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Introduction

§ Key components for autonomous operation include
– Perception: Where am I? What is the surrounding environment?
– Planning: What to do next?

Localization and mapping given robot motion Planning (e.g. reach a goal)

?

Coupled problems

Estimation uncertainty and accuracy varies 
for different motion plans



Related Work – Belief Space Planning (BSP)

§ Existing approaches typically assume environment/map is known
[Prentice and Roy ‘09], [Miller et al. ‘09], [Platt et al. ‘10], [Van den Berg et al. ‘12], [Hollinger et al. ‘13]

§ Recent research relaxes this assumption, incorporates map uncertainty within 
the belief [Valencia et al. ‘12], [Kim and Eustice ‘14], [Chaves et al. ‘14], [Indelman et al. ’15a]

§ Extension to multi-robot centralized setting [Indelman ’15b] [Indelman ’15c]

§ Reason about future observations of unknown scenes within multi-robot BSP

§ Belief space planning (BSP) - fundamental problem in robotics
§ Multi-robot framework has numerous advantages, e.g. higher accuracy
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Related Work – Belief Space Planning (BSP)

§ Discrete action space – each robot has a set of candidate paths/actions
§ Optimal solution is intractable: involves all combinations of paths of all robots

§ A common iterative (suboptimal) approach to reduce computational effort: 
[Atanasov ‘14 TRO] [Levine ’13 JAIS]

– Each robot calculates the best solution and announces it to other 
robots, given previous announced paths

Candidate 
paths

Chosen path

1st

iteration

Robot r

Candidate 
paths Chosen path

2nd

iteration

Robot r

Candidate 
pathsChosen path

Robot r’

Candidate 
pathsChosen path

Robot r’P r

P r
new

P r0

Calculations are performed from scratch at each iteration



5

Contribution
§ Each time the announced path from some robot r’ changes, each robot r 

has to re-evaluate its candidate paths

§ Key idea
– Not all paths are 

impacted due to change 
in the announced paths

– Impacted paths can be 
efficiently re-evaluated 
by reusing calculations
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§ Optimal controls for all R robots:

Formulation - Multi-robot Belief Space Planning

§ Multi-robot objective function:

§ Belief for robot r at a future time 𝑡"#$:
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Formulation - Multi-robot Belief Space Planning

§ Multi-robot probability distribution function (pdf) at planning time    :tk
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Formulation - Multi-robot Belief Space Planning
§ Multi-robot probability distribution function (pdf) at planning time    :tk
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Formulation - Multi-robot Belief Space Planning
§ Multi-robot probability distribution function (pdf) at planning time    :tk
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Formulation - Multi-robot Belief Space Planning
§ Multi-robot probability distribution function (pdf) at planning time    :tk
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Factor Graph Inference

§ Joint state          :,r r¢P P
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Algorithm Overview

§ Iterate over vertices in previous and new announced paths
§ Identify involved vertices in multi-robot factors – collect into set 𝑉&'(
§ Identify and mark involved paths from all candidate paths

§ Recall key idea:
– Not all paths are impacted due to change in the announced paths
– Impacted paths can be efficiently re-evaluated by reusing calculations
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Algorithm Overview – Details
§ Iterate over vertices in previous and new announced paths
§ Identify involved vertices in multi-robot factors – collect into set 𝑉&'(
§ Identify and mark involved paths from all candidate paths
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Algorithm Overview – Details
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Algorithm Overview – Details
§ Iterate over vertices in previous and new announced paths
§ Identify involved vertices in multi-robot factors – collect into set 𝑉&'(
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§ Non-marked paths
– Calculate once the change 

– Add         to old objective functionrJ ¢D

Algorithm Overview
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Results

2 robots:
25 candidate paths

4 robots:
25 candidate paths
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§ Statistical study of 50 runs (2 and 4 robots):

Results

§ More than twice efficient
§ Same results as Standard 

approach
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Conclusions

§ Collaborative multi-robot belief space planning in unknown environments
§ Contribution: 

– Identify impacted paths due to change in announced paths
– Efficiently re-evaluate belief only for impacted paths
– One-time re-calculation for all non-impacted paths
– Performance study in simulation


