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Abstract—Active simultaneous localization and mapping
(SLAM) is the problem of planning and controlling the motion
of a robot to build the most accurate and complete model of the
surrounding environment. Since the first foundational work in
active perception appeared, more than three decades ago, this
field has received increasing attention across different scientific
communities. This has brought about many different approaches
and formulations, and makes a review of the current trends
necessary and extremely valuable for both new and experienced
researchers. In this article, we survey the state of the art in active
SLAM and take an in-depth look at the open challenges that still
require attention to meet the needs of modern applications. After
providing a historical perspective, we present a unified problem
formulation and review the well-established modular solution
scheme, which decouples the problem into three stages that
identify, select, and execute potential navigation actions. We then
analyze alternative approaches, including belief-space planning
and deep reinforcement learning techniques, and review related
work on multirobot coordination. This article concludes with a
discussion of new research directions, addressing reproducible
research, active spatial perception, and practical applications,
among other topics.
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I. INTRODUCTION

AUTONOMOUS operation in robotics applications re-
quires robots to have access to a consistent model of the

surrounding environment, in order to support safe planning and
decision making. Toward this goal, a robot must have the ability
to create a map of the environment, localize itself on it, and
control its own motion. Active simultaneous localization and
mapping (SLAM) refers to the joint resolution of these three
core problems in mobile robotics, with the ultimate goal of
creating the most accurate and complete model of an unknown
environment. Active SLAM can be seen as a decision-making
process in which the robot has to choose its own future control
actions, balancing between exploring new areas and exploiting
those already seen to improve the accuracy of the resulting map
model.

During the last decades, active SLAM has received increasing
attention1 and has been studied in different forms across mul-
tiple communities, with the ambition of deploying autonomous
agents in real-world applications (e.g., search and rescue in haz-
ardous environments, underground, or planetary exploration).
This divergence has broadened the scope of the problem and
provided a wider context, yielding numerous approaches based
on different concepts and theories that have made the field
flourish; but it also created a disconnect between research lines
that could mutually benefit from each other. With this survey,
we seek to fill this gap by providing a general problem statement
and a unified review of related works.

Currently, active SLAM is at a decisive point, driven by
novel opportunities in spatial perception and artificial intel-
ligence (AI). These include, for instance, the application of
breakthroughs in neural networks to prediction beyond line-
of-sight, reasoning over novel environment representations, or
leveraging new SLAM techniques to process dynamic and de-
formable scenes. Throughout this article, we give a fresher
picture of active SLAM that goes beyond the classical—but still
mainstream—entropy computation over discretized grids. Be-
sides, we identify the open challenges that need to be addressed
for active SLAM to have an impact on real applications, shaping
future lines of research, and describing how they can nourish
from the cross-fertilization between research fields. Among
those challenges, we emphasize the urgent need for benchmarks
and reproducible research.

1The number of publications on active SLAM has grown from 53 in 2010 to
over 660 in 2022 (a 12-fold increase). The number becomes almost 5500 if we
extend the search to include BSP, active exploration, and simultaneous planning,
localization, and mapping. Source: dimensions.ai.
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A. Historical Perspective

Ever since the first mobile robots were built in the late 1940s,
the ambition that they could perform autonomous tasks has
been one of the major focuses of robotics research. To operate
autonomously, a robot needs to form a model of the surrounding
environment—including localization and mapping—and per-
form safe navigation [1]. While the former involves estimating
the position of the robot and creating a symbolic representation
of the environment, the latter refers to planning and controlling
the movements of the robot to safely achieve a goal location.
Localization, mapping, and planning have been often investi-
gated in combination, resulting in multiple research areas, such
as SLAM, active localization, active mapping, and active SLAM.

Localization and mapping were treated deterministically and
solved independently until probabilistic approaches went main-
stream in the 1990s, when researchers realized that both tasks
were correlated and dependent of one another. SLAM refers,
thereby, to the problem of incrementally building the map of an
environment while at the same time locating the robot within
it [2]. This problem has attracted significant attention from the
robotics community in the last decades; see [3], [4], [5] and the
references therein.

SLAM, however, is a passive method and is not concerned
with guiding the navigation process. In contrast, active ap-
proaches do consider the navigation aspects of the problem.
Bajcsy [6], Cowan and Kovesi [7], and Aloimonos et al. [8] were
the first to study and analyze the problem of active perception
(also referred to as active information acquisition [9]) in the late
1990s. Bajcsy [10] would later formally define it as the problem
of actively acquiring data in order to achieve a certain goal,
necessarily involving a decision-making process. For the cases in
which the objective is to improve localization, mapping, or both,
the problems are, respectively, referred to as active localization,
active mapping, and active SLAM.

Active mapping was the first problem to be addressed, dating
back to the work of Connolly [11] in 1985. Better known since
then as the next best view problem, active mapping tackles the
search of the optimal movements to create the best possible
representation of an environment. Subsequent examples date
to the 1990s [12], [13], [14], always under the assumption of
perfectly known sensor localization. This problem has been
primarily addressed in the computer vision community to re-
construct objects and scenes from multiple viewpoints, since
the nature of the projective geometry for monocular cameras,
occlusions, and limited field of view often make impossible to
do it from just one viewpoint; see [15] and the references therein.

In a similar vein, active localization aims to improve the
estimation of the robot’s pose by determining how it should
move, assuming the map of the environment is known. First
relevant works can be traced back to 1998, when Fox et al. [16]
and Borgi and Caglioti [17] formulated it as the problem of de-
termining the robot motion so as to minimize its future expected
(i.e., a posteriori) uncertainty. In particular, it is in [16] where
the foundations of the current workflow were laid:

1) goal identification;
2) utility computation;
3) action selection (we will extensively review these stages

later in this survey).
Other relevant subsequent work can be found in [18], [19],

[20], and [21], but also in the related literature of perception-
aware planning [22] and planning under uncertainty [23].

Finally, active SLAM unifies the previous problems, and al-
lows a robot to operate autonomously in an initially unknown
environment. It refers to the application of active perception to
SLAM and can be defined as the problem of controlling a robot,
which is performing SLAM in order to reduce the uncertainty
of its localization and the map representation [24]. Historically,
active SLAM has been referred to with different terminology,
which has significantly hindered knowledge sharing and dis-
semination within the robotics community. Relevant seminal
works can be found under the names of active exploration [25],
adaptive exploration [26], [27], integrated exploration [28], [29],
autonomous SLAM [30], simultaneous planning, localization
and mapping [31], belief-space planning (BSP) [32], or simply
robotic exploration [33], [34]. It was not until 2002—when
Davison and Murray [35] coined the term active SLAM—that
the robotics community started adopting this nomenclature.
Thrun and Möller [25] demonstrate that in order to solve robotic
exploration, agents have to switch between two opposite prin-
ciples depending on the expected costs and gains: exploring
new areas and revisiting those already seen, i.e., the so-called
exploration–exploitation dilemma. The first approach in which
a robot chooses actions that maximize the knowledge of the two
variables of interest is attributed to Feder et al. [26], who also
separate the procedure in three major stages as in [16]. Table I
contains a subset of relevant works that have followed [26]. This
table differentiates the main aspects of each approach, including
the type of sensors, the state representation, and the theoretical
foundations.

B. About Previous Surveys

Only two works have previously addressed the problem of
surveying active SLAM research. The first of them, published
in 2016, is a section of a more general survey on SLAM carried
out by Cadena et al. [5]. The other, by Lluvia et al. [36],
conducts a more extensive survey on “active mapping and robot
exploration.” Table II summarizes the topics they address, along
with those covered in the present survey.

Cadena et al. [5] described both the history and the main
aspects of the problem, and identify three open challenges: the
decision of when to stop performing active SLAM, the problem
of accurately predicting the effect of future actions, and the lack
of mathematical guarantees of optimality. However, the brevity
of the active SLAM section prevented delving into a detailed
discussion of the most relevant works or providing a more unified
mathematical formulation of the problem. Moreover, since the
work [5] was published, many relevant contributions have been
proposed and new open problems have arisen. For instance,
progress has been made on the way uncertainties of the robot lo-
cation and the map are represented and quantified. Furthermore,
recent work has also opened new research endeavors, including
deep learning (DL).

Lluvia et al. [36] also provided a thorough historical review
and relate the different communities that have been trying to
solve this problem under different nomenclatures. Similar to [5],
they do not attempt to present a unified mathematical formula-
tion of active SLAM nor do they cover utility computation, a
field which has been mostly overlooked in the literature. They
delve, nevertheless, into the optimization of vantage points and
the trajectories to reach them, a new problem that has attracted
significant attention from the control community and has seen
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TABLE I
COMPARISON BETWEEN REPRESENTATIVE ACTIVE SLAM APPROACHES, ORDERED CHRONOLOGICALLY

TABLE II
COMPARISON BETWEEN THE TOPICS AND OPEN CHALLENGES ADDRESSED IN

PREVIOUS SURVEYS AND THE CURRENT ONE

many contributions in recent years. In [36], the authors present
a comparison between representative works in active SLAM,
although with a limited scope. Contrarily to [36], we present a
more complete analysis and a broader set of open challenges,
which extends the ones identified in [5].

C. Article Structure

The rest of this article is organized as follows. Section II
provides a unified problem formulation for active SLAM and
describes the three subproblems (or stages) it has traditionally
been divided into. Sections III–V cover those three stages sep-
arately. In particular, Section III deals with the identification
of vantage points, Section IV with utility computation, and
Section V with selection and execution of the optimal action.
Sections VI and VII consider, on the other hand, alternative
continuous-state optimization and DL methods. Section VIII is
devoted to multirobot active SLAM. Section IX outlines the open
research questions in active SLAM. Finally, Section X concludes
this article.

II. ACTIVE SLAM PROBLEM

A. Problem Formulation

Active SLAM can be framed within the wider mathemat-
ical framework of partially observable Markov decision pro-
cesses (POMDPs), after some particularization. POMDPs model
decision-making problems under both action and observa-
tion uncertainties and can be formally defined as the 7-tuple
(S,A,Z, ξs, ξz, r, γ). In particular, a POMDP consists of the
agent’s state space S , a set of actions A, a transition function
between states ξs : S ×A �→ Π(S) where Π(S) is the space of
probability density functions (pdfs) overS , an observation space
Z , the conditional likelihood of making any of those observa-
tions ξz : S �→ Π(Z), whereΠ(Z) is the space of pdfs overZ , a

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 07,2023 at 07:59:41 UTC from IEEE Xplore.  Restrictions apply. 



PLACED et al.: SURVEY ON ACTIVE SIMULTANEOUS LOCALIZATION AND MAPPING: STATE OF THE ART AND NEW FRONTIERS 1689

reward scalar mapping r : S ×A → R, and the discount factor
γ ∈ (0, 1) ∈ R, which allows us to work with finite rewards even
when planning over infinite time horizons.

Contrary to the fully observable case, agents in a POMDP
cannot reliably determine their own true state, s. Instead, they
maintain an internal belief or information state, bt(st), which
represents the posterior probability over states at time t, given
the available data collected up to that time [2], [70], [71]

bt(st) � p(st| z1:t,a1:t−1︸ ︷︷ ︸
history, h

) (1)

where z1:t is the set of all available observations and a1:t−1

the set of past control actions (both collectively referred as the
history h). The belief space, B(S) ≡ Π(S), of pdfs over the set
S is defined as

B(S) � {b : S �→ R |
∫

b(s)ds = 1, b(s) ≥ 0} . (2)

In order to evaluate the effect of future actions, agents must
be capable of predicting posterior belief distributions, that is,
the pdf over S after performing a certain action, at, and taking
a future observation zt+1

bt+1(st+1) � p(st+1|zt+1,at, bt(st)) . (3)

Since the future measurements are unknown for the agent, their
expected value has to be studied instead. Consider that an agent
in the state defined by bt(st) executes a certain action at, and
transitions to another state with pdfp(st+1). Then, the likelihood
of making an observation will be given by [71]

p(zt+1|bt(st),at) =

∫ ∫
ξz(st+1) ξs(st,at)

bt(st) dst dst+1 (4)

where ξz(st+1) = p(zt+1|st+1) is the observation model and
ξs(st,at) = p(st+1|st,at) the motion model.

Since the belief is a sufficient statistic, optimal policies for
the original POMDP may be found by solving an equivalent
continuous-space MDP over B(S) [70], [72]. Such MDP is
defined by the 5-tuple (B,A, ξb, ρ, γ), where the transition and
reward functions are ξb : B ×A �→ Π(B) and ρ : B ×A �→ R.
To preserve consistency, this belief-dependent reward function
builds on the expected rewards of the original POMDP

ρ(bt,at) =

∫
S
bt(st) r(st,at) dst . (5)

Then, the decision at time t will be provided by the (con-
trol/action) policy πt, which maps elements from the space of
pdfs over S to the action space

πt : B(S) �→ A . (6)

The optimal policy, π� that yields the highest expected rewards
for every belief state can be found via

π�(b) = arg maxπ

∞∑
t=0

E
[
γtρ(bt, π(bt))

]
(7)

where expectation is taken w.r.t. p(zt+1|bt(st),at). In general,
computing the optimal policy for MDPs with continuous state
spaces is hard and most works resort to approximate solutions
or problem simplifications [70], [73].

The active SLAM problem requires, however, some variation
and particularization of the above general POMDP formulation.
Let us consider a robot capable of moving in an unknown
environment while performing SLAM. That is, at every time
step, the robot can change its own linear and angular velocities;
moreover, the robot is able to process the sensor data into a
map representation, mt ∈ M, and an estimate of its own state
(e.g., pose), xt ∈ X . Thus, the state space can be defined as the
joint space S � X ×M.

The evolution of both the state and the measurements in
SLAM is governed by probabilistic laws [2], as (1) and (4)
express. However, two assumptions are worth mentioning in
the context of active SLAM regarding each of the equations that
further simplify its resolution. First, the robot state is commonly
assumed Gaussian with a pdf b(x)having mean x̂ and covariance
Σr (see, e.g., [40], [43]). Thus, the map and the robot state are
usually treated independently, although some representations
allow for a joint distribution (e.g., in sparse landmark maps or
using Gaussian Processes to model dense maps [53]). Second,
despite less prevalent than the former, some works (e.g., [32])
also assume maximum likelihood (ML) observations, i.e., that
executing an action in a given belief state will always produce
the same, most probable observation. This allows us to rewrite
the expected measurements as

zML
t+1 = arg max

z∈Z
p(zt+1|bt(st),at) . (8)

In addition, in active SLAM the reward typically reflects the
agent’s knowledge of the system (i.e., it involves the uncertainty
in the belief rather than focusing on reaching specific states).
These reward functions are known as utility functions and may be
defined mathematically as the scalar mapping ρ : B(S)×A �→
R. This reward mapping, however, is inconsistent with both
POMDPs (where the reward is dependent on s and a) and belief
MDPs [where the reward is restricted to the form in (5)]. To
circumvent this limitation, ρ-POMDP [73] extends the POMDP
formulation to allow the inclusion of beliefs’ uncertainty in the
objective. This enables the use of information-oriented criteria
rather than control-oriented, without losing basic properties,
such as Markovianity.

Finally, considering a finite-horizon and ML observations,
the discount factor and expectation over future measurements
in (7) can be dropped, and active SLAM can be reduced to the
following optimization for open-loop planning settings:

a�
t:t+k = arg max

at:t+k∈Ak

t+k∑
τ=t

ρ (b(sτ ),aτ ) (9)

where a�
t:t+k is the optimal sequence of actions to execute over

the future planning horizon (k lookahead steps) and Ak � A×
A× · · · × A the space of sequences of actions over k.

B. Decoupling Active SLAM Into Three Subproblems

While the previous section provided a unified formulation
for active SLAM, for computational convenience active SLAM
has been traditionally decoupled into three subproblems (or
stages) [16], [26], [28], which will be briefly described hereafter
and covered in detail in Sections III–V.

1) Identification of the potential actions: Solely to reduce the
computational burden, the first stage aims to determine a
reduced subset of possible actions to execute.
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2) Utility computation: The expected cost and gain of per-
forming each candidate action has to be estimated.

3) Action selection and execution: Finally, the last stage
involves finding and executing the optimal action(s).

The entire process should be iteratively repeated until the
whole environment is accurately modeled, although in practice
it is done until some stopping conditions are met.

For clarity of presentation and because many existing works
do decompose active SLAM into these stages, we review each
stage separately in Sections III–V. However, this decoupling
can produce suboptimal results and lead to undesired behaviors.
Performing the three stages simultaneously is certainly advanta-
geous, e.g., when optimizing over a continuous action space, or
when a control policy is optimized or learned under the umbrella
of POMDPs. We review these approaches, alternative to the
modular scheme, in Sections VI and VII.

III. STAGE 1: IDENTIFICATION OF POTENTIAL ACTIONS

The first stage in modular active SLAM approaches consists
in generating the set of available actions the robot could execute
(i.e., goals the robot can reach); this can be understood as a way
to reduce (and discretize) the search space of potential actions.
Early works simply used random goals or required human
interaction, until the concept of frontiers was introduced by
Yamauchi [74]. This resulted in improved exploration strategies,
and has consolidated as the most common approach. Never-
theless, the advent of neural networks has led to new ways of
evaluating the space of potential goals. In this section, we present
the most important methods to identify goal locations. Since
they strongly depend on the representation of the environment
estimated by the SLAM pipeline, we start by providing a brief
description of the different existing representations for active
SLAM.

A. Representation of the Environment

We review four different types of map representations: topo-
logical, metric, metric-semantic, and hybrid maps.

1) Topological Maps: Use lightweight graphs to describe
information about the topology of the environment. Historically,
vertices in this graph represent convex regions in the free space,
while edges model connections between them. The construction
of these graphs is a segmentation problem, usually done over an
occupancy grid; see [75] for a survey on these methods. Despite
these maps allow leveraging graph theory, which provides pow-
erful tools for planning and exploration, they are not frequently
used in active SLAM [76], [77].

2) Metric Maps: Are the most used representations to encode
information about the environment in active SLAM. They can
be further divided into the following two categories: sparse and
dense maps. The former rely on a sparse set of interest points
(or landmarks) to represent a scene, and have been especially
used in optimal control [39], [62], [78], and BSP [43] ap-
proaches. Dense maps can be based on point clouds, meshes or,
more typically, a discretization of the environment into cells that
encode a certain metric (e.g., occupancy, distance to obstacles).
Occupancy grid (OG) maps, first proposed in the late eighties
for perception and navigation by Elfes [79] and Moravec [80],
assign to each cell its probability of being occupied. They have
been used in numerous active SLAM frameworks, e.g., [51],
[56], [57], [81]. Their extension to 3-D include OctoMaps [82],

Supereight [83], and voxel maps [84], all of which have been
also used in active SLAM [85], [86], [87], [88]. Jadidi et al. [53]
used continuous occupancy maps (COM) to leverage continuous
optimization methods. There exist many other dense maps that
encode more sophisticated metrics, such as those based on
signed distance fields (SDF), such as Voxblox [89]. Still, they
are seldom used in active SLAM [90].

3) Metric-Semantic Maps: Go beyond geometric modeling
and associate semantic information to classical metric maps.
Instead of geometric features, a sparse map can capture objects,
described by a semantic category, pose, and shape [91], [92].
Active object-level SLAM has been considered in [93], [94]. Ex-
amples of dense metric-semantic maps include Voxblox++ [95]
and Kimera [96] (which build upon an SDF), and Fusion++ [97]
and [98] (based on voxel maps). Despite being used in some
SLAM formulations (see [5], [96] and the references therein),
they have not yet been used in active SLAM. An exception is
the work of Asgharivaskasi and Atanasov [99], [100], which de-
velops a multiclass (semantic) OctoMap and uses a closed-form
lower bound on the Shannon mutual information (MI) between
the map and range-category observations to select informative
robot trajectories.

4) Hybrid and Hierarchical Maps: Combine some of the pre-
vious representations to enhance the decision-making process.
Hybrid metric-topological maps have been applied to tackle
either navigation [101] or SLAM [102]. Rosinol et al. [103]
combined metric, semantic, and topological representations into
a single model, a 3-D scene graph. These hierarchical represen-
tations break down metric-semantic maps into interconnected
high-level entities, paving the way for high-level reasoning.
The use of hybrid maps in active SLAM is mostly unexplored,
with [104] among the few works that have integrated them.

B. Detecting Goal Locations

The identification of all possible destinations the robot could
travel to easily proves to be intractable because of the di-
mensions of the map and the action set [105]. In practice, a
finite subset of them is identified, allowing for computational
tractability despite not guaranteeing global optimality [43]. The
simplest approach consists of randomly selecting the goal des-
tinations [106], [107]. Random exploration requires low com-
putational resources and works under the assumption that every
spot in the environment has the same information associated. In
1997, Yamauchi [74] revolutionized the field by introducing the
concept of frontiers, i.e., the areas that lie between known and
unknown regions. Since its proposal, frontier-based exploration
has been the most used by far and has been tailored to different
map representations. Frontiers have been effectively identified
for topological maps as nodes with no neighbors in certain
directions [76]. For 2-D OG maps, a plethora of geometric
frontier-detection methods have been developed to circumvent
the computational cost of searching the entire space [108].
Keidar and Kaminka [109] proposed the wavefront frontier
detector (WFD) and fast frontier detector (FFD). WFD starts
the search from the robot’s location and restricts it to the free
space; FFD performs the search after each scan is collected, fol-
lowing the intuition that frontiers are bound to appear in recently
scanned regions. Following this idea, the same authors present
the incremental WFD [110] that restricts the search to recently
scanned areas. Quin et al. [108] improved the performance of the
previous algorithms by only evaluating a subset of the observed
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free space. Refer to [108], [111] for further discussion. Umari
and Mukhopadhyay [49] first present a frontier search method
over a 2-D OG based on rapidly-exploring random trees (RRTs)
that grow both globally and locally to sample recently scanned
regions. This strategy, often combined with computer vision
algorithms has been widely used [81], [112]. The sample-based
frontier detector algorithm [113] reduces the computational load
of the previous methods by only storing the nodes of the search
tree. Frontier identification in 3-D maps is less frequent, since
3-D maps are more expensive to store and analyze, and are often
incomplete due to the sensed volume. Apart from simple search
techniques [88], [114], most methods evaluate map portions
incrementally [44], [64] or along surfaces [115]. Alternatively,
in [116], authors proposed a method that disperse random parti-
cles over the 3-D known space. No matter the method used, after
detecting frontiers, a clustering step is frequently required to
prevent the frontier set from being high-dimensional (e.g., using
K-means [117] or mean-shift [49]).

Shortly after the concept of frontiers was proposed, Newman
et al. [30] and Stachniss et al. [29] realized that, for a robot with
high uncertainty, potential loop closure areas encode more in-
formation than frontiers; the ultimate goal of active SLAM goes
beyond simply covering the workspace: to improve the accuracy
of localization and mapping. Similarly, Grabowski et al. [118]
observed that regions of interest where sensor readings overlap
may be more informative than new frontiers. In other words,
these works explicitly account for the exploration–exploitation
dilemma in the frontier detection step. It is a common practice in
active SLAM to include potential loop closure regions—along
with frontiers—in the set of goal candidates [40], [54], or to
switch between exploring new frontiers and revisiting known
places [29], [61], [119].

In contrast to frontier-based approaches, some active SLAM
formulations allow the identification of goal locations locally in
the robot’s vicinity. However, note that decisions will be optimal
only locally and a short decision-making horizon may induce
wrong behaviors [26], [120]. This strategy is typical in deep re-
inforcement learning (DRL) approaches [121], [122], [123], for
which local optimality is alleviated by network memorization.
Following the idea that evaluating larger neighborhoods would
lead to more robust decisions, in [40] authors use RRT-based
paths to several configurations over the free space as the action
set; and in [43], the entire environment is considered under the
umbrella of continuous-domain optimization.

IV. STAGE 2: UTILITY COMPUTATION

The second and main stage in modular active SLAM ap-
proaches focuses on the evaluation of each possible destination,
in order to estimate the effect that executing the set of actions
to reach each destination would have. Naive utility formulations
using just geometric or time-dependent functions often result
in nondesirable behaviors [40], [81], [124], since they do not
properly capture the uncertainty in the belief. The exploration–
exploitation dilemma can be more effectively solved by quantify-
ing the expected uncertainty of the two target random variables:
the robot location and the map. Typically, the different objectives
(e.g., travelling cost, mapping, and localization uncertainty) are
aggregated into a single utility function, although there are
multiobjective approaches in which they are kept separate and
Pareto optimal solutions are sought [125], [126], [127]. There is
a plethora of metrics and the choice of which one to use mainly

depends on the selected way to represent the variables of interest.
Metrics based on information theory (IT) usually aim at OG
maps, while those based on the theory of optimal design are
more suitable for Gaussian distributions. We review each choice
as follows.

A. Naive Cost Functions

The simplest (and first-broadly-used) metrics are naive ge-
ometric functions, such as the Euclidean distance to the goal
location [74], the time required to reach it [88], or the expected
size of the are to visit [49], [106], [107]. In fact, the latter
approximates the map’s entropy, which is strongly related to
the number of known cells in an OG map [28]. Since these
metrics are computed over Euclidean or temporal spaces, they
can be used regardless of the map representation chosen [54],
[64], [104]. Stachniss et al. [38] showed that combining distance
and information-based functions results in better exploration
strategies, and this has since been a common approach [128].
However, manual tuning to overcome discrepancies between the
multiple terms involved is needed [49], [129].

B. Information Theory

The most common approach to assess utility in active SLAM
uses IT to quantify the uncertainty in the joint belief state. Within
it, there exist different metrics that allow for such quantification,
although all of them build on the same concept: entropy. The
notion of entropy was introduced by Shannon [130] and can be
defined as a measure of a variable’s uncertainty, randomness,
or surprise; this is in fact strongly related to its associated
information [131].

Early exploration strategies use only the map representation
as the variable of interest [74], [88], [132], thereby assuming no
error in the robot localization. However, soon after the first of
these works emerged, it was observed that high uncertainty in
the robot state estimation leads to wrong expected map uncer-
tainties [27]. The entropy of the SLAM posterior after executing
a candidate action can be computed as [38]

H [p(x,m|h, ẑ,a)] �

H [p(x|h, ẑ,a)]︸ ︷︷ ︸
robot’sH

+

∫
x

p(x|h, ẑ,a)H [p(m|x,h, ẑ,a)] dx︸ ︷︷ ︸
expected conditional map’sH

(10)

where ẑ are the expected (ML) future measurements, which may
be estimated using, e.g., ray-casting techniques [24].

The computation of the previous joint entropy is intractable
in general [38]. To overcome this, most approaches resort to
entropy approximations that first compute utility of the two vari-
ables independently, and then combine them heuristically [27],
[38], [61], [133]. Let us first consider the case of graph-based
SLAM, in which the problem is described using a graph rep-
resentation where nodes represent the robot poses and edges
encode the constraints between them; see [2], [3], [4], [5]. The
joint entropy in (10) can be approximated by [40]

H [p(x,m|h, ẑ,a)] ≈ H [p(x|h, ẑ,a)] +H [p(m|h, ẑ,a)] .
(11)

The mismatch between the magnitudes of the addends above
is the main drawback of such approximation, calling for the
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addition of weighting parameters to balance the contributions
of the two terms [42], [134]. Carrillo et al. [51] circumvent this
by embedding a metric of the robot’s uncertainty in a combined
Shannon-Rényi utility function; an approach that also appears
in [135]. On the other hand, the expectation–maximization
(EM) algorithm [136] embeds the impact of robot’s uncertainty
directly in a virtual map. A similar approximation can be done
for particle-filter SLAM, which represents the belief over robot
trajectories as a set of particles [2], [3], [37]. The integral in (10)
will be now approximated by the weighted mean of all possible
solutions (i.e., particles) [38].

The first term in (10) refers to the robot state entropy, which
can be computed as a function of the posterior covariance
log-determinant, assuming that it is an �-dimensional Gaussian
distribution with covariance Σr ∈ R�×�

H [p(x|h, ẑ,a)] = 1

2
ln
(
(2πe)� det (Σr)

)
. (12)

On the other hand, the second term is the expected map’s
entropy, and its computation depends on the representation
chosen. For instance, in landmark-based maps it can be com-
puted in the same way as the robot’s entropy, under the same
assumption [137]. For discrete metric maps, and assuming cells
independent from each other, it can be defined as [31]

H [p(m|x,h, ẑ,a)] = − ∑
c∈m

θc log θc (13)

with θc = p(c) being the occupancy probability of cell c. This
entropy measure has been used in both 2-D [28], [133] and 3-D
OG maps [85], [88], [117]. More efficient approaches that only
evaluate of cells in the robot’s vicinity have been proposed in
the context of particle-filter SLAM [42], [134], [138].

The most common metric to assess utility in active SLAM is
not Shannon’s entropy of the SLAM posterior, but its expected
reduction. This utility function is known as MI [27], [33] and
is defined as the difference between the entropy of the actual
state and the expected entropy after executing an action, i.e., the
information gain

I(a) � H [p (x,m|h)]︸ ︷︷ ︸
current H

−E [H[p(x,m|h, ẑ,a)]]︸ ︷︷ ︸
expected H for candidate a

(14)

where expectation is taken w.r.t. ẑ.
Kullback–Leibler divergence (KLD) or relative entropy [139]

has also been used as utility function. KLD measures the change
in the form of a pdf (as MI), but also how much its mean has
translated [140]. It is defined as follows:

DKL (p1|p2) � E

[
log

p1(x)

p2(x)

]
=

∑
x

p1(x) log
p1(x)

p2(x)
(15)

with p1(x) and p2(x) the prior and posterior distributions (as
in MI) [141], or the estimated and true posteriors assuming the
latter can be somehow approximated [42], [142], [143].

For OG maps, the three metrics above (entropy, MI, and KLD)
ultimately rely on counting the number of cells in a map, being,
thus, discrete and ill-suited for optimization techniques. To mit-
igate this issue, Deng et al. [87], [144] proposed a differentiable
cost-utility function for both 2-D OG and voxel maps that can be
used with continuous optimization methods (albeit the approach
still assumes perfect robot localization).

In the context of information-theoretic planning, there exists
a problem variation in which the uncertainty of only a subset

of variables is reduced. The motivation comes from the fact
that maximizing information of all variables does not always
imply maximizing that of the subset of interest. This problem
variation has been referred to as focused active inference [145].
In general, focused active inference is more computationally
intensive than the standard case, since it requires marginaliza-
tion of the (posterior) Fisher information matrix (FIM) via,
e.g., Schur complement. Kopitkov and Indelman [146], [147]
presented a method based on the matrix determinant lemma that
does not require the posterior covariance to calculate entropy
considering both the unfocused (entropy over all variables) and
focused (entropy over a subset of variables) cases.

C. Theory of Optimal Experimental Design (TOED)

There exists a second group of utility functions built upon
optimal design theory (TOED) that tries to quantify uncer-
tainty directly in the task space (i.e., from the variance of
the variables of interest). Unlike information-theoretic metrics
that target binary probabilities in the grid map, task-driven
metrics apply to Gaussian variables. Following TOED, a set
of actions to execute in active SLAM will be preferred over
another if the covariance of the joint posterior is smaller, i.e., the
posterior covariance matrix, Σ, has to be minimized. In order
to compare matrices associated to different candidates, several
functions—known as optimality criteria—have been proposed,
such as the trace (originally known as A-optimality) [148], its
maximum/minimum eigenvalue (E-optimality) [149], or its de-
terminant (D-optimality) [150]. The latter was often disregarded
in active SLAM because its traditional formulation did not allow
for checking task completion and generated precision errors
(det(Σ) → 0 rapidly when there are low-variance terms) [34],
[140]. However, Carrillo et al. [24] showed these problems can
be solved using Kiefer’s formulation ofD-optimality [151], thus
re-establishing the latter as an effective measure of uncertainty
for active SLAM.

On the basis of TOED, Kiefer [151] proposed a family of
mappings ‖Σ‖p : Rn×n → R, parametrized by a scalar p

‖Σ‖p �
(
1

n
trace(Σp)

) 1
p

(16)

which can be particularized for the different values of p and
expressed in terms of the eigenvalues of Σ, (λ1, . . . , λ�), by
leveraging the properties of the matrix power

‖Σ‖p =

⎧⎪⎪⎨
⎪⎪⎩

(
1
n

n∑
k=1

λ
p
k

) 1
p

, if 0 < |p| < ∞

exp

(
1
n

n∑
k=1

log(λk)

)
, if p = 0

. (17)

In essence, utility functions are functionals of the eigenvalues
of Σ. The boundary cases p = {0,±∞} and p = ±1 result in
the following four modern optimality criteria.

1) T-optimality criterion (p = 1) captures the average vari-
ance

T -opt � 1

n

n∑
k=1

λk . (18)
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2) D-optimality criterion (p = 0) captures the volume of the
covariance (hyper) ellipsoid

D-opt � exp

(
1

n

n∑
k=1

log(λk)

)
. (19)

3) A-optimality criterion (p = −1) captures the harmonic
mean variance, sensitive to a lower-than average value

A-opt �
(
1

n

n∑
k=1

λ−1
k

)−1

. (20)

4) E-optimality criterion (p → ±∞) captures the radii of the
covariance (hyper) ellipsoid

E-opt � min(λk : k = 1, . . ., n) (21)

Ẽ-opt � max(λk : k = 1, . . ., n) . (22)

Optimality criteria were first used in active SLAM by Feder
et al. [26], where utility was computed as the area of the covari-
ance ellipses describing the uncertainty in the joint posterior.
Since then, many active SLAM methods based on TOED have
been proposed, mostly based on T -opt [34], [39] and, recently,
D-opt [61], [123]. Even so, IT-based methods remain the most
popular. Note that both the map and robot uncertainties must
be described by a covariance matrix Σ ∈ Rn×n, either by us-
ing a full covariance matrix in landmark-based representations
(i.e., n 
 �) or by including the effect of the map’s uncertainty
inΣr (and thusn = �) [152]. Monotonicity. One of the most im-
portant assumptions in active SLAM is that uncertainty increases
as exploration takes place. However, the seminal work in [153]
notes how monotonicity is lost for some utility functions under
certain conditions, concluding that only D-opt guarantees this
property and is thereby the only appropriate utility function for
this task. Kim and Kim [154] and Rodríguez-Arévalo et al. [155]
demonstrate, however that rather than on the utility function
chosen, monotonicity depends on how the error and uncertainty
are represented. In [155], the authors prove that only differential
representations guarantee monotonicity for all utility functions.
In summary, representation of uncertainty is a key issue in
active SLAM, since certain representations do not guarantee its
monotonicity property during exploration, and thus, may lead to
incorrect decisions.

D. Graphical Structure of the Problem

Quantification of uncertainty via scalar mappings of the
covariance matrix may be a computationally intensive task,
mostly due to the fact that the covariance is a large and dense
matrix. Therefore, most works resort to reasoning over the FIM,
i.e., the inverse of the covariance, which is generally sparser.
Still, their evaluation is expensive, especially for large state
spaces. To circumvent this issue, some works have proved that
analyzing the connectivity (i.e., Laplacian) of the underlying
pose-graph in active graph-SLAM is equivalent to computing
optimality criteria. The link between graph and optimum design
theories can be traced back to Cheng [156], who related the
number of spanning trees of concurrence graphs withD-optimal
incomplete block designs. Khosoussi et al. [157] showed that
classical D- and E-opt are related to the number of spanning
trees of the SLAM pose-graph and its algebraic connectivity,
respectively, for the case of 2-D graph-SLAM with constant
uncertainty along the trajectory. In [158] and [159], these results

are extended to the Rn × SO(n) synchronization problem, and
also relate T -opt to the average node degree of the graph.
Placed and Castellanos [81], [160] studied the general active
graph-SLAM problem formulated over the Lie group SE(n);
showing the existing relationships between modern optimality
criteria of the FIM and connectivity indices when the edges of the
pose-graph are weighted appropriately, and reporting substantial
reductions in computation time. These results have been used
in coverage problems [62], multirobot exploration [128], active
visual SLAM [66], or to develop a stopping criterion [161].

The graph structure of the problem has also been recently
exploited in conjunction with IT utility functions. Kitanov and
Indelman [162] relate the number of spanning trees of the
graph to entropy (which ultimately depends on the covariance
determinant) and its node degree to Von Neumann entropy. The
latter has been also applied to the focused case, thus relating the
graph topology to the marginalized FIM [163].

V. STAGE 3: ACTION SELECTION AND EXECUTION

Once every possible destination has an associated utility
value, the last stage of active SLAM involves the selection of the
optimal destination. This can be formulated as an optimization
problem w.r.t. the set of actions to reach every possible goal lo-
cation, cf. (9). When the set of candidate destinations is discrete
(and typically consists in a handful of options), the solution of the
optimization can be obtained via enumeration [49], [74], [114].
For the case of TOED-based utility functions, it will be a min-
imization or maximization problem depending on whether the
covariance (Σ) or the FIM (Φ) is analyzed. Since Σ = Φ−1 and
‖Σ‖p = (‖Φ‖q)−1∀p with q = −p, the optimization problem
is

a� = arg min
a∈A

‖Σ‖p = arg max
a∈A

‖Φ‖q (23)

where ‖ · ‖p refers to Kiefer’s optimality criteria, see (16).
Information-based utility functions will seek to minimize

entropy (or, equivalently, to maximize MI). Following [40], the
optimal set of discrete actions can be found as

a� = arg max
a∈A

IG = arg min
a∈A

H [p(x,m|h, ẑ,a)] . (24)

In any case, after selecting the most informative destination,
it all comes down to navigating to it using, e.g., sampling-
based planning methods as RRT [164], probabilistic road maps
(PRM) [165], or their asymptotically optimal variants [166].
Note that despite selecting the optimal destination among a
discrete set of candidates, the executed path to reach it rarely
represents an optimal solution for the original problem (9);
this suboptimality is caused by decoupling the problem into
first computing and evaluating a set of goal locations, and then
computing a path to one of these goals.

VI. BSP AND CONTINUOUS-SPACE OPTIMIZATION

As a potential solution to the suboptimality induced by clas-
sical decoupled approaches, there exists a second family of
methods in which the future trajectory of the robot is directly
optimized. These methods represent an alternative solution to
the modular scheme and may be divided into two categories,
depending on whether they discretize the action space or not.
The first category relies on path planning algorithms to generate
a discrete set of candidate paths toward the unknown space, in
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order to later evaluate their utility. Works from Oriolo et al. [167]
and Freda et al. [168] are among the first to apply these algo-
rithms for exploration, evaluating robot configurations inside
the not-previously-sensed free space. In contrast to discrete
frontier optimization that compares utility only at candidate
locations, these methods evaluate it over the paths to reach
them, guaranteeing that the path to execute is optimal among
the considered subset. Bonetto et al. [68], [169] go one step
further and optimize exploration in all three steps of modular
approaches, considering not only the destination and the path to
reach it, but also its execution.

On the other hand, globally optimal solutions have been
considered under the umbrella of continuous-state POMDPs.
Despite their resolution would ideally require to compute a pol-
icy over the infinite-dimensional space of posteriors of the joint
state space [170] and computing an exact solution is known to be
intractable in general [171], active SLAM as a continuous-state
POMDP can be approximately solved under the frameworks of
BSP or optimal control. Such optimization techniques require a
continuous utility function, which can be obtained directly from
complex continuous representations of the environment [53] or
inferred from discretized representations. For example, Vallvé
and Andrade-Cetto [133] compute a dense entropy field from the
posteriors’ evaluation over the discretized configuration space.

A. Belief-Space Planning

Continuous-domain BSP optimizes the future trajectory of
the robot without discretizing the action space, but rather per-
forming a continuous optimization. Bai et al. [172] and Kon-
titsis et al. [143] used sampling-based methods to maximize
an objective function that rewards uncertainty reduction and
goal achievement. Platt et al. [32] applied linear quadratic
regulation to compute locally optimal policies. Van Den Berg
et al. [120] relax the assumption that future observations are
consistent with the current robot pose belief (ML observa-
tions). Indelman et al. [43] extend [120] to the case where
the belief describes both robot poses and unknown landmarks
in the environment, while also modeling missed observations.
Porta et al. [173] generalized value iteration to continuous-state
POMDPs while assuming state-dependent reward functions.
Van den Berg et al. [170] present a highly efficient method for
solving continuous POMDPs in which beliefs can be modeled
using Gaussian distributions over S . Prentice and Roy [174]
developed a belief-space variant of the PRM algorithm called
the belief road map (BRM), incorporating predicted uncertainty
of future position estimates into the planning process. Valencia
et al. [175] contributed a pose-SLAM path-planning approach
that leverages the BRM to find a path to the goal with the lowest
accumulated pose uncertainty.

B. Active SLAM as Optimal Control

Converting a POMDP formulation of active SLAM into an
equivalent continuous-space MDP, as discussed in Section II,
leads to a stochastic optimal control problem in general. Depend-
ing on the transition and observation models, noise distribution,
and the reward function, the problem may be simplified further.
Le Ny et al. [176] and Atanasov et al. [9] showed that when
the transition and observation models are linear in the state
s and the noise is Gaussian, then the time evolution of the
belief state bt may be obtained by the Kalman filter and the

covariance is independent of the measurement realizations. If
the reward function ρ depends only on the covariance, as for the
MI, active SLAM reduces from a stochastic to a deterministic op-
timal control problem. Deterministic optimal control problems
are easier to solve, and techniques, such as linear–quadratic–
Gaussian (LQG) regulation [177] or search-based [9], [178],
and sampling-based [179], [180], [181] motion planning are
applicable. If the assumptions necessary for the deterministic
reduction cannot be satisfied, the stochastic active SLAM prob-
lem may be solved by obtaining an open-loop control sequence
under deterministic dynamics first, followed by a closed-loop
feedback policy, under stochastic dynamics linearized around
open-loop trajectory [182].

In the presence of state or action constraints, the optimal
control formulation of active SLAM can be approached us-
ing differential dynamic programming (DDP) or model pre-
dictive control (MPC). Rahman and Waslander [183] intro-
duced an augmented Lagrangian formulation of iterative LQG,
which captures belief-state constraints via a penalty function.
The approach iterates between iLQG trajectory optimization
in an unconstrained stochastic optimal control problem and
Lagrange multiplier updates for the penalty function. This and
several other works [177], [183], [184] develop differentiable
formulations of sensor field-of-view constraints amenable to
gradient-based optimization. Carlone and Lyons [185] split the
environment into convex regions and formulate the problem
using mixed-integer programming. Chen et al. [62] employed
a spectrahedral description of the convex hull of the space of
orientations and relax nonconvex obstacle constraints using a
convex half-space representation.

Striking a suitable balance between exploration and exploita-
tion in active SLAM is challenging because the effects of poten-
tial future loop closures are not easy to capture in the predicted
evolution of the belief bt(st). Leung et al. [39], [186] intro-
duced attractor states to guide the robot based on three modes
(explore, improve map, and improve localization), determined
using uncertainty thresholds. Attractor states were combined
with a right-invariant extended Kalman filter in [187] to achieve
active range-bearing landmark-based SLAM.

VII. DL-BASED APPROACHES

Advances in DL have created new opportunities in using
neural networks to solve active SLAM; these techniques follow
a completely different scheme, circumventing the split into
three stages that characterizes modular approaches. Usually,
goal identification is not required due to the chosen action set,
and utility computation and selection of the best action are
both embedded in the network. In this section, we particularly
focus on DRL methods for autonomous robotic exploration and
discuss the design of the state, action, and reward spaces, as well
as the problems of partial observability, generalization, and the
necessity for training environments.

A. Deep Reinforcement Learning

A question that arose in the early work on learning-based
active SLAM was which type of learning was suitable for this
decision-making problem, in which

1) agents must directly learn from interaction with the envi-
ronment;

2) states may not be fully observable;
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3) policies have to generalize to other scenarios in which a
priori knowledge is nonexistent.

This premise soon led the community to explore DRL, build-
ing on existing methods that approached active SLAM with
RL [188] and using neural networks to represent the policies
or value functions. Within DRL, model-free techniques have
been the center of attention, although isolated approaches that
combine them with model-based learning do exist [189]. Meth-
ods based on supervised learning can also be found in the
literature [190], [191], although they are a minority. Contrary
to model-based active SLAM, the computational effort in DRL
approaches is mostly confined to the training phase, while the
testing phase reduces to a forward pass on the network. How-
ever, the behavior depends entirely on the model learned from
training data, thus limiting its generalization to novel operational
conditions.

The great success of the work from Mnih et al. [192] boosted
the research in model-free DRL and several value- and policy-
based methods emerged shortly after. The behavior of deep
Q-networks [192] improves using the double [193] and double-
dueling [194] architectures. Actor–critic techniques combine
both value-iteration and policy gradient methods, e.g., deep
deterministic policy gradient [195], asynchronous advantage
actor–critic [196]. See [197] and [198] for a survey on the
methods. Although these strategies were initially proposed for
different decision-making problems (e.g., video-games), they
have been applied to robotic exploration.

B. On the Reward Function Design and the Action Set

Tai and Liu [199] are among the first to employ DRL for
robotic exploration in simulation environments, extracting the
next best actions to execute from raw observations using a
two-layer Q-network. Convergence to policies valid in more
complex and previously unseen scenarios is achieved in [121],
[200] with parallel architectures. In any case, the abovemen-
tioned works use purely extrinsic reward functions (i.e., by
instrumenting the environment), which ultimately addresses the
obstacle avoidance problem rather than active SLAM [123]. As
a response, the notions of motivation and curiosity [201] were
exploited to design intrinsic rewards, giving origin to curiosity-
driven methods that motivate agents to visit unknown configu-
rations [202]. Chen et al. [203] and Chaplot et al. [56] proposed
holistic, open-source approaches that employ a coverage reward
to explore complex 3-D simulation environments. The detailed
study in [203] shows the benefits of pretraining and combining
inputs from different sources. Similarly, the idea of uncertainty
minimization led to uncertainty-aware approaches. This is the
case of [204] that encourage the visit of high-covariance states,
and [20], [122] where the reward encodes the belief accuracy.
All these methods are publicly available except active target
localization. Many of the DRL-based methods, including all of
the above, aim to directly generate optimal control commands,
either discrete [203] or not [205]. They represent end-to-end
solutions in which the safe navigation task is embedded into the
network and, therefore, do not require planning and the SLAM
estimates.

True uncertainty metrics inherited from classic theories have
also been introduced in the reward function design, seeking more
robust foundations. The robot’s D-opt is incorporated in [123]
and T -opt of virtual landmarks in [58], whereas the map’s MI is
used in [57] and [59]. Agents trained under this new perspective

perform active SLAM in complex scenes, albeit only targeting
location or mapping uncertainties. Designing effective reward
functions that account for both is still an open problem. In
addition, this new family of methods has promoted the use of
learning as a part of the solution rather than a replacement to
well-established planning algorithms. Utilizing planning and
learning together, may make policies easier to learn, general-
ize better and transfer across platforms. In this vein, Niroui
et al. [57] and Chen et al. [58] employed DRL to extract
the best candidate among previously-detected frontiers, thereby
creating a link with modular approaches. Li et al. [59] and Lodel
et al. [206] used nearby sampled locations instead, but they also
leave the motion planning task out of the scope of learning.
Chaplot et al. [56] used different policies to infer long-term
(i.e., frontiers) and short-term (i.e., control commands) goals,
linked through a model-based trajectory planner.

C. Partial Observability and Generalization

Partial observability and generalization are two inherent and
often-forgotten concepts in active SLAM. First of all, the un-
certainty about the observations and actions taken, and the
limited observations make the problem not fully observable.
Consequently, agents are unable to distinguish their own true
state based on single observations, and learned policies are
bound to be suboptimal [207]. Mirowski et al. [200] alleviated
this by expanding the network inputs with previous observations
and rewards. Hausknecht and Stone [208] demonstrated that
recurrent architectures can also handle partial observability,
teaching agents to learn about previous data on their own. Long
short-term memory units are used for robotic exploration in [57],
[200], [203], and Karkus et al. [189] embed the computation
structure of the belief (and thus, the history) in a recurrent neural
network.

The second element intrinsic to active SLAM is the lack of
prior knowledge of the environment. Learning policies that gen-
eralize to unseen scenarios is, therefore, crucial, and currently
represents a key limiting factor for learning-based methods.
Overfitting can be mitigated by expanding the sample space
(e.g., using random starting locations [57], [204], consider-
ing noise in the observations [209]) or by using sparser net-
work inputs [207]. For example, agents trained in [121] and
[210] learn policies generalizable to real environments after
reducing sensory data to a sparse range input. Similarly, Shi
et al. [211] specifically use sparse range measurements to reduce
the simulation-to-reality (sim-2-real) gap. Lodel et al. [206]
improved generalization by feeding the network with egocentric
limited observations, following [203]. Chen et al. [58] leverage
graph neural networks, in which the inputs are already com-
pressed representations. The task of transferring trained agents
to real scenarios is still an open research problem, and few efforts
have been made in this direction [59], [121], [211].

D. Training Environments

The use of DRL introduced a major challenge during training:
the need of a simulation environment to acquire data online.
Unlike supervised methods, training with offline data is not
possible and real-world training seems infeasible. To overcome
this problem, some works use their own simplified simulation
scenarios, thus limiting the network inputs to ground-truth data
or range perfect observations. To use more realistic data that
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bridge the gap from simulation to physical robots, more complex
simulators need to be used in training.

Stage [212] is one of the simplest engines used in the liter-
ature [57], although it restricts perception to two-dimensional
bitmapped environments. Gazebo [213] is a much more com-
plete simulator, which allows for 3-D simulations, realistic
rendering, visual sensors, etc. In addition, it is tightly integrated
into the widespread Robotic Operating System (ROS), which
makes its use commonplace [121], [123], [199]. CoppeliaSim/V-
REP [214] also allows for online mesh manipulation, but it is
not an open-source solution and is less integrated into ROS, lim-
iting its adoption. Combination of a physics engine (i.e., robot
motion and sensor models) with a DRL framework is not always
straightforward. Zamora et al. [215] present a powerful frame-
work by integrating the RL toolkit OpenAI Gym [216] with ROS
and Gazebo.

In contrast to the abovementioned platforms, initially de-
signed for robotics and later adapted to DRL, there is a sec-
ond family of simulators born in the age of AI. They tend to
prioritize training speed over the breadth of simulation capa-
bilities. DeepMind Lab [217] allows agents to move discretely
in low-textured, game-like scenarios, and provides access to
a visual sensor and velocity. Habitat-Sim [218] takes a leap
forward by supporting physics simulation and different robot
and visual sensor models. More interestingly, it has the powerful
capability of rendering simulation environments from image
datasets, e.g., Replica [219]. iGibson [220] also provides fast
visual rendering and physics simulation, and includes simulation
of lidar and optical flow sensors. The ROS ecosystem is already
integrated in [220], whereas Savva et al. [218] required the use of
external libraries. Despite their potential, none of these platforms
has yet been used for DRL in the context of active SLAM.

VIII. MULTIROBOT ACTIVE SLAM

The active SLAM problem can be extended to a multiagent
setting, where n robots optimize their sensing trajectories col-
laboratively to estimate a common map m ∈ M of the en-
vironment. Each robot has its own state space Xi and action
space Ai. Applying an active SLAM algorithm to the joint state
space S = X1 × · · · × Xn ×M and joint action space A =
A1 × · · · × An can generate desirable behavior but becomes
computationally infeasible as the number of robots increases
because the complexity of centralized algorithms scales expo-
nentially with n [78]. Such algorithms also require collecting
all robot measurements and performing joint optimization at a
centralized server before communicating the planned actions
back to the individual robots. If the robot team is small and
connectivity is maintained at all times, centralized algorithms
can be used to plan all robot trajectories simultaneously. For ex-
ample, Charrow et al. [221] achieve multirobot target tracking by
maximizing the MI between the target location and range-only
observations over a set of motion primitives. However, larger
teams with intermittent communication and limited onboard
computation require decentralized algorithms, where individual
robots solve smaller instances of the active SLAM problem, or
fully distributed algorithms, where the robots exchange infor-
mation only with their neighbors. Kantaros et al. [181], [222]
proposed an informative planning2 technique, which constructs

2Informative path planning can be considered a generalization of active SLAM
to include objectives beyond the quality of localization and mapping, e.g., for
target tracking or environmental monitoring.

random trees of control sequences and is particularly simple to
distribute. The algorithm scales to very large numbers of sensors
and targets and is probabilistically complete and asymptotically
optimal.

A particularly important instance of the problem is collabora-
tive multirobot exploration, where the robots aim to coordinate
how to efficiently explore different regions of the environ-
ment. Early works such as [105], [223] present an approach
for choosing appropriate frontiers, while simultaneously tak-
ing into account their utility and the cost of reaching them.
Each time a target point is assigned to some specific robot,
the utility of the unexplored area visible from that frontier is
reduced. This mechanism is used to assign different frontiers
to different robots. Colares and Chaimowicz [132] developed
a decentralized multirobot formulation of the classical frontier-
based exploration method. The authors use an objective function
that captures the frontier entropy and distance, and a robot
coordination factor that penalizes regions that other robots are
already exploring. Atanasov et al. [78] considered a multiagent
active information acquisition problem, in which an information
measure is maximized over a discrete space of agent trajec-
tories, and proposed a decentralized planning scheme using
coordinate descent in the space of agent trajectories. Schlot-
feldt et al. [224] introduced an anytime search-based planning
formulation that progressively reduces the suboptimality of the
multiagent plans while respecting real-time constraints. Instead
of using search-based planning, Ossenkopf et al. [225] generated
candidate robot actions using RRT*. The sampling is biased
to prioritize exploration, map improvement, or localization im-
provement. The map and robot state entropy is evaluated along
the planned trajectories in two stages: short-horizon exact com-
putation using filter updates, and long-horizon approximation
using predicted loop closures. Lauri et al. [226] introduced
a decentralized ρ-POMDP, allowing the specification of an
information-theoretic objective. The authors show that a multia-
gent A* algorithm that searches the joint policy space can be ap-
plied to belief-dependent rewards to achieve cooperative target
tracking with periodic communication. Hu et al. [205] designed
a hierarchical control approach for cooperative exploration,
combining a high-level region-assignment layer and a low-level
safe-navigation layer. The former uses dynamic Voronoi parti-
tions to assign different regions to individual robots; the latter
achieves collision-free navigation to successive frontier points
using DRL.

Another important instance is collaborative multirobot active
estimation, where the goal is to seek actions that actively reduce
the uncertainty over relevant random variables. For instance,
Kontitsis et al. [143] developed a multirobot active SLAM
method that uses a relative entropy optimization technique [227]
to select trajectories which minimize both localization and map
uncertainties. Indelman [228] develops a collaborative multi-
robot BSP framework, which incorporates reasoning about fu-
ture observations of environments that are unknown at planning
time. That approach has been extended in [229] to a decentral-
ized setting. Best et al. [230] proposed the self-organizing map
algorithm, considering the problem of multirobot path planning
for active perception and data collection tasks. Chen et al. [128]
leverage graph connectivity indices and their relationship to
optimality criteria to achieve multirobot active graph-SLAM.
Each robot aims to improve the pose graphs of the other agents
by sharing its observations when it moves near areas where they
have low connectivity.
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IX. OPEN RESEARCH QUESTIONS

Active SLAM still requires much research in order to support
the deployment of fully autonomous robots in complex envi-
ronments. Many are the challenges and research fields involved,
so cooperation between them is crucial to achieve real-world
impact. In this section, we present some of what we consider the
most important research questions. Although some of them are
long-known challenges and are already under intense investiga-
tion, others have not received such attention.

A. Prediction Beyond Line-of-Sight

Resolution of active SLAM relies on fast and precise predic-
tions of future states for the variables of interest. The accurate
prediction of the scene and robot pose after executing a set of
candidate actions can be the difference between making the right
decision or not. The expected sensed space and the resulting
map representation have traditionally been predicted using a
sensor model together with ray-casting techniques [51], [105].
Recent related work, however, addresses the problem of scene
completion and occupancy anticipation from a DL perspective.
Fehr et al. [231] used a neural network to augment the measure-
ments of a depth sensor and Ramakrishnan et al. [232] directly
predict augmented OG maps beyond the sensor’s field-of-view
using autoencoders (AE). Rather than using raw sensor mea-
surements, Katyal et al. [233] and Hayoun et al. [234] extend an
input OG map beyond the line-of-sight also using AE. Shrestha
et al. [235] predict maps of occupancy probabilities instead with
variational AE. Dai et al. [236] perform scene prediction over
3-D SDF-based maps. All these methods seem promising for fast
and precise online map prediction beyond line-of-sight, although
their integration into active SLAM is yet to be done and brings
with it numerous challenges. How does scene prediction behave
in unstructured environments? How to account for uncertainty?
Is measurement prediction more reliable and informative than
map prediction? How to predict the effect of only a certain set of
nonmyopic actions in the map rather than augmenting the whole
scene? Regarding the latter, [237], [238], and [239] subordinate
predictions to candidate actions.

On the other hand, the robot state is straightforwardly es-
timated using motion models or path planners. However, the
prediction of its associated uncertainty is not trivial and re-
quires more attention. Work from Asraf and Indelman [239]
is among the very few efforts made to combine data-driven
scene prediction with BSP. In addition, they use the predicted
observations to forecast the posterior uncertainty over the robot
trajectory. Besides the robot’s movement, it is the appearance of
loop closures (exploitation) that significantly affects the new
states’ uncertainty, thus making its forecast critical. Despite
some isolated works have partially studied this problem [29],
[240], it still remains as an open challenge.

B. From Active SLAM to Active Spatial Perception

Most active SLAM approaches reason over geometric repre-
sentations of the environment (e.g., OG maps). However, when
we explore new environments as humans, we are mostly inter-
ested in semantic elements of the environment (e.g., presence
of objects, rooms) rather than the shape of the environment
per se. Modern SLAM systems are now able to build 3-D
metric-semantic maps in real-time from semantically labeled
images, see [96] and the references therein. These maps include

both occupancy information and semantic labels of entities
(e.g., chairs, tables, humans, etc.) in the environment. Very
recent work goes even further and develops spatial percep-
tion systems that infer hierarchical map representations, in the
form of 3-D scene graphs [103], [241], [242]. They symbolize
high-level representations of an environment that capture from
low-level geometry (e.g., a 3-D mesh of the environment) to
high-level semantics (e.g., objects, people, rooms, buildings,
etc.). While there is a growing amount of work in estimating
these high-level representations from sensor data, their use in
active SLAM is still uncharted territory. Very early effort in
this direction includes the work from Ravichandran et al. [243],
which focuses on object search using 3-D scene graphs.

Active metric-semantic information acquisition, or active spa-
tial perception, has the potential to impact many aspects of robot
autonomy:

1) by leveraging semantic knowledge, a robot can more
effectively predict unseen space (e.g., predict the presence
of rooms or objects in each room);

2) the use of semantics can further enhance the SLAM per-
formance (e.g., allowing for novel loop closure detection
methods [242]);

3) hierarchical representations may enable novel and more
computationally efficient planning methods.

However, each opportunity comes with many open research
questions, for instance: How to quantify uncertainty over metric-
semantic or even hierarchical scene representations? How to
leverage hierarchical structures to improve computation? How
to perform spatial prediction in hierarchical representations?

C. Robust Online BSP and Active SLAM

Another key aspect is data association, i.e., association be-
tween measurements and the corresponding landmarks (or other
entities in the map representation). In perceptually aliased and
ambiguous environments, determining the correct data associa-
tion is challenging, and incorrect associations may lead to catas-
trophic failures. The research community has been investigating
approaches for robust perception to allow reliable and efficient
operation in ambiguous environments (see, e.g., [244], [245],
[246], [247], [248], [249]). Yet, these approaches focus on infer-
ence (rather than planning), i.e., actions are given. Only recently,
ambiguous data association was considered also within BSP and,
in particular, active SLAM. Pathak et al. [250] incorporate, for
the first time, reasoning about future data association hypothe-
ses within a BSP framework, enabling autonomous hypotheses
disambiguation. Another related work in this context is [251]
that also reasons about ambiguous data association in future
beliefs while utilizing the graphical model presented in [248]. A
first-moment approximation to Bayesian inference with random
sets of targets, known as the probability hypothesis density
filter, has been successfully applied to active target tracking
problems [252]. However, explicitly considering all possible
data associations leads to an exponential growth of the number
of hypotheses, and determining the optimal action sequence
quickly becomes intractable. Shienman and Indelman [253]
recently presented an approach that utilizes only a distilled
subset of hypotheses to solve BSP problems while reasoning
about data association and providing performance guarantees
considering a myopic setting. Nevertheless, BSP and active
SLAM in these challenging settings remain open problems.
More generally, finding an appropriate simplification of the
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original BSP or active SLAM problem, which is easier to solve,
with no, or bounded, loss in the performance, is an exciting and
novel direction [253], [254], [255], [256].

D. Reasoning in Dynamic and Deformable Scenes

One of the most common assumptions in active SLAM is to
consider the environment static—or slightly dynamic, at best.
Real scenes, however, contain moving agents most of the times,
and even deformable elements (e.g., clothes, water). Handling
these elements would greatly impact the robot’s autonomy, its
reasoning ability and awareness, and would facilitate its deploy-
ment in real-world scenarios.

The study of dynamic environments has long been a topic
of interest for the path planning [257] and the SLAM [258]
communities; but its investigation in the context of active SLAM
has been typically restricted to the action execution step (i.e., re-
planning) [259], [260]. However, many other aspects emerge
when reasoning with dynamic elements: How to foresee their
effects in planning? How to integrate them in the utility function?
How to maintain a lightweight representation?

Nonrigid environments present an even greater challenge.
Planning for mobile robots in deformable environments started
receiving some attention a couple of decades ago [261], [262].
Medical applications have also stimulated progress on SLAM
in deformable environments [263], [264]. However, to date,
no efforts have been made toward developing a deformable
active SLAM framework. We believe this is partly due to the
unavailability and complexity of simulators for mobile robots
in deformable environments, and partly due to the difficulty in
extending the current map representations to deformable scenes.
Given the importance of obtaining accurate robot trajectory esti-
mates toward mapping deformable environments, active SLAM
can play a major role in this area.

E. Toward Meaningful and Autonomous Stopping Criteria

Unlike with coverage and exploration in known environments,
determining the moment in which the task of active SLAM is
complete is nontrivial. Performing active SLAM is known to be
a computationally expensive process: a vast amount of resources
is required to estimate and optimize utility online, thereby con-
ditioning the execution of other tasks; therefore, it is crucial to
understand when such process can be considered complete and
other tasks can be prioritized. Cadena et al. [5] already identified
this issue as an open research question, but little research has
been done on the topic. Even recent active SLAM works still
rely on traditional temporal [51], [81] or spatial [62], [265]
constraints to decide when exploration has terminated. These
metrics, however, cannot be used in truly unknown environments
nor do they assert task completion (see [161]). The use of
TOED-based metrics has been identified as a promising tool [5],
[36], [161] to determine when a given exploration strategy is
no longer adding information. Nevertheless, many questions
remain to be answered: How to guarantee task completion? How
to transition between exploration strategies? Also, the advent of
DRL approaches raises a new question: when to stop training?

F. Reproducible Research in Active SLAM

The increasing attention toward active SLAM creates the
need for new benchmarks to objectively evaluate new findings
against existing research. This has long been a challenge in the

robotics community [266], where real-life robotics experiments
are often difficult to replicate across research groups. In related
problems, such as SLAM, static datasets are commonly used
for benchmarking. However, in active SLAM, the agent must
interact with the environment, making the use of datasets im-
practical. In recent years, a significant effort has been made
in robotics to address challenges in benchmarking [267] and
reproducibility [268]. Despite these efforts, such benchmarks
are still lacking in active perception.

Typically, in active SLAM, researchers select a set of sce-
narios (e.g., platform, task, and environment) representative
of the desired application, and experiments are conducted in
simulation via customized simulators or in the real world via
specialized hardware. While such an evaluation is adequate for
validation, the specified scenario may not be general enough or
sufficiently specified to be reproduced. Consequently, one-to-
one comparisons are rarely made between approaches. While
targeting more general embodied agents, several open-source
datasets [269] and simulators [218], [265], [270] show promise
for active SLAM research. Also, open-source frameworks (see
Table I) make the comparison and testing of new algorithms
straightforward, only by modifying the decision-making por-
tion. While some works take advantage of these simulators and
datasets [56], establishing a proper methodology for evaluating
active SLAM when it comes to generalization from simulation to
the real world remains an open question. Besides, there is a dire
need to establish adequate performance metrics for active SLAM
that go beyond commonly-used exploration time and coverage.
Improving the quality of estimates is the main objective of active
SLAM, and should, therefore, be measured.

G. Practical Applications

Although active SLAM methods have practical relevance in
many real-world problems, such as search and rescue, where
constructing a sound representation of the environment is time
critical, very few practical implementations and deployments
of active SLAM have been described in the literature. Walter
et al. [271] proposed a partially autonomous system for un-
derwater ship hull inspection. Kim and Eustice [119] deployed
a complete active SLAM system. Palomeras et al. [54], [85]
reported the autonomous exploration of complex underwater
environments for environmental preservation purposes. Fair-
field and Wettergreen [240] investigated terrestrial applications
and autonomous mapping of abandoned underground mines. A
roughly similar application but in the archaeological context of
catacomb exploration is presented in [272]. Strader et al. [22]
reported experiments of active perception in a Mars-analogue
environment. Finally, assistive mapping examples for office-like
environments can be found in [30], [273], and [251]. Aerial ap-
plications of active SLAM are significantly less common. Chen
et al. [62] proposed an MPC framework to address coverage
tasks while maintaining low uncertainty estimates.

Overall, there are very few reports of field experiments in-
volving active SLAM systems. Besides, by 2022, there is a
large imbalance between the patents using the terms SLAM
and active SLAM,3 about 39 000 for the former and 31 for the
latter. This indicates that the technology readiness level of active

3We used “simultaneous localization and mapping” after:priority:19920101,
and “active slam” OR “active simultaneous localization and mapping” af-
ter:priority:19920101 as queries search in the Google patents search platform.
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SLAM is not in a deployment phase but in early development.
Furthermore, it raises the question of whether active SLAM is
important for all applications or whether human supervision is
still preferred. Among the roadblocks preventing the transition
from theory to applications (including the challenges mentioned
in the previous sections), we also remark that the high computa-
tional complexity of active SLAM often clashes with application
constraints, e.g., the low computational budget available on
aerial robots.

X. CONCLUSION

The active SLAM problem, which consists in actively con-
trolling a robot such that it can estimate the most accurate and
complete model of the environment, has been a topic of interest
in the robotics community for more than three decades, and
is now receiving renewed attention—also thanks to the novel
opportunities offered by learning-based methods. Despite the
role of active SLAM in many applications, the disparity and
lack of unification in the literature has prevented the research
community from providing a cohesive framework, bringing al-
gorithms to maturity, and transitioning them to real applications.
In this article, we take a step toward this goal by taking a fresh
look at the problem and creating a complete survey to serve as
a guide for researchers and practitioners.

In particular, we present a unified active SLAM formulation
under the umbrella of POMDPs, highlighting the most common
assumptions in the literature. Then, we discuss the modular
resolution scheme, which decouples the problem into goal iden-
tification, utility computation, and action selection. We delve
into each stage, reviewing the most important theories and pre-
senting state-of-the-art techniques. We then review alternative
approaches that have drawn great interest and have undergone
major advances in recent years, including (continuous) BSP and
learning-based approaches. Finally, we discuss relevant work
in multirobot active SLAM. Besides discussing the historical
evolution and current trends in active SLAM, we also identify
the most relevant open challenges in this field. These include
prediction beyond line-of-sight and active spatial perception,
among others. We also emphasize the need for a unified formu-
lation and evaluation metrics that allow for direct comparison
between works. Reproducibility and benchmarking need to be
addressed for this field to mature and achieve real-world impact.
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