of the observed

environment. In this research a constant-size state vector, representing only the current

navigation solution is maintained (cf. Section 1.3.2). Such an approach allows to con-

siderably reduce the computational requirements compared to SLAM methods, although

the performance can be somewhat compromised when several images have a common

overlapping area. In particular, the above-mentioned approach of refining the mapping

in a background process allows to efficiently perform navigation aiding in loop scenarios

(see discussion below), in which a platform revisits the same region after some a priori

unknown time.

Chapter 2 presents a method for improving navigation performance while operating in

scenarios that are considered to be challenging in the context of vision-based motion es-

timation, such as when a narrow field of view (FOV) camera observes low-texture scenes.

Using a gimbaled camera, it is proposed to couple the camera scanning and online mo-

saicking processes. This coupling yields increased overlapping regions, which allows to

perform motion estimation with improved accuracy. The estimated motion is then fused

with a navigation system using an implicit extended Kalman filter. An observability anal-

ysis of the proposed method is presented, modeling the linearized system as a piece-wise

constant system.

Similarly to all methods for VAN that are based on two-view techniques (cf. Section

1.1.1), the method presented in Chapter 2 is capable of estimating the translational mo-

tion up to scale, mitigating only some of the navigation errors. For example, position

and velocity errors along the motion heading cannot be reduced. In particular, when loop

scenarios are considered, the method is incapable of fully exploiting the available infor-

mation for navigation aiding, which motivated the development of the method described
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in the next chapter.

In Chapter 3, a new VAN method is developed. The method formulates new con-

straints that are obtained from observing a general static scene by three different views.

The newly-developed constraints combine imagery and navigation data at the time in-

stances in which the three images were taken. The developed constraints are fused with

an inertial navigation system using an implicit extended Kalman filter, allowing to reduce

navigation errors, in particular position and velocity errors in all axes, each time a set of

three images with a common overlapping area is available. The method requires processing

only three images for the navigation aiding phase, while the environment representation

refinement (e. g. imagery repository, mosaic) can be performed in a background process

by applying various algorithms (e. g. smoothing, bundle adjustment). Loops in the tra-

jectory are naturally handled, allowing navigation aiding by processing only three images

and thereby reducing the computational load compared to the state-of-the-art techniques

(cf. Section 1.1.3). In contrast to SLAM and bundle adjustment, the suggested approach

eliminates the need for an intermediate phase of structure reconstruction. To the best

of the Author’s knowledge, the concept of utilizing three-view geometry constraints for

navigation aiding, including the well-known trifocal tensor, has not been proposed thus

far for navigation aiding, let alone for handling loop scenarios.

In the next chapters, the dissertation focuses on cooperative navigation. A group

of collaborative inter-communicating platforms is assumed, wherein each platform is

equipped with its own dead reckoning or inertial navigation system, onboard camera,

and perhaps additional external sensors and/or information.

A general MP measurement model that can be used for CN is considered (Chapter 4).

This model relates between the navigation information from any number of platforms and

the actual readings of the onboard sensors of these platforms, which are not necessarily

taken at the same time. For example, the considered MP model can represent relative

pose measurements between pairs of platforms or two-view measurements (cf. Section

1.1.5). In the general case, all the involved sources of information can be correlated.

In addition to the a priori unknown identities of the platforms that participate in

an MP measurement, the assumed general MP model contributes a manifold of a priori

unknown parameters - the time instances that participate in the measurement. These

additional unknown parameters render any approach that is based on maintaining the

correlation terms impractical (cf. Section 1.1.5). Another possible approach to tackle

this problem is to avoid explicit calculation of the correlation terms by applying the

covariance intersection (CI) method [64], or its generalization [65]. CI allows consistent

fusion of different, possibly correlative, sources of information, while the actual correlation

is unknown. However, as reported in [66], [62], CI is incapable of handling partial updates,

i. e., cases in which the measurement matrix contains only a partial representation of the

state vector. Thus, although CI was applied in specific applications [67], [68], the CI

method cannot be applied for the considered general MP measurement model.

In Chapter 4, it is proposed to explicitly calculate the required correlation terms
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based on the MP measurements performed thus far, which therefore need to be stored.

The method is capable of handling general scenarios, possibly involving different MP

measurement models and regardless of the MP measurements that were performed thus

far. The developed method utilizes a graph representation of the history of all the executed

MP measurement updates for calculating the correlation terms. It is assumed that this

graph is maintained by every platform in the group. Its construction and the involved

information that need to be transmitted among the platforms in the group is discussed

in the next chapter.

Chapter 5 builds up on Chapters 3 and 4: The three-view geometry measurement,

originally proposed in Chapter 3 for navigation aiding of a single platform, is extended

for cooperative navigation, while using the approach developed in Chapter 4 to obtain

consistent estimation and data fusion. As opposed to CN methods that rely on relative

pose measurements (cf. Section 1.1.5), in the newly-developed approach the platform’s

camera is not required to be aimed towards other platforms. Instead, a measurement

is formulated whenever the same scene is observed by three views taken by at least two

different platforms, i. e. either each view is captured by a different platform, or two of

the three views are captured by the same platform.

Another key aspect of the proposed method, is that the three images of the same region

are not necessarily captured at the same time. All, or some, of the platforms maintain a

local repository of captured images that are associated with some navigation parameters.

These repositories are accessed on demand to check if a region, currently observed by

one of the platforms, denoted as the querying platform, has been observed in the past by

other platforms in the group. Images containing the same region are transmitted, with

the attached navigation data, to the querying platform. The information received from

other platforms, in addition to the navigation and imagery data of the querying platform,

can be used for updating the navigation system of the querying platform. As in the case

of a single platform, the three-view geometry constrains mitigate the secular growth of

navigation errors of the updated platform, including position and velocity errors in all

axes, without any additional a priori information or any other sensors.

1.3 Preliminaries

1.3.1 Coordinate Systems Definition

Throughout this thesis, the following coordinate systems are used:

• E - Earth-centered, Earth-fixed (ECEF) coordinate system. Its origin is set at the

center of the Earth, the ZE axis coincides with the axis of Earth rotation, XE goes

through the point latitude 0o, longitude 0o, and YE completes a Cartesian right-hand

system.
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• L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down

(NED) coordinate system. Its origin is set at the navigation system’s location. XL

points north, YL points east and ZL completes a Cartesian right hand system.

• B - Body-fixed reference frame. Its origin is set at the vehicle’s center-of-mass. XB

points towards the vehicle’s front, YB points right when viewed from above, and ZB

completes the setup to yield a Cartesian right hand system.

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.

XC points toward the FOV center, YC points toward the right half of the FOV and

ZC completes the setup to yield a Cartesian right-hand system.

The camera system defined above is used in Chapter 2, while in Chapter 3 the

camera system is redefined.

1.3.2 Inertial Navigation Errors Model

Assuming the platform is equipped with an inertial measurement unit, it is capable of

calculating its navigation solution x, defined as

x
.
=

[
PosT VT ΨT

]T
(1.1)

where Pos,V and Ψ are the position, velocity and angular orientation, respectively. The

position is usually computed in terms of latitude, longitude and height, while the velocity

is expressed in NED system. Denote by xt the (unknown) true navigation solution and let

yIMU represent the IMU measurements. The errors in yIMU are modeled by an unknown

vector of parameters βt. Denote by β the calculated model of inertial sensor errors, used

for correcting the measurements yIMU (cf. Section 1.3.3). In particular, a simple model

of β can be defined as

β
.
=

[
dT
IMU bT

IMU

]T
(1.2)

where dIMU ∈ R3 is the gyro drift, and bIMU ∈ R3 is the accelerometer bias. This model

is used throughout this research, except for Chapter 4, in which a general model of β is

assumed.

Letting

ζ(tk)
.
=

[
xT (tk) βT (tk)

]T
(1.3)

the navigation solution is given by

ζ(tk+1) = f(ζ(tk),yIMU(tk)) (1.4)

As common in navigation-aiding techniques, the nonlinear navigation equations, imple-

mented in the strapdown mechanism [1], are casted into a linearized system, which is
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expressed in terms of navigation errors rather than the navigation parameters themselves.

The following navigation error state vector is defined

X(t)
.
=

[
x(t)− xt(t)

β(t)− βt(t)

]
≡ ζi(t)− ζt

i(t) (1.5)

The evolution of the state vector X can be modeled by the linear time-varying stochastic

model [69], [1]:

Ẋ(t) = Φc(t)X(t) + ωc(t) (1.6)

where Φc is the continuous system matrix and ωc is the process noise, which is assumed

to be white and zero-mean Gaussian. This continuous time model can be replaced by a

discrete model

X(tb) = Φ(ta, tb)X(ta) + ω(ta, tb) (1.7)

where Φ(ta, tb) is the discrete system matrix relating the state between any two time

instances ta and tb, tb > ta, and ω(ta, tb) is the equivalent discrete process noise. An

alternative representation for Φ(ta, tb) and ω(ta, tb), which is also used throughout this

thesis, is Φta→tb and ωta→tb , respectively.

Letting ∆t
.
= tb − ta, the discrete system matrix Φ is calculated according to

Φ = eΦc∆t (1.8)

while the discrete process noise ω is given by

ω(ta, tb) =

∫ tb

ta

Φ(tb, τ)ωc(τ)dτ (1.9)

This discretization process correctly represents the development of X for small time in-

tervals ∆t, or when considering scenarios for which the system (1.6) is time-invariant.

Assuming the specific model of IMU errors, given in Eq. (1.2), the state vector used

throughout this research, except for Chapter 4, is

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(1.10)

where ∆P ∈ R3,∆V ∈ R3,∆Ψ = (∆ϕ,∆θ,∆ψ)T ∈ [0, 2π] × [0, π] × [0, 2π] are the

position, velocity and attitude errors, respectively, and d and b are the residual gyro drift

and accelerometer bias, respectively:

d
.
= dIMU − dt

IMU , b
.
= bIMU − bt

IMU (1.11)

with dt
IMU ,b

t
IMU being the unknown true values of dIMU ,bIMU . The position and velocity

errors are expressed in the NED system, while d and b are given in the body-fixed reference

frame.
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The continuous system matrix, valid for short periods of operation, significantly

smaller than the Schuler period (around 84 minutes), is given by [1]:

Φc =


03×3 I3×3 03×3 03×3 03×3

03×3 03×3 As 03×3 CB
L

03×3 03×3 03×3 −CB
L 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (1.12)

where the matrix CB
L is a directional cosine matrix (DCM) transforming from body system

to LLLN system and As is a skew-symmetric matrix of the specific force vector f =(
fx fy fz

)T
, measured by the accelerometers and expressed in the NED system:

As =

 0 −fD fE
fD 0 −fN
−fE fN 0

 fNfE
fD

 = CB
L

fxfy
fz

 (1.13)

While the scenario examples considered in this research indeed satisfy this condition, one

could adopt less degenerated process models (for medium-term and long-term scenarios

[1]) as well. It is worth noting that a similar model of the system matrix is widely used

also in the SLAM community (e. g. [70]).

Based on Eqs. (1.7), (1.8) and (1.12), it is possible to obtain the following approxima-

tions to the attitude, velocity and position errors:

∆Ψ(tb) = −CB
L d∆t+∆Ψ(ta) (1.14)

∆V(tb) = −1

2
AsC

B
L d(∆t)

2 +
[
As∆Ψ(ta) + CB

L b
]
∆t+∆V(ta) (1.15)

∆P(tb) = −1

6
AsC

B
L d(∆t)

3 +
1

2

[
As∆Ψ(ta) + CB

L b
]
(∆t)2 + (1.16)

+∆V(ta)∆t+∆P(ta)

where CB
L , As,d and b are evaluated at ta.

1.3.3 Navigation Aiding Concept

The concept of navigation aiding is illustrated in Figure 1.1. The inertial navigation

system typically consists of inertial sensors, whose measurements, yIMU , are processed by

the strapdown into a navigation solution [1]. Since the measurements of these sensors are

imperfect, the calculated navigation solution contains errors which are developing over

time.

In navigation aiding, the navigation errors are estimated based on measurements from

external sensors1 and other sources of information (such as DTM). In addition to the

1External sensors refer to the onboard sensors apart from the IMU, such as: GPS receiver, altimeter,

camera.
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navigation errors ∆P,∆V,∆Ψ, it is also common to estimate a parameterization of IMU

errors β (cf. Section 1.3.2). The estimated navigation errors are used for correcting the

navigation solution calculated by the inertial navigation system (INS), while the IMU

readings are corrected according to the estimated IMU errors parameterization. The

latter is performed at the sampling frequency of the IMU, which is typically much higher

than the filter frequency.

Strapdown
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 
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Figure 1.1: Illustration of the navigation aiding concept.
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In this chapter it is proposed to utilize an online mosaicking process for vision-aided

navigation, using an on-board gimbaled camera that scans regions in the vicinity of the

platform’s trajectory. Although the developed method can be applied for general cameras

observing general scenes, the focus in this chapter is on cameras with a narrow field of
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view, observing low-texture scenes. Such a constellation is considered challenging, in the

context of motion estimation and navigation aiding, since the typical imagery contains

very limited useful information, e. g. a small number of high-quality features.

The mosaicking and camera scanning processes are coupled, yielding increased over-

lapping regions between the incoming imagery and the mosaic image. This results in im-

proved motion estimation when operating in the challenging scenarios mentioned above.

The mosaic-based estimated motion is fused with an inertial navigation system, thereby

reducing navigation errors in some of the parameters of the state vector.

As discussed in Section 1.2, the environment mapping, represented by a mosaic, is sep-

arated from navigation aiding (in contrast to SLAM), resulting in reduced computational

requirements. Consequently, two types of mosaics are constructed: A small, temporary

mosaic is computed in real-time based on recently captured images, and a larger, main

mosaic is computed in a background process including all the images. The motion es-

timation and navigation aiding are performed on the temporary mosaic, while the main

mosaic may be used for global navigation.

The correlation terms between the navigation system and the mosaic construction

process are not maintained in the proposed approach. The advantage of this architecture

is the low computational load required for navigation aiding. However, the accuracy of

the proposed method could be compromised compared to bearing-only SLAM.

2.1 Method Overview

Figure 2.1 shows the main components of the architecture under consideration. The spe-

cific system assumed in this chapter is an airborne platform equipped with a gimballed

camera and an inertial navigation system. Throughout this chapter, a narrow-FOV cam-

era is assumed, since it is more realistic than a wide-FOV camera for many cases of

practical interest. As mentioned above, a narrow-field makes the VAN and the image-

based motion estimation problems more challenging. However, the proposed method is

not restricted to cameras with narrow FOV, and is valid for other cameras as well. In

addition, it is assumed that the observed ground area is sufficiently close to being pla-

nar, or alternatively, that the flight altitude above ground level is high relative to ground

changes in elevation1.

The INS consists of an inertial measurement unit and a strapdown algorithm. The

strapdown algorithm integrates the accelerations and angular rates (or rather, the ve-

locity and angular increments) from the IMU to produce a navigation solution, which

is comprised of platform position, velocity and attitude. Due to the unavoidable errors

1This assumption is made due to the construction process of the mosaic image, which is based on the

homography transformation. However, the proposed approach for fusing image-based motion estimations

and navigation data may be also applied without constructing a mosaic image, in which case non-planar

scenes can be handled as well (cf. Section 2.5.2.2).
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Figure 2.1: Overview of the system concept.

of the IMU sensors, the computed navigation parameters develop errors which increase

unboundedly over time. It is well-known (cf. Section 1.3.2) that for relatively low-grade

inertial sensors, errors grow proportionally to time cubed, and hence an uncompensated

inertial solution becomes useless in a relatively short period of time.

During the flight, an on-board camera captures images of ground regions according to

a scanning procedure. The acquired images are directed to the image processing module

that is accountable for mosaic image construction and for relative motion estimation.

While all the images are used for updating the mosaic image, the motion estimation is

performed at a lower frequency, utilizing only some of the images.

The mosaic construction is coupled with the camera scanning procedure, and is pro-

cessed in two phases: 1) The camera-captured images are used for constructing a small

temporary mosaic image. This temporary mosaic image is used for motion estimation at

appropriate time instances. 2) After each motion estimation event, the temporary mosaic

image is emptied and initialized to the most recent camera-captured image, while the

removed images from the temporary mosaic image are used to update the main mosaic

image in a background process.

The image-based motion estimation is reformulated into measurements, which are then

injected into an implicit extended Kalman filter (IEKF) in order to update the navigation

system and thereby arrest the development of inertial navigation errors.

In this chapter, the camera is assumed to be mounted on gimbals, capable of perform-

ing pan and tilt movements with respect to the platform. The camera pan and tilt angles

between B and C coordinate systems are denoted by ψC and θC , respectively.



26 Chapter 2. Navigation Aiding Based on Coupled Mosaicking and Camera Scanning

2.2 Camera Scanning Procedure and Mosaic Con-

struction Method

This section presents a detailed description of the camera scanning and mosaic construc-

tion procedures. Each procedure by itself is simple and several variations have appeared

in the literature before. The section hence focuses on the coupling between scanning and

mosaic image construction, in particular on the aspects that allow improving the accu-

racy of the motion estimation in challenging scenarios such as narrow-FOV cameras and

low-texture scenes. In addition, it will be shown that relatively large ground areas may be

represented in the mosaic image without restricting the trajectory of the platform. More

sophisticated camera scanning methods may be considered, for instance those exploiting

the coupling with the platform trajectory or maximizing the ground coverage, but are left

for future studies.

2.2.1 Scanning Procedure

During flight, the onboard camera captures images of the ground according to commands

either from a human operator, an autonomous tracking algorithm of some features on

the ground, or a scanning procedure. Figure 2.2(a) shows a schematic illustration of the

implemented scan procedure. When captured, each new frame is processed and used to

update the mosaic image of the flight area. A detailed discussion of the on-line mosaic

construction appears in Section 2.2.2.

As can be seen, each image partially overlaps the preceding image as well as images

from the previous scan stripe. The existence of overlapping regions is essential for per-

forming image matching between captured images. In addition, and as opposed to most

motion-from-structure methods, the additional overlapping region, provided by the cam-

era scanning procedure, enables enhancement of motion estimation, as will be seen in

Section 2.3. The proposed scan pattern also allows implementation of improved mosaic

construction methods.

We assume that the scanning procedure modifies the pan angle of the camera, ψc, while

keeping the camera tilt angle constant, as shown in Figure 2.2(b). Given camera angles

at the current time instant, the calculation of camera angles for the next time instant is

performed in two steps. First, the line-of-sight (LOS) vector for the next camera aiming

point in the body-fixed reference frame, r̂B, is determined according to

r̂B = CC
B (ψc)

[f, d · CCDYC
/2, 0]T∥∥∥[f, d · CCDYC
/2, 0]T

∥∥∥ (2.1)

where CC
B (ψc) is the DCM transforming from the camera reference frame to the body

frame, computed based on current camera angles; f is the camera focal length; d is

the scan direction, so that d = 1 for increasing the camera pan angle and d = −1 for
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Figure 2.2: (a) A schematic illustration of the scanning procedure. (b) Definition of the

camera coordinate system and a schematic illustration of camera angles during the scan

procedure.

decreasing the camera pan angle; and CCDYC
is the size of the camera charged coupled

device (CCD) in pixels along the YC axis.

The next step is to compute the new camera angles from r̂B. The DCM transforming

from B to C can be written as

CB
C (ψc) =

 0 sinψc cosψc

0 cosψc − sinψc

−1 0 0

 (2.2)

Since the aiming point vector in C is, by definition, [1 0 0]T , one can write

r̂B = CC
B (ψc)

[
1 0 0

]T
=

[
0 sinψc cosψc

]T
(2.3)

hence

ψc = tan−1

[
r̂B(2)

r̂B(3)

]
(2.4)

The scanning direction, d, is switched once the camera pan angle, ψc, reaches a certain

pre-specified level; this level is constrained by the corresponding gimbal limit but may be

smaller than this mechanical limit.

For simplicity, it is assumed implicitly that the velocity-over-height ratio and the cam-

era sampling frequency provide sufficient overlapping regions between each two adjacent
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images along the flight direction. Thus, the proposed scan methodology moves the cam-

era only in a direction perpendicular to the flight trajectory. Notice that in a practical

application this imposes a complex trade-off among flying altitude over ground, platform

speed, FOV, scanning slant angle and resolution. However, the method presented here

may be adjusted to work with a relaxed version of the assumption. Note also that no

additional or a priori information is required.

2.2.2 Mosaic Construction Method

We shall now present a detailed description of the mosaic construction method using the

camera scanning method described in Section 2.2.1. It is worth stating that, besides being

used for navigation aiding as described in this chapter, a mosaic image of the overflown

ground region constitutes an important aid to surveillance and mission operation.

During the scan, images are captured using varying camera angles. While all the

images contribute to the construction of a mosaic, in the current implementation only

images taken while the camera was pointing downwards are used for motion estimation.

These images are referred to as downward-looking images.

Figure 2.3 provides a block diagram of the implemented mosaic construction process.

Two mosaic representations are constructed in the proposed approach: a temporary mo-

saic image that is used for motion estimation, and the main mosaic image which is the

final mosaic image constructed based on the captured images.

The temporary mosaic image is initialized to a downward-looking image, once such an

image is captured, and is updated with new non-downward-looking images. When a new

downward-looking image is captured, it is matched to a relevant region in the temporary

mosaic image, which is calculated utilizing information from the navigation system. Next,

motion estimation is performed, as will be discussed in Section 2.3.

The temporary mosaic image is expressed in the preceding downward-looking image

system, defined as the coordinate system C of the previous downward-looking image.

Therefore, the estimated motion describes the relative motion performed by the camera

between two adjacent downward-looking images. This estimation will be used to correct

developing inertial navigation errors (cf. Section 2.4).

Due to the coupling between the scanning procedure and the mosaic construction

process, an enlarged overlapping area between the new downward-looking image and the

temporary mosaic image is achieved. This, and the quality of the constructed temporary

mosaic image, are the two factors that allow better motion estimation in certain scenarios,

as will be demonstrated in Section 2.5.1.

After motion estimation is performed, the temporary mosaic image is reset and ini-

tialized to the new downward-looking image. The images that were removed from the

temporary mosaic image are then used for updating the main mosaic image. Since the

main mosaic image is not used for motion estimation, it may be updated in a background

process. This may be performed by applying various algorithms [37], [71], [72], [73], [41],
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Figure 2.3: Diagram of the proposed mosaic construction method.

[74], [75], [13], [36], depending on the available computational resources.

It should be noted that loop scenarios may be also handled in this background process

yielding an improved main mosaic image. In case of a loop in the trajectory, motion

estimation and navigation aiding are performed based on the temporary mosaic image,

following the method suggested herein. However, a different approach is required for

utilizing the full potential of the available information in such an event, which is the

subject of Chapter 3.

An example of the mosaic image construction process, based on real images acquired

using the scanning procedure described above, is given in Figure 2.4 and Figure 2.5.

The images were extracted from Google Earth, as detailed in Section 2.5. Figures 2.4(a)-

2.4(d) show the construction of the temporary mosaic image, involving a camera scanning

procedure that is comprised of two non-downward-looking images in each direction. The

temporary mosaic image is initialized with a downward-looking image (Figure 2.4(a)) and

is updated with images until a new downward-looking image is acquired (Figure 2.4(e)).

One can easily notice the enlarged overlapping region between this new downward-looking

image and the temporary mosaic image (Figures 2.4(d) and 2.4(e)). Figures 2.5(a) and

2.5(b) show the update of the main mosaic image, based on images from the temporary

mosaic image, once a new downward-looking image was captured: Figure 2.5(a) is the
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main mosaic image before the update; Figure 2.5(b) shows the main mosaic image after

the update.

The following sections further elaborate on several aspects of the mosaic images con-

struction process. The first step is to briefly review a standard method for estimating a

homography matrix; this is followed by additional implementation details of the mosaic

construction process.

2.2.2.1 Homography Matrix Estimation

The homography matrix [13] is a transformation that relates two images of a planar scene

for a general camera motion. The homography relation is also valid for a three-dimensional

scene if the camera performs a pure rotation, although this is hardly relevant for fixed-wing

aerial platforms. Given some point x in the first image and a matching point x′ in the

second image, both expressed in homogeneous coordinates2 [13], the following constraint

can be written for the homography matrix, H:

x′
i
∼= Hxi (2.5)

where ∼= denotes equality up to scale. The above equation may be written explicitly asx′1x′2
x′3

 ∼=
h11 h12 h13
h21 h22 h23
h31 h32 h33

x1x2
x3

 (2.6)

The entries of H are related to the observed scene plane parameters and to the trans-

lational and rotational motion [14]. Assuming that x = [x, y, 1]T , the second image

coordinates (x′, y′) may be computed based on the inhomogeneous form of Eq. (2.6) as

follows [13]:

x′ =
x′1
x′3

=
h11x+ h12y + h13
h31x+ h32y + h33

(2.7)

y′ =
x′2
x′3

=
h21x+ h22y + h23
h31x+ h32y + h33

(2.8)

The homography matrix is used for updating the mosaic with each new image frame,

and also for performing relative motion estimation between these images. There are

various methods for estimating the homography matrix given two partially-overlapping

images. The method used herein relies on [13]: First, Scale Invariant Feature Transform

(SIFT) [76] features and their descriptors are computed for each of the images. If one of

2A homogeneous representation of a point (x, y) ∈ R2 is the vector x = [x1, x2, x3]
T ∈ R3, which is

defined up to scale. The homogeneous point (x1, x2, x3) represents the point (x1/x3, x2/x3) ∈ R2. In

particular, the homogeneous point (x, y, 1) represents the point (x, y). Homogeneous points with x3 = 0

represent points which lie on a plane at infinity [13].
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the images is a mosaic image, an overlapping area between the two images is estimated

based on information extracted from the navigation system, and the computation of SIFT

features is performed only on this part of the mosaic image. Next, features from the two

images are matched based on the minimum Euclidean distance of their descriptor vectors,

which yields a set of matched points, S {(xi,x
′
i)}

NS
i=1.

As the set S may contain wrong matches (outliers), a robust estimation technique is

applied, which provides a refined set of matched points, R ⊆ S. This is performed by

applying the Random Sample Consensus (RANSAC) algorithm [77] for robust estimation

of the homography matrix [13], as described in the sequel. The final step in the homogra-

phy estimation algorithm is to perform least-squares (LS) homography estimation based

on the subset R of feature matches [13].

RANSAC Algorithm for Outliers Rejection

The RANSAC algorithm is applied for rejecting outliers in the matched features set S
over the homography model, as briefly described below. Full details can be found in [13].

First, four feature matches are drawn from the available matched features set S, based
on which the homography matrix, H, is calculated. This homography matrix is then used

to choose a subset of feature matches T ⊆ S that lie within a predefined threshold,

tthreshold. More specifically, a pair of point correspondences (x,x′) is chosen if

dE(x, H
−1x′)2 + dE(x

′, Hx)2 < t2threshold (2.9)

where dE(., .) is the Euclidean distance between two points in the same image. The

number of iterations, M , should be high enough to guarantee with some probability p

that at least one of the subsets {Ti}Mi=1 is free from outliers (usually p = 0.99). Let w

be the probability that any chosen feature match is an inlier. Taking into account the

fact that in each iteration 4 feature matches are drawn, the following equation may be

written: (
1− w4

)M
= 1− p (2.10)

Let ϵ = 1 − w, i. e. ϵ is the probability that any chosen feature match is an outlier.

Substituting ϵ into the above equation and performing some algebraic operations yields

an expression for M :

M =
log (1− p)

log
(
1− (1− ϵ)4

) (2.11)

Since ϵ is unknown, it is evaluated at each iteration based on the believed number of

inliers, which is the cardinality of the subset T , and the overall number of matched points

(the cardinality of the set S). Let the respective number of matched points in T and S
be LT and LS . Thus, ϵ is calculated at each iteration according to

ϵ = 1− LT

LS
(2.12)

and is then used to update the parameter M based on Eq. (2.11).
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After M iterations, the subset with the maximum number of point matches is chosen

among {Ti}Mi=1. This subset, denoted by R, contains the set of point matches that were

identified by the RANSAC algorithm as inliers.

2.2.2.2 Non Downward-Looking Images

If the new image is a non downward-looking image, the homography estimation is incre-

mental, as described below. The purpose of the incremental estimation is the reduction

of the accumulated alignment errors in the temporary mosaic image, while updating the

mosaic with new non downward-looking images.

The method proposed here is an adaptation of the procedure suggested by [38], [15]

for the camera scanning method used herein. Denote by r the index of the most recent

downward-looking image, defining the reference frame in which the current temporary

mosaic image is expressed. Each new image Ik, which is a non downward-looking image, is

matched against the previous image Ik−1, yielding a homography between these two images

Hk→k−1. The next step is to calculate an intermediate homography matrix between the

new image Ik and the current temporary mosaic image, relying on information computed

for the previous image Ik−1:

HI
k→r = Hk−1→r ·Hk→k−1 (2.13)

where Hk−1→r is the homography matrix transforming from the previous image, Ik−1,

to the current temporary mosaic image. This homography matrix was calculated and

saved while processing image Ik−1. Once this homography is available, the new image

Ik is warped towards the temporary mosaic image using the homography matrix HI
k→r,

yielding the warped image Ĩrk .

Ideally, the warped image and the temporary mosaic image should be aligned; however,

this is usually not true in practice due to homography estimation errors. To improve

the estimation, a correction homography between the warped image, Ĩrk , and the current

temporary mosaic image, is estimated by applying the standard homography estimation

technique discussed in Section 2.2.2.1 on these two images. This homography, Hcorr, is

used to correct the estimated intermediate homography matrix between the new image

and the temporary mosaic image,

Hk→r = Hcorr ·HI
k→r (2.14)

Finally, the new image, Ik, is warped towards the current temporary mosaic image using

the improved homography matrix, Hk→r, followed by an integration of the two images

into an updated mosaic, using one of the available techniques [37], [13]. In addition, Hk→r

is saved for future use with new non downward-looking images. The process repeats for

an each new image that was not taken when the camera was looking downward.
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2.2.2.3 Downward-Looking Images

Once a new downward-looking image, Id, is captured, a direct estimation of the homogra-

phy matrix (cf. Section 2.2.2.1 ) relating this new image to the current temporary mosaic

image is performed. During this process, only part of the temporary mosaic image is used.

Since height above ground level is unknown, this region may be approximately calculated

based on the platform current heading and altitude. The estimated homography matrix

is then used for motion estimation (cf. Section 2.3). The next step is to remove all the

images from the temporary mosaic image and to initialize it with Id.

Let r denote the index of the previous downward-looking image. Now, the images

{Ii}di=r+1 should be used for updating the main mosaic image. This may be performed

in a background process, using various approaches, since the main mosaic image is not

required for motion estimation. The approach that was implemented in this work is to

use the incremental homography estimation technique, discussed above, for adding the

images {Ii}di=r+1 to the main mosaic image.

(a) (b) (c)

(d) (e)

Figure 2.4: Mosaic images construction example. (a)-(d) Temporary mosaic image con-

struction. (e) A new downawrd-looking image. An enlarged overlapping area between

this image and the temporary mosaic image is shown in (d) and (e).

2.3 Image-Based Motion Estimation

This section focuses on motion estimation based on a previously-estimated homography

matrix. The camera motion between any two views of a planar scene, related by a
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(a)

(b)

Figure 2.5: Mosaic images construction example. (a) Previous main mosaic image. (b)

Updated main mosaic image based on images from the temporary mosaic image (Figure

2.4(d)) and the new downward-looking image (Figure 2.4(a)).

homography matrix H, is encoded in H according to [14]:

H = K ′
[
R− t

z
nT

]
K−1 (2.15)

where K ′, K are the calibration matrices at two image time instances, assumed to be

known, t is the translation vector, R is the rotation matrix, z is the scene depth and

n is a unit vector normal to the scene plane. Since the process of motion estimation is

based only on the information provided by the camera, the translation motion between

two images can be estimated only up to scale (i. e. only the translation direction can be

estimated).

A method for extracting the motion parameters from Eq. (2.15) was suggested in [14],

where it was proven that there are at most two valid sets of solutions (t, R,n). The
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correct solution out of these two alternatives can be chosen based on n while relying

on previous estimates [14]. The implementation of the estimation process in this work

involves yet another phase, which will be described in the next section. This phase allows

improved precision motion estimation assuming a standard approach for estimating the

homography matrix (cf. Section 2.2.2.1).

It should be noted that any two views of a non-planar scene are related through the

more complex epipolar geometry, from which relative motion parameters may be extracted

as well [13] via, e.g., the fundamental matrix. However, when assuming a narrow-FOV

camera, the epipolar geometry method tends to become ill-conditioned, due to the limited

ground information captured by the camera, resulting in a semi-planar scene.

2.3.1 Implementation of Motion Estimation Assuming a Planar

Scene

As mentioned in Section 2.2.2.1, the homography estimation process involves the

RANSAC algorithm for robust outliers rejection. The output of this algorithm is a subset

R = {(xi,x
′
i)}

NR
i=1, R ⊆ S, of feature matches that are considered to be inliers. These

are then used for LS estimation of the homography matrix. When considering ideal fea-

tures, this process yields the same results when executed several times. However, the

solution varies from one execution to another for noisy data (for a given threshold value),

since each execution may yield a different features subset group, and hence a different

estimation of the homography matrix (and motion parameters).

More specifically, assume that the extracted SIFT features image coordinates are cor-

rupted by noise. As a consequence, the computed set of all point matches S = {(xi,x
′
i)}

NS
i=1

is also corrupted by noise, and in addition may contain false matches (outliers). In each

iteration of the RANSAC algorithm, four point matches are drawn and used to compute

a homography matrix, which is then utilized to construct a subset T of point matches

that are consistent with this homography matrix. Thus, a pair of point correspondences

(x,x′) is chosen if Eq. (2.9) is satisfied:

dE(x, H
−1x′)2 + dE(x

′, Hx)2 < t2threshold (2.16)

Consider such two different iterations yielding the subsets T1 and T2, and assume that

these subsets do not contain any false matches. In each of these subsets, the homography

matrix was computed based on a different set of drawn 4 point matches. These two

homography matrices, H1 and H2, are expected to be different, despite the fact that they

were computed based on inlier point matches, since all the features in S, and in particular

the drawn features, are corrupted by noise.

In the next step of the RANSAC algorithm, all point matches in S are checked for

consistency with the homography matrix, Hi, i = {1, 2}, according to Eq. (2.16). Only

point matches that agree with the condition (2.16) are added to the subset Ti. Since both
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homography matrices are legitimate but different, it is obvious from Eq. (2.16) that the

two subsets T1 and T2 will be identical for a sufficiently large value of tthreshold. However,

decreasing the value of tthreshold will yield different subsets T1, T2, starting from some

critical value. This critical value is influenced by the image features noise characteristics,

and is therefore a function of the observed scene: high-texture scenes are likely to be

corrupted with less noise compared to low-texture scenes, since in the former case the

features can be localized with improved precision. Thus, a specific value of tthreshold might

yield identical subsets T1, T2 in certain scenarios, and different subsets in other scenarios.

The above conclusion is valid also for the output from the RANSAC algorithm (the

inliers subset, R), as it is merely one of the subsets constructed during its iterations.

Thus, sequential activation of the RANSAC algorithm might give different subsets of R,
meaning that the LS homography estimation will yield a number of different homography

matrices {Hi}, and consequently, a set of motion parameters extracted from each homog-

raphy matrix Hi. This process of homography matrix estimation, involving a sequential

execution of the RANSAC algorithm, is denoted in this section as sequential homography

estimation.

Given the set of motion parameters, {(ti, Ri,ni)}Ni=1, obtained from the sequential

homography estimation process, one can employ different logic for automatically choosing

the most accurate motion estimation. The logic implemented in this work consists of the

following steps.

Denote |q| =
∣∣ [q1, . . . , qn]T ∣∣ , [|q1|, . . . , |qn|]T . Define the mean unit vector normal

to a scene plane, based on the normal unit vectors {nprev
i }Nprev

i=1 from estimates of Nprev

previous images, as

nprev
µ =

Σ
Nprev

i=1 |n
prev
i |∥∥∥ΣNprev

i=1 |n
prev
i |

∥∥∥ (2.17)

Compute a score for each available solution (ti, Ri,ni) based on the proximity of its normal

unit vector ni to the mean unit vector nprev
µ :

si = | < nprev
µ ,ni > | (2.18)

where < ., . > is the inner product operator. Calculate the mean and the standard

deviation (sµ, sσ) of the set {si}Ni=1, and reject all the solutions whose score is lower than

sµ − sσ. Denote by N1 the number of remaining solutions.

Next, a translation matrix Λ = (λ1,λ2,λ3) is constructed from the absolute values of

the translation motion estimation vectors in the set of remaining solutions (Λ ∈ RN1×3):

Λ = (λ1,λ2,λ3) ≡


|tT1 |
|tT2 |
...

|tTN1
|

 (2.19)
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Each of the Λ columns is examined for outliers based on the distribution of its values.

More specifically, a histogram of the vector λi is computed over N1 slots in the range

[min(λi),max(λi)], followed by a rejection of entries in λi which do not appear in clusters.

Denote by N2 the number of remaining solutions after this step was applied on all three

columns of Λ.

Finally, a solution is chosen among the remaining-solutions set {(ti, Ri,ni)}N2

i=1, whose

normal is the closest to nprev
µ , i. e., a solution with the highest score si.

If the mean normal vector from previous images is unavailable, a solution (t, R,n) is

chosen whose normal vector n is the closest to the mean normal vector of all the other

solutions in {(ti, Ri,ni)}N2

i=1, i. e., a solution i that maximizes < ni,nµ > where nµ is

defined as

nµ =
ΣN2

i=1|ni|∥∥ΣN2
i=1|ni|

∥∥ (2.20)

The sequential estimation process of the motion parameters described above is sum-

marized in Algorithm 1. The improvement in the estimation precision is demonstrated in

Section 2.5.1.

Algorithm 1 Sequential Estimation of the Motion Parameters

1: Run N times the homography estimation routine, given in Section 2.2.2.1, and cal-

culate the solution set from the estimated homography matrices: {(ti, Ri,ni)}Ni=1.

2: if at least one image was already processed then

3: Compute a score si for each solution, based on Eqs. (2.17) and (2.18).

4: Reject solutions whose score is lower than sµ− sσ, where (sµ, sσ) are the mean and

standard deviation values of the computed set of scores {si}Ni=1.

5: Construct a translation matrix Λ based on Eq. (2.19) and examine each of its

columns for outliers. Solutions that contain outliers are rejected, yielding a refined

set {(ti, Ri,ni)}N2

i=1 of solutions.

6: if at least one image was already processed then

7: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 with the highest score.

8: else

9: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 which maximizes < n,nµ >, where

nµ is computed according to Eq. (2.20).

2.4 Fusion of Image-Based Relative Motion Estima-

tion with a Navigation System

In this section we present a method for fusing the image-based estimated camera relative

motion with a navigation system of an aerial platform. A measurement model is developed
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that relates the image-based estimated relative motion with the accumulating navigation

errors of a standard inertial navigation system. The data fusion is performed using an

indirect implicit extended Kalman filter [78] that estimates the navigation parameter

errors instead of the parameters themselves. These estimated errors are then used for

correcting the navigation parameters. The state vector is given by Eq. (1.10):

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(2.21)

Once an estimate of X is available, it is used both to correct the output of the navigation

system, and to provide a feedback to the inertial sensors (cf. Figure 2.1): The estimated

position, velocity and attitude errors are used to correct the INS output. These com-

ponents in the state vector are then reset, since they have been incorporated into the

navigation system, i. e. the first 9 components of the a posteriori estimation at some time

instant tk, X̂k|k, are set to zero. The covariance matrix is not changed, so it represents

the uncertainty in the platform’s navigation parameters estimation, i. e. the navigation

errors. In addition, the IMU measurements readings are corrected with the most recent

available estimations of drift and bias parameters at the frequency of the inertial sensors

readings3, which is much higher than the frequency of the IEKF updates.

It is worth stressing that the state vector is a constant-size vector, X ∈ R15. Another

possible approach is to use a direct data-fusion technique and relate the vision-based esti-

mated motion to an augmented state vector comprised of the platform current parameters

(e. g. position, velocity) and past poses for each captured image [12]. Yet, as in the case

of SLAM methods, this approach requires increasing computational resources (since the

state vector size increases with time), and therefore the use of the indirect fusion approach

with a constant-size state vector is preferred.

It is assumed here that the relative motion parameters between each two image time

instances, t = t1 and t = t2, were already extracted by the image processing module.

Thus, the camera relative rotation matrix, R̂C2
C1
, transforming from the camera axes at

time t2 to the camera axes at time t1, is known. In addition, the relative translation,

t̂
C2

1→2, is known up to some scale, γ.

The estimated relative motion is reformulated into residual measurements ztranslation,

zrotation, which are injected into the filter:

ztranslation = [PosNav(t2)−PosNav(t1)]
L2 × CC2

L2,Navt̂
C2

1→2 (2.22a)

zrotation =


tan−1

[
D(3,2)
D(3,3)

]
− sin−1 [D(1, 3)]

tan−1
[
D(1,2)
D(1,1)

]
 D

.
= CC2

C1,Nav

[
R̂C2

C1

]T
(2.22b)

3Another possible variation of this is to estimate the residual bias and drift values, while maintaining

the estimations of actual bias and drift parameters outside the filter, as discussed in Section 1.3.2. In

this case the whole state vector should be reset after each update step.
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where CC2
L2

is the DCM transforming from C to LLLN at the time instance t = t2; T
C2
C1

is the DCM transforming from C at t = t2 to C at t = t1; and Pos is the platform’s

position. The subscript Nav denotes the parameters that are taken from the navigation

data.

The state vector and the residual measurements are related via a measurement equa-

tion

Z
.
=

(
ztranslation
zrotation

)
= HX+

(
vtr

vrot

)
(2.23)

where H is the measurement matrix

H =

[
03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

03×3 03×3 Hrot
∆Ψ Hrot

d 03×3

]
, (2.24)

vtr is given by

vtr = [PosTrue(t2)−PosTrue(t1)]
L2 ×

[
CC2

L2,Nav t̂
C2

1→2 − C
C2
L2,T ruet

C2
1→2,T rue

]
, (2.25)

and vrot represents rotation motion estimation errors and linearization errors. Note that

since an IEKF formulation is used, the measurement noise terms are not necessarily white

[4]. The development of the above measurement equation and the explicit expression for

H are given in Appendix A.

The estimated state vector is initialized to zero, since the actual initial navigation

errors are unknown, while the estimation error covariance matrix is set to the believed

levels of navigation errors. Although these values are usually known from the performance

specifications of the inertial sensors, in all practical applications the initial covariance and

process noise covariance matrices are adjusted during the tunning process.

The propagation step involves computation of an a priori covariance matrix Pk+1|k
according to

Pk+1|k = Φ(k + 1, k)Pk|kΦ
T (k + 1, k) +Qk (2.26)

where Φ(k+1, k), Pk|k, Qk are the process discrete system matrix, a posteriori covariance

matrix, and the discrete process noise covariance matrix, respectively. The discrete system

matrix Φ is given by Eq. (1.8). The discrete process noise covariance matrix Q can be

calculated as

Q =

∫ tb

ta

Φ(tb, τ)QcΦ(tb, τ)
Tdτ (2.27)

with Qc = E[ωcω
T
c ] and ωc being the continuous process noise (cf. Section 1.3.2). In

practice, however, Q is set during the filter tuning process.

The propagation of the state vector is given by

X̂k+1|k = Φ(k + 1, k)X̂k|k (2.28)
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However, since the first 9 components of X̂k|k are used for correcting the strapdown

integration (see above) after the update step and then reset, and the other 6 components

are random constants (i. e., X̂k|k = [01×9 dT bT ]T ), Eq. (2.28) is equivalent to X̂k+1|k =

X̂k|k.

After performing the propagation step, a measurement update is performed given the

motion estimation (tC2
1→2, R

C2
C1
) from the image processing module. First, the Kalman filter

gain matrix is computed according to

Kk+1 = Pk+1|kH
T
k+1

[
Hk+1Pk+1|kH

T
k+1 +Rk+1

]−1
(2.29)

The matrix Rk+1 in Eq. (2.29) is a measurement noise covariance matrix, which is of the

following block-diagonal form:

Rk+1 =

[
Rtr

k+1 03×3

03×3 Rrot
k+1

]
(2.30)

where Rtr, Rrot are the translation and rotation measurement noise covariance matrices,

respectively. While Rrot is a constant matrix, an adaptive translation measurement noise

covariance matrix Rtr is calculated based on Eq. (2.25):

Rtr = −
[
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
Rest

[
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
(2.31)

where Rest is a 3 × 3 tuning matrix that represents the level of accuracy in the vision-

based estimation of the translation direction and (.)∧ denotes the matrix cross-product

equivalent. For example, in the experiments with real imagery presented in Section 2.5.2,

it was assumed to be close to I3×3. It should be noted that the matrices Rest, Rrot may

also be estimated as part of the image-based motion estimation procedure [16].

Once the gain matrix K is available, a posteriori values of the state vector and covari-

ance matrix are computed using the standard IEKF formulas [78], [4]:

X̂k+1|k+1 = X̂k+1|k +Kk+1Zk+1 (2.32)

Pk+1|k+1 = [I −Kk+1Hk+1]Pk+1|k [I −Kk+1Hk+1]
T +Kk+1Rk+1K

T
k+1 (2.33)

2.4.1 Fictitious Velocity Measurement

Some of the errors in the image-based relative motion estimation may be projected onto

the unobservable states, analyzed in Section 2.6, and yield poor estimation performance

even when compared with the pure inertial case. In order to mitigate this phenomenon,

several heuristic methods may be considered. For the current implementation, a fictitious

ideal velocity measurement was used in addition to the relative motion measurements to

overcome the scaling ambiguity, so that

(VL
true)

T∆V = 0, (2.34)
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Namely, the velocity errors in the direction of the flight are assumed to be zero, and hence

errors from the image-processing block are essentially not projected onto this direction.

The term VL
true refers to the true value of the platform velocity in the LLLN system.

Since this velocity is unknown, it is replaced by the platform velocity VL taken from the

navigation system.

A Kalman filter gain matrix, K, is computed according to Eq. (2.29) based on an a

priori covariance matrix Pk+1|k, an augmented measurement matrix, Haug = [HT , HT
v ]

T ,

and an augmented measurement noise covariance matrix, Raug, where

Hv =
[
01×3 (VL)T 01×3 01×3 01×3

]
(2.35)

and H is the measurement matrix of Eq. (2.24).

The augmented measurement noise covariance matrix Raug is given by

Raug =

[
R 0

01×3 Rv

]
(2.36)

where R is given in Eq. (2.31) and Rv is the fictitious velocity (FV) measurement noise

covariance matrix, which constitutes a tuning parameter. Small-valued entries in Rv

indicate that this additional measurement is reliable, and therefore other measurements

will have a minor influence on the entries of the gain matrix K, corresponding to position

and velocity along the flight heading. This, in turn, prevents from erroneous image-based

relative motion measurements to affect the unobservable states.

Once K is computed, the column related to the fictitious velocity measurement is

discarded; in this way, the measurement limits the corrections in the direction of the

flight but does not render the problem inconsistent, since the measurement is not actually

performed. The advantage of using the FV measurement is demonstrated in Section

2.5.2.2 for vision-aided navigation using two-view based motion estimations; thus, all the

results of mosaic-aided navigation, presented in Section 2.5.2.3, were obtained with the

FV measurement active. Note that the FV measurement does not limit the platform’s

motion to any specific type. This is in contrast, for example, to nonholonomic constraints

that may be applied only for land vehicles [79]. In addition, due to the varying quality

of the image measurements (cf. Section 2.5.1), a measurement-rejection mechanism must

also be used to avoid fusion of low-quality measurements or other outliers.

2.4.2 Computational Requirements

The overall computational requirements of the proposed navigation aiding architecture

consist of applying a standard Kalman filter for constant-size state and measurement

vectors of 15 and 6 elements, respectively, and of the image processing phase. The latter

consists of a temporary mosaic image construction, which is limited to a few images (4 in

the current example), and of motion estimation. The main mosaic image is not used in

the navigation aiding scheme.
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As discussed earlier, the inclusion of a new image into a temporary mosaic image in-

volves the computation of SIFT features, estimation of the homography matrix, warping

the new image and fusing the two images. Only a partial area in the temporary mosaic im-

age is used for calculating SIFT features. These operations require modest computational

resources and pose no difficulties for real-time operation.

In conventional SLAM, as opposed to the proposed method the state vector is aug-

mented with relevant data from each captured image, and thus the whole state vector

needs to be updated each time. Denoting by d the number of elements that are added

to the state vector once a new image is acquired, SLAM generates, after 100 seconds of

flight (assuming the same image sampling frequency of 5 Hz) a state vector of 15 + 500d

elements that should be processed in real time, which is far more demanding than ap-

plying a Kalman filter to a 15-element state vector and constructing a temporary mosaic

image4 (cf. Section 2.4.2), as suggested in the new approach.

2.5 Results

This section contains simulation and experimental results of the presented mosaic-aided

navigation method. The simulation is comprised of the following modules: A navigation

module, a camera scanning module, and an image processing module.

The navigation phase consists of the following steps: (a) Trajectory generation; (b)

velocity and angular velocity increments extraction from the created trajectory; (c) IMU

error definition and contamination of pure increments by noise; and (d) strapdown calcu-

lations. The strapdown mechanism provides, at each time step, the calculated position,

velocity and attitude of the platform. In parallel to the strapdown calculations, at a

much slower rate, Kalman filter calculations are performed based on the available mea-

surements. At the end of each filter cycle, the strapdown output is updated with the

estimated state vector of the filter. See also Section 1.3.3.

The camera scanning module provides camera angle commands that yield a continuous

scan, according to the camera scanning procedure discussed in Section 2.2.1.

The image processing module constructs mosaic images and performs motion estima-

tion each time a downward-looking image is acquired (cf. Sections 2.2.2 and 2.3). The

inputs to this module are real images obtained from Google Earth5 based on the proposed

camera scanning procedure. In addition, the module is capable of calculating an ideal

camera motion based on the true platform trajectory, without actually using any real

images. Naturally, in this mode of operation the mosaic images are not constructed. The

4The construction of the main mosaic image in a background process may involve different algorithms.

However, while some of them may be computationally expensive (such as global optimization), they are

to be applied only in case of a loop in a trajectory, or in some low frequency. This is in contrast to the

constantly increasing high-computational requirements of the update step in the SLAM approach.
5http://earth.google.com/index.html, last accessed June 2009.
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Table 2.1: Trajectory Parameters

Parameter Description Value Units

λ Initial latitude 32.8285005298 deg

Λ Initial longitude 35.1479222075 deg

alt Initial altitude above sea level 1500 m

VL Velocity in LLLN system (100, 0, 0)T m/s

Ψ Platform attitude (0, 0, 0)T deg

ideal motion estimations are used as baseline for evaluating the best possible performance

of the proposed method, since motion estimation based on real images will be imperfect.

The experiments presented in this section are based on real image sequences acquired

using Google Earth, which contains 3D geo-data of Earth based on real imagery, i. e. a

3D environment based on real images and a digital terrain model. For this purpose, an

interface that bridges between the navigation simulation and Google Earth was developed.

The interface allows to obtain images from Google Earth at specified camera position and

attitude, further details are provided in Appendix A.3.

It should be noted that any two images of the same ground region observed from

different viewpoints will yield a correct relative image transformation. However, this

approach does not mimic real-world images perfectly, since it lacks the effect of lighting

variations when some region is observed from different directions. Yet, since the presented

trajectories do not involve loops6, the implemented camera scanning procedure will take

different images of the same ground region under similar conditions. Thus, the effect of

varying lighting conditions is expected to be marginal.

Unless otherwise stated, the experiments presented in this chapter were conducted

while the platform performed a straight-and-level north-heading trajectory, whose initial

conditions are given in Table 2.1. The observed scene along this trajectory is of a planar

nature with about 50 m elevation above sea level.

The results are presented in the next sections. Improved image-based motion estima-

tion when handling difficult scenarios is demonstrated in Section 2.5.1. Next, results of

vision-aided navigation are shown in several steps. First, statistical results of fusing ideal

motion estimations with an INS are presented. Section 2.5.2.2 demonstrates the improve-

ment in navigation performance when using the FV measurement. Finally, Section 2.5.2.3

presents results of mosaic-aided navigation.

6As mentioned in Section 2.2.2, the described method in this chapter is not intended for handling loop

scenarios. These scenarios can be handled using the algorithm presented in Chapter 3.
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2.5.1 Mosaic-based Motion Estimation

Before presenting the results for mosaic-based motion estimation, we demonstrate the im-

provement in the precision of motion estimation when applying the sequential estimation

procedure, summarized in Algorithm 1. In the current implementation, this routine was

executed with N = 10.

Figure 2.6 presents the results of translation motion estimation when a low-texture

scene is observed by a narrow-FOV camera. A pair of such images are shown in Figures

2.6(a) and 2.6(b).

The improvement in the estimation precision is clearly evident in Figure 2.6(c), where

the same pair of images was used to perform motion estimation with and without the

sequential estimation procedure. The figure presents a cumulative distribution function

(CDF) of errors in the estimation of the translation direction; the x-axis values represent

different thresholds of errors (in degrees), while the y-axis represents the percentage of

estimations with an estimation error lower than the threshold values.

The results in Figure 2.6(c) were obtained by retrieving motion parameters from a

conventionally-estimated homography matrix (cf. Section 2.2.2.1) and by applying the

sequential estimation procedure of motion parameters (Algorithm 1). Both of the methods

were executed 100 times on a pair of low-texture images taken with a 7o×4o-FOV camera

(Figures 2.6(a) and 2.6(b)). The advantage of the sequential estimation method is signif-

icant. For example, nearly 80% of the estimation errors were below 20o when applying

sequential estimation, compared to only 50% with a standard homography estimation.

Next, the performance of the proposed mosaic-based motion estimation method is

presented. The results are compared with a standard two-view method, in which the

motion estimation is based on camera-captured images, without constructing the mosaic

image.

In both cases the motion parameters are estimated using the proposed sequential

estimation method. Image sequences were acquired from Google Earth, using the same

trajectory, for each of the examined motion estimation methods: Images for the traditional

two-view motion estimation method were captured using a constant downward-looking

camera at a 1 Hz frequency, while images for the mosaic-based motion estimation method

were captured according to the camera scanning procedure at a 5 Hz frequency. Among

all the images acquired during the camera scanning, the downward-looking images were

captured every second, and therefore motion estimation in the mosaic-based method was

also applied at a 1 Hz frequency (cf. Figure 2.3).

The results are presented in Figure 2.7, showing the CDF of the translation direction

estimation error and of the rotation estimation error. The shown rotation error is the

maximum value of the error in the estimated rotation vector, i. e.

∆η , max(|∆ϕ| , |∆θ| , |∆ψ)| (2.37)

where ∆ϕ,∆θ,∆ψ are the Euler angle errors of the estimated rotation matrix, computed
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Figure 2.6: (a),(b) Images of a low-texture scene captured from Google Earth by a 7o×4o

FOV camera. (c) Motion sequential estimation vs. standard estimation over the pair of

images presented in (a),(b): CDF of the translation direction estimation error. Signifi-

cantly improved estimation accuracy in favor of sequential estimation.

from the DCM Rerr:

Rerr ≡ Rtrue ·RT (2.38)

Here Rtrue and R are the true and estimated values of the rotation matrix, respectively.

It is important to understand when the mosaic-based method is expected to outper-

form the two-view-based method. In the context of motion estimation, the two methods

differ only in the size of the image overlap region. Due to the camera scanning process,

the constructed mosaic image contains an enlarged overlapping region compared to the

overlapping region between two regular images. This region is comprised of the original

overlapping area between two regular images and an additional overlapping region - see

a schematic illustration in Figure 2.2(a) and a mosaic example image in Figure 2.4 and

Figure 2.5. However, since the mosaic construction process is by itself affected by errors,

features from the additional overlapping area tend to be of lower-quality compared to

those from the original overlapping region, while features from the original overlapping

region are of the same quality in both cases (the camera-captured image and the mosaic

image), due to the mosaic construction process (cf. Section 2.2.2). Thus, there is an in-
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herent tradeoff: On one hand, the mosaic provides an increased number of features, while

on the other hand, part of the features are of a lower quality. Hence, the performance

of the mosaic-based method is expected to be superior over the two-view framework in

“difficult” scenarios, in which the overlapping region between the two captured images

yields a small number of high-quality features. In other words, it is expected that the

mosaic will outperform the two-view method for the narrow-FOV camera and low-texture

scenes.

The above observation is clearly evident in Figure 2.7, which describes the scenario

of a narrow-FOV camera (5o × 3o) and a low-texture scene. This relatively small FOV

is common in many airborne applications. It can be seen that the mosaic-based motion

estimation yields considerably better results compared to the two-view motion estimation.

For example, in case of the translation direction estimation (Figures 2.7(a)), 50% of

the estimates using the mosaic method are provided with an accuracy better than 15o,

compared to only 20% using the two-view method. As will be seen in the next section,

these motion estimations can be effectively utilized for improving the performance of

navigation systems.
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Figure 2.7: Image-based motion estimation accuracy for a low-texture scene and a narrow-

FOV camera of 5o×3o (CDF). The mosaic framework significantly improves the estimation

accuracy compared to a traditional two-view method.

2.5.2 Mosaic-Aided Navigation

This section contains simulation results of the developed mosaic-aided navigation method

following the fusion technique discussed in Section 2.4. First, navigation results are pre-

sented assuming an ideal motion estimation (without using any real images). Next, the

contribution of the FV measurement is demonstrated, followed by results of mosaic-aided

navigation. These results are compared to two-view aided navigation. It is noted that

the simulation runs were performed without a captive flight stage.
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Table 2.2: Initial Navigation Errors and IMU Errors

Parameter Description Value Units

∆P Initial position error (1σ) (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T deg/hr

b IMU bias (1σ) (1, 1, 1)T mg

The assumed 1σ values of IMU errors and initial navigation errors are given in Table

2.2. Actual values of initial navigation errors and IMU errors in the statistical simulation

runs are determined by drawing samples from a zero-mean normal distribution with a

standard deviation σ, that is, the value of some parameter si is drawn according to

si ∼ N(0, σsi).

The IMU errors are then used for contaminating the pure IMU readings, while the

initial input to the strapdown module is set according to initial platform parameters and

initial navigation errors (cf. Section 2.5).

2.5.2.1 Navigation Performance Using Ideal Motion Estimation

Figures 2.8-2.11 show Monte-Carlo results for a straight and level north-heading tra-

jectory, in which the measurements based on an ideal motion estimation were injected

into a Kalman filter at a 1 Hz frequency. Each figure contains 4 curves: mean (µ),

mean+standard deviation (µ + σ), and the square root of the filter covariance, defined

for the i-th component in the state vector X as
√
P (i, i), where P is the a posteriori

covariance matrix. In addition, a comparison is provided to an inertial scenario (µ + σ

inertial).

The velocity errors are presented in Figure 2.9. Velocity errors normal to the flight

heading are significantly reduced relative to the inertial scenario; however, they are not

nullified due to errors introduced by expressing the translation measurement in the LLLN

system (cf. Appendix A). It can also be seen that these errors are constant and do

not grow with time. As a consequence, position errors (Figure 2.8) normal to the flight

heading are considerably reduced compared to an inertial scenario. Velocity errors and

position errors along the flight heading are not reduced due to lack of observability, as

analyzed in Section 2.6.

The roll angle error ∆Φ (Figure 2.10) is partially estimated and is kept constant

relative to the increasing error obtained in an inertial scenario. While the pitch and yaw

angles errors (∆Θ,∆Ψ) are not estimated, the error growth is restrained relative to the

inertial scenario. This is due to a precise estimation of the drift state d = (dx, dy, dz)
T
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(Figure 2.11), that was obtained since ideal rotation motion estimation is used. However,

when real images are used, the obtained precision of rotation motion estimation, in the

current implementation, is insufficient for estimating the drift state (see also Section

2.5.2.2). The bias state, b = (bx, by, bz)
T , is estimated in the z-direction (Figure 2.11). In

general, the filter covariance is consistent with the actual 1σ errors.
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Figure 2.8: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using ideal

motion estimation: Position errors. Errors normal to the flight heading are reduced, errors

along the flight heading are not diminished due to lack of observability.

2.5.2.2 Contribution of the Fictitious Velocity Measurement

This section demonstrates the beneficial effect of the FV measurement on the developing

navigation errors in the unobservable states. Experiment navigation-aiding results are

presented based on Google Earth high-texture imagery, captured by a wide-FOV camera.

Image-based motion estimations, injected to the navigation system, were computed based

on the fundamental matrix model (cf. [13]), without the mosaic construction process.

However, the contribution of the FV measurement is of the same nature when mosaic-

based motion estimations are used.

One of the typical Google Earth images used in the experiment is shown in Figure

2.12. The trajectory in this experiment consists of a straight and level north-heading flight

1600 meters above sea level (height above ground ranges from 600 to 1300 meters) and a

velocity of 150 m/s. The unobservable states for this trajectory are analyzed in Section

2.6. The same IMU errors and initial navigation errors as in Table 2.2 were assumed.
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Figure 2.9: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using ideal

motion estimation: Velocity errors. Errors normal to the flight heading are significantly

reduced relative to the inertial scenario, and are kept constant.

Figures 2.13-2.15 provides the experimental results, comparing between the perfor-

mance with the FV measurement on and off. In addition, an inertial navigation scenario

is presented for reference.

Position and velocity errors (Figures 2.13 and 2.14) normal to the flight heading are

significantly reduced compared to the inertial scenario (regardless of whether the fictitious

velocity measurement was applied or not), as was already demonstrated in Section 2.5.2.1.

The errors along the flight heading (north), which are unobservable, indeed behave as in

the inertial scenario when the fictitious velocity measurement is applied, and are much

degraded when this measurement is not applied. The same applies to the pitch angle

error, ∆Θ, as shown in Figure 2.15. It can be concluded that, while the FV measure-

ments prevent the erroneous updates of the unobservable states, they do not deteriorate

estimation of the observable states. Therefore, subsequent results will be presented with

the FV measurement on.
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Figure 2.10: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using

ideal motion estimation: Euler angle errors. Roll angle error, ∆Φ, is partially esti-

mated and is kept constant relative to the inertial scenario; pitch and yaw angles errors

(∆Θ,∆Ψ), development is arrested.
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Figure 2.11: Navigation errors statistics vs. filter covariance (Monte-Carlo runs) using

ideal motion estimation: Drift and Bias estimation errors. Full drift estimation due to

ideal relative rotation measurement. The bias in the z direction is estimated after about

50 sec.

Figure 2.12: A Google Earth image of a high-texture scene, captured with a wide-FOV

camera.
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Figure 2.13: Experiment with a wide-FOV camera demonstrating the beneficial effect of

the FV measurement - Position errors. Errors normal to the flight heading are consider-

ably reduced compared to the inertial scenario; inertial behavior of the errors along the

flight heading is obtained if FV measurement is applied. Significantly larger errors along

the flight heading are obtained if the FV is not applied.
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Figure 2.14: Experiment with a wide-FOV camera demonstrating the beneficial effect of

the FV measurement - Velocity errors. See Figure 2.13 for details.
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Figure 2.15: Experiment with a wide-FOV camera demonstrating the beneficial effect

of the FV measurement - Euler angles errors. Inertial pitch angle error in case the FV

measurement is applied, and enlarged error otherwise (due to enlarged velocity errors

along the flight heading).
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2.5.2.3 Navigation Performance Using Mosaic-Based Motion Estimation

This section demonstrates the superior performance of mosaic-aided navigation over

vision-aided navigation that utilizes two-view motion estimation. The examined sce-

nario consists of a narrow-FOV camera (5o × 3o) and a low-texture scene. The platform

performs a straight and level north-heading flight, as discribed in Section 2.5.

The experiment consisted of 50 seconds of inertial flight, followed by a 50 seconds of

vision-aided phase, during which the mosaic- and two-view-based motion estimations were

injected into the navigation system. The last phase is another inertial navigation flight

segment for 50 seconds. Figures 2.16-2.19 provide the experimental results, comparing

the navigation performance for the two examined methods (mosaic and two-view). In

addition, the development of inertial navigation errors is given for reference.

The enhanced performance of mosaic-aided navigation can be clearly seen. During the

vision-aided phase, the position and velocity errors (Figures 2.16 and 2.17) perpendicular

to the flight heading are significantly reduced. The mosaic-based aiding yields better

results than two-view-based aiding, due to more accurate vision-based motion estimation.

It can be concluded from these graphs that the number of measurements accepted by the

filter is considerably higher in case of the mosaic framework (between 60 sec and 80 sec,

all the measurements in the two-view method were rejected by the filter). As for the roll

angle error (Figure 2.18), although this error is smaller with the two-view method, it is

expected to reach higher values if more measurements were accepted by the filter.

When examining the behavior of navigation errors in an inertial segment (after the

vision-aided phase), one can notice the slow development of inertial errors when using

mosaic aiding. The reason for this is the improved bias estimation compared to the

estimation using the two-view method, as shown in Figure 2.19: bz is almost exactly

estimated and thus it does not contribute to the growth of inertial position and velocity

errors in the down axis. The drift state was not estimated at all, because all the relative

rotation measurements were rejected by the filter due to their low quality.

The relative motion measurements have another interesting effect: Although the po-

sition error state is unobservable (cf. Section 2.6), the measurements still reduce, but not

nullify, the position errors (Figure 2.16), due to the developing cross-covariance terms in

the covariance matrix of the state vector.

Figures 2.20 - 2.23 compare the filter covariance to the actual developed errors. As

seen, the covariance is consistent. However, in the last segment of the inertial flight

(after t=100 sec), the covariance development rate does not match the actual rate of the

developing inertial navigation errors. After the vision-aided segment, part of the IMU

error parameters are estimated by the filter (e. g. bz) and are used to correct the actual

IMU measurements. As a consequence, the actual IMU measurements injected into the

navigation system are corrupted by only the residual IMU errors, resulting in a much

slower development of navigation errors. One possible alternative to account for this

behavior is to perform a dynamic adjustment of the filter noise covariance matrix Q as a
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function of the actual covariance values of the estimated IMU states.
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Figure 2.16: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Position errors.

Inertial error development in the north direction due to lack of observability. Reduced

errors in the east and down directions, with a significant improvement in favor of the

mosaic aiding.
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Figure 2.17: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Velocity errors.

See Figure 2.16 for details.
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Figure 2.18: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Euler angle

errors. Roll angle error estimation for both motion estimation methods. Pitch and yaw

angles errors are not reduced due to lack of observability.
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Figure 2.19: Vision-aided navigation: Mosaic aiding vs. two-view aiding: Bias estimation

errors. Considerably improved bz estimation in favor of mosaic-aided navigation.
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Figure 2.20: Actual navigation errors vs. filter covariance - Mosaic aiding: Position Errors.
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Figure 2.21: Actual navigation errors vs. filter covariance - Mosaic aiding: Velocity Errors.

0 50 100 150
−0.5

0

0.5

Φ
 [d

eg
]

 

 

Inertial InertialVision−Aided

0 50 100 150
−0.2

0
0.2
0.4

Θ
 [d

eg
]

 

 

0 50 100 150
−0.2

0
0.2
0.4

Time [s]

Ψ
 [d

eg
]

Error Sqrt Cov

Figure 2.22: Actual navigation errors vs. filter covariance - Mosaic aiding: Euler Angles

Errors.
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Figure 2.23: Actual navigation errors vs. filter covariance - Mosaic aiding: Bias Estimation

Errors.
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2.6 Observability Analysis

The observability analysis provided in this section is performed by modeling the system

as a piece-wise constant system, following a variation of a method suggested in [80]. It is

shown that incorporating maneuvers with sufficient duration into the platform trajectory

renders the system observable except the position terms, which are always unobservable.

In addition, the components of the unobservable modes are numerically investigated.

The following system is considered:

X(k + 1) = Φ(k + 1, k)X(k) + ω (2.39a)

Z(k) = H(k)X(k) + v (2.39b)

where Φ and ω are the discrete system matrix and discrete process noise, respectively

(cf. Section 1.3.2), H is the measurement matrix, given by Eq. (2.24), and v is the

measurement noise defined as v =
[
vT
tr vT

rot

]T
.

Since the observability analysis does not incorporate process and measurement co-

variance matrices, the noise terms will be omitted, in this section, from the equations

to follow. When a stochastic system is considered, the estimation errors depend on the

involved noise parameters. In particular, when the system is completely observable, the

lower bound of its estimation error depends only on the noise parameters [81], while in

case of an unobservable system, the variance of the estimation error of an unobservable

state cannot be decreased by incorporating measurements [82].

A general discrete time-invariant system

x(k + 1) = Ax(k) + Bu(k) (2.40a)

y(k) = Cx(k) (2.40b)

is observable [82], [80] if the rank of the matrix Qd, defined as

Qd =
[
CT | (CA)T | (CA2)T | . . . | (CAn−1)T

]T
(2.41)

is n, where n is the dimension of the state vector x.

If k = rank(Qd) < n, the system has n− k unobservable modes. These modes can be

found by computing the Observability Grammian G (e.g. cf. [70]):

G = QT
dQd (2.42)

The unobservable modes are the non-zero elements of eigenvectors belonging to zero

eigenvalues of G. Thus, one looks for all the vectors a for which Ga = 0, i. e. the

right null-space of the matrix G.
However, the system given in Eq. (2.39) cannot be considered in general as time-

invariant. Instead, it may be expressed as a discrete piecewise constant system [80] as
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follows

X(k + 1) = ΦdjX(k) (2.43a)

Zj(k) = HjX(k) (2.43b)

where for each segment j = 1, . . . , r the matrices Φdj and Hj are constant.

Following [80], assuming at least n measurements in each segment (cf. Figure 2.24(a)),

the measurements can be expressed as a function of X(1):

Z1(1) = H1X(1)

Z1(2) = H1Φd1X(1)
...

Z1(n) = H1Φ
n−1
d1

X(1)

Z2(n) = H2Φ
n−1
d1

X(1)

Z2(n+ 1) = H2Φd2Φ
n−1
d1

X(1)

...

which can be written as

Z = Qd(r)X(1) (2.44)

here Qd(r) is the Total Observability Matrix (TOM) [80]. Denoting by Qdj the observ-

ability matrix, defined for segment j as

Qdj =
[
HT

j | (HjΦdj)
T | (HjΦ

2
dj
)T | . . . | (HjΦ

n−1
dj

)T
]T

(2.45)

the TOM can be written as

Qd(r) =


Qd1

Qd2Φ
n−1
d1

Qd3Φ
n−1
d2

Φn−1
d1

...

QdrΦ
n−1
dr−1

. . .Φn−1
d1

 (2.46)

However, this derivation of the TOM relies on the assumption that each segment indeed

contains at least n measurements. In practical applications, the time period between

consecutive measurements, ∆t, cannot be considered arbitrarily small. For example, in

the proposed mosaic-aided navigation method ∆t = O(1) seconds. Moreover, in case the

motion estimation is performed based on the fundamental matrix, too small value of ∆t

will lead to a small baseline and thus yield an ill-conditioned problem [13]. On the other

hand, the system matrices Φd and H might undergo some non-negligible changes during

the time period of n measurements, violating the assumption of a time-invariant system

within each segment.
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Assuming at least n measurements in a segment is certainly valid for trajectory seg-

ments for which the system is time-invariant. Otherwise, it makes sense to assume less

than n measurements in a segment. The worst scenario in the observability context, is

to consider only one measurement per segment. Note that all the other scenarios can

be obtained by stacking the one-measurement segments. For example, if a certain phase

in the trajectory is considered to be represented by constant system parameters during

a time period that allows 3 measurements to be taken, the equivalent representation of

such a phase in the proposed analysis would be to take 3 one-measurement segments with

identical system matrices.

It is assumed that the system is time-invariant during the first phase of the trajectory,

and therefore this phase contains at least n measurements. This phase is followed by a

maneuver phase (described in the sequel), which is divided into r − 1 one-measurement

segments, as illustrated in Figure 2.24(b).

... ... ... ... ...

Seg. 1 Seg. 2 Seg. 3 Seg. 4

Straight and level

...

...

Seg. r

Maneuver phase

(a) At least n measurements in the first segment and in each maneuver segment.

... ...

Seg. 1 Seg. 2 Seg. 3 Seg. 4

Straight and level

...
Seg. r

Maneuver phase

(b) At least n measurements in the first segment, one measurement in each maneuver

segment.

Figure 2.24: First segment - straight and level flight. Maneuver phase is represented by

r − 1 segments. The system is considered to be constant within each such segment.

This model of segments is a variation of the model assumed in the development of

the TOM [80], and thus the matrix that is used for the observability analysis should

be adjusted accordingly. The first segment has at least n measurements, thus the ba-

sic observability matrix for this segment Qd1 , given in Eq. (2.45), is still valid. The

measurement of the second segment can be written as

Z2(n+ 1) = H2X(n+ 1) = H2Φd2X(n) = H2Φd2Φ
n−1
d1

X(1) (2.47)
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Consequently, the measurements of all the maneuver segments are

Z2(n+ 1) = H2Φd2Φ
n−1
d1

X(1)

Z3(n+ 2) = H3Φd3Φd2Φ
n−1
d1

X(1)

...

Zr(n+ r − 1) = HrΦdr . . .Φd2Φ
n−1
d1

X(1)

which yields the following variation of the TOM:

Q̄d(r) =


Qd1

H2Φd2Φ
n−1
d1

H3Φd3Φd2Φ
n−1
d1

...

HrΦdr . . .Φd2Φ
n−1
d1

 (2.48)

The observability analysis procedure described in the beginning of this section should

be applied now to the matrix Q̄d(r). An analytical calculation of the nullspace of the

observability Grammian G = Q̄T
d (r)Q̄d(r) poses computational difficulties after the first

several segments. Motivated by the relation [83]

rank (A) = rank
(
ATA

)
(2.49)

instead of computing the nullspace of G, we focused on calculating the rank of Q̄d, from

which it is straightforward to derive the number of the unobservable modes (but not their

components).

The observability analysis was applied to a specific family of scenarios, comprised

of a straight and level (SL) flight with a constant acceleration and of several bank-

to-turn (BTT) maneuvers7, characterized by the accelerometer measurements fNED =[
a · sin(Ψ) −a · cos(Ψ) −g

]T
, expressed in the NED system, where a is some constant

parameter and g is the gravitational acceleration. During the SL flight the system is

time-invariant8, and therefore at least n measurements are assumed to be carried out in

this phase. As mentioned above, the maneuver phase was divided into one-measurement

segments.

The analysis was carried out assuming general parameters characterizing the consid-

ered scenario (such as the initial velocity and initial heading) and assuming ideal motion

estimation. The results are given in Table 2.3, that provides the rank of Q̄d(r) and the

number of unobservable modes, including the position state, gradually taking into account

7Skid-to-turn maneuvers were also analyzed, yielding very similar results in the context of observability.
8Since the system matrices Φd and H are actually the Jacobians of non-linear systems, they are

functions of the navigation solution from the preceding time. These matrices, therefore, change with the

accumulation of inertial navigation errors, and thus, even in the case of an SL flight, with a constant

acceleration, the system can be considered to be time-invariant only for a limited amount of time.
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Table 2.3: Analytical observability analysis results for a piece-wise constant system

Number of segments rank of Q̄d Number of Unobservable modes

SL 7 8

SL + 1 seg 9 6

SL + 2 seg 11 4

SL + 3 seg 12 3

additional maneuver segments. As can be seen, the observability of the system improves

as additional maneuver segments are processed. Thus, there are 8 unobservable modes in

the case of a SL flight, while the number of unobservable modes reduces to 3 after three

one-measurement maneuver segments were incorporated. These 3 modes are the posi-

tion terms, which are always unobservable. This is not surprising, since the vision-based

measurements provide only relative motion information and do not supply any absolute

information.

The obtained unobservable modes in an SL flight scenario (5 modes, not including the

3 unobservable position states), can be compared to the 3 unobservable modes obtained

in in-flight-alignment (IFA) [84]. The difference is due to the measurement model: In IFA,

the measurement is the 3-axis velocity [84], while in the vision-aided navigation method,

the measurement is comprised of up-to-scale translation (which is equivalent to velocity

direction) and of relative rotation (cf. Eq. (2.24)). It is worth stating that in practice, due

to process and measurement noise, not all the observable states can be indeed estimated.

For example, as seen in Section 2.5.2.3, the drift state could not be estimated due to

insufficient precision of the vision-based rotation motion estimation.

2.6.1 Numerical Investigation

As mentioned earlier, the observability analysis requires calculation of the nullspace of the

observability Grammian G = Q̄T
d Q̄d. However, since numerical calculations are involved,

instead of calculating the nullspace G, the implemented procedure consists of obtaining

the singular value decomposition (SVD) of Q̄d and analyzing the eigenvectors of small

singular values. This procedure is preferable to numerical calculation of G’s nullspace,

since the latter considers only zero eigenvalues while the former takes into account also

infinitesimally small eigenvalues.

The SVD of Q̄d is given by

Q̄d = USV T (2.50)

here S is a diagonal matrix of singular values of Q̄d, which are the square root eigenvalues

of G; U and V are orthogonal matrices comprised of eigenvectors of GT and G, respectively.
Thus, the unobservable modes are the elements of vectors in the matrix V that correspond

to zero entries in the diagonal of S.
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The specific trajectory assumed in this section is presented in Figure 2.25. As de-

scribed in the previous section, the trajectory consists of a straight-and-level north-

heading flight phase, followed by several BTT maneuvers. The maneuvers were divided

into one-measurement segments. The duration of each such segment is one second.
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Figure 2.25: State variables of a trajectory containing a maneuver.

Figure 2.26 provides the behavior of singular values of the matrix Q̄d as a function of

the segments being processed. The singular values, that were identified as numerical zeros

and were further processed for calculating the unobservable modes, are denoted by square

marks. The components of the unobservable modes are given in Figure 2.27 for the first

6 maneuver segments. The components are connected by a line for each unobservable

mode.

Overall, the singular values increase when additional segments are added. Thus, some

of the singular values that were considered as numeral zeros at the beginning, have sig-

nificantly evolved and therefore ceased to be considered as such, reducing the number of

unobservable modes. See singular values number 8-12 (Figure 2.26).

As can be seen, when only SL flight is considered (i. e. first segment only) there are 8

unobservable modes (including the position state). Thus, only ∆VE,∆VD, dx, dy, dz and
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bz may be estimated. After considering several maneuver segments, only 3 unobservable

modes were left, which represent the position terms. Figure 2.27 summarizes the number

and the components of the unobservable modes as a function of the involved maneuver

segments.
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Figure 2.26: Singular Values #1 to #15 of Q̄d. Singular values that were identified as

unobservable modes are denoted with a SQUARE mark. Singular values #8,#9 and

#10 were considered as unobservable modes in the first 2 maneuver segments, and are no

longer considered as such afterwards due to the increase in the observability of the system.

Singular values #11 and #12 ceased to be identified as unobservable modes after 2 and 4

maneuver segments were processed, respectively. Singular values #13-#15 are identified

as unobservable modes throughout the whole trajectory since they represent the position

error state, which is unobservable.
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Figure 2.27: Unobservable modes behavior vs. number of maneuver segments: 8 unob-

servable modes when considering only straight and level flight; 6 when one maneuver

segment is added; 5 when two maneuver segments are processed and 4 after considering

three maneuver segments. Once at least six one-measurement maneuver segments are

processed, the system becomes observable up to the position terms.
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2.7 Conclusions

This chapter presented a method for vision-aided navigation for an airborne platform

equipped with an inertial navigation system and a camera with a relatively small field-of-

view. The camera was mounted on gimbals so that it could scan the over-flown ground

regions during flight. The images captured by the camera were used for both constructing

a mosaic image and performing motion estimation. Motion estimation was fused with the

inertial navigation using an implicit extended Kalman filter.

The main idea of the new method was to combine camera scanning and online mosaic

construction, which yielded enlarged overlapping areas. Due to the imperfectness of the

mosaic construction process, features from the additional overlapping area tend to be of

a lower quality compared to those from the original overlapping area. Consequently, the

proposed method allowed to obtain improved-precision image-based motion estimation

when the original overlapping area between the captured images contained only a small

set of high-quality features, which is the case when a narrow field-of-view camera observes

low-texture ground regions.

Two types of mosaic images were constructed. The first type is a small mosaic image

that was used for motion estimation and constructed in real time, thereby allowing real

time navigation aiding. The second type is the main mosaic image, constructed in a

background process from all the captured images.

The proposed method was examined using a statistical simulation study assuming ideal

motion estimations, and experiments involving realistic scenarios based on real imagery

from Google Earth. These experiments included implementation of camera scanning and

mosaic construction. Superior performance was demonstrated, compared to traditional

two-view methods for motion estimation and navigation aiding, for challenging scenarios,

such as cameras with narrow field-of-views and low-texture scenes. In particular, it was

shown that estimation of position and velocity errors normal to the flight heading, as well

as of the roll angle, can be significantly improved.

Since the developed method utilized a two-view technique for motion estimation, the

translation motion was estimated only up to scale, which did not allow reducing some

of the navigation errors, including position and velocity errors along the motion heading.

These insights were also validated by an observability analysis, which modeled the system

as piece wise constant. The analysis indicated that the system becomes observable, up

to position errors, if sufficient maneuver segments are incorporated in the trajectory. As

expected, position errors remain always unobservable.

It was noted that the method is incapable of utilizing the full potential of the available

information in case of loops in the trajectory: While different algorithms can be applied in

such scenarios for refining the main mosaic image in a background process, the navigation

aiding phase treats loop scenarios as any other scenarios, without being able to reduce

the position errors, developed during the loop sequence, in all axes. This observation

motivated the development of a new method, which is described in the next chapter.
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In this chapter, a new method for vision-aided navigation is developed. The method

utilizes constraints stemming from a general three-view geometry. A new formulation of

these constraints is developed following the rank condition approach [13] [20], relating

between any three images observing the same static scene and the navigation solutions

present while these images were captured. These constraints include, in addition to the

well-known epipolar constraints [13], a new constraint related to the three-view geometry

of a general scene. The scale ambiguity, inherent to pure computer vision-based motion

estimation techniques, is resolved by utilizing the navigation data attached to each image.
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The developed constraints are fused with an inertial navigation system using an im-

plicit extended Kalman filter, allowing estimation of the position vector, by reducing the

position errors in all axes to the levels present while the first two images were taken.

Navigation errors of other states are reduced as well, including velocity errors in all axes.

Three, not necessarily consecutive, views with a common overlapping area1 constitute

a measurement for navigation aiding. Navigation aiding in case of loops in the trajectory

is handled naturally, also requiring processing only three images and therefore presenting

reduced computational load compared to state-of-the-art techniques for handling loop

scenarios (cf. Section 1.1.3). Following the overall architecture assumed throughout this

thesis (cf. Section 1.2), the refinement of the environment representation can be performed

in a background process by applying different algorithms (cf. Section 1.1.3).

The developed constraints and the well-known trifocal tensor [13] are both constituted

assuming a general three-view geometry. However, while the trifocal tensor utilizes only

features that are observed from all the three images, the developed constraints can be also

separately applied using features that are observed in each pair of images of the given

three images. It should be noted that the trifocal tensor has been suggested for camera

motion estimation [21], [85], and for localization of a robot and observed landmarks while

performing a planar motion [86]. However, the trifocal tensor and the three-view geometry

constraints developed herein have not been proposed so far for navigation aiding, and in

particular for handling loop scenarios.

Consequently, the main contributions of this chapter are: 1) A new formulation of the

constraints stemming from a general static scene captured by three views; 2) application of

the developed three-view constraints for navigation aiding, and in particular for handling

loop scenarios, and 3) reduced computational requirements compared to other methods

capable of handling loops in the trajectory.

3.1 Method Overview

A simplified diagram of the proposed method for navigation aiding is given in Figure 3.1.

The vehicle is equipped with a standard inertial navigation system and a camera (which

may be mounted on gimbals). The INS is comprised of an inertial measurement unit

whose readings are processed by the strapdown algorithm into a navigation solution.

During motion, the camera-captured images and partial navigation data, to be defined

in the sequel, are stored and maintained. When a new image is captured, it is checked

whether this image has a common overlapping area with two previously stored images.

One possible outcome of this step is a set of three overlapping images captured in close

timing. Another possibility is a loop in the vehicle’s trajectory, in which case the new

image overlaps two stored images captured while the vehicle visited the region previously.

1The term common overlapping area refers to an area that is present in all the three images.
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Figure 3.1: Aiding an inertial navigation system with three-view geometry constraints.

Once a set of three images containing a common overlapping area has been identified,

the images and the navigation data associated to each image are used for calculating

the constraints developed in Section 3.2. These constraints are then reformulated into

measurements and injected into an IEKF for estimating the developed navigation error

and IMU errors (cf. Section 3.3). These estimates are ultimately used for correcting the

navigation solution and the IMU measurements.

While some of the images in the repository are eventually used for navigation aiding,

the overall set of stored images may be used for constructing a representation of the

observed environment, e. g. a mosaic. The mosaic can be just a single image constructed

from the set of camera-captured images (e. g. Chapter 2), or alternatively, the mosaic can

be represented by the original images accompanied by homography matrices that relate

each image to a common reference frame [36]. In any case, since the navigation aiding

step does not rely on the mosaic, but rather on the original images and the concomitant

navigation data, the mosaic image construction can be performed in a background (low-

priority) process.

Throughout this chapter, we use the coordinate systems, defined in Section 1.3.1, with

the camera system redefined as follows:

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.

ZC points toward the FOV center, XC points toward the right half of the FOV when

viewed from the camera center-of-projection, and YC completes the setup to yield a

Cartesian right hand system.
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3.2 Three-View Geometry Constraints Development

We begin by presenting a development of constraints based on a general three-view geom-

etry. Figure 3.2 shows the considered scenario, in which a single ground landmark p is ob-

served in three images captured at time instances t1, t2 and t3, where t1 < t2 < t3. Denote

by Tij the camera translational motion from the ith to the jth view, with i, j ∈ {1, 2, 3}
and i ̸= j. Let also qi and λi be a line of sight vector and a scale parameter, respectively,

to the ground landmark p at time ti, such that ||λiqi|| is the range to this landmark. In

particular, if qi is a unit LOS vector, then λi is the range to the ground landmark.

1 1,λq 

2 2,λq 
3 3,λq 

12T 
23T 

13T 
1111tttt 

2222tttt 

3333tttt 

p 

Figure 3.2: Three view geometry: a ground landmark observed in three different images.

Assuming t3 − t2 > t2 − t1, the translation vectors between the different views, when

calculated solely based on the navigation data, will be obtained with different accuracy due

to the developing inertial navigation errors: T12 contains navigation errors developed from

t1 to t2, while T23 (and T13) is mainly affected by position errors developed from t2 (or t1)

to t3. Since t3− t2 > t2− t1, the accuracy of T23 is deteriorated compared to the accuracy

of T12. The purpose of this section is to formulate constraints for determining T23 based

on information extracted from the three images and partial navigation information (from

which T12 may be calculated), thereby improving the accuracy of T23, bringing it to the

accuracy levels of T12.

The position of a ground landmark p relative to the camera position at t1, expressed

in the LLLN system of t2, can be written as:

λ1C
C1
L2
qC1
1 = CC1

L2
TC1

12 + λ2C
C2
L2
qC2
2 (3.1a)

λ1C
C1
L2
qC1
1 = CC1

L2
TC1

12 + CC2
L2
TC2

23 + λ3C
C3
L2
qC3
3 (3.1b)

where qCi
i is a LOS vector to the ground feature at ti, expressed in a camera system at

ti; C
Ci
L2

is a DCM transforming from the camera system at ti to the LLLN system at t2;

and TCi
ij is the platform translation from time ti to tj, expressed in the camera system at

ti. Here i, j ∈ {1, 2, 3}, i ̸= j.
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Subtraction of Eq. (3.1a) from Eq. (3.1b) and some basic algebraic manipulations

give

0 = λ1C
C1
L2
qC1
1 − λ2CC2

L2
qC2
2 − CC1

L2
TC1

12 (3.2a)

0 = λ2C
C2
L2
qC2
2 − λ3CC3

L2
qC3
3 − CC2

L2
TC2

23 (3.2b)

Since the scale parameters λ1, λ2, λ3 are neither required nor known, we wish to form

constraints on T23 without using these parameters, or in other words, avoid structure

reconstruction. For this purpose, Eq. (3.2) is rewritten into the matrix form

[
q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

]
6×4


λ1
λ2
λ3
1


4×1

= 06×1 (3.3)

For the sake of brevity, the superscript L2 was omitted, e. g. q1 ≡ qL2
1 = CC1

L2
qC1
1 .

Let

A =

[
q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

]
∈ R6×4 (3.4)

In a similar manner to Refs. [13] and [20], since all the components in
[
λ1 λ2 λ3 1

]T
are nonzero, it follows that rank(A) < 4. The following theorem provides necessary and

sufficient conditions for rank deficiency of A.

Theorem 3.2.1 rank(A) < 4 if and only if all the following conditions are satisfied:

qT
1 (T12 × q2) = 0 (3.5a)

qT
2 (T23 × q3) = 0 (3.5b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (3.5c)

The proof of Theorem 3.2.1 is provided in Appendix B.

The first two constraints in Eq. (3.5) are the well-known epipolar constraints, which

force the translation vectors to be co-planar with the LOS vectors. Given multiple match-

ing features, one can determine from Eqs. (3.5a) and (3.5b) the translation vectors T12

and T23, respectively, up to scale. In general, these two scale unknowns are different. The

two scales are connected through Eq. (3.5c), which relates between the magnitudes of T23

and T12. Consequently, if the magnitude of T12 is known, it is possible to calculate both

the direction and the magnitude of T23, given multiple matching features. To the best of

the Author’s knowledge, the constraint (3.5c) has not appeared in previous publications.

Several remarks are in order. First, Eq. (3.5) also contains rotation parameters,

since all the quantities are assumed to be expressed in the LLLN system at t2. Second,

structure reconstruction is not required. As shown in the sequel, this allows to maintain

a constant-size state vector comprised of the vehicle’s parameters only, resulting in a

reduced computational load.
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3.2.1 Multiple Features Formulation

In typical scenarios there is a set of matching pairs of features between the first two views,

another set between the second and third view, and a set of matching triplets between all

the three views, which is the intersection of the previous two sets. These sets are denoted

by {qC1
1i
,qC2

2i
}N12
i=1 , {q

C2
2i
,qC3

3i
}N23
i=1 and {qC1

1i
,qC2

2i
,qC3

3i
}N123
i=1 , respectively, where N12, N23 and

N123 are the number of matching features in each set, and q
Cj

ji
is the ith LOS vector in the

jth view, j ∈ (1, 2, 3). Note that each LOS vector is expressed in its own camera system.

These LOS vectors can be expressed in the LLLN system at t2, as was assumed in the

development leading to Eq. (3.5), using rotation matrices whose entries are taken from

the navigation system. Thus, omitting again the explicit notation of the LLLN system at

t2, we have the matching sets {q1i
,q2i
}N12
i=1 , {q2i

,q3i
}N23
i=1 and {q1i

,q2i
,q3i
}N123
i=1 . Obviously,

(q1,q2) ∈ {q1i
,q2i

,q3i
}N123
i=1 → (q1,q2) ∈ {q1i

,q2i
}N12
i=1

(q2,q3) ∈ {q1i
,q2i

,q3i
}N123
i=1 → (q2,q3) ∈ {q2i

,q3i
}N23
i=1

The matching sets are assumed to be consistent in the following sense. Denote by

(q∗
1,q

∗
2,q

∗
3) the jth element in {q1i

,q2i
,q3i
}N123
i=1 . Then, the matching pairs (q∗

1,q
∗
2) and

(q∗
2,q

∗
3) appear in the matching pairs sets {q1i

,q2i
}N12
i=1 and {q2i

,q3i
}N23
i=1 , respectively, in

the jth position as well.

Since the constraints in Eq. (3.5) are linear in T12 and T23, it is convenient to re-

organize the equations into the following form:

(q1 × q2)
T [q3]×T23 = (q2 × q3)

T [q1]×T12 (3.6)

(q2 × q3)
TT23 = 0 (3.7)

(q1 × q2)
TT12 = 0 (3.8)

Here [.]× is the operator defined for some vector a = [a1 a2 a3]
T as

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (3.9)

Defining the vectors f ,g,u,w ∈ R3×1 as

fT
.
= (q2 × q3)

T (3.10)

gT .
= (q1 × q2)

T (3.11)

uT .
= (q1 × q2)

T [q3]× = gT [q3]× (3.12)

wT .
= (q2 × q3)

T [q1]× = fT [q1]× (3.13)

and considering all the matching pairs and triplets, Eqs. (3.6) - (3.8) turn into[
uT
i

]
1×3

T23 =
[
wT

i

]
1×3

T12 (3.14)[
fTj
]
1×3

T23 = 0 (3.15)[
gT
k

]
1×3

T12 = 0 (3.16)
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with i = 1 . . . N123 , j = 1 . . . N23 , k = 1 . . . N12. Stacking these equations together yieldsUF
0


N×3

T23 =

W0
G


N×3

T12 (3.17)

where N
.
= N12 +N23 +N123 and

U =
[
u1 . . . uN123

]T
W =

[
w1 . . . wN123

]T
(3.18)

F =
[
f1 . . . fN23

]T
G =

[
g1 . . . gN12

]T
(3.19)

If T12 and the rotation matrices are given (e. g. by the navigation system), the minimum

number of matching features required for determining the vector T23 are a single matching

pair between the second and the third views, and one matching triplet that may be utilized

both in the trifocal constraint (3.6) and in the epipolar constraint (3.7). Moreover, since

T12 is known with a certain level of accuracy, it is not essential to use the epipolar

constraint for the first two views. Application of this constraint, however, is expected to

improve the a priori accuracy of T12, and therefore reduce the estimation error of T23.

An alternative formulation of the constraints induced by three-view geometry of a gen-

eral scene is described by the trifocal tensor [13]. Indeed, the application of the trifocal

tensor was already suggested for estimating the camera motion [21], [85]. However, three-

view geometry, and in particular the trifocal tensor and the constraints proposed herein,

have not been used thus far for navigation aiding. Moreover, while the trifocal tensor

approach is solely based on matching triplets, the constraints formulation presented in

Eq. (3.17) allows using matching pairs as well. This is expected to improve the state esti-

mation accuracy, since in typical applications the cardinality of the sets of matching pairs

{q1i
,q2i
}N12
i=1 and {q2i

,q3i
}N23
i=1 is much larger than the cardinality of the set of matching

triplets {q1i
,q2i

,q3i
}N123
i=1 .

While the development of the constraints in Eq. (3.17) assumed a general ground

scene, when a planar scene is under consideration, an additional constraint, expressing

the fact that all the observed features are located on the same plane [20], [19], can be

incorporated.

One may estimate T23 based on Eq. (3.17) using standard techniques (e. g. SVD)

and then fuse T23 with the INS. However, a better alternative is to utilize the implicit

nature of Eq. (3.17) using an implicit extended Kalman filter [78], as discussed in the

next section.

3.3 Fusion with a Navigation System

In this section we present a technique for fusing the three-view geometry constraints with

a standard navigation system, assuming three images with a common overlapping area
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had been identified. The data fusion is performed using an indirect IEKF that estimates

the navigation parameter errors instead of the parameters themselves. These estimated

errors are then used for correcting the navigation solution computed by the navigation

system (cf. Figure 3.1).

When real imagery and navigation data are considered, the existence of navigation er-

rors and image noise renders the constraints of Eq. (3.17) inaccurate. Thus, the following

residual measurement is defined:

z
.
=

UF
0


N×3

T23 −

W0
G


N×3

T12
.
= AT23 − BT12 (3.20)

Since T12 = Pos(t2) − Pos(t1) , T23 = Pos(t3) − Pos(t2), and the matrices F,G,U,W

are functions of the LOS vectors, the residual measurement z is a nonlinear function of

the following parameters2:

z = h
(
Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),Ψ(t1),

{
qC1
1i
,qC2

2i
,qC3

3i

})
(3.21)

Here (t3, t2, t1) denote the time instances in which the three overlapping images were

captured, with t3 being the current time.

We now recall the definition of the state vector, given in Eq. (1.10):

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(3.22)

Since it is unknown a priori which three images will have a common overlapping area,

and in order to maintain a constant-size state vector, each captured image should be

stored and associated with the relevant navigation information. The navigation data that

should be attached to each image are the platform position, attitude, gimbal angles and

the filter’s covariance matrix.

Linearizing h about Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),Ψ(t1) and
{
qC1
1i
,qC2

2i
,qC3

3i

}
,

and keeping the first order terms yields

z ≈ H3X(t3) +H2X(t2) +H1X(t1) +Dv (3.23)

where H3, H2, H1 ∈ RN×15 are defined as

H3
.
= ∇ζ(t3)h , H2

.
= ∇ζ(t2)h , H1

.
= ∇ζ(t1)h (3.24)

while ζ, defined in Eq. (1.3), is comprised of the navigation solution x and IMU errors

parametrization β.

2In Eq. (3.21), the notation
{
qC1
1i

,qC2
2i

,qC3
3i

}
refers to the fact that LOS vectors from all the three

images are used for calculating the residual measurement z. Note that each of the matrices F,G,U,W is

a function of a different set of matching points.
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The terms X(t3),X(t2) and X(t1) in Eq. (3.23) are the navigation errors at the three

time instances; in general, X(t1),X(t2) and X(t3) may be correlated.

Noting that we are only interested in estimating the navigation errors at the current

time instant, X(t3), the navigation errors at the first two time instances are consid-

ered as random parameters in the measurement equation. Therefore, since X(t2) and

X(t1) are not estimated, the estimation error X̃
.
= X− X̂ in these two time instances is

X̃(t2) ≡ X(t2) and X̃(t1) ≡ X(t1), respectively. These errors are represented by the filter

covariance matrices P (t1), P (t2), respectively, which are attached to the first two images.

The matrix D in Eq. (3.23) is the gradient of h with respect to the LOS vectors, i. e.

D
.
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h, and v is the image noise associated with the LOS vectors, having a

covariance matrix R. Thus, the measurement noise is modeled as a combination of image

noise, with the appropriate Jacobian matrix D, and the estimation errors X̃(t2) and X̃(t1)

with the Jacobian matrices H2 and H1, respectively. The development of the matrices

H3, H2, H1, D and R is given in Appendix B (Section B.2).

The propagation step of the filter is carried out using the matrix Φd and the state vector

X ∈ R15×1, as explained in Section 2.4. The update step is executed only when a set of

three overlapping images becomes available. In this step the current state vector, X(t3),

is estimated based on the LOS vectors and the first two state vectors X(t1),X(t2), as

explained next. This is in contrast to the SLAM approach, in which both the propagation

and update steps of the filter are performed on a state vector that constantly increases in

size.

The Kalman gain matrix is given by

K = PX(t3)z(t3,t2,t1)P
−1
z(t3,t2,t1)

= E[X̃
−
z̃T ]E[z̃z̃T ]−1 = (3.25)

= E[(X− X̂
−
)(z− ẑ)T ]E[(z− ẑ)(z− ẑ)T ]−1

where the explicit time notations were omitted for conciseness.

Since ẑ = H3X̂
−
(t3)

z̃ = z− ẑ = H3X̃
−
(t3) +H2X̃(t2) +H1X̃(t1) +Dv (3.26)

Hence

PX(t3)z(t3,t2,t1) = P−
3 H

T
3 + P−

32H
T
2 + P−

31H
T
1 (3.27)

Pz(t3,t2,t1) = H3P
−
3 H

T
3 +

[
H2 H1

] [P−
2 P21

P T
21 P−

1

] [
H2 H1

]T
+DRDT (3.28)

where Pi = E[X̃iX̃
T

i ] and Pij = E[X̃iX̃
T

j ].

As the measurement noise, H2X(t2) +H1X(t1) +Dv, is statistically dependent with

the state vector to be estimated, X(t3), the basic assumption of the Kalman filter is

contradicted. Eqs. (3.27) and (3.28) are an ad-hoc approach for taking into consideration
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this dependence within the Kalman filter framework, that has given good results. Note

that if all the three state vectors, X(t3),X(t2) and X(t1), were to be estimated, the

measurement noise in Eq. (3.23) would be Dv, which is still statistically dependent with

the state vectors. However, this dependence would only be due to the Jacobian D, as

modeled by a standard IEKF formulation [78], [4]. Explicit equations in such case are

given, in the context of cooperative navigation, in Chapter 5 (Section 5.3.1).

Referring to Eqs. (3.27) and (3.28), while the matrices P−
3 , P

−
2 and P−

1 are known,

the cross-correlation matrices P−
32, P

−
31 and P21 are unknown, and therefore need to be

calculated. However, since X(t2) and X(t1) are stored outside the filter, these terms

cannot be calculated without additional information or assumptions. In Chapter 4, a

method is developed for calculating the cross-covariance terms assuming information from

all past navigation updates is stored.

Alternatively, this issue can be handled as follows. Inertial navigation between t1 and

t2 is assumed. Denoting by Φ(t2, t1) the transition matrix between X(t1) and X(t2), the

term P21 may be calculated as

P21 = E[X̃(t2)X̃
T
(t1)] = Φ(t2, t1)P1 (3.29)

The other two cross-correlation terms, P−
32 = E[X̃

−
(t3)X̃

T
(t2)] and P−

31 =

E[X̃
−
(t3)X̃

T
(t1)], may be neglected if t3 ≫ t2 (e. g. loops), or when the first two images

and their associated navigation data have been received from an external source (e. g.

some other vehicle).

Several approaches exist for handling all the other cases in which t3 − t2 is not con-

siderably large. One possible approach is to keep a limited history of the platform nav-

igation parameters by incorporating these parameters into the state vector each time a

new image is captured within a certain sliding window [17]. This approach is capable of

handling scenarios in which all the three images are captured within the assumed sliding

window. Another alternative would be to develop a bound on t3 − t2 under which the

cross-correlation terms P−
32 and P

−
31 can be considered negligible, and select sets of overlap-

ping images accordingly. These two approaches may also be jointly applied. Covariance

intersection (CI) [64], [66] could also be potentially used to deal with the cross-correlation

terms. However, CI is incapable of handling cases in which the measurement matrix con-

tains only a partial representation of the state vector [66], [62], which is the situation in

the present case.

In this chapter, it is assumed that the current navigation parameters are not correlated

with the navigation parameters that are associated with the first two images, i. e. P−
32 = 0

and P−
31 = 0.

In case the above assumptions regarding P−
12, P

−
31 and P

−
32 are not satisfied, these terms

can be explicitly calculated using the method developed in Chapter 4.

After the residual measurement and the gain matrix have been computed using Eqs.

(3.21) and (3.25), respectively, the state vector and the covariance matrix can be updated

based on the standard equations of the IEKF.
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3.3.1 Computational Requirements

A single filter update step, given three images with a common overlapping area,

involves computation of the matrices A,B and the Jacobian matrices H3, H2, H1

and D. These calculations are linear in N , the overall size of the matching sets{
qC1
1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1
1i
,qC2

2i

}N12

i=1
and

{
qC2
2i
,qC3

3i

}N23

i=1
. Noting that the state vector is

constant in size, the most computationally expensive operation in the filter update step

is the inversion of an N ×N matrix required for the calculation of the gain matrix.

The computational load of the proposed method does not change significantly over

time (depending on the variation of N), regardless of the scenarios in which the algorithm

is applied to (including loop scenarios). Moreover, if the computational capability is

limited, it is possible to utilize only part of the available matching pairs and triplets (cf.

Section 3.2.1), or eliminate the epipolar constraint for the first two views, thus reducing

the computational load even further.

3.3.2 Extensions

It is straightforward to extend the developed method for handling more than three over-

lapping images, which may improve robustness to noise. In the general case, assume k

given images, such that each three neighboring images are overlapping (a common over-

lapping area for all the k images is not required). Assume also that all these images

are associated with the required navigation data. In the spirit of Eq. (3.5), we write

an epipolar constraint for each pair of consecutive images, and a constraint for relating

the magnitudes of the translation vectors (similar to Eq. (3.5c)) for each three adjacent

overlapping images. Next, the residual measurement z is redefined and the calculations

of the required Jacobian matrices in the IEKF formulation are repeated.

For example, consider the case of four images captured at time instances t1, . . . , t4,

with t4 being the current time, and assume existence of common overlapping areas for

the first three images and for the last three images. One possible formulation of the

constraints is

(q1 × q2)
T [q3]×T23 = (q2 × q3)

T [q1]×T12 (3.30)

(q2 × q3)
TT23 = 0 (3.31)

(q1 × q2)
TT12 = 0 (3.32)

(q2 × q3)
T [q4]×T34 = (q3 × q4)

T [q2]×T23 (3.33)

(q3 × q4)
TT34 = 0 (3.34)

Considering all the available matches and following the same procedure as in Section 3.3,

the residual measurement z will assume the form

z = JT34 − VT23 − LT12
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where the matrices J ,V ,L are constructed based on Eqs. (3.30)-(3.34).

Since T12,T23 and all the rotation matrices that implicitly appear in Eqs. (3.30)-

(3.34) can be calculated based on the navigation data associated with the images, the

residual measurement z is given by

z = h
(
Pos(t4),Ψ(t4),Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),Ψ(t1),

{
qC1
1i
,qC2

2i
,qC3

3i
,qC4

4i

})
in which Pos(t4),Ψ(t4) are part of the current navigation solution. This measurement

may be utilized for estimating the developed navigation errors in the same manner as

discussed in Section 3.3. The involved computational requirements will increase only in

the update step, according to the total size of the matching sets. The propagation step

of the filter remains the same.

3.4 Simulation and Experimental Results

This section presents statistical results obtained from simulated navigation data and syn-

thetic imagery data, as well as experimental results utilizing real navigation and imagery

data.

3.4.1 Implementation Details

3.4.1.1 Navigation Simulation

The navigation simulation is described in Section 2.5. Once a set of three images with

a common overlapping area is available, the developed algorithm is executed: the state

vector is estimated based on the developed algorithm using IEKF, which is then used for

updating the navigation solution (cf. Figure 3.1). The estimated bias and drift are used

for correcting the IMU measurements.

3.4.1.2 Image Processing Module

Given three images with a common overlapping area, the image processing phase includes

features extraction from each image using the SIFT algorithm [76] and computation of

sets of matching pairs between the first two images, {xi
1,x

i
2}

N12

i=1 , and between the last

two images, {xi
2,x

i
3}

N23

i=1 , where x
i = (xi, yi)T are the image coordinates of the ith feature.

This computation proceeds as follows. First, the features are matched based on their

descriptor vectors (that were computed as part of the SIFT algorithm), yielding the sets

{xi
1,x

i
2}

Ñ12

i=1 , {xi
2,x

i
3}

Ñ23

i=1 . Since this step occasionally produces false matches (outliers),

the RANSAC algorithm [77] is applied over the fundamental matrix [13] model in or-

der to reject the existing false matches, thus obtaining the refined sets {xi
1,x

i
2}

N12

i=1 and

{xi
2,x

i
3}

N23

i=1 . The fundamental matrices are not used in further computations.
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The next step is to use these two sets for calculating matching triplet features, i. e.

matching features in the three given images. This step is performed by matching all x1 ∈
{xi

1,x
i
2}

N12

i=1 with all x3 ∈ {xi
2,x

i
3}

N23

i=1 , yielding a set of matching triplets {xi
1,x

i
2,x

i
3}

N123

i=1 .

The matching process includes the same steps as described above.

When using synthetic imagery data, a set of points in the real-world are randomly

drawn. Then, taking into account the camera motion, known from the true vehicle tra-

jectory, and assuming specific camera calibration parameters, the image coordinates of

the observed real-world points are calculated using a pinhole projection [13] at the ap-

propriate time instances. See, for example, Ref. [4] for further details. Consequently,

a list of features for each time instant of the three time instances, which are manually

specified, is obtained: {xi
1}, {xi

2} and {xi
3}. The mapping between these three sets is

known, since these sets were calculated using the pinhole projection based on the same

real-world points. Thus, in order to find the matching sets {xi
1,x

i
2,x

i
3}

N123

i=1 , {xi
1,x

i
2}

N12

i=1

and {xi
2,x

i
3}

N23

i=1 it is only required to check which features are within the camera FOV of

the appropriate views.

Finally, the calculated sets of matching features are transformed into sets of matching

LOS vectors. A LOS vector, expressed in the camera system for some feature x = (x, y)T ,

is calculated as qC = (x, y, f)T , where f is the camera focal length. As a result, three

matching LOS sets are obtained:
{
qC1
1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1
1i
,qC2

2i

}N12

i=1
and

{
qC2
2i
,qC3

3i

}N23

i=1
.

When handling real imagery, the camera focal length, as well as other camera parameters,

are found during the camera calibration process. In addition, a radial distortion correction

[13] was applied to camera-captured images, or alternatively, to the extracted feature

coordinates.
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Table 3.1: Initial Navigation Errors and IMU Errors

Parameter Description Value Units

∆P Initial position error (1σ) (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (10, 10, 10)T deg/hr

b IMU bias (1σ) (10, 10, 10)T mg

3.4.2 Statistical Results based on Simulated Navigation and

Synthetic Imagery

In this section, we present statistical results obtained by applying the developed algorithm

to a trajectory containing a loop based on a simulated navigation system and synthetic

imagery data. The assumed initial navigation errors and IMU errors are summarized in

Table 3.1. The synthetic imagery data was obtained by assuming a 200 × 300 camera

FOV, focal length of 1570 pixels, and image noise of 1 pixel. The assumed trajectory,

shown in Figure 3.3(a), includes a loop that is repeated twice (see also Figure 3.3(b)).
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Figure 3.3: Trajectory used in the statistical study. The vehicle performs the loop twice.

The three-view navigation-aiding algorithm was applied twice, at t = 427 seconds and

at t = 830 seconds; each time a specific point along the trajectory was revisited. The true

translation vectors are TL
12 = [100 0 0]T and TL

23 = [500 0 0]T . No other updates of

the navigation system were performed, i. e. inertial navigation was applied elsewhere.

Figures 3.4-3.5 provides the Monte-Carlo results (100 runs). As seen, with the help of

the three-view update, the position error (which has grown to several kilometers because
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of the inertial navigation phase) is reset in all axes to the levels of errors at t1 and t2 (see

Figure 3.4(b)). The velocity error is also considerably reduced in all axes as a result of

the algorithm activation, while the accelerometer bias is estimated mainly in the z axis

(cf. Figure 3.5(b)).

Assuming at least three matching triplets of features exist, the proposed method can

be applied without using the epipolar constraints, utilizing only the constraint relating the

magnitudes of translation vectors (Eq. (3.14)). In this case the accuracy of the method

will degrade, mainly in a direction normal to the motion heading, as shown in Figure 3.6.

The position error in the north direction, which is the motion heading at the time of the

algorithm activation, is roughly the same as in the case where all the constraints in Eq.

(3.17) are applied. However, in the east direction the accuracy of the position state is

considerably degraded, with an error of around 900 meters, compared to an error of about

100 meters (Figure 3.4(b)), which is the initial position error (cf. Table 3.1). Observe

also that although the error in the down direction has not significantly changed, the filter

covariance is no longer consistent (the same filter tuning was used in both cases). The

absolute reduction of position and velocity errors in all axes is not possible when applying

two-view based techniques for navigation aiding, since the position and velocity along the

motion direction are unobservable (cf. Section 2.6). In practical applications each of the

two approaches may be applied, depending on the number of available overlapping images.

Whenever a set of three images with a common overlapping area becomes available,

the proposed method will reduce the navigation errors that two-view navigation aiding

methods were unable to estimate (e. g. errors along motion heading) in accordance with

the quality of navigation data attached to the first two images in the set.
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Figure 3.4: Monte-Carlo results of the three-view navigation-aiding algorithm based on

navigation simulation and synthetic imagery data.
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Figure 3.5: Monte-Carlo results of the three-view navigation-aiding algorithm based on

navigation simulation and synthetic imagery data.
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Figure 3.6: Monte-Carlo results of the three-view navigation-aiding algorithm based on a

navigation simulation and synthetic imagery data without applying epipolar constraints.
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3.4.3 Experiment Results

An experiment was carried out for validating the proposed method. The experimental

setup contained an MTi-G Xsens3 IMU/INS and a 207MW Axis network camera4 that

were mounted on top of a ground vehicle. The vehicle was manually commanded using a

joystick, while the camera captured images perpendicular to the motion heading. During

the experiment, the inertial sensor measurements and camera images were recorded for

post-processing at 100 Hz and 15 Hz, respectively. In addition, these two data sources

were synchronized by associating to each image a time stamp from the navigation timeline.

Since the experiment was carried out indoors, GPS was unavailable, and therefore

the MTi-G could not supply a valid navigation solution for reference. However, the true

vehicle trajectory was manually measured during the experiment and associated with

a timeline by post-processing the inertial sensors readings. The reference trajectory is

shown in Figure 3.7. The diamond markers denote the manual measurements of the

vehicle position, while the solid line represents a linear interpolation between each two

markers. The vehicle began its motion at t ≈ 76 seconds. As can be seen in Figure 3.7(a),

the vehicle performed the same closed trajectory twice.
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Figure 3.7: Trajectory performed in the experiment.

The recorded inertial sensor measurements were processed by the strapdown block

yielding an inertial navigation solution. Sets of three images with a common overlapping

area were identified and chosen. The proposed algorithm was applied for each such set and

used for updating the navigation system. Two different update modes are demonstrated

in this experiment: a) “Sequential update”, in which all the three images are acquired

closely to each other, and b) “Loop update”, in which the first two images are captured

while the platform passes a given region for the first time, whereas the third image is

3http://www.xsens.com/en/general/mti-g.
4http://www.axis.com/products/cam 207mw/index.htm.
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obtained at the second passing of the same region. The algorithm application is the same

in both cases.

(a) (b)

(c)

Figure 3.8: Three camera-captured images used in the first sequential update in the

experiment.

The image matching process for the first set of three overlapping images is shown

in Figures 3.8 and 3.9: Figure 3.8 shows the camera-captured images, while Figure 3.9

provides the set of matching triplets {xi
1,x

i
2,x

i
3}

N123

i=1 , showing matches between each pair

of images. For example, Figure 3.9(a) shows the matches between the first and second

image, such that (x1,x2) ∈ {xi
1,x

i
2,x

i
3}

N123

i=1 . As seen, the three images have a significant

common overlapping area, and thus it is possible to obtain a large number of matching

triplets. About 140 matching triplets were found for the three images shown in Figures

3.8(a)-3.8(c); however, only a few of them are explicitly shown in Figures 3.9(a)-3.9(c),

while the rest of the matches are denoted by various markers.

The localization results are shown in Figure 3.10. Figure 3.10(a) presents the estimated

position compared to the true position. In addition, inertial-navigation-based position

estimation is shown for comparison. Figure 3.10(b) depicts the position estimation errors

(computed by subtracting the true position from the estimated position) and the square

root of the filter covariance. The update mode is presented in both figures: until t ≈ 150

seconds sequential updates were performed, while loop updates were applied after the

platform has completed a loop, starting from t ≈ 158 seconds.

During the sequential updates phase, the time instances (t1, t2, t3) were chosen such

that t2 − t1 ≈ 1 seconds and t3 − t2 ≈ 5 seconds. As seen in Figure 3.10, while sequential
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(a)

(b)

(c)

Figure 3.9: Image matching process based on images shown in Figure 3.8. (a) Matching

triplets between image 1 and 2: (x1,x2) ∈ {xi
1,x

i
2,x

i
3}

N123

i=1 ; (b) Matching triplets between

image 2 and 3: (x2,x3) ∈ {xi
1,x

i
2,x

i
3}

N123

i=1 ; (c) Matching triplets between image 1 and 3:

(x1,x3) ∈ {xi
1,x

i
2,x

i
3}

N123

i=1 . For clarity, only the first few matches are explicitly shown; the

rest of the matches are denoted by marks in each image.

updates are active, the position is estimated with an accuracy of several meters, whereas

the inertial solution rapidly diverges. The consistent behavior of the filter covariance

indicates that the correlation between X(t3) and X(t2), which is not accounted for in the

current filter formulation (cf. Section 3.3), is not significant.

Although the position error is significantly reduced during the sequential updates of

the algorithm (until t ≈ 120 seconds), its development is mitigated during this phase but

not entirely eliminated, as clearly evident in the height error. Two main reasons for this
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phenomenon are: a) Imperfect estimation of the actual IMU errors; b) In each update,

the algorithm allows reducing current position errors only to the level of errors that were

present while the first two images of the three, were taken. Because each update in the

sequential mode uses a different set of three images, and because the development of

inertial error between these images, the error – although considerably mitigated – will

continue to develop.

After the vehicle had completed its first loop, it became possible to apply the algorithm

in a “loop update” mode. As seen in Figure 3.10, the loop updates were applied at a

varying frequency, which was typically lower than the frequency of sequential updates.

Referring to Figure 3.7, the vehicle completed its first loop at t ≈ 158 seconds and

performed the same trajectory once again, completing the second loop at t ≈ 230 and

afterwards continuing the same basic trajectory for another 10 seconds. In these last 10

seconds the vehicle began performing a third loop.

Each loop update significantly reduces the inertially-accumulated position error, yield-

ing a small error of several meters after over 150 seconds of operation. For comparison,

the inertial error approaches 1100 meter (in the north axis) over this period of time, in-

dicating the low quality of the inertial sensors. Note that the position error is reduced in

all axes, including along the motion direction, which is not possible in two-view methods

for navigation aiding.

As seen in Figure 3.10, although each loop update drastically reduces the developed

position error, the rate of the inertially-developing position error between each two loop

updates has not been arrested compared to the pure inertial scenario (cf. Figure 3.10(a)),

leading to the conclusion that the IMU errors parametrization (drift and bias) were not

estimated well in the experiment.

Note also that as additional loop updates are applied and until reaching t ≈ 230

seconds, the update accuracy deteriorates. For example, the east position error is reduced

to −1.5 meters at the first loop update (t = 158 seconds), while in the loop update at

t = 201 seconds the east position error was reduced only to 6 meters. The reason for this

accuracy deterioration is that each loop update is performed using the current image and

two images of the same scene that had been captured while the platform visited the area

for the first time. As already mentioned, each update allows to reduce the current position

error to the level of errors that were present while the first two images were captured.

However, as can be seen from Figure 3.10, the position error in the sequential updates

phase, although considerably arrested, gradually increases over time, and hence the loop

updates are capable of reducing the position error to the level of errors that increase

with time. For example, the first two images participating in the first loop update at

t = 158 seconds were captured at t = 77 and t = 78 seconds, while the first two images

participating in the loop update at t = 201 seconds were captured at t = 131 and t = 132

seconds. Since the position error at t = 131 and t = 132 seconds was larger than the

position error at t = 77 and t = 78 seconds (cf. Figure 3.10(b)), the position error after

the loop update at t = 201 seconds was accordingly larger than the position error after
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the first loop update (at t = 158 seconds).

After t ≈ 230 seconds, the platform began its third loop and thus the loop updates from

t ≈ 230 and on were performed using images (and the attached navigation data) captured

at the beginning of the platform’s trajectory (around t = 80 seconds). Therefore, the

obtained position error at these loop updates is of accuracy comparable to the accuracy

of the first loop updates (starting from t = 158 seconds), and hence to the accuracy of

the navigation solution calculated in the beginning of the trajectory.

Analyzing the experiment results, it is also tempting to compare the performance

obtained in the sequential and loop update modes. However, because these two modes of

algorithm activation were not applied in the same phase, a quantitative analysis cannot

be performed. Nevertheless, regardless of the sequential update mode, it is safe to state

that activation of the algorithm in a loop update mode reduces the position errors in all

axes to prior values while processing only three images.
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Figure 3.10: Experiment results. A small position error (several meters) is obtained while

sequentially activating the algorithm. The position error is reset to its prior levels each

time a loop update is applied.
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3.5 Conclusions

This chapter presented a new method for vision-aided navigation based on three-view

geometry. Camera-captured images were stored and associated with partial navigation

data taken from the inertial navigation system. These images were used for constructing a

representation of the observed environment, while some of them were also incorporated for

navigation aiding. The proposed method utilized three overlapping images to formulate

constraints relating between the platform motion at the time instances of the three images.

A new formulation of such constraints was developed. The associated navigation data

for each of the three images allowed to determine the scale ambiguity inherent to all

pure computer vision techniques for motion estimation. The constraints were further

reformulated and fused with an inertial navigation system using an implicit extended

Kalman filter. A single activation of the method over a set of three overlapping images

reduces the inertially developed position errors in all axes to the levels present while the

first two images were captured. Navigation errors in other states were also reduced.

The developed method for vision-aided navigation may be used in various applications

in which three overlapping images, and the required navigation data, are available. In this

chapter the method was applied to maintaining small navigation errors, while operating

in a GPS-denied environment, accomplished by engaging the algorithm over sequential

overlapping imagery, and utilizing the overlapping images in case a loop in the trajectory

occurs. In contrast to the existing methods for vision-aided navigation, which are also

capable of handling loops, such as bundle adjustment and SLAM, the computational

requirements of the proposed algorithm allow real-time navigation aiding, since a constant-

size state vector is used, and only three images are processed at each update step of the

IEKF. The refinement process of the environment representation, such as mosaic image

construction, may be performed in a background process.

The method was examined based on real imagery and navigation data, obtained in an

experiment, and in a statistical study using simulated navigation and synthetic imagery.

The results showed that reduced position and velocity errors can be maintained over time,

thus allowing operation without relying on the GPS signal. Specifically, the position errors

obtained in the experiment, in which a low-grade IMU was used, were reduced to several

meters each time the algorithm was applied, while the inertial position error has reached

over 1000 meters in 150 seconds of operation. The implication of this result is important

for various applications, in which the GPS signal is unavailable or unreliable. Among

these is a holding pattern mission, in which the platform has to perform the same loop

trajectory numerous times. Satellite orbit determination is another possible application.
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This chapter addresses the problem of consistent distributed cooperative navigation.

A group of collaborative platforms, capable of intercommunication, is assumed. Each

platform is equipped with its own dead reckoning or inertial navigation sensors, and

with additional onboard sensors. For a general multi-platform measurement model that

involves both inertial navigation data and other onboard sensor readings, taken at different
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time instances, the various sources of information become correlated. Thus, in the process

of information fusion, this correlation should be solved for to obtain consistent state

estimation.

The common approach for obtaining the correlation terms is to maintain an augmented

covariance matrix. This method works for relative pose measurements (e. g., [48]), but is

impractical for a general MP measurement model, because the identities of the platforms

involved in generating the measurements, as well as the measurement time instances, are

unknown a priori.

As mentioned in Section 1.1.5, several methods were proposed to avoid correlated

updates [58], or eliminating the need in calculating the correlation terms by tracking the

origins of measurements [62]. However, such methods do not utilize the full potential of

the available measurements, since not all the measurements are actually incorporated.

In this chapter, it is proposed to explicitly calculate the required correlation terms

based on the history of all the thus-far performed MP measurements. As common in

many CN methods, including [48],[50],[52],[62], an extended Kalman filter is used for data

fusion. The proposed approach relies on graph theory. The graph is locally maintained

by every platform in the group, representing all the MP measurement updates. The

developed method calculates the correlation terms in the most general scenarios of MP

measurements while properly handling the involved process and measurement noise.

In contrast to [44] (cf. Section 1.1.5), the proposed method explicitly calculates the

required correlation terms, allowing to perform navigation updates without applying

smoothing over the past navigation history of the cooperative platforms, and is there-

fore computationally efficient.

Consequently, the main contributions of this chapter are twofold. First, a graph-

based method for an explicit calculation of cross-covariance terms, required for consistent

CN, is developed. The method assumes a general MP measurement model, relating any

number of platforms that may contribute information from different time instances. The

identities of these platforms and the time instances are a priori unknown. Second, the

effect of process and measurement noise on the calculated cross covariances is analyzed

and a method for incorporating these noise terms into the calculated cross-covariance

terms is developed.

4.1 Problem Description

Consider a group of N cooperative platforms capable of intercommunication. Each plat-

form is equipped with inertial navigation sensors and hence is capable of calculating its

own navigation solution, comprised of position, velocity and angular orientation. Similarly

to Section 1.3.2, denote by xi and xt
i the calculated and the (unknown) true navigation

solutions of the ith platform, respectively, and let yi,IMU represent the measurements

of the platform’s inertial navigation sensors. The errors in yi,IMU are modeled by an
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unknown vector of parameters βt
i. Denote by βi the calculated model of inertial sensor

errors, used for correcting the measurements yi,IMU . For instance, the vector β includes

a collection of accelerometer and gyro biases.

Let

ζi(tk)
.
=

[
xi(tk)

βi(tk)

]
, ζt

i(tk)
.
=

[
xt
i(tk)

βt
i(tk)

]
(4.1)

and N .
= {1, . . . , N}. Then

ζi(tk+1) = f(ζi(tk),yi,IMU(tk)) , i ∈ N (4.2)

The following navigation error state vector is defined

Xi(t)
.
=

[
xi(t)− xt

i(t)

βi(t)− βt
i(t)

]
≡ ζi(t)− ζt

i(t) (4.3)

As discussed in Section 1.3.2, the evolution of the state vector Xi can be modeled by the

linear time-varying stochastic model:

Ẋi(t) = Φi(t)Xi(t) + ωi(t) , i ∈ N (4.4)

where Φi is the continuous system matrix and ωi is the process noise, which is assumed

to be white and zero-mean Gaussian. This continuous time model can be replaced by a

discrete model

Xi(tb) = Φi
ta→tb

Xi(ta) + ωi
ta→tb

, i ∈ N (4.5)

where Φi
ta→tb

is the discrete system matrix relating the state between any two time in-

stances ta and tb, tb > ta, and ωi
ta→tb

is the equivalent discrete process noise.

In addition to the inertial sensors, each platform is equipped with its own set of

onboard exogenous sensors. The readings of the exogenous sensors of the jth platform at

some time instant ta are denoted by yj(ta) (as opposed to yj,IMU , that denotes the IMU

measurements). These measurements are corrupted by a Gaussian white noise vj(ta). Let

yt
j(ta)

.
= yj(ta)− vj(ta).

Consider a general measurement model that relates the navigation data and onboard

sensor measurements of several platforms, possibly taken at different time instances. Let

j denote the identities of the platforms involved in this measurement model, j ∈ N .

The considered measurement model can be formulated in an implicit form as

z(t) = h({ζj(ti),yj(ti)}ri=1) , j ∈ N (4.6)

where z is the residual measurement, which is a function of ζj(ti), representing the nav-

igation solution xj(ti) and parametrization of the inertial sensors errors βj(ti), and the

onboard sensor readings yj(ti) of the jth platform at time ti, with ti ≤ t and t be-

ing the current time. The parameter r denotes the overall number of information sets

(ζj(ti),yj(ti)) constituting z. If each of the participating platforms contributes only a
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single information set, r represents the number of platforms involved in the residual mea-

surement z. However, in the general case, each platform may contribute information from

several time instances. For example, if some platform j contributes information from

two time instances t1j
.
= t1 and t2j

.
= t2, then z will be a function of (ζj(t

1
j),yj(t

1
j)) and

(ζj(t
2
j),yj(t

2
j)).

To simplify the notation, it is assumed from this point onward that the identity of the

platforms forming z is given by 1, . . . , r; cases in which a platform contributes information

from several time instances are treated as if this information was provided by different

platforms. Thus, the residual measurement z can be written as:

z(t) = h({ζi(ti),yi(ti)}ri=1) (4.7)

Linearizing Eq. (4.7) about ζt
i(tk) and yt

i(ti) gives

z(t) ≈
r∑

i=1

Hi(ti)Xi(ti) +Di(ti)vi(ti) (4.8)

where

Hi(ti) = ∇ζt
i(ti)

h , Di(ti) = ∇yt
i(ti)

h (4.9)

since ζt
i(tk) and yt

i(ti) are unknown, the Jacobian matrices are approximated by

Hi(ti) = ∇ζi(ti)h , Di(ti) = ∇yi(ti)h (4.10)

The update step of the Kalman filter involves cross-covariance terms relating the different

state vectors that appear in the measurement model (4.8). Denoting by X̃ the estimation

error of X, the required cross-covariance terms are E[X̃i(ti)X̃
T

j (tj)] with i, j = 1 . . . r, i ̸=
j. If these terms are known, a consistent measurement update can be employed.

The purpose of this chapter is to present an efficient method to compute the cross-

covariance matrices on-demand while the identity of the involved platforms, i. e. the

indices i and j, and the time instances ti and tj are unknown a priori. It is tempting to

apply the common approach, used when considering relative pose measurements for CN

[48], wherein an augmented covariance matrix is maintained, consisting of the covariance

matrices of all the platforms in the group and of cross-covariance matrices relating any

pair of platforms. However, this approach can be only applied when the measurement

model involves concurrent information from different platforms, as indeed is the case with

relative pose measurements.

In the case of a general measurement model (4.8), in addition to the a priori unknown

identity of the r platforms contributing to the multi-platform measurement, the involved

time instances are also unknown a priori. Therefore, maintaining all the possible cross-

covariance terms is not a practical solution in terms of both computational load and

storage requirements. Instead, it is suggested to calculate the required cross-covariance

terms on-demand for a general MP measurement model.
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4.2 Concept of Explicit Cross-Covariance Calcula-

tion

Before presenting the general concept behind the proposed approach, the calculation of

cross-covariance terms is illustrated in the following basic example.

4.2.1 A Basic Example

In this example, a measurement comprised of information obtained from three different

platforms, i. e. r = 3, is considered. The residual measurement z may therefore be written

as

z ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (4.11)

with D
.
=

[
D3(t3) D2(t2) D1(t1)

]
and v

.
=

[
vT
3 (t3) vT

2 (t2) vT
1 (t1)

]T
.

Figure 4.1 shows a scenario wherein information transmitted by platforms I and II,

with the current information of platform III, is used for updating platform III. Circles

denote a priori information, while squares denote update events. Two update events are

shown in the figure. While a1, a2 and a3 represent information used in the first update,

b1, b2 and b3 represent information used in the second update. Let tai and tbi represent

the time instances corresponding to ai and bi, respectively, with i = 1, 2, 3.

Assume that the first update was carried out and that the a priori covariance ma-

trices of the 3 platforms and all the cross-covariance matrices between these platforms,

at the time instances ta1 , ta2 and ta3 , were stored. Assume also that the required in-

formation for the second update is available. The key question is how to calculate the

cross-covariance terms required for executing the second update, i. e. E[X̃
−
III(tb3)X̃

−
II(tb2)],

E[X̃
−
III(tb3)X̃

−
I (tb1)] and E[X̃

−
II(tb2)X̃

−
I (tb1)].

II

III

I

a1

a2

b3

b1

b2

a3

Figure 4.1: Measurement schedule example based on a measurement model that involves

3 platforms. Platform III is updated based on information transmitted by platforms I and

II. The circles denote information included in the measurement, squares indicate update

events.

In particular, consider the calculation of E[X̃
−
III(tb3)X̃

−
II(tb2)]. Since no updates of any
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kind were performed between a2 and b2:

X̃
−
II(tb2) = ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2
(4.12)

In a similar manner, it is possible to write a transition relation between the a posteriori

estimation error at a3 and the a priori estimation error at b3:

X̃
−
III(tb3) = ΦIII

a3→b3
X̃

+

III(ta3) + ωIII
a3→b3

(4.13)

Thus,

E[X̃
−
III(tb3)X̃

−
II(tb2)] = E

[(
ΦIII

a3→b3
X̃

+

III(ta3) + ωIII
a3→b3

)(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
(4.14)

while the a posteriori estimation error at a3 is given by

X̃
+

III(ta3) = (I −Ka3Ha3) X̃
−
III(ta3)−Ka3Ha2X̃

−
II(ta2)

− Ka3Ha1X̃
−
I (ta1)−Ka3Dava (4.15)

whereKa3 is the Kalman gain matrix, calculated by platform III at the first measurement

update.

Since ωII
a2→b2

is statistically independent of X̃
−
III(ta3), X̃

−
II(ta2), X̃

−
I (ta1), and since

ωIII
a3→b3

is statistically independent of X̃
−
II(ta2) and ωII

a2→b2
(cf. Figure 4.1):

E
[
X̃

+

III(ta3)(ω
II
a2→b2

)T
]
= 0 (4.16)

E

[
ωIII

a3→b3

(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
= 0 (4.17)

In addition,

E

[
va

(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
= 0 (4.18)

Let X̃
−
i (tai) be represented by X̃ai and denote Pab

.
= E[(X̃a)(X̃b)

T ]. Incorporating

Eqs. (4.15)-(4.18) into Eq. (4.14) yields

P−
b3b2

= ΦIII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦII

a2→b2
)T (4.19)

Thus, P−
b3b2

is expressed via the filter gain matrix, the measurement matrices, covariance

and cross-covariance matrices from the past MP updates, which therefore need to be

stored. The other two required cross-covariance terms in this example can be calculated

using the same process, yielding an equivalent expression for P−
b3b1

, while P−
b2b1

= 0.
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4.2.2 A General Scenario

The approach discussed above can be generalized to any number of MP measurement

updates based on the general measurement model formulated in Eq. (4.8).

The general cross-covariance term E[X̃i(ti)X̃
T

j (tj)] can be found by expressing each

of the two state vectors X̃i(ti) and X̃j(tj) according to the history of the MP measure-

ment updates, and then calculating E[X̃i(ti)X̃
T

j (tj)] based on the resulting expressions,

while judiciously handling the involved noise terms. In contrast to the example from the

previous section, in the general case the process and measurement noise terms are not

necessarily statistically independent of the involved state vectors.

Clearly, sustaining the aforementioned approach requires storing the information in-

volved in all the past MP measurement updates, including the filter gain, measurement,

covariance and cross-covariance matrices. If this information is available for a specific

sequence of MP measurement updates, the required cross-covariance terms can be calcu-

lated based on the process demonstrated in the previous section. In the following sections,

however, a method for on-demand calculation of the cross-covariance terms for a general

case is developed. The method uses a graph representation, locally maintained by every

platform in the group, containing the information from all the past MP measurement

updates.

The proposed graph topology relies upon a directed acyclic graph (DAG). Denote by

tMP
i the most recent time instant in which the ith platform was updated by any MP

measurement. In a general MP system, the DAG topology is representative if each MP

measurement is utilized for updating only the platforms i ∈ {1, . . . , r}, which contributed

their navigation data from the time instant ti > tMP
i and assuming these platforms con-

tributed a single information set (ζi(ti),yi(ti)) (cf. Section 4.1). In particular, the graph

remains acyclic when only platforms that contributed their current navigation informa-

tion, i. e. ti = t, are updated. For simplicity, in this chapter we consider only one such

platform.

It is worth noting that if some platform i contributed l > 1 information sets (ζi(t
1
i ),

yi(t
1
i )), (ζi(t

2
i ), yi(t

2
i )), . . . , (ζi(t

l
i),yi(t

l
i)), with t

1
i < t2i < · · · < tli, to the MP measurement

(4.6), this platform can be updated, while sustaining an acyclic graph, at the time instant

tli, provided that tli > tMP
i .

Denoting by q the identity of the updated platform, its a posteriori estimation error

in a general MP measurement model, formulated in Eq. (4.8), can be expressed as

X̃
+

q (tq) = (I −KqHq) X̃
−
q (tq)−Kq

r∑
i=1 , i̸=q

HiX̃
−
i (ti)−Kq

r∑
i=1

Divi(ti) (4.20)

where Kq is the Kalman gain matrix computed for the qth platform. The a priori esti-

mation error of some platform i, based on Eq. (4.5), is given by

X̃
−
i (tb) = Φi

ta→tb
X̃

−
i (ta) + ωi

ta→tb
(4.21)
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4.2.3 Graph Representation

Every platform in the group locally maintains its own copy of the DAG G = (V,E), where

V is the set of nodes and E is the set of directed weighted arcs. The weight of each arc

reflects the information flow between the two connected nodes.

Two type of nodes exist in V . Nodes of the first type represent a priori information

obtained from different platforms in the group, constituting the MP measurements. These

nodes are called a priori nodes. A single such node represents, therefore, ζi(ti) and yi(ti)

– navigation data and readings of onboard sensors of the ith platform from time instant ti,

respectively. This information is transmitted by the ith platform to the updated platform

q at the current time t (cf. Eq. (4.7)). In the general case, ti ≤ t. Nodes of the second type

represent update events, i. e. the a posteriori information of the updated platform. Such

nodes are called a posteriori nodes. Thus, each MP measurement update is represented

by r + 1 nodes. Figure 4.2(a) shows the graph obtained for the 3-platform measurement

example considered in Section 4.2.1. A priori nodes are indicated in the graph by circles,

while a posteriori nodes are designated by squares.

3b+

3b−

2a−
1a−

1b−

2b−

3a−

3a+

I IIIII

(a)

3a+

3b−

3a−
2a−

1a−

3 1a aK H− 3 2a aK H−
3 3a aI K H−

3 3a bφ →

1b−

2a−

2 1a bφ →

(b)

Figure 4.2: (a) Graph representation for the scenario shown in Figure 4.1. (b) The trees

Tb−3 and Tb−1 required for calculating P−
b3b1

.

We proceed by presenting the following definitions.

Definition 4.2.1 A thread of the ith platform is a sub-graph of G, containing all the nodes

in V that represent information of the ith platform and arcs in E connecting between these

nodes.

Each platform in the group has its own thread in G.
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Definition 4.2.2 The transition relation is given by

X̃b = Φi
ta→tb

X̃a + ωi
ta→tb

(4.22)

where a, b ∈ V are any two adjacent a priori nodes in the ith thread, representing X̃
−
i (ta)

and X̃
−
i (tb), respectively.

The transition relation connects between the a priori estimation errors of the ith

platform at two different time instances ta and tb, as expressed by Eq. (4.21). The nodes a

and b, both located in thread i, are connected by an arc, weighted by the transition matrix

w(a, b) = Φi
ta→tb

. The noise process covariance matrix Qi
ta→tb

.
= E[ωi

ta→tb
(ωi

ta→tb
)T ] is

associated to this arc as well. For example, the nodes a−1 and b−1 in Figure 4.2(a) are

connected by an arc representing a transition relation.

Each thread in G can also contain a posteriori nodes. In such a case, G will contain

r a priori nodes that are connected to an a posteriori node, located in the thread of the

updated platform q, by an update relation, defined as follows (cf. also Eq. (4.20)).

Definition 4.2.3 Denote by α the a posteriori node, representing X̃
+

q (tα), and by βi the

a priori nodes, representing X̃
−
i (tβi

), with i = 1, . . . , r. The update relation is given by:

X̃α =
(
I −KαHβq

)
X̃βq −Kα

r∑
i=1 , i ̸=q

Hβi
X̃βi
−Kα

r∑
i=1

Dβi
vβi

(4.23)

where Kα is the Kalman gain computed by the updated platform.

The transition and update relations are illustrated in Figures 4.3(a) and 4.3(b), respec-

tively.

The arc weight w(βi, α), connecting the a priori node βi with the a posteriori node α

is

w(βi, α) =

{
I −KαHβq if i = q

−KαHβi
else

(4.24)

In addition, each arc is associated with a measurement noise covariance matrix

KαDβi
Rβi

(KαDβi
)T , with i = 1, . . . , r and Rβi

.
= E[vβi

vT
βi
].

For instance, in Figure 4.2(a), the a priori information stored in the nodes a−1 , a
−
2 and

a−3 is connected to the node a+3 that represents a posteriori information.

As mentioned in Section 4.2.2, the a priori and a posteriori covariance and cross-

covariance terms between the nodes, which participated in the same MP update in the

past, are known (this information can be stored in the nodes themselves). The con-

struction process of the graph and the communication protocol among the platforms is

discussed in Chapter 5.
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Figure 4.3: (a) The node a is connected to the node b via a transition relation. (b) The

nodes βi, with i = 1, . . . , r, are connected to the node α via an update relation.

4.3 Graph-based Calculation of Cross-Covariance

Terms

For a given DAG G, we wish to calculate E[X̃i(ti)X̃
T

j (tj)], the cross-covariance between

the ith platform at ti and the jth platform at tj. In this section we use the notation X̃a

as an alternative to X̃
−
i (ti) or X̃

+

i (ti), where a is an a priori or a posteriori node in G,

respectively. Let the nodes c and d in G represent X̃i(ti) and X̃j(tj), respectively. Thus,

the goal here is to calculate E[X̃cX̃
T

d ], which is equivalent to calculating E[X̃i(ti)X̃
T

j (tj)].

4.3.1 Rationale

The first step is to construct two inverse-trees Tc = (VTc , ETc) and Td = (VTd
, ETd

),

containing all the possible paths in G to each of the nodes c and d. This can be performed

as follows. The first tree, Tc, is initialized with the node c. Each next level is comprised

of the parents of the nodes that reside in the previous level, as determined from G. For

example, the second level of Tc contains all the nodes in G that are directly connected to

c. The same process is executed for constructing a tree Td for the node d. Note that every

node in Tc and Td has only one child but may have one or r parents. In the latter case,

the node represents an MP update event. Figure 4.2(b) shows an example of such trees,

constructed based on the graph shown in Figure 4.2(a) for calculating the cross-covariance

E[X̃b−3
X̃

T

b−1
], i. e. c ≡ b−3 and d ≡ b−1 .

The convention used here is that if some node ai has several parents, the jth parent
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is denoted as aji+1. Also, a ≡ a1, as shown in Figure 4.4.

Given the two trees Tc and Td, the cross-covariance term E[X̃cX̃
T

d ] can be computed

by expressing X̃c and X̃d using information stored in the nodes from upper levels in the

two trees. We start with the first level in the two trees, which is comprised of the node c

in Tc, and the node d in Td. Since the cross-covariance E[X̃cX̃
T

d ] is unknown, we proceed

to the parents of these nodes, i. e. to the next level in the trees, according to the relation

type represented by the arc weights.

Having reached the second level, the term E[X̃cX̃
T

d ] can be expressed using information

stored in nodes from the current (second) level and lower levels. For example, assuming

a transition relation (4.22) connecting the first two levels in the two trees, E[X̃cX̃
T

d ] can

be written, according to Eq. (4.22), in three different forms:
E

[
X̃c

(
Φd2→dX̃d2 + ωd2→d

)T
]

E
[(

Φc2→cX̃c2 + ωc2→c

)
X̃

T

d

]
E

[(
Φc2→cX̃c2 + ωc2→c

)(
Φd2→dX̃d2 + ωd2→d

)T
] (4.25)

where c2 and d2 are the parents of c and d, respectively.

Since the expression from the previous (first) level was already checked, it is now

required to examine whether any of the expressions involving nodes from the current level

are known. In other words, the question is whether any of the pairs E[X̃cX̃
T

d2
], E[X̃c2X̃

T

d ]

and E[X̃c2X̃
T

d2
] are known. In addition, it is also required to know the correlation between

the noise terms and the state vectors.

Since, in general, these pairs are unknown, we proceed to the next (third) level in the

trees according to the relation type represented by the arc weights. Now, each of the

expressions for E[X̃cX̃
T

d ] obtained while processing the previous (second) level, may be

further expanded using information stored in the nodes of the current (third) level.

Continuing the previous example, assume the second and third levels are connected

by a transition relation (4.22) in Tc and an update relation (4.23) in Td, and assume the

third platform is updated (q = 3). Then one of the possible expressions for E[X̃cX̃
T

d ]

would be obtained from X̃c = Φc2→cX̃c2 + ωc2→c and

X̃d = Φd2→d

[(
I −Kd2Hd33

)
X̃d33
−Kd2

r∑
i=1 , i̸=3

Hdi3
X̃di3
−Kd2

r∑
i=1

Ddi3
vdi3

]
+ ωd2→d

(4.26)

Note that, compared to Eq. (4.23), α ≡ d2 and βi = di3.

Once again, the question is whether the different cross-covariance terms that appear

in the new expressions involving current and lower levels are known (had been stored in

G in the past). All the expressions from the previous level (the second level) were already
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analyzed. Ignoring for the moment terms that involve noise, it is obvious that less terms

are to be analyzed when nodes closer to c or d are considered. Therefore, it is preferred

to start analyzing from the lower level upward.

If, for example, E[X̃c3X̃
T

d13
], is known, then the nodes c3 ∈ VTc and d13 ∈ VTd

are

either identical (c3 ≡ d13) or represent state vectors that had been used in the same MP

measurement. Otherwise, E[X̃c3X̃
T

d13
] would not have been stored in G. In any case, the

known term E[X̃c3X̃
T

d13
], properly weighted, is part of E[X̃cX̃

T

d ]. Having a known term

also means that there is no need to proceed to nodes of higher levels related to this term.

The procedure continues to higher levels in the two trees until either all the terms

required for calculating the cross-covariance E[X̃cX̃
T

d ] are known, or the top level in both

trees has been reached. In the latter case, the unknown terms of the cross-covariance are

zero.

The process noise terms are assumed to be statistically independent,

E[ωi1→i2ω
T
j1→j2

] = 0, if ωi1→i2 and ωj1→j2 belong to different platforms, or, if

ωi1→i2 and ωj1→j2 belong to the same platform at non-coinciding time instances, i. e.,

(ti1 , ti2)∩ (tj1 , tj2) = ϕ. The measurement noise is assumed to be statistically independent

of the state vectors involved in the measurement. On the other hand, the process and

measurement noise terms may be statistically dependent on the involved state vectors

(see Section 4.3.2.3).

In the following sections, the above rationale is transformed into an algorithm for

calculating the cross-covariance E[X̃cX̃
T

d ] in a general scenario.

4.3.2 Algorithm for Explicit Cross-Covariance Calculation

Let Tb = (VTb
, ETb

) be a tree containing all the paths in G = (V,E) to some node b ∈ V ,

and let a ∈ VTb
and α, β ∈ V . The following notations are used in the remainder of this

chapter:
πb(a) Parents of node a in tree Tb
Ab(a) Ancestors of node a in tree Tb
Db(a) Descendants of node a in tree Tb

ak
Tb=⇒ a Path ak → · · · → a2 → a in tree Tb

{ak
Tb=⇒ a} Group of nodes in the path ak

Tb=⇒ a

Definition 4.3.1 A pair of nodes (α, β) is said to be known, if E[X̃αX̃
T

β ] is known, i. e.,

if it can be retrieved from the data stored in G. A known pair (α, β) is denoted by ⊙(α, β).
Definition 4.3.2 Given the location of node a in the tree Tb, (Tb)

a is defined as the

sub-tree of Tb, containing all the ancestors of a in Tb and the node a itself.

Let Tc = (VTc , ETc) and Td = (VTd
, ETd

) be two trees constructed from G, and let cδ, cρ ∈
VTc and dη, dζ ∈ VTd

, where the indices δ, ρ, η, ζ indicate the level in which each node is

located.
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Definition 4.3.3 The pair (cδ, dη) is said to be younger than the pair (cρ, dζ) if

min(δ, η) < min(ρ, ζ) (4.27)

The algorithm for calculating cross covariance terms gradually processes pair permu-

tations between nodes in Tc = (VTc , ETc) and nodes in Td = (VTd
, ETd

) at different levels,

starting from the first level. The permutation set of the kth level is denoted byMk, with

M1
.
= {(c, d)}. The next sections describe an algorithm for calculating E[X̃cX̃

T

d ] based

onMk from different levels. The value of E[X̃cX̃
T

d ] is initialized to zero.

4.3.2.1 Processing a single member of Mk

In the general case, when processing the permutation setMk from level k, all the nodes

on the path to the leaf (which is c ∈ VTc and d ∈ VTd
) should be considered, starting from

the leaf and going up until reaching the current level k. For example, assume that for

some member (ck, dk) ∈Mk, the paths to the leaf nodes are ck
Tc=⇒ c and dk

Td=⇒ d. Figure

4.4(a) schematically illustrates a general path ck
Tc=⇒ c. Start by checking whether (ck, d)

or (c, dk) are known in the sense of Definition 4.3.1, i. e., whether ⊙(ck, d) or ⊙(c, dk). If
not, then check whether ⊙(ck, d2) or ⊙(c2, dk), and so on. The procedure ends when a

known pair of nodes is found, or when reaching and analyzing the pair (ck, dk). When a

known couple of nodes is discovered, its contribution to the cross-covariance E[X̃cX̃
T

d ] is

calculated.

Denote the overall weight of the paths ck
Tc=⇒ c and dk

Td=⇒ d by Wc(ck) and Wd(dk),

respectively. If ⊙(cj, dk), with 1 ≤ j ≤ k, then E[X̃cX̃
T

d ] is updated according to:

E[X̃cX̃
T

d ]← E[X̃cX̃
T

d ] +Wc(cj)E[X̃cjX̃
T

dk
]W T

d (dk) +Qcjdk (4.28)

Similarly, if ⊙(ck, dj), with 1 ≤ j ≤ k, then E[X̃cX̃
T

d ] is updated according to:

E[X̃cX̃
T

d ]← E[X̃cX̃
T

d ] +Wc(ck)E[X̃ckX̃
T

dj
]W T

d (dj) +Qckdj (4.29)

The noise covariances Qckdj and Qcjdk are analyzed in Section 4.3.2.3. If w(a, b) is the arc

weight connecting the node a to node b in G, then

Wc(ck) = Πk
i=2w(ci, ci−1) (4.30)

Wd(dk) = Πk
i=2w(di, di−1) (4.31)

After finishing analyzing the member (ck, dk) ∈ Mk, the permutation set Mk is up-

dated as follows.

Mk ←Mk�
{
{(c′, dk) | c′ ∈ πc(cj) , (c′, dk) ∈Mk} if ⊙(cj, dk)
{(ck, d′) | d′ ∈ πd(dj) , (ck, d′) ∈Mk} if ⊙(ck, dj)

(4.32)
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4.3.2.2 Calculation of Mk+1

Having described how each level in the trees Tc and Td is handled, the next step is to

address the mechanism for advancing to the next level. After finishing processing all the

members inMk, as discussed in Section 4.3.2.1, the only members left inMk are those for

whom the procedure did not find any known pair. IfMk = ϕ, the algorithm terminates.

The set of permutations in the next level,Mk+1, is constructed based on the parents

of each of the nodes that appear inMk: For each member (a, b) ∈Mk, the groups πc(a)

and πd(b) are obtained. Then, a set of all the possible pair permutations between πc(a)

and πd(b) is constructed and added toMk+1:

Mk+1 =
{
(csk+1, d

t
k+1) | csk+1 ∈ πc(a) , dtk+1 ∈ πd(b) , ∀(a, b) ∈Mk

}
(4.33)

where s and t distinguish between several parents.

4.3.2.3 Effect of Noise Terms

In this section, we discuss the effect of process and measurement noise terms on the

cross-covariance E[X̃cX̃
T

d ], when expressing E[X̃cX̃
T

d ] via X̃ck and X̃dk .

Let Ta = (VTa , ETa) be a tree constructed for some node a ∈ V , and let al, al−1 ∈ VTa

be some nodes from levels l and l − 1, respectively. These nodes are connected either by

a transition relation (4.22) or an update relation (4.23). In the first case, the two nodes

belong to the same thread, while in the second case, the nodes may be from different

threads.

Denote by ηal:al−1
the noise related to expressing X̃al−1

via X̃al . Then ηal:al−1
can be

either process or measurement noise, depending on the relation type:

ηal:al−1
=

{
ωal→al−1

transition relation

−Kal−1
Dalval update relation

(4.34)

Let cm and dp be some nodes in the trees Tc and Td, respectively, and recall Definition

4.3.2.

Lemma 4.3.1 If (Td)
dp does not contain any nodes from the path cm → · · · → cr →

· · · → c in Tc, then ηcγ :cγ−1
and X̃dp are statistically independent for any γ ∈ {1, . . . ,m}.

Proof Suppose that ηcγ :cγ−1
and X̃dp are statistically dependent for at least a single value

of γ ∈ {1, . . . ,m}. Then there must exist some node cr on the path cm → · · · → cr →
· · · → c in Tc, representing X̃cr , such that X̃dp can be expressed in terms of X̃cr , and

perhaps other state vectors, i. e. X̃dp is a descendant of X̃cr . Thus, cr is an ancestor of

dp, and therefore will appear in (Td)
dp , thereby contradicting the assumption. “

Corollary 4.3.1 If Td does not contain any nodes from the path cm
Tc=⇒ c, then ηcγ :cγ−1

and X̃d are statistically independent for any γ ∈ {1, . . . ,m}.
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Figure 4.4: The node cj in Tc has descendants that appear as ancestors of dk in the sub-

tree (Td)
dk , therefore contributing noise terms to the calculated E[X̃cX̃

T

d ]. Update-nodes

are not explicitly marked.

Lemma 4.3.1 and Corollary 4.3.1 are also valid, with the proper adjustments, when con-

sidering (Tc)
cm and Tc, respectively.

At this point assume, without loss of generality, that in the process of analyzing the

member (ck, dk), described in Section 4.3.2.1, the pair (cj, dk) was discovered as known in

the sense of Definition 4.3.1. Since nodes from lower levels are analyzed first, no other

known pair (cr, dk) or (ck, dr) exists with r < j.

Lemma 4.3.2 The path dk
Td=⇒ d does not contain any node cr from the path cj → · · · →

cr → · · · → c in Tc for any 1 ≤ r < j. If r = j, the node cr = cj can only appear in the

path dk
Td=⇒ d as dk.

Proof Suppose that the path dk
Td=⇒ d does contain a node cr from the path cj

Tc=⇒ c,
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with 1 ≤ r < j. Thus, there is a pair of nodes (a, b), with a = cr ∈ VTc and b = cr ∈ VTd

such that E[X̃aX̃
T

b ] ≡ E[X̃crX̃
T

cr ] is known.
1

However, since r < j, cr is closer to c than cj. Therefore, the pair (a, b) is younger,

in the sense of Definition 4.3.3, than the pair (cj, dk), and thus should have been found

while the algorithm processed the rth level. Consequently, this member would have been

removed from the permutation set of the rth level,Mr (cf. Section 4.3.2.1). Hence, if such

a pair indeed existed, then upon reaching the kth level, the permutation setMk would not

have contained the member (ck, dk), since ck ∈ Ac(a) ≡ Ac(cr), and dk ∈ Ad(b) ≡ Ad(cr)

(cf. Eq. (4.33) for calculatingMk). Since it is given that (ck, dk) ∈Mk, the node cr does

not exist.

Using the same reasoning, when r = j, the node cr = cj cannot appear in the path

dk−1 → · · · → d. However, it is possible that cj = dk, since each node in G may have

two children (and only one child in each of the trees). In this case, one of the children is

located in Tc, while the other is located in Td. “

Lemmas 4.3.1 and 4.3.2 lead to the following corollary.

Corollary 4.3.2 If (Td)
dk does not contain any nodes from the path cj

Tc=⇒ c, then

ηcγ :cγ−1
, for any γ ∈ {1, . . . , j}, is statistically independent of all the states represented by

the nodes {dk
Td=⇒ d} ∪ (Td)

dk .

Note that ηcγ :cγ−1
may still be statistically dependent, for at least a single value of

γ ∈ {1, . . . , j}, on states represented by the nodes in Td�{dk
Td=⇒ d}�(Td)

dk , if among

these nodes there is at least one node from the path cj
Tc=⇒ c. This leads to the following

corollary.

Corollary 4.3.3 If for all the discovered pairs ⊙(a, b) with a ∈ VTc and b ∈ VTd

Dc(a) ∩ Ad(b) = ϕ (4.35)

then all the noise terms from Tc, involved in the calculation of E[X̃cX̃
T

d ], are statistically-

independent of X̃d, and all the involved noise terms from Td are statistically-independent

of X̃c.

In other words, when the conditions of Corollary 4.3.3 are satisfied for all members in

Mk, for all considered k, the calculated cross-covariance E[X̃cX̃
T

d ] will not contain any

noise terms. However, when the conditions of Corollary 4.3.3 are not satisfied, E[X̃cX̃
T

d ]

will contain noise covariances from different time instances and platforms. Returning to

the discovered pair ⊙(cj, dk), we now assume that there are descendants of cj in Tc that

1Recall that the covariance of each of the nodes in G is stored (cf. Section 4.2.3).
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appear as ancestors of dk in Td: Dc(cj) ∩Ad(dk) ̸= ϕ. Consequently, Qcjdk ̸= 0 and, thus,

the objective in the remainder of this section is to calculate Qcjdk (cf. Eq. (4.28)).

Among the nodes in Dc(cj) ∩ Ad(dk) , denote by ci, 1 < i < j, the descendant of cj
that is closest to c, as illustrated in Figure 4.4. The child of ci in Td is denoted by dn.

Lemma 4.3.3 The path cj
Tc=⇒ ci appears in (Td)

dk .

Proof ci ∈ Ad(dk), and therefore ci ∈ (Td)
dk . Since ci may be reached from any node on

the path cj → · · · → ci, and ci leads to dk, any node from cj → · · · → ci also leads to dk.

Therefore, cj → · · · → ci appears in (Td)
dk . “

Observe that Lemma 4.3.3 is also valid for any sub-path cj
Tc=⇒ ci′ of the path cj

Tc=⇒ ci,

with i ≤ i′ < j. Furthermore, (Td)
dk might contain several appearances of the sub-paths

cj
Tc=⇒ ci′ .

Now we analyze the correlation between the noise term ηcl:cl−1
, related to any two

adjacent nodes cl and cl−1 in the path cj → · · · → cl → cl−1 → · · · → ci, and X̃dk . The

term E[ηcl:cl−1
X̃

T

dk
], with i+ 1 ≤ l ≤ j, may be calculated as follows.

Assume for the moment that (Td)
dk contains only a single appearance of cl → cl−1.

Then X̃dk is given by (cf. Figure 4.4)

X̃dk = Wdk(cl)X̃cl +
n−1∑
r=k

Wdk(dr)ηdr+1:dr +

+ Wdk(dn)ηci:dn
+

l−1∑
r=i

Wdk(cr)ηcr+1:cr + νd (4.36)

where νd is composed of state vectors and noise terms represented by nodes in

(Td)
dk�{cl → cl−1 → · · · → dk}. Here, Wdk(a) is the overall weight of the path

a→ . . .→ dk in (Td)
dk .

Since it was assumed that cl → cl−1 appears only once in (Td)
dk , (Td)

dk�{cl → cl−1 →
· · · → dk} does not contain cl → cl−1. Therefore, according to Lemma 4.3.1, ηcl:cl−1

and

νd are statistically independent and thus, from Eq. (4.36),

E[ηcl:cl−1
X̃

T

dk
] = E[ηcl:cl−1

ηT
cl:cl−1

]W T
dk
(cl−1) (4.37)

The term E[ηcl:cl−1
ηT
cl:cl−1

] is equal to the process or measurement noise covariances,

depending on the relation type between X̃cl−1
and X̃cl (cf. Eq. (4.34)):

E[ηcl:cl−1
ηT
cl:cl−1

] =

{
Qcl:cl−1

transition relation

Kcl−1
DclRcl:cl−1

(Kcl−1
Dcl)

T update relation
(4.38)

Recall that the matrices in Eq. (4.38) were stored as part of the arc weights (cf. Section

4.2).
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In the general case, (Td)
dk may contain several appearances of cl → cl−1, each ap-

pearance with its own path cl → cl−1 → · · · → dk. Letting u distinguish between these

different appearances of cl → cl−1 in (Td)
dk , and denoting by W u

b (a) the overall weight of

the uth path a
Tb=⇒ b, Eq. (4.37) becomes:

E[ηcl:cl−1
X̃

T

dk
] = E[ηcl:cl−1

ηT
cl:cl−1

]
∑
u

(
W u

dk
(cl−1)

)T
(4.39)

Furthermore, when considering the whole tree Td, cl → cl−1 may appear not only

in (Td)
dk . According to Lemma 4.3.2, cl → cl−1 ̸⊂ dk

Td=⇒ d. Thus, in addition to

(Td)
dk , cl → cl−1 may be also found only in Td�(Td)

dk�{dk
Td=⇒ d}. However, the

contribution of the correlation between ηcl:cl−1
and the state vectors represented by nodes

in Td�(Td)
dk�{dk

Td=⇒ d} will be calculated when processing other members inMk.

In a similar manner to Eq. (4.36), X̃c can be expressed as (cf. Figure 4.4)

X̃c = Wc(cj)X̃cj +
l−1∑
r=i

Wc(cr)ηcr+1:cr + νc (4.40)

where νc is composed of state vectors and noise terms outside the path cj
Tc=⇒ ci

Tc=⇒ c.

Therefore, the contribution of the noise term ηcl:cl−1
to E[X̃cX̃

T

d ], due to the nodes in

Dc(cj) ∩ Ad(dk), is:

Q̄1(l)
.
=Wc(cl−1)E[ηcl:cl−1

ηT
cl:cl−1

]
∑
u

(W u
d (cl−1))

T (4.41)

for each i+ 1 ≤ l ≤ j.

Yet, in addition to the above, the nodes Dd(dk) ∩ Ac(cj) also appear in expressions

that constitute Qcjdk . This situation may be handled in a similar manner. Among all the

nodes in Dd(dk) ∩ Ac(cj), denote by ds, 1 < s < k, the node that is closest to d. Thus,

the contribution of noise terms to E[X̃cX̃
T

d ], due to the nodes Dd(dk) ∩ Ac(cj), is:

Q̄2(m)
.
=

∑
u

W u
c (dm−1)E[ηdm:dm−1

ηT
dm:dm−1

]W T
d (dm−1) (4.42)

for each s+ 1 ≤ m ≤ k.

In conclusion, the noise covariance Qcjdk for a discovered ⊙(cj, dk) is:

Qcjdk
.
=

j∑
l=i+1

Q̄1(l) +
k∑

m=s+1

Q̄2(m) (4.43)

In practice, the calculation of Qcjdk requires processing all the nodes in (Td)
dk , checking

if they appear in cj
Tc=⇒ c, and processing all the nodes in (Tc)

cj , checking if these nodes
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appear in dk
Td=⇒ d. If such nodes were found, the contribution of the involved noise terms

is computed using Eq. (4.43). A similar process should be carried out for calculating Qckdj

in case ⊙(ck, dj) is discovered (cf. Eq. (4.29)).

The above calculations are required only upon discovering a known pair. A formal

algorithm for calculating Qc∗d∗ for some discovered pair ⊙(c∗, d∗) is given in the next

section.

4.3.3 Formal Algorithms

Algorithm 2 summarizes the developed approach for calculating the cross covariance

E[X̃cX̃
T

d ] given the trees Tc and Td. The notation card(A) denotes the cardinality of

the set A.

The process of analyzing a single permutation (ck, dk) fromMk, discussed in Section

4.3.2.1, is presented in Algorithm 3, while Algorithm 4 implements the technique, devel-

oped in Section 4.3.2.3, for calculating the effect of the noise terms on the calculated cross

covariance E[X̃cX̃
T

d ].

Algorithm 2 Calculation of E[(X̃c)(X̃d)
T ]

1: Input: Trees Tc, Td. hc
.
= height(Tc), hd

.
= height(Td)

2: Initialization: k = 1, E[(X̃c)(X̃d)
T ] = 0,M1 = {(c, d)}.

3: while k ≤ max(hc, hd) do

4: for r = 1 to card(Mk) do

5: Let (ck, dk)
.
= M(r). Execute Algorithm 3 on (ck, dk). Let the output be

c∗, d∗,Wc∗d∗ , flag.

6: if flag then

7: E[(X̃c)(X̃d)
T ] = E[(X̃c)(X̃d)

T ] +Wc∗d∗

8: UpdateMk according to Eq. (4.32)

9: if Mk is empty then

10: return E[(X̃c)(X̃d)
T ]

11: else

12: ConstructMk+1 based on Eq. (4.33)

13: k = k + 1

14: return E[(X̃c)(X̃d)
T ]
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Algorithm 3 Processing a single member (ck, dk) fromMk

1: Input: Trees Tc, Td, node ck in Tc and node dk in Td
2: Initialization: l = 1, c∗ = d∗ =Wc∗d∗ = {}, flag = 0

3: while l ≤ k do

4: if E[X̃ckX̃
T

dl
] is known, i. e., ⊙(ck, dl) then

5: c∗
.
= ck, d

∗ .
= dl, flag = 1

6: break

7: if E[X̃clX̃
T

dk
] is known, i. e., ⊙(cl, dk) then

8: c∗
.
= cl, d

∗ .
= dk, flag = 1

9: break

10: l = l + 1

11: if flag then

12: Calculate Qc∗d∗ by executing Algorithm 4

13: Wc∗d∗ = Wc(c
∗)E[X̃c∗X̃

T

d∗ ]W
T
d (d

∗) +Qc∗d∗

14: return c∗, d∗,Wc∗d∗ , flag

Algorithm 4 Calculation of Qc∗d∗ .

1: Input: Tc, Td, c
∗, d∗, s.t. E[X̃c∗X̃

T

d∗ ] is known.

2: Initialization: Ud∗
.
= (Td)

d∗ , Uc∗
.
= (Tc)

c∗ , Qc∗d∗ = 0.

3: while Ud∗ is not empty do

4: Ud∗ = Ud∗�{li}, where {li} are the leafs of Ud∗ .

5: Check if any leafs of Ud∗ appear in c∗
Tc=⇒ c.

6: for each such leaf β of Ud∗ do

7: Denote c∗ → · · · → β as us → · · · → u1, then E[ηc∗→βη
T
c∗→β] =∑s

ζ=2Wβ(uζ−1)E[ηζ→ζ−1η
T
ζ→ζ−1] (Wβ(uζ−1))

T

8: Qc∗d∗ = Qc∗d∗ +Wc(β)E[ηc∗→βη
T
c∗→β]W

T
d (β)

9: Ud∗ = Ud∗�(Td)
β

10: Repeat Steps 3-9, replacing: Ud∗ by Uc∗ ; c
∗ by d∗; c by d; Tc by Td; instead of Step 8

perform Qc∗d∗ = Qc∗d∗ +Wc(β)E[ηd∗→βη
T
d∗→β]W

T
d (β).

11: return Qc∗d∗
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4.3.4 Example

In this example, the proposed method is demonstrated for an MP measurement model

comprised of information obtained from three different platforms, i. e. r = 3. Such a

measurement model was already considered in Section 4.2.1. The residual measurement

z is given by Eq. (4.11). As will be seen in Chapter 5, this MP measurement model

represents vision-based three-view MP updates. Further results involving the developed

method for calculating cross-covariance terms, are therefore provided in Chapter 5.

Consider the problem of calculating the term E[X̃
−
c3
(X̃

−
c1
)T ] in the example shown

in Figure 4.5(a). The trees Tc−3 and Tc−1 are shown in Figure 4.5(b). In this example,

E[X̃
−
c3
(X̃

−
c1
)T ] can be calculated based on the known term E[X̃

−
b2
(X̃

−
b1
)T ], which is analyzed

upon reaching the fourth level in the two trees. As can be seen, a−1 , a
−
2 ∈ Dc−3

(b−2 ) and also

a−1 , a
−
2 ∈ Ac−1

(b−1 ). Thus, according to Section 4.3.2.3, the noise terms associated with the

path b−2 → a−1 → a−2 are not statistically independent of X̃
−
b1
.
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T
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cT

(b) The trees Tc3 and Tc1

Figure 4.5: An example assuming three-view measurements.

Applying the proposed algorithm, the term E[X̃
−
c3
(X̃

−
c1
)T ] is calculated as

E[X̃
−
c3
(X̃

−
c1
)T ] = ΦIII

b2→c3
E[X̃

−
b2
(X̃

−
b1
)T ](ΦI

b1→c1
)T + ΦIII

a2→c3
QI

a1→a2
AT

2 (Φ
I
a3→c1

)T +

+ ΦIII
a1→c3

QIII
b2→a1

(A1 + A2Φ
III
a1→a2

)T (ΦI
a3→c1

)T (4.44)

with A1 = −Ka3Ha1 and A2 = −Ka3Ha2 .
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4.3.5 Computational Complexity

As seen in Section 4.2, the computational complexity depends on the particular scenario

being considered. In Appendix C, an analysis of the computational complexity is provided.

It is shown that the worst-case computational complexity is bounded by O (n2log(rn)),

where n is the number of the performed MP measurement updates, represented in G.

Appendix C (Section C.2) also suggests an efficient implementation method, which allows

to considerably reduce the actual computational complexity.

If a platform has limited computational resources, it is possible to approximate the true

cross-covariance terms by maintaining a limited history of the MP measurement updates.

In this case, the graph G may be treated as a constant-size buffer, where upon reaching

a maximum size, the nodes representing information contained in old MP measurement

updates2 are removed from the graph G, thereby neglecting the contribution of those

updates on the cross-covariance terms to be computed in the future.

It is worth noting that in practice, specific scenarios exist in which the worst-case

computational complexity is significantly less. One example is the scenario considered

in Figure 4.1, which requires processing only 3 levels in each tree, assuming the efficient

implementation discussed in Appendix C.

Appendix C (Section C.3) also suggests an efficient method for calculating the tran-

sition and process noise covariance matrices, required by the developed method in this

chapter.

4.3.6 Incorporating Other Measurements

The proposed technique for calculating cross-covariance terms can be also applied when, in

additional to the MP measurement updates, other measurements should be incorporated

as well. These measurements can be produced by additional sensors, that the platforms

are equipped with and using additional available information (e.g. DTM). For instance,

each platform can apply epipolar-geometry constraints based on images captured by its

own camera.

For simplicity, a standard measurement model is assumed for these additional mea-

surement types:

z = HX+ v (4.45)

This measurement model will be termed in this section as basic measurement model. Next,

it is shown how the basic measurement model can be incorporated with the developed

approach for calculating the cross-covariance terms.

For simplicity, the concept is demonstrated for the three-platform scenario, considered

in Section 4.2.1, i. e. r = 3. Refer to the simple scenario shown in Figure 4.1, and assume a

single basic measurement update was performed by platform III between the first update

2Different logic may be applied for choosing the nodes to be removed from the graph.
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event, at a3, and the second update event, at b3. Denote by tγ the time instant of this

additional update, tγ ∈ (ta3 , tb3). The a posteriori estimation error3 X̃
+

γ is given, due to

Eq. (4.45), by

X̃
+

γ = (I −KγHγ)X̃
−
γ −Kγvγ (4.46)

whereKγ and Hγ are the Kalman gain and measurement matrices, respectively, computed

for the basic measurement model (4.45) at tγ.

Consequently, X̃
−
b3

is no longer inertially propagated from X̃
+

a3
, but instead can be

expressed as

X̃
−
b3
= ϕγ→b3X̃

+

γ + ωγ→b3 (4.47)

Based on Eq. (4.46), X̃
−
b3

can be expressed as

ϕγ→b3

[
(I −KγHγ)

(
ϕa3→γX̃

+

a3
+ ωa3→γ

)
−Kγvγ

]
+ ωγ→b3 (4.48)

or, alternatively:

X̃
−
b3
= ϕ∗

a3→b3
X̃

+

a3
+ ω∗

a3→b3
(4.49)

where

ϕ∗
a3→b3

.
= ϕγ→b3(I −KγHγ)ϕa3→γ (4.50)

is the equivalent transition matrix and

ω∗
a3→b3

.
= ϕγ→b3(I −KγHγ)ωa3→γ − ϕγ→b3Kγvγ + ωγ→b3 (4.51)

is the equivalent noise term with noise covariance Q∗
a3:b3

given by

Q∗
a3:b3

= ϕγ→b3(I −KγHγ)Qa3:γ [ϕγ→b3(I −KγHγ)]
T + ϕγ→b3KγRK

T
γ ϕ

T
γ→b3

+Qγ:b3(4.52)

where R
.
= E[vγv

T
γ ].

Thus, for example, P−
b3b2

is given by (cf. Eq. (4.19)):

P−
b3b2

= Φ∗
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
ΦT

a2→b2

In the general case, there might be a number of basic updates in each of the platforms.

However, these updates are treated in a similar manner, by calculating the equivalent

transition matrix Φ∗ and noise covariance matrix Q∗ between the time instances that par-

ticipate in the MPmeasurement. The repositories maintained by the platforms (cf. Section

C.3 in Appendix C) should be also accordingly updated.

3Explicit identities of the involved platforms are not indicated.
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4.4 Conclusions

In this chapter, a new method was proposed for on-demand, explicit calculation of correla-

tion terms, required for consistent extended Kalman filter-based data fusion in distributed

cooperative navigation. The method assumed a general multi-platform model, involving

navigation information and readings of onboard sensors of any number of platforms, pos-

sibly obtained at different time instances.

Each platform in the group maintained a state vector comprised only of its own nav-

igation parameters, while the required correlation terms with other platforms were cal-

culated based on a graph, representing all the multi-platform measurement updates per-

formed thus far. This graph was locally maintained by every platform in the group. The

developed method is capable of handling the most general scenarios of multi-platform

measurements by properly taking into account the involved process and measurement

noise terms.

The proposed method was demonstrated in a synthetic example in which the multi-

platform measurement is constituted upon information obtained from three different plat-

forms. Such a measurement model is used in Chapter 5, in which the three-view navigation

aiding method, that was developed in Chapter 3 for a single platform, is extended to co-

operative navigation. Additional discussion and results regarding the proposed method

for calculating cross-covariance terms are given in Section 5.5 and in Appendix C. In

particular, it is shown that applying the proposed method for calculating the correlation

terms allows to obtain consistent and unbiased estimation, which becomes biased and

inconsistent when these terms are neglected.
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This chapter presents a new method for vision-aided cooperative navigation, which

is based on three-view geometry. This result is an extension of the method developed

in Chapter 3 for cooperative navigation of multiple autonomous platforms. A group of

cooperative platforms is assumed, each platform is equipped with a standard inertial

navigation system and an on-board, possibly gimbaled, camera. The platforms are also

assumed to be capable of intercommunicating.
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In contrast to the common approach for cooperative localization that is based on

relative pose measurements between pairs of platforms (cf. Section 1.1.5), the method

developed in this chapter formulates a measurement whenever the same scene is observed

by different platforms. The camera, therefore, is no longer required to be aimed towards

other platforms. Each measurement is constituted upon identifying three images with

a common overlapping area. These images can be captured by different platforms, not

necessarily at the same time. The three-view constraints, developed in Chapter 3, are

reformulated into a measurement, which is then used for performing navigation aiding.

A similar concept has been already proposed in Refs. [44] and [61] regarding two-

view measurements between pairs of platforms. However, in contrast to these works,

application of the three-view geometry constraints allows to reduce position and velocity

errors in all axes without assuming a range sensor (cf. also Chapter 3). This is not possible

with relative pose measurements and two-view measurements.

The three-view measurement is a function of imagery and navigation information be-

longing to different platforms. In the general case, these different sources of information

can be statistically dependent. Ignoring this dependence can result in inconsistent and

overconfident estimation [62]. In this chapter, it is proposed to explicitly calculate the

correlation terms required in the Kalman-based information fusion phase. This is per-

formed by adjusting the approach, developed in Chapter 4 for a general multi-platform

measurement model, to the specific three-view measurement model considered herein.

Consequently, only platforms that contribute their current image and navigation solution

to the three-view measurement can be actually updated (as discussed in Chapter 4). In

contrast to [44], explicit calculation of the cross-covariance terms eliminates the need in

the smoothing phase each time a new measurement is to be executed.

5.1 Method Overview

Figure 5.1 shows the overall concept of the proposed method for multi-platform vision-

aided navigation. The proposed method assumes a group of cooperative platforms capable

of inter-communication. Each platform is equipped with a standard inertial navigation

system and an onboard camera, which may be gimbaled. Some, or all, of the platforms

maintain a local repository comprised of images captured along the mission. These images

are attached with navigation data when they are captured. The INS is comprised of an

inertial measurement unit whose measurements are integrated into a navigation solution.

In a typical scenario, a platform captures an image and broadcasts it, along with

its current navigation solution, to other platforms in the group, inquiring if they have

previously captured images containing the same region. Upon receiving such a query, each

platform performs a check in its repository looking for appropriate images. Among these

images, only images with a smaller navigation uncertainty compared to the uncertainty

in the navigation data of the query image, are transmitted back. Platforms that do not
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maintain a repository, perform the check only on the currently-captured image.

The process of the querying platform is schematically described in Figure 5.1. After

receiving the images and the attached navigation data from other platforms in the group,

two best images are chosen and, together with the querying image, are used for formulating

the three-view constraints (Section 5.2). These constraints are then transformed into a

measurement and are used for updating the navigation system of the querying platform, as

described in Section 5.3. Since the navigation data attached to the chosen three images

can be correlated, a graph-based method is applied for calculating the required cross-

covariance terms for the fusion process. This method was developed in Chapter 4 for a

general MP measurement model. Details regarding the specific implementation of this

method for the considered three-view MP measurement model are given in Section 5.3.2.

The overall protocol for information sharing among the platforms in the group is discussed

in Section 5.4.
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Figure 5.1: Multi-platform navigation aiding - querying platform scheme
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5.2 Three-View Geometry Constraints

Assume some general scene is observed from three different views, captured by different

platforms. Figure 5.2 depicts such a scenario, in which a static landmark p is observed in

the three images I1, I2 and I3. The image I3 is the currently-captured image of the third

platform, while I1 and I2 are two images captured by the first two platforms. These two

images can be the currently-captured images of these platforms, but they could also be

captured in the past and stored in the repository of each platform, as is indeed illustrated

in the figure. Alternatively, I1 and I2 could also be captured by the same platform.

1 1,λq 

2 2,λq 
3 3,λq 

12T 
23T 

13T 
1111IIII 

2222IIII 

3333IIII 

p 

Figure 5.2: Three-view geometry: a static landmark p observed by three different plat-

forms. Images I1 and I2 were captured by the first two platforms in the past, while image

I3, is the currently-acquired image by the third platform.

The notations in Figure 5.2 are similar to those defined for a single platform (cf. Figure

3.2). The constraints resulting from observing the same landmark from three different

views are given by Theorem 3.2.1 in Section 3.2:

qT
1 (T12 × q2) = 0 (5.1a)

qT
2 (T23 × q3) = 0 (5.1b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (5.1c)

All the parameters in Eqs. (5.1) should be expressed in the same coordinate system

using the appropriate rotation matrices taken from navigation systems of the involved

platforms. It is assumed that this coordinate system is the LLLN system of the platform

that captured the second image at t2.

Taking into account that, in practice, multiple matching features will be obtained, we
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use the formulation derived while considering a single platform:UF
0


N×3

T23 =

W0
G


N×3

T12 (5.2)

where N and the matrices U, F,G and W are defined in Section 3.2.1.

5.3 Three-View-Based Navigation Update

Define the state vector of each platform to be its own navigation errors and IMU error

parameterization, as given by Eq. (1.10):

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
The process equation for the ith platform is given by

Xi(tb) = Φi
ta→tb

Xi(ta) + ωi
ta→tb

(5.3)

where the transition matrix Φi
ta→tb

and the discrete process noise ωta→tb are discussed in

Section 1.3.2.

When real navigation and imagery data are considered, the constrains in Eq. (5.2)

will not be satisfied. In a similar manner to Section 3.3, a residual measurement z is

defined:

z
.
=

UF
0

T23 −

W0
G

T12

which is a nonlinear function of the position and attitude of the involved platforms, and

of the LOS vectors from the three views. The involved information can be taken, in

the general case, from different time instances. Note, that the identity of the involved

platforms, and the time instances are unknown a priori. Denoting the identity of the

involved platforms in the current measurement by the indices 1, 2 and 3, and the time

instances by t1, t2 and t3, the residual measurement is given by:

z(t) = h
(
Pos3(t3),Ψ3(t3),Pos2(t2),Ψ2(t2),Pos1(t1),Ψ1(t1),

{
qC1
1i
,qC2

2i
,qC3

3i

})
(5.4)

Linearizing Eq. (5.4) we obtain, similarly to Eq. (3.23):

z ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (5.5)

where the Jacobian matrices H3, H2, H1 and D in the above equation are defined as

H3
.
= ∇ζ3(t3)h , H2

.
= ∇ζ2(t2)h , H1

.
= ∇ζ1(t1)h , D

.
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h (5.6)
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with ζi(ti) being the navigation solution and IMU errors parametrization (cf. Sections

1.3.2 and 3.3), and v is the image noise associated with the LOS vectors appearing in

Eq. (5.4).

From now on, we will use the notation Xi to denote Xi(ti). Thus, Xi is the state

vector of the appropriate platform at the capture-time of the ith image, as defined by

Eq. (5.3). This state vector models the errors in the navigation data attached to this

image.

As can be seen, the residual measurement is a function of all the three state vectors,

which in the general case can be correlated. Assuming the correlation terms relating

the three state vectors are known, all the involved platforms in the measurement can be

updated by applying standard equations of the IEKF, as detailed in Section 5.3.11.

However, the calculation of the correlation terms is not trivial for the considered three-

view measurement model. The difficulty comes from the fact that it is a priori unknown

which platforms and what time instances will participate in a three-view measurement.

The common approach for calculating the cross-covariance terms in CN is to use

an augmented covariance matrix, which contains cross-covariance terms between all the

possible pairs of platforms in the group. As discussed in Chapter 4, this is indeed an

approach used in some works (e. g. [48]), in which the measurement is a function of

the navigation parameters at the current time of several platforms (as in relative pose

measurements between pairs of platforms). Assuming M platforms in the group, and

an m × m covariance matrix Pi for each platform i, the total covariance matrix of the

group, containing also all the cross-covariance terms among platforms in the group is an

Mm×Mm matrix

PTotal =


P1 P12 · · · P1M

P21 P2 · · · P2M
...

...
. . .

...

PM1 PM2 · · · PM


where Pi = E[X̃iX̃

T

i ] and Pij = E[X̃iX̃
T

j ]. The matrix PTotal can be efficiently calculated

in a distributed manner (i. e. calculated by every platform in the group) [48].

Yet, the measurement model in Eq. (5.5) involves data from different platforms and

from different, unknown time instances. Maintaining a total covariance matrix PTotal

containing a covariance for every platform and cross-covariance terms between each pair

of platforms in the group for any two time instances along the mission duration is not

practical. Thus, an alternative technique should be used.

As a solution to the aforementioned problem, it is proposed to explicitly calculate the

required cross-covariance terms based on an approach developed in Chapter 4 for a general

MP measurement model. This approach represents the MP updates in a directed acyclic

1As shall be seen in the sequel, the actual update equations are, in the general case, different

(cf. Eqs. (5.7)-(5.10)).
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graph, locally maintained by every platform in the group. The required cross-covariance

terms are computed based on this graph representation, going back and forth in the time

domain according to the history of the so-far performed MP updates.

Another possible approach for consistent data fusion has been recently developed in

[44], considering relative pose and two-view measurements between pairs of platforms.

However, in this approach a smoothing over the navigation solutions of all the platforms

is performed whenever any kind of measurement is received. In contrast to this, the

approach proposed herein allows on-demand calculation of the required cross-covariance

terms, without refining the navigation history, thereby being computationally efficient.

The graph needs to be acyclic, since otherwise, a measurement might trigger recursive

updates in past measurements. In a general scenario involving three-view measurements

among different platforms at different time instances, the graph is guaranteed to be acyclic,

particularly if only platforms that contributed their current (and not past) image and

navigation data are updated (see a further discussion in Section 4.2.2, page 101). For

simplicity, we consider only one such platform, which is the querying platform, i. e. the

platform that broadcasted the query image to the rest of the platforms in the group.

Moreover, without loss of generality, it is assumed that the querying platform captures

the third image, as illustrated in Figure 5.2. Thus, referring to Eq. (5.5), only X3(t3) is

estimated, while X2(t2) and X1(t1) are modeled as random parameters.

An IEKF is applied, whereby the Kalman gain matrix is computed as (cf. Section 3.3)

K3 = PX3zP
−1
z (5.7)

where

PX3z = P−
3 H

T
3 + P−

32H
T
2 + P−

31H
T
1 (5.8)

Pz = H3P
−
3 H

T
3 +

[
H2 H1

] [P2 P21

P T
21 P1

] [
H2 H1

]T
+DRDT (5.9)

The update equations are the IEKF standard equations. In particular, the a posteriori

estimation error of the querying platform is given by:

X̃
+

3 = [I −K3H3] X̃
−
3 −K3H2X̃

−
2 −K3H1X̃

−
1 −K3Dv (5.10)

where X̃ denotes the estimation error of X.

It should be noted that the remark regarding the ad-hoc approach in the above cal-

culation of the Kalman gain, which appears in Section 3.3 (page 80) in the context of a

single platform, is relevant in the current case as well.

As can be seen from Eqs. (5.8) and (5.9), the cross-covariance terms P21, P31 and P32

indeed participate in the update process, and therefore these terms need to be calculated.

Additional discussion regarding calculation of these terms using the approach developed

in Chapter 4 is given in Section 5.3.2.
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It is worth mentioning that there are specific cases, in which all the platforms par-

ticipating in the measurement can be updated, since it is guaranteed that the graph will

always be acyclic. In these cases, the filter formulation changes as described next. An

example of such a scenario is given in Section 5.5.2.

5.3.1 All the Involved Platforms are Updated

The following augmented state vector is defined:

X .
=

[
XT

3 XT
2 XT

1

]T
(5.11)

with an augmented covariance matrix P .
= E[X̃ X̃ T

], where ã denotes the estimation error

of a. Let also H .
=

[
H3 H2 H1

]
and K .

=
[
K̆T

3 K̆T
2 K̆T

1

]T
. The augmented Kalman

gain matrix K is computed as

K = P−HT
(
HP−HT +DRDT

)−1
(5.12)

The a posteriori estimation error of the augmented state vector X is

X̃+
=

[
I − K̆H̆

]
X̃− − K̆Dv (5.13)

while the augmented covariance matrix is updated according to

P+ = [I −KH]P− [I −KH]T + [KD]R [KD]T (5.14)

The a posteriori estimation errors of the three state vectors in X can be explicitly written

based on Eq. (5.13) as:

X̃
+

3 =
[
I − K̆3H3

]
X̃

−
3 − K̆3H2X̃

−
2 − K̆3H1X̃

−
1 − K̆3Dv (5.15)

X̃
+

2 =
[
I − K̆2H2

]
X̃

−
2 − K̆2H3X̃

−
3 − K̆2H1X̃

−
1 − K̆2Dv (5.16)

X̃
+

1 =
[
I − K̆1H1

]
X̃

−
1 − K̆1H3X̃

−
3 − K̆1H2X̃

−
2 − K̆1Dv (5.17)

5.3.2 Calculation of the Cross-Covariance Terms P32, P31 and P21

The required cross-covariance terms in each three-view update are P32, P31 and P21. These

terms can be calculated by adjusting the method for calculating the cross-covariance terms

for a general MP measurement model, which was developed in Chapter 4, to the specific

measurement model of three-view measurements (5.5).

Since the residual measurement z is constituted upon navigation and imagery data

of three views, Eq. (5.4) can be expressed in a similar manner to Eq. (4.7) with r = 3

(cf. Section 4.1):

z(t) = h (x1(t1),y1(t1),x2(t2),y2(t2),x3(t3),y3(t3)) (5.18)
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In the general case, yi(ti) denotes the external sensors readings of the ith platform at some

time instant ti. These readings are corrupted by a Gaussian white noise vi(ti). In the

current case, the camera is the only required external sensor, and thus, yi(ti) represents

the pixel coordinates of the image captured by the ith platform at time ti. Consequently,

the linearized measurement equation (5.5)

z ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (5.19)

can be interpreted in terms of Eq. (4.7), so that

Hi(ti) = ∇ζi(ti)h , i = 1, 2, 3 (5.20)

and D =
[
D1(t1) D2(t2) D3(t3)

]
, v =

[
vT
1 (t1) vT

2 (t2) vT
3 (t3)

]T
with

Di(ti) = ∇yi(ti)h (5.21)

Now, the only missing part for applying the graph-based method for calculating the cross-

covariance terms (cf. Chapter 4) is calculation of the noise covariance between some two

adjacent nodes cl−1 and cl in any of the two trees that are constructed from the graph G

(cf. Section 4.3.2.3): E[ηcl:cl−1
ηT
cl:cl−1

]. This term is given in the general case by Eq. (4.38):

E[ηcl:cl−1
ηT
cl:cl−1

] =

{
Qcl:cl−1

transition relation

Kcl−1
DclRcl:cl−1

(Kcl−1
Dcl)

T update relation
(5.22)

While in case of a transition relation, E[ηcl:cl−1
ηT
cl:cl−1

] = Qcl:cl−1
is calculated from the

process noise ω of the appropriate platform, a clarification is required for calculating

E[ηcl:cl−1
ηT
cl:cl−1

] in the case of an update relation. For an update relation, cl−1 is an a

posteriori node, while cl is an a priori node representing one of the three images that

participate in a given three-view measurement. Thus, the node cl−1 has three parents,

one of which is the node cl.

Recall the term DRDT which participates in the update step of the querying plat-

form (cf. Eq. (5.9)). This term represents the noise covariance of all the three images

constituting a given three-view measurement. An explicit expression for DRDT is given

by Eq. (B.90) (cf. Appendix B):

DRDT =

N123+∆N12∑
i=1

∂h

∂qC1
1i

Rv
∂hT

∂qC1
1i

+

N123+∆N12+∆N23∑
i=1

∂h

∂qC2
2i

Rv
∂hT

∂qC2
2i

+

+

N123+∆N23∑
i=1

∂h

∂qC3
3i

Rv
∂hT

∂qC3
3i

(5.23)

However, the term E[ηcl:cl−1
ηT
cl:cl−1

] represents the noise covariance of only one of the

three images. Therefore, only part of the ingredients that appear in Eq. (5.23) should be
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taken when calculating E[ηcl:cl−1
ηT
cl:cl−1

]. Let the contribution of the sth view, s = 1, 2, 3,

to the term DRDT be denoted as
(
DRDT

)
view s

:

(
DRDT

)
view 1

.
=

N123+∆N12∑
i=1

∂h

∂qC1
1i

Rv
∂hT

∂qC1
1i

(5.24)

(
DRDT

)
view 2

.
=

N123+∆N12+∆N23∑
i=1

∂h

∂qC2
2i

Rv
∂hT

∂qC2
2i

(5.25)

(
DRDT

)
view 3

.
=

N123+∆N23∑
i=1

∂h

∂qC3
3i

Rv
∂hT

∂qC3
3i

(5.26)

Then, E[ηcl:cl−1
ηT
cl:cl−1

] is given in the case of an update relation by

E[ηcl:cl−1
ηT
cl:cl−1

] = Kcl−1
DclRcl:cl−1

(Kcl−1
Dcl)

T =

= K3

(
DRDT

)
view s

KT
3 , s ∈ {1, 2, 3} (5.27)

where Kcl−1
= K3 is the Kalman gain computed by the querying platform according to

Eqs. (5.7)-(5.9).

5.4 Overall Distributed Scheme

Assume a scenario ofM cooperative platforms. Each, or some, of these platforms maintain

a repository of captured images attached with navigation data. All the platforms maintain

a local copy of the graph, that is updated upon every multi-platform update event. This

graph contains M threads, one thread for each platform in the group. The graph is

initialized to M empty threads. The formulation of a single multi-platform update event

is as follows.

The querying platform broadcasts its currently-captured image and its navigation

solution to the rest of the platforms. A platform that receives this query, performs a

check in its repository whether it has previously captured images of the same region.

Platforms that do not maintain such a repository perform this check over the currently

captured image only. Different procedures for performing this query may be devised.

One possible alternative is to check only those images in the repository, which have a

reasonable navigation data attached, e. g. images that were captured from a vicinity of

the transmitted position of the querying platform.

Among the chosen images, only images that have a smaller uncertainty in their at-

tached navigation data, compared to the uncertainly in the transmitted navigation data

of the querying platform, are transmitted back to the querying platform. More specifi-

cally, denote by PQ the covariance matrix of the querying platform, and P the covariance

matrix attached to one of the chosen images from a repository of some other platform in
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the group. Then, in the current implementation, this image is transmitted back to the

querying platform only if its position uncertainty is smaller than the position uncertainty

of the querying platform, i. e.:

(P )ii < α(PQ)ii , i = 1, 2, 3 (5.28)

where (A)ij is the member from the ith row and jth column of some matrix A, and α is

a constant satisfying 0 < α ≤ 1. Naturally, other criteria can be applied as well.

The chosen images, satisfying the above condition are transmitted to the querying

platform, along with their attached navigation data. In addition, a transition matrix

between the transmitted images, should more then one image is transmitted by the same

platform, is sent. In case the replying platform has already participated in at least one

multi-platform update of any platform in the group, its thread in the graph will contain

at least one node. Therefore, transition matrices bridging the navigation data attached

to the images being transmitted in the current multi-platform update to the closest nodes

in this thread are also sent.

As an example, consider the scenario shown in Figure 5.3. Figure 5.4 presents the

construction details of the graph for this scenario, for each of the executed three-view

measurement updates. Assume the first update, a+3 , was executed, and focus on the

second update, b+3 . As shown in Figure 5.4(b), platform I transmits two images and

navigation data, denoted by the nodes b−1 and b−2 in the graph. However, in addition to

the transmitted transition matrix and process noise covariance matrix between these two

nodes, ϕb1→b2 and Qb1:b2 , the transition matrix and noise covariance matrix between the

nodes b2 and a3, ϕb2→a3 and Qb2:a3 , are transmitted as well.

II

III

I

a1 a2 b3 c3

b1 b2 a3 c1

c2

Figure 5.3: Three-view MP scenario

Upon receiving the transmitted images and the navigation data, two best images are se-

lected2, the cross-covariance terms are calculated based on the local graph, as discussed in

Chapter 4, followed by computation of all the relevant filter matrices: H3, H2, H1,A,B, D.

2The selection is according to some criteria, e. g., Eq. (5.28). Alternatively, the proposed approach

may be also applied on more than three images.
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Next, the update of the querying platform is carried out based on Section 5.3. Now,

it is only required to update the local graphs of all the platforms in the group by the

performed update event. The querying platform broadcasts the following information: a)

identity of the involved platforms in the current update; b) time instances (or some other

identifiers) of the involved images; required transition matrices of the involved images; c)

a priori and a posteriori covariance and cross-covariance matrices involved in the current

update event; d) filter matrices K3, H3, H2 and H1. Then, each platform updates its own

graph representation.

The process described above is summarized in Algorithms 5 and 6. Algorithm 5

contains a protocol of actions carried out by the querying platform, while Algorithm 6

provides the protocol of actions for the rest of the platforms in the group.

3a+

3 1a aK H−

3 2a aK H−

3 3a aI K H−

I IIIII
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1 2a aφ →
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3b−

3 3b cφ →3 1a cφ →
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Figure 5.4: Graph update process: a) update event a+3 ; b) update event b+3 ; c) update

event c+3 .
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Algorithm 5 Querying Platform Protocol

1: Notations: Q - Querying platform; A,B - two other platforms.

2: Broadcast current image IQ and current navigation data.

3: Receive a set of images and associated navigation data from other platforms. See

steps 2-9 in Algorithm 6.

4: Choose two best images IA, IB transmitted by platforms A and B, respectively.

5: First graph update:

• Add a new node for each image in the appropriate thread (A,B and Q).

• Denote these three new nodes in threads A,B and Q as β1, β2 and β3, respec-

tively.

• Connect each such node to previous and next nodes (if exist) in its thread by

directed arcs associated with the transition matrices and with the process noise

covariance matrices.

6: Calculate cross-covariance terms based on the local graph.

7: Calculate the measurement z and the filter matrices K3, H3, H2, H1, D based on the

three images IA, IB, IQ and the attached navigation data.

8: Perform navigation update on platform Q.

9: Final graph update:

• Add an update-event node, denoted by α, in the thread Q.

• Connect the nodes β1, β2 and β3 to the update-event node α by directed arcs

weighted as −K3H1,−K3H2 and I − K3H3, respectively. Associate also mea-

surement noise covariance matrix to each arc (cf. Eqs. (5.24)-(5.26)).

• Store a priori and a posteriori covariance and cross-covariance terms (e. g. in

the nodes β1, β2, β3 and α).

10: Broadcast update event information.

5.4.1 Handling Platforms Joining or Leaving the Group

Whenever a platform joins an existing group of cooperative platforms, it must obtain the

graph describing the history of multi-platform updates among the platforms in the group.

This graph can be transmitted to the joining platform by one one of the platforms in the

group. Departure of a platform from the group does not require any specific action.

An interesting scenario is one in which there are several groups of cooperative plat-

forms, and a platform has to migrate from one group to another. Refer to the former

and the latter groups as the source and destination groups, respectively. For example,
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Algorithm 6 Replying Platform Protocol

1: Notations: Q - Querying platform; A - current platform.

2: if a query image and its navigation data are received from platform Q then

3: Search repository for images containing the same scene.

4: Choose images that satisfy the navigation uncertainty criteria (5.28).

5: For each chosen image, captured at some time instant k, look among all the nodes

in thread A in the local graph, for two nodes with time l and m that are closest to

k, such that l < k < m.

6: Calculate transition matrices ϕl→k and ϕk→m and noise covariance matrices Ql:k

and Qk:m.

7: if more than one image was chosen in step 4 then

8: Calculate transition matrices and noise covariance matrices between the adjacent

chosen images.

9: Transmit the chosen images, their navigation data and the calculated transition

and noise covariance matrices to the querying platform Q.

10: if update message is received from Q then

11: Update local graph following steps 5 and 9 in Algorithm 5.

this might be the case when each cooperative group operates in a distinct location and

there is a need to move a platform within these groups. In these scenarios the migrating

platform has already a local graph representing the multi-platform events of the source

group, while the destination group has its own graph.

These two graphs have no common threads only when each platform is assigned only

to one group, and, in addition, no migration between the groups have occurred in the

past. In any case, upon receiving the graph of the destination group, the joining platform

must fuse the two graphs and broadcast the updated graph to all the platforms in the

destination group.

5.5 Simulation and Experimental Results

In this section the developed method for vision-aided cooperative navigation is studied

in two different scenarios. First, a formation of two platforms is considered. Statistical

results, based on simulated navigation data and synthetic imagery are presented (Section

5.5.2). Next, a holding pattern scenario is demonstrated in an experiment using real

imagery and navigation data (Section 5.5.3).

5.5.1 Implementation Details

The navigation simulation for each of the two platforms consists of the steps described in

Section 3.4.1.1.
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Table 5.1: Initial Navigation Errors and IMU Errors in a Formation Scenario

Parameter Description Platform I Platform II Units

∆P Initial position error (1σ) (10, 10, 10)T (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.1, 0.1, 0.1)T (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T (10, 10, 10)T deg/hr

b IMU bias (1σ) (1, 1, 1)T (10, 10, 10)T mg

Each platform is handled independently based on its own trajectory. Once a platform

obtains three images with a common overlapping area, the developed algorithm is exe-

cuted: cross-covariance terms are computed, followed by estimation of the state vector.

The estimated state vector is then used for updating the navigation solution and the IMU

measurements (cf. Figure 5.1). Next, the update information is stored and delivered to

the second platform. The image processing module is identical to the one described in

Section 3.4.1.1.

5.5.2 Formation Flying Scenario - Statistical Results

In this section the proposed method for vision-aided cooperative navigation is applied on

a formation flying scenario, comprised of two platforms. Each of the platforms is equipped

with its own navigation system and onboard camera. The navigation system of Platform I

is of a better quality, compared to the navigation system of Platform II. Table 5.1 presents

the assumed initial navigation errors and the errors of the IMU of the two platforms.

The two platforms performed the same straight and level north-heading trajectory at a

velocity of 100 m/s, with Platform I being 20 seconds ahead of platform II. The synthetic

imagery data was obtained by assuming a 200 × 300 field of view, focal length of 1570

pixels, and image noise of 0.5 pixel. The ground landmarks were randomly drawn with

a height variation of ±200 meters relative to the mean ground level. In the considered

scenario, Platform I transmitted information (images and navigation data) to Platform

II, thereby allowing to update the navigation system of Platform II using the three-

view measurement model. Platform II was updated using the proposed method every 10

seconds, with the first update carried out after 27 seconds of inertial flight. The navigation

system of Platform I is not updated, and it therefore develops inertial navigation errors

over time.

Figure 5.5 summarizes the assumed measurement schedule. The true translation mo-

tion between any three views participating in the same measurement is T12 = 200 meters

and T23 = 400 meters, in the north direction. In each update, two of the three images3

3Since in this section a synthetic imagery data is used, the term “image” refers to a synthetic data,
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that participate in the measurement, were taken from Platform I. Since the two platforms

perform the same trajectory, with a 20 seconds time delay, these two images have been

acquired by Platform I 20 seconds before the measurement. Therefore they were stored

in Platform I’s repository and retrieved upon request.

Figure 5.6(a) shows the equivalent graph that was used for calculating the cross-

covariance terms in each update event of Platform II, based on the graph-based method

proposed in Chapter 4 (cf. Algorithm 2). For example, the two trees Tb−3 and Tb−1 , con-

structed for calculating Pb−3 b−1
are given in Figure 5.6(b). In the considered scenario, the

conditions of Corollary 4.3.3 (cf. Section 4.3.2.3) are satisfied, as can be seen in Figure

5.6(b). Therefore, the computed cross covariances do not involve any noise terms. The

obtained cross-covariance terms in the considered scenario maintain a constant structure

regardless of how many MP updates were performed so far. For example, the cross-

covariance term P−
b3b2

, required for the second MP update, is similar to Eq. (4.19):

P−
b3b2

= ΦII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦI

a2→b2
)T (5.29)

while the terms P−
b3b1

and P−
b2b1

are given by

P−
b3b1

= ΦII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦI

a2→b1
)T(5.30)

P−
b2b1

= ΦI
b1→b2

P−
b1b1

(5.31)

Platform II

Platform I

a1 a2

b3

b1 b2

a3

c1 c2

Figure 5.5: Three-view measurements schedule assumed in the simulation runs.

Figures 5.7 and 5.8 present the Monte-Carlo results (1000 runs) for Platform II, in

terms of the mean navigation error (µ), standard deviation (σ) and square root covariance

of the filter. As seen, the position and velocity errors (Figures 5.7(a) and 5.7(b)) are

significantly reduced, compared to the inertial scenario, in all axes. The bias state is

estimated also in all axes, while the drift state is only partially estimated. The updates

yielded a mild reduction in Euler angle errors as well.

Figures 5.9 and 5.10 compare between the navigation errors of Platform II and Plat-

form I. Although Platform II is equipped with an inferior navigation system, its perfor-

mance is not inferior to the performance of Platform I. After several updates, Platform

II actually outperforms Platform I. For example, the position errors of Platform II are

smaller than the position errors of Platform I. The reason for this phenomenon is that

i. e. (noisy) features coordinates.
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3b+

3b−
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1b−

2b−
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3a+

Platform I Platform II

(a)

3a+
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3a−
2a−

1a−

3 1a aK H−
3 2a aK H−

3 3a aI K H−

3 3a bφ →

1b−

2a−

2 1a bφ →

1a−

1a−

(b)

Figure 5.6: (a) Equivalent graph for the scenario shown in Figure 5.5. (b) The trees Tb−3
and Tb−1 required for calculating Pb−3 b−1

.

while the measurement is based upon three images, which were obtained from two plat-

forms, only one of the platforms is actually updated. Updating both platforms would

yield an improvement in both platforms [48]. Referring to Section 4.2.2, since Platform

I contributes two sets of information to each MP measurement (e. g., at ta1 and ta2), the

graph will remain acyclic, if Platform I is updated at ta2 and tb2 (and not at ta1 and tb1).

The importance of incorporating the cross-covariance terms in the update process is

clearly evident when comparing the results of Figures 5.7 and 5.8 with Figure 5.11, that

presents Monte-Carlo results when the cross-covariance terms are neglected. As seen in

Figure 5.11, neglecting the cross-covariance terms results in a biased and inconsistent

estimation of position and velocity errors along the motion heading.

It is also worth mentioning that should the leader perform self-updates based on

the available sensors and information (e. g. epipolar constraints, GPS, DTM), improved

navigation errors will be obtained not only in the leader but also in the follower navigation

system.
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(b) Velocity errors.

Figure 5.7: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors compared to inertial navigation: Reduced position and velocity errors in all axes.
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Figure 5.8: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors compared to inertial navigation: Bias estimation to the bias levels of Platform I

(see also Figures 5.9 and 5.10).
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Figure 5.9: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors compared to navigation errors of Platform I: Position and velocity errors are reduced

below the level of errors of Platform I.
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Figure 5.10: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors compared to navigation errors of Platform I: Bias estimation to Platform I bias

levels (1 mg). Euler angles are also reduced, however do not reach Platform I levels due

to poor estimation of the drift state (cf. Figure 5.8(b)).
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Figure 5.11: Formation scenario - Monte Carlo (1000 runs) results; Platform II navigation

errors when cross-covariance terms are neglected: Biased estimation along the motion

heading.
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5.5.3 Holding Pattern Scenario - Experiment Results

In this section the proposed method for vision-aided cooperative navigation is demon-

strated in an experiment. The experiment setup is identical to the setup that was used

in Chapter 3: A single manually-driven ground vehicle attached with a wireless camera

and an IMU. Refer to Section 3.4.3 for additional details.

The vehicle performed two different trajectories. The IMU and the camera were turned

off between these two trajectories, thereby allowing to treat each trajectory as if it were

performed by a different vehicle, equipped with a similar hardware (IMU and camera),

as opposed to Section 5.5.2, where one of the vehicles was assumed to be equipped with

a better navigation system. Thus, we have two ground vehicles, each performing its own

trajectory and recording its own IMU and imagery data.

The two trajectories represent a holding pattern scenario. Each platform performs

the same basic trajectory: Vehicle I performs this basic trajectory twice, while vehicle II

performs the basic trajectory once, starting from a different point along the trajectory, and

reaching the starting point of vehicle I after about 26 seconds. The reference trajectories of

vehicle I and II are shown in Figure 5.12. These ground-truth trajectories were measured

manually as the GPS was unavailable in the experiment (cf. Section 3.4.3). The diamond

and square marks denote the manual measurements of the vehicles position. Each two

adjacent marks of the same platform are connected using a linear interpolation.
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Figure 5.12: Trajectories of vehicles I and II in the experiment. Diamond and square

marks indicate manually-measured vehicle locations. Circle and star marks in (b) denote

the starting point of each platform.

The proposed method for multi-platform three-view based updates was applied several

times in the experiment. In addition, the method was executed in a self-update mode, in

which all the images are captured by the same vehicle (cf. Chapter 3). The required cross-

covariance terms were calculated using the graph-based method developed in Chapter 4.
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A schematic sketch of the measurements schedule is given in Figure 5.13. Table 5.2

provides further information, including the time instances of each participating triplet

of images in the applied measurements. As seen, vehicle I is updated twice using data

obtained from vehicle II (measurements c and e), and four times based on its own images

(measurements f ,g,h and i). Vehicle II is updated three times utilizing the informa-

tion received from vehicle I (measurements a,b and d). The vehicles performed inertial

navigation elsewhere, by processing the recorded IMU data.

II

I
f1 f2

b3a3c1 c2

c3a1 a2 b1 b2g1 g2

d3

d1 d2

e1 e2

h1 h2

II

I

f3 g3e3 h3 i3i1 i2

Figure 5.13: Schematic sketch of the measurement schedule in the experiment. Further

information regarding each measurement is given in Table 5.2.

The images participating in each three-view update were manually identified and cho-

sen. Figure 5.14 shows, for example, the three images of measurement a: images 5.14(a)

and 5.14(b) were captured by vehicle I, while image 5.14(c) was captured by vehicle II.

Features that were found common to all the three images (triplets) are also shown in

the figure. Note that two objects (a bottle, and a bag) that appear in images 5.14(a)

and 5.14(b) are missing in image 5.14(c). These two objects were removed between the

two trajectories. Therefore, as seen in Figure 5.14, these two objects are not represented

by matched triplets of features (but can be represented by matched pairs of features be-

tween the first two views). Additional details regarding the image processing phase in the

experiment can be found in Section 3.4.3.

The experiment results are given in Figures 5.15 and 5.16: Figures 5.15(a) and 5.15(b)

show the position errors for vehicle I and II, while Figures 5.16(a) and 5.16(b) show

the velocity errors. Each figure consists of three curves: navigation error, square root

covariance of the filter, and navigation error in an inertial scenario (given for reference).

The measurement type (MP-update or self-update) is also denoted in the appropriate

locations.
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Table 5.2: Measurement details in the experiment.

Notation Type Querying vehicle t3 [sec] Replying vehicle t1, t2 [sec]

a MP update II 32.6 I 8.4, 14.2

b MP update II 53.2 I 35.9, 39.1

c MP update I 60.0 II 2.3, 5.6

d MP update II 60.6 I 47.9, 49.2

e MP update I 66.8 II 10.3, 12.1

f Self update I 81.1 I 0.3, 1.3

g Self update I 97.0 I 22.8, 24.3

h Self update I 124.7 I 54.3, 55.6

i Self update I 142.0 I 70.8, 72.1

The position error was calculated by subtracting the navigation solution from the true

trajectories (cf. Figure 5.12). In a similar manner, the velocity error was computed by

subtracting the navigation solution from the true velocity profiles. However, since velocity

was not measured in the experiment, it was only possible to obtain an approximation of

it. The approximated velocity was calculated assuming that the vehicles moved with a

constant velocity in each phase4.

As seen from Figures 5.15(a), the position error of Vehicle I was nearly nullified in

all axes as the result of the first update, which was of MP type. The next update (also

MP) caused to another reduction in the north position error. After completing a loop in

the trajectory, it became possible to apply the three-view updates in a self-update mode

for Vehicle I, i. e. all the three images were captured by Vehicle I. Overall, due to the

applied 6 three-view updates, the position error of Vehicle I has been confined to around

50 meters in north and east directions, and 10 meters in altitude. As a comparison, the

position error of vehicle I in an inertial scenario reaches, after 150 seconds of operation,

900, 200 and 50 meters in north, east and down directions, respectively. The position

error of Vehicle II (cf. Figure 5.15(b)) has been also dramatically reduced as the result

of the three-view multi-platform updates. For example, after the third update (t ≈ 60

seconds), the position error was nearly nullified in north direction and reduced from 50 to

20 meters in east direction. One can observe that the velocity errors are also considerably

reduced in all axes (cf. Figures 5.16(a) and 5.16(b)).

4The phase duration and the translation that each vehicle has undergone in each phase are known

from analyzing the IMU measurements and from the true trajectories.
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(a) (b)

(c)

Figure 5.14: Images participating in measurement a and matched triplets of features.

Images (a) and (b) were captured by vehicle I; Image (c) was captued by vehicle II. The

images (a),(b) and (c) are represented in Figure 5.13 as a1, a2 and a3.

5.6 Conclusions

This chapter presented a new method for distributed vision-aided cooperative navigation

based on the three-view geometry constraints that were developed in Chapter 3. A group

of collaborative platforms was assumed. Each platform was equipped with an INS and

a camera. The platforms were also assumed to be capable of communicating between

themselves.

In the proposed method, a measurement was formulated whenever the same general

scene was observed by different platforms. Three images of a common region were required

for each measurement. These images were not necessarily captured at the same time. All,

or some, of the platforms maintained a local repository of captured images, that were

associated with some navigation parameters. In a typical scenario, a platform captured

an image and broadcasted it, along with its current navigation solution, to other platforms

in the group, inquiring if they had previously captured images containing the same region.

Upon receiving such a query, each platform performed a check in its repository looking

for appropriate images. Among these images, only images with a smaller navigation

uncertainty compared to the uncertainty in the navigation data of the query image, were
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transmitted back.

The three-view geometry constraints, formulated based on the currently-captured im-

age by the broadcasting platform and the imagery and navigation data obtained from

different platforms, allowed reducing navigation errors of the broadcasting platform. In

particular, position and velocity errors were reduced in all axes, without assuming a range

sensor. Since the navigation parameters associated with the three images participating in

the same measurement can be correlated, the required correlation terms were computed

using the approach developed in Chapter 4.

The proposed method was studied in a simulated environment and in an experiment.

Statistical results were presented, based on simulated navigation and synthetic imagery

data, for a formation scenario of two platforms, in which Platform I was equipped with

a higher quality INS compared to the INS of Platform II. The developed method allowed

to reduce the rapidly-developing navigation errors of Platform II to the level of errors of

Platform I. Applying the method for calculating the correlation terms allowed to obtain

a consistent and unbiased estimation. It was shown that neglecting the correlation terms

yields biased and inconsistent estimations of position and velocity. A holding pattern

scenario was demonstrated in an experiment, involving two ground vehicles, equipped with

identical inertial measurement units and cameras. Significant reduction in the navigation

errors of both of the vehicles was obtained as a result of activating the proposed method.
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Figure 5.15: Position errors of vehicles I and II in the experiment.
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Figure 5.16: Velocity errors of vehicles I and II in the experiment.





Chapter 6

Conclusions

The research presented in this dissertation focused on utilizing computer vision techniques

for improving the performance of standard inertial navigation systems. Motivated mainly

by the fact that in the absence of a GPS signal, or when such a signal is unreliable,

the computed navigation solution is accompanied by unbounded errors that drastically

increase over time, the main goal was to develop methods for eliminating, or at least

reducing, these errors based on the imagery information acquired by a camera. The

developed algorithms assumed that the platform was equipped with an inertial navigation

system and a single onboard camera, possibly mounted on gimbals. In addition, the images

were used for constructing a representation of the observed environment, i. e., mapping.

The fundamental approach of this research was to decouple the navigation aiding

and mapping processes. This enables updating the navigation system in real time, while

the mapping phase, such as mosaic construction, was executed in a background process.

A constant-size state vector, comprised of the current navigation information only, was

used by the navigation filter. The camera images, associated with the current navigation

solution, were stored in a repository and retrieved upon demand later on for carrying

out navigation aiding. The images stored in the repository were also used for online

mosaicking.

The first algorithm dealt with improving navigation performance while operating in

challenging scenarios, characterized by a narrow field of view camera observing low-texture

scenes. It was proposed to couple between the mosaic construction and camera scanning

processes, resulting in improved vision-based motion estimation. The estimated motion

was fused with an inertial navigation system using an implicit extended Kalman filter,

allowing to reduce some of the navigation errors, including position and velocity errors

perpendicular to the motion heading. However, since the camera translation motion was

estimated only up to scale, it was not possible to reduce position and velocity errors along

the motion heading.

A special attention was given to scenarios, in which the platform visits the same regions

more than once. Since the trajectory is usually unknown a priori, the actual regions to
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be revisited and the time instances are also unknown. The loop scenarios hold great

potential both for navigation aiding and for refining the constructed map. The common

approaches for handling loops, such as bundle adjustment and simultaneous localization

and mapping, require processing all the images captured during-loop, which is a costly

operation.

In the second algorithm, it was proposed to utilize constraints, stemming from observ-

ing a general static scene by three distinct views, for navigation aiding. A new formulation

of such constraints was developed and fused with the navigation system. The algorithm

performed navigation aiding each time three images with a common overlapping area were

obtained, without reconstructing the observed scene. Given three images with a common

overlapping area, position errors in all axes were reduced to the levels of errors present

while the first two images were captured. Other navigation errors were reduced as well.

As opposed to navigation aiding, the map refinement can be executed in a background

process, as discussed above. Such an approach is in particular notable when considering

loops.

The second part of the thesis was devoted to cooperative navigation. A group of collab-

orating platforms, capable of intercommunication, was assumed, each platform equipped

with its own inertial navigation system, a single camera and perhaps other external sen-

sors.

Regardless of the method applied for cooperative navigation, the involved information,

obtained from different platforms, can be in the general case correlated. This correlation

should be taken into account for obtaining consistent information fusion. A new graph-

based approach was developed for explicitly calculating the required correlation terms,

assuming a general multi-platform measurement model, involving navigation information

and readings of onboard sensors of any number of platforms, possibly obtained at different

time instances.

Finally, it was proposed to extend the three-view geometry navigation aiding algo-

rithm, originally developed for a single platform, to cooperative navigation. Thus, a mea-

surement based on the three-view constraints was formulated whenever the same static

scene was observed in three views, possibly captured by different platforms, not neces-

sarily at the same time. Since information from different platforms was involved, the

required correlation terms were calculated using the above-mentioned method, that was

adapted to the specific three-view multi-platform measurement model. This approach for

cooperative navigation reduced the navigation errors, in particular position and velocity

errors in all axes, without requiring a range sensor.
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Recommendations for Future

Research

The research presented herein can be extended in several directions. Some suggestions

appear in the following list.

• Utilization of the three-view constraints for identifying and tracking dynamic ob-

jects, while performing navigation aiding using static landmarks. In particular, one

can refer to tracking the dynamic objects as a sort of mapping and investigate if

there are scenarios in which representing all the dynamic objects in an augmented

state vector, such as in SLAM, is advantageous over tracking each dynamic object

on its own.

• In this research, it was assumed that the platform is equipped with an INS and a

single camera only. However, as discussed in Section 1.1, different methods have

been developed for navigation aiding assuming existence of additional information

(e. g. DTM) and additional external sensors (e. g. range sensor). In this context, it

would be interesting to investigate whether applying the three-view constraints in

conjunction with these methods can improve the performance. For example, would

the constraints enhance the performance if they were to be applied in addition to the

DTM-based pose and motion recovery method developed in [8]? Another interesting

issue is utilization of the three-view constraints as part of the SLAM approach.

• Using the techniques developed in this research thesis, several interesting problems

can be addressed:

– Several platforms, each equipped with an INS and a single camera, observe

some other platforms which are equipped only with an INS. Refer to the former

as group A and to the latter as group B. As seen in Chapter 5, it is possible

to perform CN for the platforms in group A. Now, the question is whether
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platforms from group B can be also updated within the CN framework of

group A

– Autonomous return home upon identifying GPS dropout, using the so-far con-

structed mapping/mosaic and utilizing the VAN methods developed in this

research.

– Satellite orbit determination/navigation and cooperative navigation.

• A more direct continuation of this research thesis is: 1) To investigate how the

three-view constraints are related to the trifocal tensor, and to perform a compara-

tive performance analysis for both of them; 2) Further investigate the approach of

performing the mapping in a background process, adopted in this research thesis

(cf. Section 1.2), as opposed to the SLAM approach.

• Application of the approach for explicit calculation of cross-covariance terms, de-

veloped in Chapter 4, to other problems that involve information fusion of possibly

correlated data.

• Application of advanced filtering methods such as particle filtering for naviga-

tion data fusion of multiple cooperative platforms relying on the three-view aiding

method developed in this research.
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Chapter 2 Extras

This appendix presents a development of a measurement model used in the method for

mosaic-aided navigation, described in Chapter 2. The model relates between the image-

based estimated camera relative motion tC2
1→2, R

C2
C1

and the developing navigation errors

of a standard INS and the parameters that model the IMU errors. The state vector is

defined in Eq. (1.10):

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(A.1)

Under ideal conditions, i. e. when there are no navigation errors and tC2
1→2, R

C2
C1

are

perfectly estimated, the following can be written:

PosL2
True(t2)−PosL2

True(t1) = γCC2
L2,T ruet

C2
1→2,T rue (A.2a)

CC2
C1,T rue = RC2

C1,T rue (A.2b)

where CC2
L2

is the DCM transforming from C to LLLN at the time instance t = t2;

TC2
C1

is the DCM transforming from C at t = t2 to C at t = t1; and PosL(t2)(t1) is the

platform’s position at t = t1 expressed in the LLLN system at t = t2, so thatPos
L(t2)(t1) =

C
L(t1)
L(t2)

PosL(t1)(t1). The subscript (·)True in Eq. (A.2) indicates ideal conditions as defined

above.

The DCM CC2
L2

is required since the extracted translation tC2
1→2 is given in the camera

reference frame, while the left side of Eq. (A.2a) is expressed in the LLLN system.

A.1 Translation Measurement Equation

In an ideal situation, with no navigation and image processing errors, the two sides of

Eq. (A.2a) constitute parallel vectors. Thus, this equation yields the following constraint:[
PosL2

True(t2)−PosL2
True(t1)

]
× CC2

L2,T ruet
C2
1→2,T rue = 0 (A.3)



154 Appendix A. Chapter 2 Extras

In reality, there are navigation errors that increase with time, moreover, the estimated

camera matrix contains errors due to image noise. Thus, Eq. (A.3) no longer holds.

Denoting by Nav parameters that are taken from the navigation data and by t̂
C2

1→2 the

actual estimated translation vector obtained from the image processing module, Eq. (A.3)

becomes [
PosL2

Nav(t2)−PosL2
Nav(t1)

]
× CC2

L2,Navt̂
C2

1→2 = ztranslation (A.4)

where ztranslation denotes the residual measurement vector.

Taking into account the fact that PosL2
Nav(.) = PosL2

True(.) + ∆PL2(.) and subtracting

(A.3) from (A.4) results in

[∆P(t2)−∆P(t1)]
L2 × CC2

L2,Nav t̂
C2

1→2 + vtr = ztranslation (A.5)

where vtr = [PosTrue(t2)−PosTrue(t1)]
L2×

[
CC2

L2,Nav t̂
C2

1→2 − C
C2
L2,T ruet

C2
1→2,T rue

]
. The vector

vtr is due to imperfect translation measurements (which are image-based estimations) and

navigation errors. One may verify that in ideal conditions this term is nullified.

The inertial position error for a sufficiently small ∆t = t2−t1 or for a straight and level

flight is given by Eq. (1.17) (the Nav subscript is omitted for simplicity from here on;

thus, all parameters are computed based on the navigation system data, unless otherwise

specified):

∆P(t2) = CL1
L2

[
−1

6
As(t1)C

B1
L1
d(∆t)3

+
1

2

[
As(t1)∆Ψ(t1) + CB1

L1
b
]
(∆t)2 +∆V(t1)∆t+∆P(t1)

]
(A.6)

Note that a transformation matrix, CL1
L2
, was added to express the position error at t = t2

in LLLN coordinates.

Substituting Eq. (A.6) into Eq. (A.5), canceling position errors at t = t1 and denoting

t̂
L2

1→2 ≡ CC2
L2,Navt̂

C2

1→2 yields[
CL1

L2

[
−1

6
As(t1)C

B1
L1
d · (∆t)3 + 1

2

[
As(t1)∆Ψ(t1) + CB1

L1
b
]
(∆t)2 +∆V(t1)∆t

]]∧
t̂
L2

1→2

+vtr = ztranslation(A.7)

where (.)∧ denotes the matrix cross-product equivalent. One can see from Eq. (A.7) that

the translation measurement equation is of the form ztranslation = H trX+ vTr, where

H tr =
[
03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

]
(A.8)

After some algebraic manipulations on Eq. (A.7), the submatrices of H tr can be rendered

into

H tr
∆V = −

[
t̂
L2

1→2

]∧
CL1

L2
∆t H tr

∆Ψ = −1

2

[
t̂
L2

1→2

]∧
CL1

L2
As(t1)(∆t)

2

H tr
d =

1

6

[
t̂
L2

1→2

]∧
CL1

L2
As(t1)C

B1
L1
(∆t)3 H tr

b = −1

2

[
t̂
L2

1→2

]∧
CL1

L2
CB1

L1
(∆t)2
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A.2 Rotation Measurement Equation

Recall Eq. (A.2b), written under the assumption of ideal conditions: CC2
C1,T rue = RC2

C1,T rue.

When taking into account navigation errors and errors in the estimated rotation matrix,

this equation no longer holds. Instead, we define a residual error angle vector, zrotation.

Under the assumption of small angles, this vector can be written as

I − z∧rotation,A = CC2
C1,Nav

[
R̂C2

C1

]T
(A.9)

Here CC2
C1,Nav denotes the DCM transforming from C at t = t1 to C at t = t2, computed

by the navigation system of the platform. This matrix differs from the true DCM due to

platform navigation errors. The matrix R̂C2
C1

is the estimated rotation matrix. One can

verify that under ideal conditions, CC2
C1,T rue = RC2

C1,T rue, and thus the rotation error angle

zRotation is equal to zero. We omit the subscript (Nav) for simplicity, and write simply

CC2
C1
.

In general, CC2
C1

can be written as follows:

TC2
C1

= TB1
C1
TE
B1
TB2
E TC2

B2
(A.10)

where the matrices TB1
C1

and TC2
B2

are assumed to be known precisely – or at least with

much more precision compared to the developing attitude errors. Thus, CC
B = CC

B,True.

The errors in the ECEF-to-body rotation matrix stem from two sources: position

errors and attitude errors. Denote by LC the correct LLLN system at the platform

estimated position, and by L the LLLN system estimated by the navigation system.

Thus, CE
B = CL

BC
E
LC

, where CL
B is erroneous due to attitude errors and CE

LC
is erroneous

due to position errors. When these errors are not present, L = LC = LTrue, where LTrue

is the true LLLN system.

The errors in CE
LC

are assumed to be negligible, since they depend on the position

errors, which are small relative to Earth’s radius. Thus, LC = LTrue and therefore CE
LC

=

CE
LTrue

. However, the attitude errors do not allow a perfect estimation of the DCM

transforming from LLLN to B, since the estimated LLLN system is erroneous. Hence,

CL
B = CLC

B CL
LC

.

Assuming small attitude errors, we write ΨNav = ΨTrue + ∆Ψ to obtain CL
LC

=

I −∆Ψ∧. Taking all the above into consideration, Eq. (A.10) turns into

TC2
C1

= TB1
C1
T

LC1
B1

[I −∆Ψ∧(t1)]T
E
LC1

T
LC2
E [I +∆Ψ∧(t2)]T

B2
LC2

TC2
B2

(A.11)

For a sufficiently small t−t0 or for a straight and level flight, one can use the approximation

of Eq. (1.14): ∆Ψ(t2) = −CB1
L1
d∆t+∆Ψ(t1). Substituting this into Eq. (A.11), ignoring

second-order terms and carrying out some additional algebraic manipulations we get

TC2
C1

= TB1
C1
T

LC1
B1

TE
LC1

T
LC2
E TB2

LC2
TC2
B2

+ (A.12)

+ TB1
C1
T

LC1
B1

[
TE
LC1

T
LC2
E

(
∆Ψ(t1)− CB1

L1
d∆t

)∧ −∆Ψ∧(t1)T
E
LC1

T
LC2
E

]
TB2
LC2

TC2
B2
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As was mentioned before, the rotation matrix that was estimated by the image pro-

cessing module differs from the true matrix. Let TRErr
be the DCM transforming between

the true rotation matrix and the estimated one: R̂C2
C1

= TRErr
RC2

C1,T rue.

Multiplying Eq. (A.12) by
[
R̂C2

C1

]T
from the right and noting that

TB1
C1
T

LC1
B1

TE
LC1

T
LC2
E TB2

LC2
TC2
B2

is the nominal value of CC2
C1,T rue and hence also of RC2

C1,T rue

yields

TC2
C1

[
R̂C2

C1

]T
=

{
I + TB1

C1
T

LC1
B1

[
TE
LC1

T
LC2
E

(
∆Ψ(t1)− CB1

L1
d∆t

)∧
− ∆Ψ∧(t1)T

E
LC1

T
LC2
E

]
TB2
LC2

TC2
B2
RC1

C2,T rue

}
T T
Rerr

(A.13)

Assuming small estimation rotation errors vrot, one can write T T
Rerr

= I − v∧
rot. Thus,

substituting Eq. (A.13) into Eq. (A.9) yields

z∧rotation = v∧
rot + TB1

C1
T

LC1
B1

[
−TE

LC1
T

LC2
E

(
∆Ψ(t1)− CB1

L1
d∆t

)∧
+∆Ψ∧(t1)T

E
LC1

T
LC2
E

]
TB2
LC2

TC2
B2

[
R̂C2

C1

]T
(A.14)

Using Eq. (A.10), one can write the following two relations:

TB1
C1
T

LC1
B1

TE
LC1

T
LC2
E = R̂C2

C1
CB2

C2
C

LC2
B2

, TB1
C1
T

LC1
B1

= R̂C2
C1
CB2

C2
C

LC2
B2

CE
LC2

C
LC1
E (A.15)

Substituting Eqs. (A.15) into Eq. (A.14) and using the fact that for any matrix Λ and

any vector ξ, Λξ∧ΛT = (Λξ)∧, Eq. (A.14) transforms into

zrotation = R̂C2
C1
CB2

C2
C

LC2
B2

(
CE

LC2
C

LC1
E − I

)
∆Ψ(t1) +

+ R̂C2
C1
CB2

C2
C

LC2
B2

CB1
L1
d∆t+ vrot (A.16)

One can see that Eq. (A.16) is of the form zrotation = HrotX+ vrot, where

Hrot =
[
03×3 03×3 Hrot

∆Ψ Hrot
d 03×3

]
Hrot

∆Ψ = R̂C2
C1
CB2

C2
C

LC2
B2

(
CE

LC2
C

LC1
E − I

)
, Hrot

d = R̂C2
C1
CB2

C2
C

LC2
B2

CB1
L1
∆t

A.3 Google Earth Interface

Given a platform trajectory and measurement settings (such as measurement frequency),

a command is sent to Google Earth through the interface to display a region at a specified

position (latitude, longitude and altitude) and inertial orientation. These are computed

based on the current platform position, attitude and camera angles.

Since the current version of Google Earth allows changing only the camera heading

and tilt angles, special care was taken to allow roll motion in Google Earth, that is
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required for implementing the camera scanning procedure. This was achieved by shifting

the yaw angle by 90o relative to the flight heading angle and adjusting the camera system

accordingly. As a result, camera/platform roll motion is obtained through tilt motion

(handled automatically by the interface).

In the current implementation, the image acquisition through Google Earth is per-

formed offline, i. e., this command is sent according to the measurement’s frequency and

the acquired images are saved into some repository. The images are injected into the

image processing module in the simulation at appropriate time instances.

Figure A.1: A schematic illustration of an interface between the platform trajectory and

Google Earth.
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B.1 Proof of Theorem 3.2.1

Recall the matrix A,

A =

[
q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

]
∈ R6×4 (B.1)

and the constraints

qT
1 (T12 × q2) = 0 (B.2a)

qT
2 (T23 × q3) = 0 (B.2b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (B.2c)

Next we prove that the constraints (B.2) hold if and only if rank(A) < 4.

B.1.1 rank(A) < 4 ⇒ Eqs. (B.2)

Since rank(A) < 4, there exists a nonzero vector β = (β1, β2, β3, β4)
T such that Aβ = 0.

The explicit equations stemming from Aβ = 0 are

q1β1 − q2β2 −T12β4 = 0 (B.3)

q2β2 − q3β3 −T23β4 = 0 (B.4)

Cross-multiplying Eq. (B.3) by q1 and Eq. (B.4) by q3 yields

(q1 × q2)β2 + (q1 ×T12)β4 = 0 (B.5)

(q3 × q2)β2 − (q3 ×T23)β4 = 0 (B.6)

If q1 × q2 ̸= 0 and q3 × q2 ̸= 0, then performing an inner product of Eq. (B.5) with

(q3 × q2) and of Eq. (B.6) with (q1 × q2) yields

(q3 × q2)
T (q1 × q2)β2 + (q3 × q2)

T (q1 ×T12)β4 = 0 (B.7)

(q1 × q2)
T (q3 × q2)β2 − (q1 × q2)

T (q3 ×T23)β4 = 0 (B.8)
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Noting that (q3×q2)
T (q1×q2) = −(q1×q2)

T (q3×q2) and adding Eqs. (B.7) and (B.8)

gives the constraint (B.2c).

The first two constraints may be obtained similarly: Cross-multiplying Eq. (B.3) by q2

and then taking an inner product with q1 gives the constraint (B.2a). Cross-multiplying

from the right Eq. (B.4) by q3 and then taking an inner product with q2 gives the

constraint (B.2b). “

Degenerate Cases

q1×q2 = 0 or q3×q2 = 0, or both, i. e. q1 ∥ q2 or q2 ∥ q3, or q1 ∥ q2 ∥ q3. Consider the

case q1 ∥ q2. Since both q1 and q2 point to the same ground point, it may be concluded

that T12 is parallel to q1 and q2. More formally, if r1 and r2 are the scale parameters such

that ||riqi|| is the range to the ground point, then T12 = r2q2 − r1q1 = r2aq1 − r1q1 =

(r2a − r1)q1, where a is a constant. Hence T12 ∥ q1 ∥ q2. Consequently, Eq. (B.2b) is

the only constraint from the three constraints in Eq. (B.2) that is not degenerate. This

constraint may be obtained as explained above. The case q2 ∥ q3 is handled in a similar

manner.

The last degenerated case is q1 ∥ q2 ∥ q3, which occurs when the vehicle moves along

the line of sight vectors. In this case all the constraints in Eq. (B.2) are degenerate.

Note that in the first two degenerate cases (q1 ∥ q2 or q2 ∥ q3), it is possible to write

another set of three constraints. For example, if q1 ∥ q2 (but not to q3), we can formulate

two epipolar constraints between views 1 and 3, and between views 2 and 3, and provide

the equivalent constraint to Eq. (B.2c) relating between T13 and T23.

B.1.2 Eqs. (B.2) ⇒ rank(A) < 4

The proof is based on steps similar to the previous section, in a reverse order. Recall the

constraint (B.2c), multiplied by some constant β4 ̸= 0:

(q2 × q1)
T (q3 ×T23)β4 = (q1 ×T12)

T (q3 × q2)β4 (B.9)

Since (q2×q1)
T (q3×q2) is a scalar and Eq. (B.9) is a scalar equation, there exists some

β2 ̸= 0 such that

(q2 × q1)
T (q3 × q2)β2 = (q2 × q1)

T (q3 ×T23)β4 (B.10)

(q2 × q1)
T (q3 × q2)β2 = (q1 ×T12)

T (q3 × q2)β4 (B.11)

The above equation may be rewritten into

(q2 × q1)
T (q3 × q2)β2 − (q2 × q1)

T (q3 ×T23)β4 = 0 (B.12)

(q3 × q2)
T (q1 × q2)β2 + (q3 × q2)

T (q1 ×T12)β4 = 0 (B.13)
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or equivalently

(q2 × q1)
T [(q3 × q2)β2 − (q3 ×T23)β4] = 0 (B.14)

(q3 × q2)
T [(q1 × q2)β2 + (q1 ×T12)β4] = 0 (B.15)

At this point it is assumed that q1 × q2 ̸= 0 and q3 × q2 ̸= 0. The proof for cases in

which this assumption does not hold is given in the sequel.

Noting that qT
2 (q3 × q2) ≡ 0, and since the constraint (B.2b) is satisfied, the vectors

(q3×q2)β2−(q3×T23)β4 and (q2×q1) are not perpendicular. In the same manner, since

qT
2 (q1 × q2) = 0 and the constraint (B.2a) is met, the vectors (q1 × q2)β2 + (q1 ×T12)β4

and (q3 × q2) are not perpendicular as well. Therefore the last two equations lead to

(q3 × q2)β2 − (q3 ×T23)β4 = 0 (B.16)

(q1 × q2)β2 + (q1 ×T12)β4 = 0 (B.17)

that me by rewritten as

q3 × (q2β2 −T23β4 + q3β3) = 0 (B.18)

q1 × (q2β2 +T12β4 + q1β1) = 0 (B.19)

for any β1, β3. Consequently,

q2β2 + q3β3 −T23β4 = 0 (B.20)

q1β1 + q2β2 +T12β4 = 0 (B.21)

In order to obtain the same expression for the matrix A, the vector α = (α1, α2, α3, α4)
T

is defined as

α1
.
= β1 , α2

.
= −β2 , α3

.
= β3 , α4

.
= −β4 (B.22)

so that Eqs. (B.20) and (B.21) turn into

− q2α2 + q3α3 +T23α4 = 0 (B.23)

q1α1 − q2α2 −T12α4 = 0 (B.24)

The above may be rewritten as

Aα = 0 (B.25)

and since α is a nonzero vector, one may conclude that rank(A) < 4. “
Note that the epipolar constraints (B.2a) and (B.2b) only guarantee that the matri-

ces
[
q1 −q2 −T12

]
and

[
q2 −q3 −T23

]
are singular, which not necessarily leads to

rank(A) < 4.
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Degenerate Cases

Next we prove that rank(A) < 4 also when q1 ∥ q2 or q2 ∥ q3, or q1 ∥ q2 ∥ q3.

Let q1 ∥ q2 while q3 is not parallel to q1. As proven above, q1 ∥ q2 ∥ T12, and thus,

the matrix A is of the form

A =

[
q1 aq1 03×1 bq1

03×1 aq1 q3 T23

]
(B.26)

for some scalars a, b. In order to prove that rank(A) < 4, we need to show that Aβ = 0

for some nonzero vector β = (β1, β2, β3, β4)
T . Assume a general vector β and explicitly

write Aβ = 0:

q1β1 + aq1β2 + bq1β4 = 0 (B.27)

aq1β2 + q3β3 +T23β4 = 0 (B.28)

Observe that the second equation leads to the epipolar constraint qT
2 (q3×T23) = 0. Since

the constraints (B.2) hold, it follows that the matrix
[
q2 −q3 −T23

]
is singular, and

since q2 = aq1, it is possible to find nonzero entries for β2, β3 and β4 so that Eq. (B.28)

is satisfied. From Eq. (B.27) it is easy to see that β1 = −aβ2 − bβ4. Thus, a nonzero

vector β was found such that Aβ = 0, which leads to the conclusion that rank(A) < 4.

A similar procedure may be applied when q2 ∥ q3 while q1 is not parallel to q2.

The last degenerate case is when all the three vectors are parallel. As already men-

tioned, both of the translation vectors in this case are parallel to the line of sight vectors,

i. e. q1 ∥ q2 ∥ q3 ∥ T12 ∥ T23. The matrix A is then of the following form:

A =

[
q1 aq1 03×1 bq1

03×1 −aq1 cq1 dq1

]
(B.29)

where a, b, c and d are some constants. Since one may find some nonzero vector β such

that Aβ = 0, (e. g. β = (b, 0, d/c,−1)T ), the conclusion is that rank(A) < 4.

B.1.3 Alternative Proof of rank(A) < 4 ⇒ Eqs. (B.2)

Since rank(A) < 4, the determinant of any 4× 4 submatrix of A should be equal to zero.

A careful examination of all such possible submatrices of A will give a complete set of

constraints derived from a general three-view geometry.

All the 4× 4 submatrices of A comprised of the first three rows with any of the other

rows of A yield the epipolar constraint for the first two views, i. e., Eq. (B.2a):

qT
1 (T12 × q2) = 0 (B.30)

In the same manner, the last three rows, with any of the first three rows of A, provide

the epipolar constraint for the second and the third views, i. e., Eq. (B.2b):

qT
2 (T23 × q3) = 0 (B.31)
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The more interesting result, however, stems from analyzing the determinants of all

the other possible submatrices of A. There are nine such submatrices, which consist of

the following row permutations of A:

1, 2, 4, 5 ; 1, 2, 4, 6 ; 1, 2, 5, 6 ;

2, 3, 4, 5 ; 2, 3, 4, 6 ; 2, 3, 5, 6 ; (B.32)

1, 3, 4, 5 ; 1, 3, 4, 6 ; 1, 3, 5, 6 .

Let

E1
.
=

[
0 1 0

0 0 1

]
E2

.
=

[
1 0 0

0 0 1

]
E3

.
=

[
1 0 0

0 1 0

]
(B.33)

so that the matrix Eia removes the ith element of any a ∈ R3×1. Consider, for example,

the submatrix comprised of rows 1, 2, 4, 5 of A. This 4× 4 matrix, denoted by Ã, is

Ã =

[
E3q1 −E3q2 02×1 −E3T12

02×1 E3q2 −E3q3 −E3T23

]
(B.34)

Therefore

det(Ã) = (q1)1

∣∣∣∣−(q2)2 0 −(T12)2
E3q2 −E3q3 −E3T23

∣∣∣∣− (q1)2

∣∣∣∣−(q2)1 0 −(T12)1
E3q2 −E3q3 −E3T23

∣∣∣∣ = 0

(B.35)

where (a)i denotes the ith element of some vector a. After some algebra, we obtain∣∣∣[E3q1 −E3q2

]T ∣∣∣ ∣∣E3q3 E3T23

∣∣ = ∣∣∣[E3q1 E3T12

]T ∣∣∣ ∣∣E3q2 −E3q3

∣∣ (B.36)

Similarly, the remaining submatrices (cf. Eq. (B.32)) yield

∣∣∣[E1q1 −E1q2

]T ∣∣∣ ∣∣E3q3 E3T23

∣∣ =
∣∣∣[E1q1 E1T12

]T ∣∣∣ ∣∣E3q2 −E3q3

∣∣ (B.37)∣∣∣[E2q1 −E2q2

]T ∣∣∣ ∣∣E3q3 E3T23

∣∣ =
∣∣∣[E2q1 E2T12

]T ∣∣∣ ∣∣E3q2 −E3q3

∣∣ (B.38)∣∣∣[E3q1 −E3q2

]T ∣∣∣ ∣∣E1q3 E1T23

∣∣ =
∣∣∣[E3q1 E3T12

]T ∣∣∣ ∣∣E1q2 −E1q3

∣∣ (B.39)∣∣∣[E1q1 −E1q2

]T ∣∣∣ ∣∣E1q3 E1T23

∣∣ =
∣∣∣[E1q1 E1T12

]T ∣∣∣ ∣∣E1q2 −E1q3

∣∣ (B.40)∣∣∣[E2q1 −E2q2

]T ∣∣∣ ∣∣E1q3 E1T23

∣∣ =
∣∣∣[E2q1 E2T12

]T ∣∣∣ ∣∣E1q2 −E1q3

∣∣ (B.41)∣∣∣[E3q1 −E3q2

]T ∣∣∣ ∣∣E2q3 E2T23

∣∣ =
∣∣∣[E3q1 E3T12

]T ∣∣∣ ∣∣E2q2 −E2q3

∣∣ (B.42)∣∣∣[E1q1 −E1q2

]T ∣∣∣ ∣∣E2q3 E2T23

∣∣ =
∣∣∣[E1q1 E1T12

]T ∣∣∣ ∣∣E2q2 −E2q3

∣∣ (B.43)∣∣∣[E2q1 −E2q2

]T ∣∣∣ ∣∣E2q3 E2T23

∣∣ =
∣∣∣[E2q1 E2T12

]T ∣∣∣ ∣∣E2q2 −E2q3

∣∣ (B.44)
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However, although there are nine scalar constraints, given by Eqs. (B.36-B.44), only one

scalar constraint is actually contributed. To see this, write a compact version of the above

equations:

a1b1 = c1d1 a1b2 = c1d2 a1b3 = c1d3

a2b1 = c2d1 a2b2 = c2d2 a2b3 = c2d3

a3b1 = c3d1 a3b2 = c3d2 a3b3 = c3d3

Since all the parameters are scalar, it may be concluded that

∃k : ka2 = a1 , kc2 = c1

∃k̃ : k̃a3 = a1 , k̃c3 = c1

∃n : nb2 = b1 , nd2 = d1

∃ñ : ñb3 = b1 , ñd3 = d1

From here it follows that all the nine equations are equivalent. For example, multiplying

the equation a3b3 = c3d3 by k̃ñ yields the equation a1b1 = c1d1:

k̃a3ñb3 = k̃c3ñd3 ⇔ a1b1 = c1d1

Thus, all the row permutations that do not yield the epipolar constraint give a single

scalar constraint. This scalar constraint may be expressed in a more compact form, which

is developed next.

Reformulating the Scalar Constraint

The scalar constraint induced by any of the nine equations (or a combination thereof)

may be written in a compact form. For example, consider Eq. (B.36). Since∣∣∣[E3q1 −E3q2

]T ∣∣∣ = (q2 × q1)3∣∣E3q3 E3T23

∣∣ = (q3 ×T23)3∣∣∣[E3q1 E3T12

]T ∣∣∣ = (q1 ×T12)3∣∣E3q2 −E3q3

∣∣ = (q3 × q2)3

It follows that Eq. (B.36) can be rewritten as

(q2 × q1)3(q3 ×T23)3 = (q1 ×T12)3(q3 × q2)3 (B.45)



B.2. IEKF Matrices 165

Following the same procedure, it is possible to express Eqs. (B.37-B.44) in terms of vector

cross products:

(q2 × q1)1(q3 ×T23)3 = (q1 ×T12)1(q3 × q2)3 (B.46)

(q2 × q1)2(q3 ×T23)3 = (q1 ×T12)2(q3 × q2)3 (B.47)

(q2 × q1)3(q3 ×T23)1 = (q1 ×T12)3(q3 × q2)1 (B.48)

(q2 × q1)1(q3 ×T23)1 = (q1 ×T12)1(q3 × q2)1 (B.49)

(q2 × q1)2(q3 ×T23)1 = (q1 ×T12)2(q3 × q2)1 (B.50)

(q2 × q1)3(q3 ×T23)2 = (q1 ×T12)3(q3 × q2)2 (B.51)

(q2 × q1)1(q3 ×T23)2 = (q1 ×T12)1(q3 × q2)2 (B.52)

(q2 × q1)2(q3 ×T23)2 = (q1 ×T12)2(q3 × q2)2 (B.53)

Eqs. (B.45-B.53) contribute only one constraint, which may be also written as any linear

combination of these equations. In particular, adding Eqs. (B.49), (B.53), and (B.45)

yields

(q2 × q1)1(q3 ×T23)1 + (q2 × q1)2(q3 ×T23)2 + (q2 × q1)3(q3 ×T23)3 =

(q1 ×T12)1(q3 × q2)1 + (q1 ×T12)2(q3 × q2)2 + (q1 ×T12)3(q3 × q2)3

which can be written as Eq. (B.2c):

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (B.54)

B.2 IEKF Matrices

In this appendix we present the development of the IEKF matrices H3, H2, H1, D and R.

Recall the residual measurement definition (cf. Eqs. (3.20), (3.21) and (3.23))

zN×1 = AT23 − BT12 =

= h
(
Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),Ψ(t1),

{
qC1
1i
,qC2

2i
,qC3

3i

})
≈ H3X(t3) +H2X(t2) +H1X(t1) +Dv (B.55)

where

A .
=

UF
0


N×3

, B .
=

W0
G


N×3

(B.56)

and X is the state vector defined in Eq. (1.10):

X15×1 =
[
∆PT ∆VT ∆ΨT dT bT

]T
(B.57)
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Recall also that the time instant of the third image, t3, of the three overlapping images

is the current time. Therefore, in Eq. (B.55) X(t3) is the state vector to be estimated,

while X̃(t2) = X(t2) and X̃(t1) = X(t1) are the estimation errors at the first two time

instances represented by the filter covariance attached to each image. These last two

terms, accompanied by the Jacobian matrices H2 and H1 and the image noise v along

with the Jacobian matrix D, constitute the measurement noise. Since navigation and

imagery information is independent of each other, these two sources of information will

be analyzed separately.

B.2.1 Calculation of the Matrices H3, H2 and H1

The matrices H3, H2 and H1, are N × 15 and are defined as

H3
.
= ∇ζ(t3)h , H2

.
= ∇ζ(t2)h , H1

.
= ∇ζ(t1)h (B.58)

where ζ is defined in Eq. (1.3).

From Eq. (B.55) it is clear that these matrices are of the following form:

Hi =
[
HPos(ti) 0 HΨ(ti) 0 0

]
(B.59)

with i = 1, 2, 3. Since T23 = Pos(t3)−Pos(t2) and T12 = Pos(t2)−Pos(t1),

HPos(t3) = A (B.60)

HPos(t2) = − (A+ B) (B.61)

HPos(t1) = B (B.62)

Note that the influence of position errors on the LOS vectors that appear in the matrices

A and B is neglected: the position errors affect only the rotation matrices transforming

the LOS vectors to the LLLN system at t2. These errors are divided by the Earth radius,

and therefore their contribution is insignificant.

Calculation of HΨ(t3), HΨ(t2) and HΨ(t1)

Recall the definition of the matrices F,G,U and W

U =
[
u1 . . . uN123

]T
F =

[
f1 . . . fN23

]T
(B.63)

W =
[
w1 . . . wN123

]T
G =

[
g1 . . . gN12

]T
(B.64)

with

ui = ui(q1i
,q2i

,q3i
) = −

[
q3i

]
×

[
q1i

]
× q2i

(B.65a)

wi = wi(q1i
,q2i

,q3i
) = −

[
q1i

]
×

[
q2i

]
× q3i

(B.65b)

f i = f i(q2i
,q3i

) =
[
q2i

]
× q3i

(B.65c)

gi = gi(q1i
,q2i

) =
[
q1i

]
× q2i

(B.65d)
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Since the development of expressions for the matrices HΨ(t3), HΨ(t2) and HΨ(t1) is similar,

we elaborate only on the development process of HΨ(t3). This matrix is given by

HΨ(t3) = ∇Ψ(t3)h = ∇Ψ(t3) [AT23]−∇Ψ(t3) [BT12] (B.66)

We start by developing the first term in Eq. (B.66). According to the structure of the

matrices U and F , the following may be written:

∇Ψ(t3) [AT23] =

N123∑
i=1

∂AT23

∂ui

∇Ψ(t3)ui +

N23∑
i=1

∂AT23

∂f i
∇Ψ(t3)f i (B.67)

Since ui and f i are independent of each other, and ∂xTT23

∂xi
= TT

23 for any vector x, we have

∂AT23

∂ui

= eiT
T
23 (B.68)

∂AT23

∂f i
= eN123+iT

T
23 (B.69)

where ej is a N × 1 vector that is comprised of zero entries except for the jth element

which is equal to one. Note also that the size of the matrices ∂AT23

∂ui
, ∂AT23

∂f i
is N × 3. The

remaining quantities in Eq. (B.67), ∇Ψ(t3)ui and ∇Ψ(t3)f i, can be calculated as

∇Ψ(t3)ui =
∂ui

∂q3i

∇Ψ(t3)q3i
(B.70)

∇Ψ(t3)f i =
∂f i
∂q3i

∇Ψ(t3)q3i
(B.71)

here q3i
refers to the LOS vector of the ith feature in the third view.

Analytical expressions for ∂f
∂qj
, ∂g
∂qj
, ∂u
∂qj
, ∂w
∂qj

, for j = 1, 2, 3, are easily obtained based

on Eq. (B.65) as

∂u
∂q1

= [q3]× [q2]×
∂w
∂q1

=
[
[q2]× q3

]
×

∂f
∂q1

= 03×3
∂g
∂q1

= − [q2]×
∂u
∂q2

= − [q3]× [q1]×
∂w
∂q2

= [q1]× [q3]×
∂f
∂q2

= − [q3]×
∂g
∂q2

= [q1]×
∂u
∂q3

=
[
[q1]× q2

]
×

∂w
∂q3

= − [q1]× [q2]×
∂f
∂q3

= [q2]×
∂g
∂q3

= 03×3

(B.72)

As for∇Ψ(t3)q3, recall that the LOS vectors in f ,g,u,w are expressed in the LLLN system

at t2. Thus, for example, for some LOS vector from the first view

q1 = CC1
L2
qC1
1 = CL1

L2
CB1

L1
CC1

B1
qC1
1 = CL1

L2
[I + [∆Ψ1]×]C

B1
L1,True

CC1
B1
qC1
1 (B.73)

≈ q̄1 − CL1
L2
[qL1

1 ]×∆Ψ1 (B.74)

here q̄ is the true value of q. In a similar manner we get:

q2 ≈ q̄2 − [qL2
2 ]×∆Ψ2 (B.75)

q3 ≈ q̄3 − CL3
L2
[qL3

3 ]×∆Ψ3 (B.76)
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Consequently,

∇Ψ(t1)q1 = −CL1
L2
[qL1

1 ]× (B.77)

∇Ψ(t2)q2 = −[qL2
2 ]× (B.78)

∇Ψ(t3)q3 = −CL3
L2
[qL3

3 ]× (B.79)

Incorporating all the above expressions, Eq. (B.67) turns into

∇Ψ(t3) [AT23] = −
N123∑
i=1

eiT
T
23

∂ui

∂q3i

CL3
L2
[qL3

3i
]× −

N23∑
i=1

eN123+iT
T
23

∂f i
∂q3i

CL3
L2
[qL3

3i
]× (B.80)

Noting that g is not a function of q3 and following a similar procedure we get

∇Ψ(t3) [BT12] = −
N123∑
i=1

eiT
T
12

∂wi

∂q3i

CL3
L2
[qL3

3i
]× (B.81)

In conclusion, HΨ(t3) may be calculated according to

HΨ(t3)|N×3 =

N123∑
i=1

ei

[
TT

12

∂wi

∂q3i

−TT
23

∂ui

∂q3i

]
CL3

L2
[qL3

3i
]× −

−
N23∑
i=1

eN123+iT
T
23

∂f i
∂q3i

CL3
L2
[qL3

3i
]× (B.82)

Applying the same technique, the matrices HΨ(t2) and HΨ(t1) were obtained as

HΨ(t2) =

N123∑
i=1

ei

[
TT

12

∂wi

∂q2i

−TT
23

∂ui

∂q2i

]
[qL2

2i
]× −

−
N23∑
i=1

eN123+iT
T
23

∂f i
∂q2i

[qL2
2i
]× +

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q2i

[qL2
2i
]× (B.83)

HΨ(t1) =

N123∑
i=1

ei

[
TT

12

∂wi

∂q1i

−TT
23

∂ui

∂q1i

]
CL1

L2
[qL1

1i
]× +

+

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q1i

CL1
L2
[qL1

1i
]× (B.84)

B.2.2 Calculation of the Matrices D and R

The matrices D and R are given by:

D .
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h (B.85)

R
.
= cov

({
qC1
1i
,qC2

2i
,qC3

3i

})
(B.86)
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D reflects the influence of image noise on the measurement z, while R is the image noise

covariance for each matching LOS vector in the given images. Assuming that the camera

optical axis lies along the z direction, a general LOS vector is contaminated by image

noise v = (vx, vy)
T , according to

qC = q̄C +
(
vx vy 0

)T
(B.87)

where q̄C is the true value of the LOS vector, without noise contamination. Note that

thus far we have omitted the explicit notation in the LOS vectors, thereby assuming that

all the vectors are given in the LLLN system of t2.

Recall that the sets of matching triplets and matching pairs

{q1i
,q2i
}N12
i=1 , {q2i

,q3i
}N23
i=1 , {q1i

,q2i
,q3i
}N123
i=1 (B.88)

were assumed to be consistent (cf. Section 3.2.1). Thus, for example, the matrices U and

F , which are part of the matrix A, are comprised of

U =
[
u1 . . . uN123

]T
F =

[
f1 . . . fN23

]T
(B.89)

with ui and f i, constructed using the same LOS vectors, for i ≤ N123. We define ∆N12

and ∆N23 as the number of additional pairs in {q1i
,q2i
}N12
i=1 and {q2i

,q3i
}N23
i=1 that are not

present in {q1i
,q2i

,q3i
}N123
i=1 : N12 = N123 +∆N12 and N23 = N123 +∆N23. Although the

overall number of matches in the above sets (Eq. (B.88)) is N = N123 + N12 + N23, the

actual number of different matches is N123 +∆N12 +∆N23.

Assuming that the covariance of the image noise is the same for all the LOS vectors

in the three images, and recalling the structure of the matrices A,B that are used for

calculating h, we can write

DRDT =

N123+∆N12∑
i=1

∂h

∂qC1
1i

Rv
∂hT

∂qC1
1i

+

N123+∆N12+∆N23∑
i=1

∂h

∂qC2
2i

Rv
∂hT

∂qC2
2i

+

+

N123+∆N23∑
i=1

∂h

∂qC3
3i

Rv
∂hT

∂qC3
3i

(B.90)

In the above equation, each summation refers to all the LOS vectors from the relevant

image that participate in the calculation of h. For example, the first summation refers to

the first image. Rv is a 3× 3 covariance matrix of the image noise

Rv =

Rx 0 0

0 Ry 0

0 0 Rf

 (B.91)

with Rx = E(vxv
T
x ) and Ry = E(vyv

T
y ). Rf represents the uncertainty in the camera focal

length. Assuming the focal length is known precisely, it can be chosen as zero.
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Next we develop expressions for ∂h

∂q
Ck
k

for each image (i. e. k = 1, 2, 3). We begin with

∂h

∂q
C1
1

∂h

∂qC1
1i

|N×3 =
∂AT23

∂qC1
1i

− ∂BT12

∂qC1
1i

(B.92)

Since the matrices U,W and G contain LOS vectors from the first view while the matrix

F does not, the above equals to

∂h

∂qC1
1i

=

N123∑
k=1

∂AT23

∂uk

∂uk

∂qL2
1i

∂qL2
1i

∂qC1
1i

−
N123∑
k=1

∂BT12

∂wk

∂wk

∂qL2
1i

∂qL2
1i

∂qC1
1i

−
N12∑
k=1

∂BT12

∂gk

∂gk

∂qL2
1i

∂qL2
1i

∂qC1
1i

(B.93)

Noting that ∀i ̸= k , ∂uk

∂q
L2
1i

= ∂wk

∂q
L2
1i

= ∂gk

∂q
L2
1i

= 0, and taking into account that
∂q

L2
1i

∂q
C1
1i

= CC1
L2
,

the above turns into

∂h

∂qC1
1i

|N×3 =

[
∂AT23

∂ui

∂ui

∂qL2
1i

− ∂BT12

∂wi

∂wi

∂qL2
1i

− ∂BT12

∂gi

∂gi

∂qL2
1i

]
∂qL2

1i

∂qC1
1i

=

=


{
ei

[
TT

23
∂ui

∂q
L2
1i

−TT
12

∂wi

∂q
L2
1i

]
− eN123+N23+iT

T
12

∂gi

∂q
L2
1i

}
CC1

L2
i ≤ N123

−eN123+N23+iT
T
12

∂gi

∂q
L2
1i

CC1
L2

N123 < i ≤ N123 +∆N12

where the derivatives ∂ui

∂q
L2
1i

, ∂wi

∂q
L2
1i

and ∂gi

∂q
L2
1i

were already computed (cf. Eq. (B.72)).

Using the same procedure we get the following expressions for the N×3 matrices ∂h

∂q
C2
2i

and ∂h

∂q
C3
3i

:

∂h

∂qC2
2i

=



ei

[
TT

23
∂ui

∂q
L2
2i

−TT
12

∂wi

∂q
L2
2i

]
CC2

L2
+

+

[
eN123+iT

T
23

∂f i

∂q
L2
2i

− eN123+N23+iT
T
12

∂gi

∂q
L2
2i

]
CC2

L2
i ≤ N123

eN123+iT
T
23

∂f i

∂q
L2
2i

CC2
L2

N123 < i ≤ N123 +∆N23

−e2N123+iT
T
12

∂gi

∂q
L2
2i

CC2
L2

N123 +∆N23 < i ≤ N123 +∆N23 +∆N12

∂h

∂qC3
3i

=


{
ei

[
TT

23
∂ui

∂q
L2
3i

−TT
12

∂wi

∂q
L2
3i

]
+ eN123+iT

T
23

∂f i

∂q
L2
3i

}
CC3

L2
i ≤ N123

eN123+iT
T
23

∂f i

∂q
L2
3i

CC3
L2

N123 < i ≤ N123 +∆N23
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C.1 Computational Complexity Analysis

As seen in Section 4.2, the computational complexity changes from one scenario to an-

other. Therefore, the analysis of the computational complexity is given here in terms of

worst case.

Assume that n − 1 MP update events have been carried out and currently the nth

update event should be performed. Since each MP measurement is represented in the

graph G by r + 1 nodes, prior to the nth update event the graph G will contain (r +

1)(n−1) = (r+1)n−r−1 nodes. These nodes are scattered among the platform threads

in G. Since each node in the two trees may have one or r parents, the number of nodes

in the ith level is bounded by ri−1.

A tighter bound can be obtained by noting that at least one level should separate

between two update-event nodes. Therefore, if a node has r parents, each of these parents

nodes will have only one parent. Consequently, the number of nodes in the ith level is

bounded by r⌊0.5(i−1)⌋.

The analyzed worst case is comprised of the following assumptions: (i) The number

of nodes in each level i in the two trees is ri−1; (ii) known pairs of nodes, in the sense of

Definition 4.3.1, are found only upon reaching the top level in both trees, thereby ensuring

maximum-size permutation setsMk and that all the levels are processed by Algorithm 2;

(iii) the computational cost of checking whether ⊙(a, b), i. e. whether E[X̃aX̃
T

b ] is known,

is O(1).

Following these assumptions, the height h of each of the two trees can be calculated

from

(r + 1)n− r − 1 =
h∑

i=1

ri−1 = rh − 1 (C.1)

which implies

h ≈ logr(rn+ n) (C.2)
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In addition,

card(Mk) ≤ r2(k−1) (C.3)

The complexity of processing a single member from Mk is bounded by 2i. Thus,

without taking into account the involved complexity of Algorithm 4 for calculating the

contribution of noise terms, the overall computational complexity is bounded by

h∑
i=1

r2(i−1) · 2i = r−2

h∑
i=1

r2i · 2i (C.4)

Letting j
.
= 2i,

r−2

h∑
i=1

r2i · 2i = r−2

2h∑
j=1

jrj − r−1 (C.5)

Now, using the relation

m∑
i=1

iri =
r

(r − 1)2
(
1− rm −mrm +mr1+m

)
≈ 1

r
[mrm(r − 1)− (rm − 1)] (C.6)

and recalling that h = logr(rn+ n) gives

r−2

2h∑
j=1

jrj − r−1 < r−2

2h∑
j=1

jrj

= r−3
[
logr(rn+ n)2 · (rn+ n)2(r − 1)− ((rn+ n)2 − 1)

]
≈ r−3(r + 1)2(r − 1)n2logr(rn+ n)2 ∼ O

(
n2log(rn)

)
(C.7)

The computational complexity cost of calculating the contribution of the noise terms

to the cross-covariance (Algorithm 4) can be bounded as follows. It is assumed that

Algorithm 4 is carried out each time a pair fromMk is processed. Note that in practice,

Algorithm 4 should be executed only upon finding a known pair of nodes. A single

execution of this algorithm for a pair of nodes (ci, di) from the ith level requires checking

for each a ∈ Dc(ci) whether a ∈ Ad(di), and for each b ∈ Dd(di) whether b ∈ Dc(ci).

This procedure is therefore bounded by 2irh−i. Thus, processing a single member from

Mi is now bounded by 2i + 2irh−i instead of 2i. The overall computational complexity,

including the complexity of Algorithm 4, is therefore bounded by

h∑
i=1

r2(i−1) · (2i+ 2irh−i) ∼ O
(
n2log(rn)

)
(C.8)

In conclusion, the worst-case complexity of calculating a cross-covariance term in a

general scenario is bounded by O (n2log(rn)).
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C.2 Efficient Implementation

The computational load can be significantly reduced by efficient implementation methods.

One possible implementation is described next.

A meta-structure H is created and maintained when constructing the two trees Tc
and Td. This structure is comprised of a header containing the details of all the nodes

participating in either of the two trees. Each cell in the header, representing some node

b, has also a flag indicating whether b appears in both of the trees. In addition, each cell

points towards a structure that contains the following fields: The name of the tree in which

b appears; height of the node b; link to the location of b in the tree. The structure contains

also pointers to nodes u1, . . . ur−1, if such nodes exist, such that b and the nodes u1, . . . ur−1

belong to the same MP measurement update (and therefore, E[X̃bX̃
T

ui ], i = 1, . . . , r − 1,

are known). If b appears in the trees several times, a linked list is used in which each

cell is a structure representing a single appearance of b in the trees. Figure C.1 shows

schematically such a structure for r = 3.

This implementation allows processing each member (ck, dk) ∈ Mk more efficiently,

although the worst-case computational complexity does not change. Instead of looking for

⊙(ck, dj) or ⊙(cj, dk), by going over the nodes in ck
Tc=⇒ c and dk

Td=⇒ d, the following may

be performed: Check in the meta-structure H whether ck is linked to any other nodes,

which were part of the same MP update. For each such node u (there are only r− 1 such

nodes), check if u ∈ VTd
by going over the linked list of u in H. For each appearance

u ∈ VTd
, check if hd(u) < k, and then check if dk ∈ Ad(u). Choose the node u with the

smallest height. Repeat the process for dk with the proper adjustments.

Assume that ⊙(cj, dk). When computing the contribution of the noise terms (cf.

Section 4.3.2.3), instead of processing all the nodes1 in (Td)
dk and (Tc)

cj , checking whether

they appear in cj
Tc=⇒ c and dk

Td=⇒ d, respectively, the following may be performed. For

each node cr ∈ cj
Tc=⇒ c, check in H whether it appears in Td (indicated by flag = 1).

If it does, go over the linked list of cr in H and choose only the appearances of cr in Td
which are higher than k. For each chosen appearance of cr, verify that dk is a descendant.

Repeat the process for dk
Td=⇒ d (with respect to Tc).

C.3 Efficient Calculation of Transition and Process

Noise Covariance Matrices

The problem this section refers to is of calculating transition and process noise covariance

matrices between some two time instances which are unknown a priori. These matrices

participate in calculation of the cross-covariance terms (cf. Section 4.2).

1The number of nodes in (Ta)
b is bounded by rh−hb , where h is the height of the tree Ta, and hb is

the height of node b in Ta.
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Figure C.1: Schematic illustration of a possible implementation of H for the scenario

shown in Figure 4.2. Only the structure for the node a−2 is shown. Note that flag’s value

is 1 since a−2 appears in both trees.

In addition to the graph G, locally constructed by every platform in the group, each

platform (or some of the platforms) is assumed to maintain a repository composed of

external sensors readings and of navigation data at different time instances. Thus, the

ith platform maintains a repository storing ζi and yi at different time instances. The

platforms’ repositories are used for calculating the MP measurement z (cf. Eq. (4.7)).

We first discuss calculation of transition matrices. Consider calculation of a transition

matrix for the ith platform relating Xi(tk) with Xi(tk+s), i. e., Φ
i
tk→tk+s

. The parameter s

is any positive number for which Eq. (4.5) correctly represents the relation between Xi(tk)

and Xi(tk+s). Assume that the information sets (ζi(tk),yi(tk)), . . . , (ζi(tk+s),yi(tk+s)) are

stored in the repository of the ith platform.
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A naive approach for calculating Φi
tk→tk+s

would be based on

Φi
tk→tk+s

= Φi
tk+s→tk+s−1

· . . . · Φi
tk→tk+1

(C.9)

However, a much more time-efficient alternative is to calculate Φi
tk→tk+s

using transition

matrices bridging between several time instances. For example, if we had available the

matrix Φi
tk→tk+s−1

, the computation of Φi
tk→tk+s

would require multiplication of only two

matrices:

Φi
tk→tk+s

= Φi
tk+s−1→tk+s

· Φi
tk→tk+s−1

(C.10)

This concept can be obtained by maintaining a skip list [87] type database. The lowest

level is comprised of the stored images and its associated navigation data, including the

transition matrices between adjacent stored images. This level is a possible implementa-

tion of the repository maintained by all/some platforms. Each next level is constructed by

skipping several nodes in the lower level, and assigning the appropriate transition matrix,

transferring from previous node to next node in the same level. No other data is stored

outside the first level nodes.

An example of this concept is given in Figure C.2, in which every two nodes in some

level contribute a node in the next level. A simplified notation is used in this figure, where

Φi
tk→tk+s

is represented by Φk→k+s (the platform identity notation is omitted). Thus, for

instance, calculation of Φ2→5 can be performed by searching for the appropriate route in

the skip list formation, which will yield Φ2→5 = Φ3→5Φ2→3, instead of carrying out the

three matrix multiplications Φ2→5 = Φ4→5Φ3→4Φ2→3.

The process noise covariance matrix between any two time instances can be efficiently

calculated following a similar approach. For example, Qi
tk:tk+s

is given by

Qi
tk:tk+s

= Qi
tk+s−1:tk+s

+ (C.11)

+ Φi
tk+s−1→tk+s

Qi
tk+s−2:tk+s−1

(Φi
tk+s−1→tk+s

)T + · · ·+ Φi
tk+1→tk+s

Qi
tk:tk+1

(Φi
tk+1→tk+s

)T

However, if each node in the skip list database contains the noise covariance matrix

between the previous node in the same level, Qi
tk:tk+s

can be also calculated, for instance,

as

Qi
tk:tk+s

= Qi
tk+s−1:tk+s

+ Φi
tk+s−1→tk+s

Qi
tk:tk+s−1

(Φi
tk+s−1→tk+s

)T (C.12)
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Figure C.2: Skip list repository database example.
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, טפורמות השונות שבוצעו עד כה בגרףשפותח מייצג את כל המדידות בין הפלהאלגוריתם 

האלגוריתם מאפשר חישוב . המתוחזק בצורה עצמאית על ידי כל אחת מהפלטפורמות בקבוצה

קווריאנס על סמך גרף זה בתרחישים כלליים המשלבים מודלים שונים - איברי הקרוסמפורש של 

  .בין פלטפורמות שונות שבוצעו בזמנים כלשהםשל מדידות 

  
מאילוצים של המורכבות ביעי שפותח במחקר זה מוצע להשתמש במדידות באלגוריתם הר

צים אלו פותחו כחלק מהאלגוריתם השני ואיל.  שלוש תמונות לניווט קואופרטיביתגיאומטריי

אילוצים עליהן מושתתים , החפיפה המשותףתמונות בעלות אזור ה תשלוש, כעת. שהוזכר לעיל

במקרה וחלק מהתמונות . טפורמות שונות ובזמנים שוניםיכולות להיות מצולמות על ידי פלאלו 

נשלפים מתוך מאגרי הנתונים המתוחזקים , התמונות ונתוני ניווט המוצמדים אליהן, צולמו בעבר

המצלמה בגישה זו אינה , בניגוד למדידות מצב יחסי. על ידי הפלטפורמות השונות בקבוצה

יות ונתוני הניווט מהפלטפורמות השונות ה. מאולצת להיות מכוונת כלפי פלטפורמות אחרות

קווריאנס הנדרשים -איברי הקרוס, המשתתפים באותה מדידה יכולים להיות תלויים סטטיסטית

קווריאנס עבור -האלגוריתם לחישוב איברי הקרוסמחושבים על סמך מערכת הניווט בשלב עדכון 

ם זה הותאם למודל המדידה אלגורית). המתואר לעיל(מודל מדידה כללי בין מספר פלטפורמות 

, בדומה למקרה של פלטפורמה בודדת.  שלוש תמונותתהמוכתב על ידי אילוצים של גיאומטריי

כולל שגיאות מיקום , אילוצים אלו מאפשרים להקטין שגיאות ניווט בפלטפורמה המעודכנת

   . כלשהווללא מידע נוסף) כגון מד טווח(ללא שימוש במדידים נוספים , ומהירות בכל הצירים
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 האלגוריתם מאפשר לבצע עדכון מערכת הניווט .יכול להתבצע בתהליך רקע) תמונות פסיפס

תוך עיבוד של שלוש תמונות בלבד ובכך מציג דרישות , כמו בכל תרחיש אחר, בתרחישי מעגל

שילוב אילוצים , למיטב ידיעת המחבר ).SLAMכגון (וכות ביחס לגישות מקובלות חישוביות נמ

לא ,  המוכר היטב בספרותtrifocal tensor-כולל ה,  של שלושה מבטיםההנובעים מגיאומטרי

  .הוצע עד כה לצורך עדכון מערכת הניווט ובפרט לצורך טיפול בתרחישי מעגל

  
בהינתן קבוצת פלטפורמות . וט הקואופרטיביחלקו השני של המחקר מתרכז בבעיית הניו

במצלמה ואולי במדידים , כל אחת מצוידת במערכת ניווט אינרציאלית, המסוגלות לתקשר ביניהן

ר ביצועי הניווט של הפלטפורמות השונות על ידי שיתוף פעולה בין ופילשמפותחות שיטות , נוספים

  .הפלטפורמות בקבוצה

  

 קואופרטיבי הינה שימוש במדידות של מיקום ומצב זוויתי יחסי ניווטלהגישה המקובלת בספרות 

או לחילופין (מדידות אלו מניחות קיום של מד טווח . בין זוגות של פלטפורמות) מצב יחסילהלן (

גישה אחרת לניווט קואופרטיבי . אשר בלעדיו לא ניתן לעדכן מיקום בכל הצירים, )זוג מצלמות

נה הנצפית על ידי זוג פלטפורמות ולנצל את האילוצים הנובעים שהוצעה לאחרונה הינה לזהות סצ

, גם בגישה זו, אולם.  של שתי תמונות לצורך עדכון מערכת הניווט של הפלטפורמותהמגיאומטרי

, כפי שמתואר בהמשך. המדידות אינן מאפשרות עדכון מיקום בכל הצירים, בהיעדר מד טווח

ללא , י בה שגיאת המיקום מוקטנת בכל הציריםבמחקר זה מוצעת גישה לניווט קואופרטיב

  .שימוש במד טווח

  

סוגיה נוספת שיש לתת עליה את הדעת הינה התלות הסטטיסטית בין נתוני הניווט בפלטפורמות 

 ביצוע עדכוני ניווט המשלבים נתוני ניווט ממספר לאחרתלות זו מתפתחת . שונות בקבוצהה

 במקרה .ת עלולה להוביל לשערוך לא עקבי ואופטימיהזנחה של תלות סטטיסטית זא. פלטפורמות

חישוב הגישה המקובלת לטפל בסוגיה זו הינה , של מדידות מצב יחסי בין זוגות של פלטפורמות

המכילה את הקווריאנס של כל אחת מהפלטפורמות , תחזוקה של מטריצת קווריאנס מאוחדתו

גישה זו אכן מתאימה עבור מדידות . הקווריאנס בין כל זוגות הפלטפורמות בקבוצ-ואיברי קרוס

במקרה של פלטפורמות זוג (של הפלטפורמות השונות  הנוכחי זמןמההמושתתות על נתוני ניווט 

 של פלטפורמות שונות אשר מודל מדידות המושתת על נתוני ניווטב, אולם). מדידות מצב יחסי

סף לחוסר ידיעה של זהויות בנו: גישה זו לא מתאימה,  הנוכחי וחלקם לקוח מהעברזמןחלקם מה

חישוב . גם רגעי הזמן של נתוני הניווט אינם ידועים מראש, הפלטפורמות המשתתפות במדידה

קווריאנס בין כל - תחזוקה של מטריצת קווריאנס מאוחדת הכוללת בנוסף גם איברי קרוסו

  . הפלטפורמות השונות בכל אחד מרגעי הזמן האפשריים אינה פתרון ישים

  

לחשב בצורה האלגוריתם מציע . פתרון לבעיה זומציע  שפותח במחקר זה השלישים האלגורית

קווריאנס הנדרשים בשלב עדכון מערכת הניווט עבור מודל מדידה - מפורשת את איברי הקרוס

 על נתוני ניווט ומדידות של מדידים תבמודל זה המדידה מושתת. כללי בין מספר פלטפורמות

מדידה המורכבת מאילוצים של . ם להילקח מזמנים שוניםממספר פלטפורמות אשר יכולי

במקרה של מודל מדידה . הינה דוגמה פרטית למודל זה, שהוזכרה לעיל,  שתי תמונותתגיאומטריי

 .נתוני הניווט מכל הפלטפורמות המשתתפות במדידה יכולים להיות תלויים סטטיסטית, כללי
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 החישוביות  הדרישותו הינSLAMשת צוואר הבקבוק בגיאולם . סצנה שכבר צולמה בעבר

פעולה , שיטות מקורבות להקטנת הדרישות החישוביות מספר שפותחולמרות . הגדלות עם הזמן

  .SLAM עדיין אתגר בגישת הבזמן אמת לאורך זמן ממושך הינ

  

לבצע עדכוני המאפשרת , SLAMבפיתוח חלופה לגישת , בחלקו הראשון, מחקר זה מתמקד

 בהנחה כי הפלטפורמה מצוידת אך ורק במערכת ניווט אינרציאלית אמתזמן מערכת ניווט ב

במחקר מוצע לבצע את שלב . אשר יכולה להיות מורכבת על גבי גימבלים, ובמצלמה בודדת

המתקבלות תמונות . לאו דווקא בזמן אמת, )background process(תהליך רקע בהמיפוי 

מייצג זה מאגר נתונים . לוונטי ממערכת הניווטיחד עם מידע ר, המצלמה נשמרות במאגר נתוניםמ

עדכון מערכת הניווט מתבצע . של תמונות פסיפסבנייה לצורך גם את שלב המיפוי ויכול לשמש 

 ותהנשלפ,  אליהןים ניווט המוצמדונתוני ,תמונותמהבזמן אמת על סמך מידע נוכחי מהמצלמה ו

עדכון  את הדרישות החישוביות בשלב להקטין במידה ניכרת זו מאפשרת גישה. ממאגר הנתונים

  .SLAM לעומת הדרישות בגישת מערכת הניווט

  
,  ניווט בתרחישים מאתגריםביצועימתמקד בשיפור האלגוריתם הראשון שפותח במחקר זה 

כגון צילום סצנה דלת מאפיינים על ידי , בהקשר של שערוך תנועה מבוסס ראייה ממוחשבת

 אשר מתקבלות מהמצלמה משמשות לצורך בנייה של תמונת תמונות .מצלמה עם שדה ראייה צר

בהנחה כי המצלמה . המייצגת את מיפוי הסביבה ובו זמנית משמשת לביצוע עדכוני ניווט, פסיפס

. המצלמה מבצעת תהליך של סריקה המאפשר מיפוי של אזורים נרחבים, מורכבת על גבי גימבלים

. פסיפסהמצלמה לבין תהליך בניית תמונת באלגוריתם מוצע לצמד בין תהליך הסריקה של ה

, צימוד זה מאפשר להגדיל את אזורי החפיפה בין התמונה הנוכחית לתמונת הפסיפס הקודמת

 implicit, מנוסח מסנן קלמן סתום מורחב, בהמשך. דבר המניב שיפור בדיוקי שערוך התנועה

extended Kalman filter) IEKF( , במסנן . התנועה המשוערכתלצורך עדכון מערכת הניווט עם

  .משוואת המדידה נתונה בצורה לא מפורשת, זה

  
שתי  (בדומה לכלל השיטות לעדכון מערכת הניווט המסתמכות על מידע המגיע משני מבטים

, גם אלגוריתם זה מסוגל לבצע שערוך תנועת הטרנסלציה של המצלמה רק עד כדי קבוע, )תמונות

שגיאות המיקום והמהירות , למשל. חלק משגיאות הניווטרק של  הקטנה תדבר המיתרגם ליכול

האלגוריתם אינו מסוגל לנצל את , בנוסף. בכיוון התנועה אינן מוקטנות עקב חוסר אובזרווביליות

סוגיה זו הובילה . רה של תרחישי מעגל שהוזכרו לעילמלוא הפוטנציאל הטמון במידע שזמין במק

  .לפיתוח של אלגוריתם חדש

  
מוצע לראשונה לשלב אילוצים הנובעים מכך , שפותח במסגרת מחקר זה, שניבאלגוריתם ה

פותח ניסוח חדש של .  לצורך עדכון מערכת הניווט, שוניםניםשסצנה סטטית נצפית בשלושה זמ

חלק מהתמונות  ( אליהןים ניווט המוצמדנתוני וניםהמשלב תמונות משלושת הזמ, אילוצים אלו

האילוצים שולבו עם מערכת הניווט בעזרת ניסוח חדש . )נשלפות ממאגר הנתונים המוזכר לעיל

בפרט שגיאות מיקום ומהירות בכל , האלגוריתם מאפשר הקטנה של שגיאות ניווט. IEKFשל 

וע  לא נדרשות תמונות נוספות לצורך ביצ.בהינתן שלוש תמונות עם אזור חפיפה משותף, הצירים

המיוצג על ידי התמונות במאגר הנתונים או על ידי (עדכון מערכת הניווט בעוד שטיוב המיפוי 



 i

  תקציר
  
  

.  פלטפורמות ניידותדייל לצורך ביצוע מגוון רחב של משימות עהנדרשת   יכולת בסיסיתוניווט הינ

מהירות ומצב , ידיעה של מיקום, בין השאר, מעבר מנקודה לנקודה בעולם התלת מימדי מחייב

 :חישוב פרמטרים אלו נראה כמו משימה פשוטה, במבט ראשון. זוויתי של הפלטפורמה בכל עת

פתרון הניווט בכל זמן נתון , )IMU(בהנחה כי הפלטפורמה מצוידת במדידי ניווט אינרציאליים 

אולם תהליך . IMU- המדידות הנוכחיות של הוניתן לחישוב על סמך פתרון הניווט בזמן הקודם 

מניב פתרון ניווט הכולל שגיאות , )INS(אינרציאלית הניווט ה מערכת דייל המבוצע ע, זה

 שגיאות במדידות של נההסיבה העיקרית לשגיאות אלו הי. מתבדרות עם הזמןשהולכות ו

ת ושגיא, IMU- התלוי בין השאר באיכות ה, לאחר פרק זמן מסוים. םהמדידים האינרציאליי

  . שיהיו בלתי קבילות במגוון רחב מאוד של משימות לרמותוגיעית והניווט האינרציאלי

  
 להקטין את או לפחות, ים נוספים על מנת לאפסידנהוג להיעזר במידע ובמד, כתוצאה מכך

). navigation aiding (עדכון מערכת הניווט תהליך הנקרא ,שגיאות הניווט האינרציאליות

-מערכת ה. מקורות מידע ומדידים אלו יכולים לשמש לחישוב ישיר של פתרון הניווט, לחילופין

GPS ,יא ללא ספק השיטה המקובלת ה, 20-  של המאה ה70- מאז כניסתה לפעולה בשנות ה

 וחישוב ישיר של פתרון עדכון מערכת הניווטבמרבית מערכות הניווט המודרניות לצורך ביצוע 

 פעולה :כגון, תרחישים במגוון אינו אמין, או לחילופין, נו זמין איGPS-אות ה,  אולם.ניווטה

במקרים אלו יש צורך  .בסביבה עירונית ועל פני כוכבי לכת אחרים, בתוך מבנה, מתחת למים

-שיטות אלו יכולות לשמש כגיבוי למערכת ה,  בנוסף.בשיטות חלופיות על מנת לקבל ניווט מדויק

GPS ,למקרים בהם אות ה-GPS למשל כניסה ( נהפך ללא זמין בשלב מסוים במהלך המשימה

  ).לאזור עירוני צפוף

  
 לפיתוח שיטות רבות ותרמ והתפתחות היכולת החישובית בשני העשורים האחרוניםאבחנה זו 

השיטות נבדלות בהנחות לגבי .  המסתמכות על ראייה ממוחשבתעדכון מערכת הניווטלביצוע 

 ובמדידים השונים ,)DTM(כגון מפות טופוגרפיות ממוחשבות  ,המידע הקיים מראש במערכת

  .מד טווחו, ה בודדת או מספר מצלמותמצלמכגון  ,שאיתם הפלטפורמה מצוידת

  
סביבה כלומר , שאינה מוכרתבפיתוח יכולת לפעול בסביבה דגש מיוחד אחרונות הושם בשנים ה

נדרש למפות את , בנוסף לחישוב פתרון הניווט, לעתים. לא קיים מידע כלשהו מראששלגביה 

 בו ,ניווט ומיפוי, האלוביצוע שתי המשימות .  במשך המשימה על ידי המצלמההסביבה הנצפית

המפה ). Simultaneous localization and mapping) SLAMעה בתור זמנית הינה גישה הידו

או על ידי , בעולם התלת מימדי הנבנית יכולה להיות מיוצגת על ידי מיקומים של נקודות עניין

שיטות . המצלמהמ שהתקבלו על סמך התמונות יתהנבנ) או מספר תמונות פסיפס(תמונת פסיפס 

SLAMמצלמה , מצלמה בודדת: למשל(בי המדידים החיצוניים בהנחות לג, בין היתר,  נבדלות

יכולת מובנית לטפל ב, בין היתר, מתבטא SLAMשל גישת חוזקה ). זוג מצלמות, בודדת ומד טווח

לצלם , לאחר פרק זמן שאינו ידוע מראש, בהם הפלטפורמה חוזרת, בתרחישי מעגלבצורה עקבית 



ר הקטור רוטשטיין בפקולטה "אהוד ריבלין וד' פרופ, ח פיני גורפיל/ נעשה בהנחיית פרופהמחקר
  .לאווירונאוטיקה וחלל

  
  .אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי
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