Multi-Robot Decentralized Belief Space Planning in Unknown Environments

Tal Regev

Under the supervision of Assistant Prof. Vadim Indelman

International Conference on Intelligent Robots and Systems (IROS 2016), Accepted

Graduate Seminar, July 2016

Introduction – Application

Navigation and mapping in unknown environment with multiple robots (MR)

Navigation and mapping with MR: Why is it interesting?

Autonomous cars [google.com]

Space exploration [nasa.gov]

Search & rescue operations

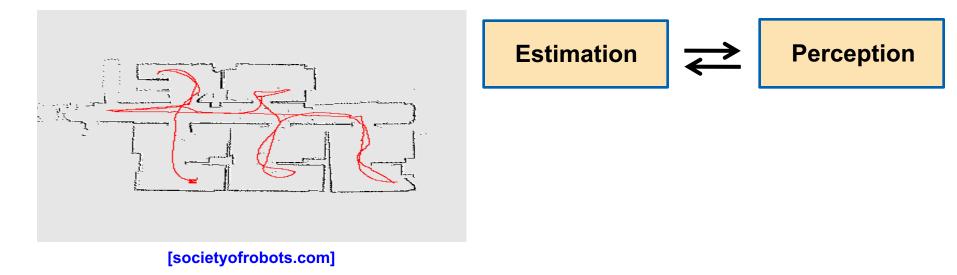
[spectrum.ieee.org]

Introduction - SLAM

- Navigation and mapping in unknown environment without GPS
- Simultaneous localization and mapping (SLAM)

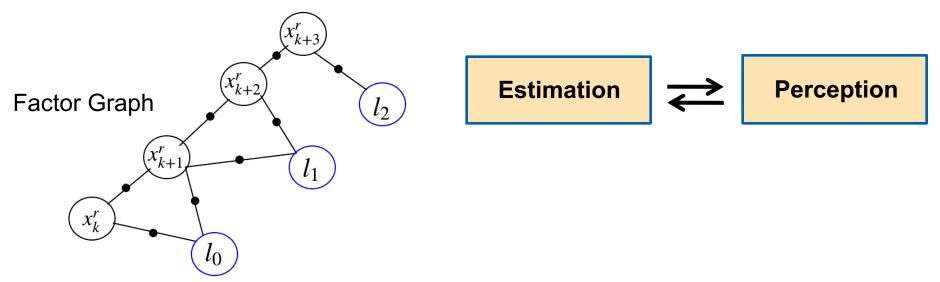
Estimation and Perception:

Where am I? What is the surrounding environment?



Introduction - SLAM

- Represent robot knowledge in a graph model
 - Vertices represent the variables. For example location of robot
 - Edges represent constrains between variables, also known as factors



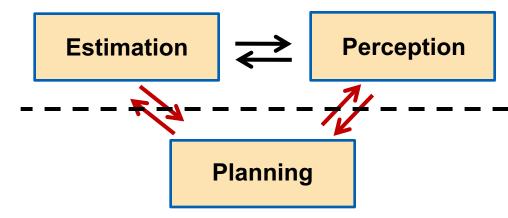
- Allows computationally efficient probabilistic inference, given data
- For example, pose estimation given sensor data (e.g. images)

Introduction - Planning

- Navigation and mapping in unknown environment without GPS
- Key components for autonomous operation include
 - Estimation and Perception:

Where am I? What is the surrounding environment?

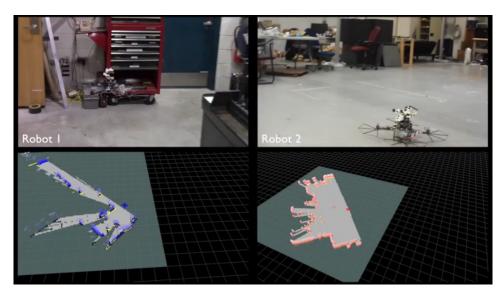
– <u>Planning</u>: What to do next?



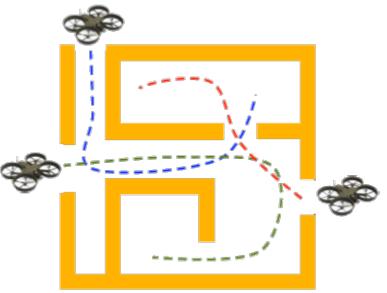
Belief space planning (BSP) - fundamental problem in robotics

Introduction – Multi Robot SLAM

- Navigation and mapping in unknown environment with multiple robots (MR)
 - Robust and faster exploration/mapping
 - Higher accuracy in a multi robot collaborative framework



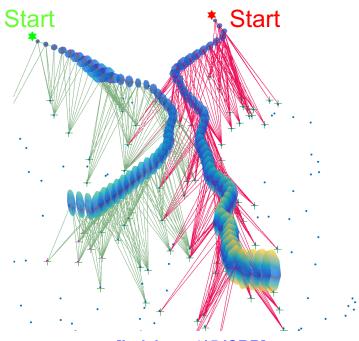
[J. Dong et al. '15 ICRA]



[Indelman '16 CSM, '14 ICRA]

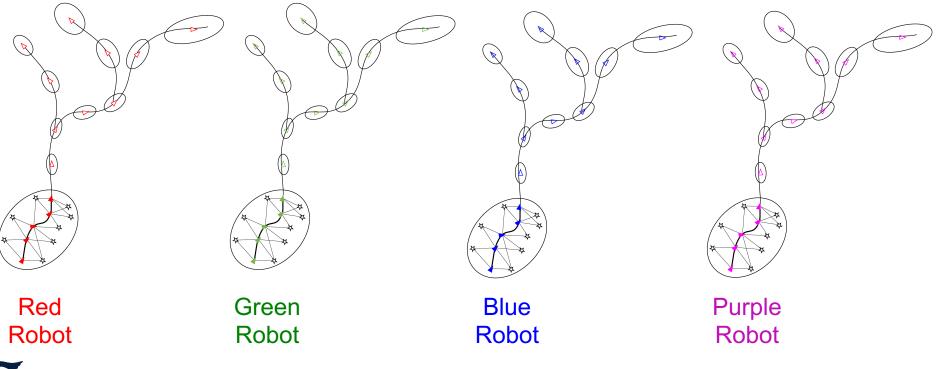
Introduction - Multi Robot Belief Space Planning

- Belief space planning in unknown environment with multiple robots (MR)
- Reason about uncertainty within planning and consider collaboration between robots



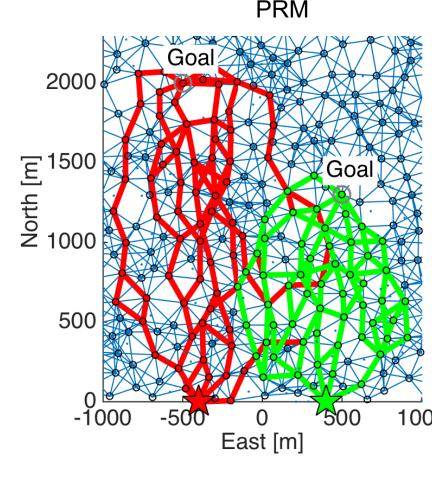
Related Work – Belief Space Planning (BSP)

- Solving multi-robot BSP is in particular challenging
 - Involves considering all combinations of candidate paths of all robots
 - Existing approaches typically assume environment/map is known



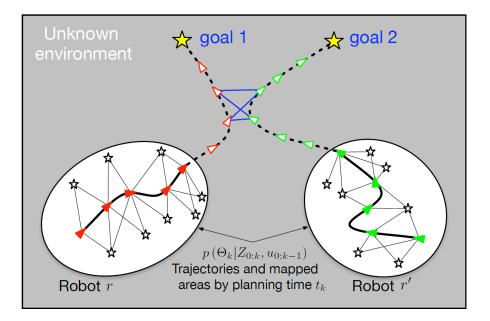
Related Work – Sampling Methods

- Sampling Methods
 - Discretize the environment
 - Candidate trajectories
- Existing approaches
 - Rapidly exploring random trees (RRT)
 - Rapidly exploring random graph (RRG)
 - Probabilistic road map (PRM)



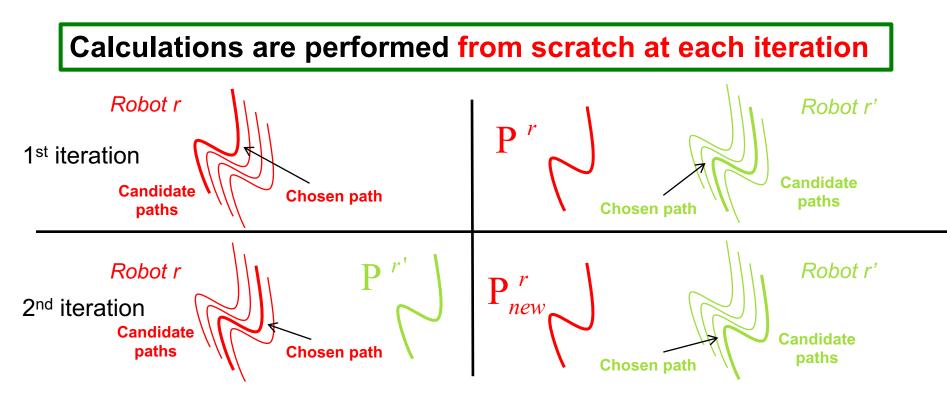
Related Work – Belief Space Planning (BSP)

- Existing approaches typically assume environment/map is known
- Recent works enable operation in unknown environments [Kim et al. '14 IJRR] [Indelman et al. '15 IJRR] [Indelman '15 ISRR]
- In particular, reason about future observations of unknown environments within multi-robot belief space planning [Indelman '15 ISRR]



Related Work – Announced Path Approach

- Involves considering all combinations of candidate paths of all robots
- A common (sub-optimal) iterative approach to reduce computational effort: [Atanasov '14 TRO] [Levine '13 JAIS]

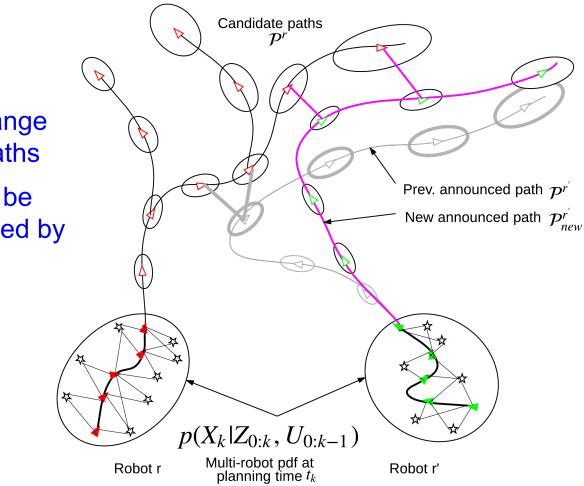


Contribution

 Each time the announced path from some robot r' changes, each robot r has to re-evaluate its candidate paths

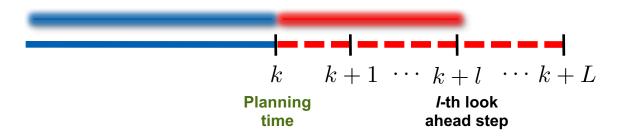
Key idea

- Not all paths are impacted due to change in the announced paths
- Impacted paths can be efficiently re-evaluated by reusing calculations



Belief for robot r at a future time t_{k+l} :

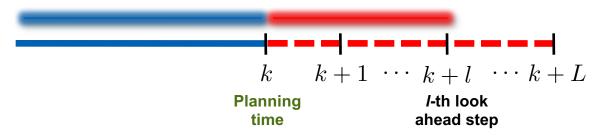
$$b \left[X_{k+l}^r
ight]$$
 B $p \left(X_{k+l}^r | Z_{0:k+l}^r, u_{0:k+l-1}^r
ight)$



- X_{k+l}^r Poses and landmarks estimated by robot r
- $Z_{0:k+l}^r$ Observations available to robot r
- $u_{0:k+l-1}^r$ Controls of robot r

Belief for robot r at a future time t_{k+l} :

$$b \left[X_{k+l}^r \right]$$
 B $p \left(X_{k+l}^r \mid Z_{0:k+l}^r, u_{0:k+l-1}^r \right)$



Multi-robot objective function:

$$J(\mathbf{U}) = \mathbf{E}\left[\sum_{l=1}^{L}\sum_{r=1}^{R}c_{l}^{r}(b[X_{k+l}^{r}], u_{k+l}^{r})\right]$$

• Optimal controls for all R robots: $U^{\hat{A}} = \underset{U}{\operatorname{argmin}} J(U)$

• Probability distribution function (pdf) of multi robot at planning time t_k

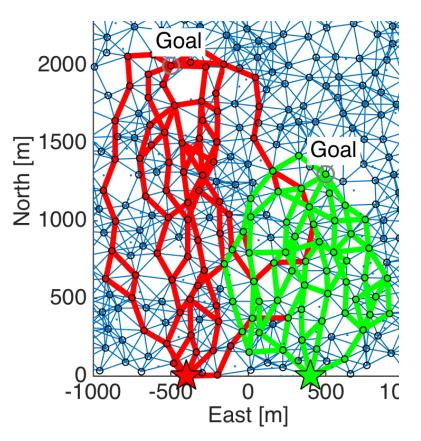
$$b[\mathbf{P}] = p(X_k \mid Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{r=1}^{R} \left[\prod_{l=1}^{L(\mathbf{P}^r)} p(x_{v_l}^r \mid x_{v_{l-1}}^r, u_{v_{l-1}}^r) \cdot p(Z_{v_l}^r \mid X_{k+l}^r) \prod_{\{i,j\}} p(z_{i,j}^{r,r'} \mid x_{v_i}^r, x_{v_j}^{r'}) \right]$$

- P Some specific candidate paths for all robots P = [P^r, P^{r'}, K]
- Maximum a posteriori (MAP) inference:

$$b[\mathbf{P}] = N(\hat{X}(\mathbf{P}), \Lambda^{-1}(\mathbf{P}))$$

State transition and observation models:

$$x_{i+1}^r = f(x_i^r, u_i^r, w_i^r), \ z_{i,j}^r = h(x_i^r, x_j^r, v_{i,j}^r)$$



• Probability distribution function (pdf) of multi robot at planning time t_k :

$$b[P] = p(X_{k} | Z_{0,k}, \mathbf{U}_{0,k-1}) \prod_{r=1}^{R} \left[\prod_{l=1}^{L(P^{r})} p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{l}}^{r}, x_{v_{j}}^{r'}) \right]$$
Prior
$$\Lambda(P) = \Lambda_{k} + \sum_{r=1}^{R} \left[\sum_{l=1}^{L(P^{r})} \Lambda_{l}^{r,local} + \sum_{\{i,j\}} \Lambda_{i,j}^{r,r'} \right]$$
• Maximum a posteriori (MAP) inference:
$$b[P] = N(\hat{X}(P), \Lambda^{-1}(P))$$

$$(WallFront = k + D(X_{k}) + D$$

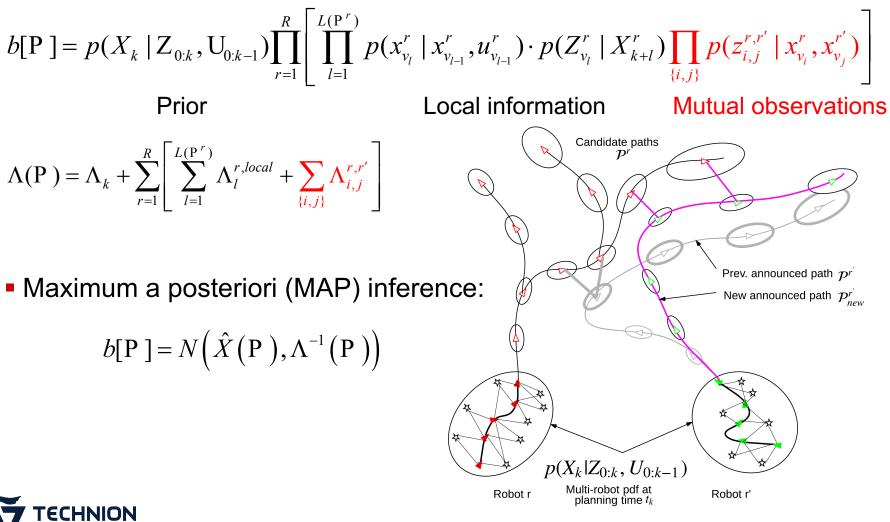
• Probability distribution function (pdf) of multi robot at planning time t_k :

$$b[P] = p(X_k | Z_{0:k}, U_{0:k-1}) \prod_{r=1}^{R} \left[\prod_{l=1}^{L(P')} p(x_{v_l}^r | x_{v_{l-1}}^r, u_{v_{l-1}}^r) \cdot p(Z_{v_l}^r | X_{k+l}^r) \prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_l}^r, x_{v_j}^{r'}) \right]$$
Prior
Local information
$$\Lambda(P) = \Lambda_k + \sum_{r=1}^{R} \left[\sum_{l=1}^{L(P')} \Lambda_l^{r,local} + \sum_{\{i,j\}} \Lambda_{i,j}^{r,r'} \right]$$
• Maximum a posteriori (MAP) inference:
$$b[P] = N\left(\hat{X}(P), \Lambda^{-1}(P)\right)$$

$$(MAP) = N\left(\hat{X}(P), \Lambda^{-1}(P)\right)$$

$$Multi-robot pdf at planning time t, Robot r Multi-robot pdf at planning time t, Robot r$$

• Probability distribution function (pdf) of multi robot at planning time t_k :



• Probability distribution function (pdf) of multi robot at planning time t_k :

$$b[P] = p(X_{k} | Z_{0k}, U_{0k-1}) \prod_{r=1}^{R} \left[\prod_{l=1}^{L(P')} p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{l}}^{r}, x_{v_{j}}^{r'}) \right]$$
Factor graph
$$Factor graph$$

$$x_{k+2}^{r}$$

$$x_{k+2}^{r}$$

$$y_{r}$$

$$y_{r$$

Factor Graph Inference

• Joint state P^r, P^{r'}:

$$b[\mathbf{P}^{r}, \mathbf{P}^{r'}] = p(X_{k} | Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{l=1}^{L(\mathbf{P}^{r})} \left[p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \right] \prod_{l=1}^{L(\mathbf{P}^{r'})} \left[p(x_{v_{l}}^{r'} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r'}) \cdot p(Z_{v_{l}}^{r'} | X_{k+l}^{r'}) \right] \prod_{r=1}^{R} \left[\prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{i}}^{r}, x_{v_{j}}^{r'}) \right]$$

■ Joint state P^r, P^{r'}_{new}:

 \mathcal{P}^r

 f_4

 f_1

robot r

robot r

Factor Graph Inference

• Joint state P^r, P^{r'}:

■ Joint state P^r, P^{r'}_{new}:

$$b[\mathbf{P}^{r}, \mathbf{P}^{r'}] = p(X_{k} | Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{l=1}^{L(\mathbf{P}^{r})} \left[p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \right]$$
$$\prod_{l=1}^{L(\mathbf{P}^{r'})} \left[p(x_{v_{l}}^{r'} | x_{v_{l-1}}^{r'}, u_{v_{l-1}}^{r'}) \cdot p(Z_{v_{l}}^{r'} | X_{k+l}^{r'}) \right] \prod_{r=1}^{R} \left[\prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{i}}^{r}, x_{v_{j}}^{r'}) \right]$$

robot r'

 t_2

 f_1

robot r

$$b[\mathbf{P}^{r}, \mathbf{P}_{new}^{r'}] = p(X_{k} | Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{l=1}^{L(\mathbf{P}^{r})} \left[p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \right]$$
$$\prod_{l=1}^{L(\mathbf{P}^{r'})} \left[p(x_{v_{l}}^{r'} | x_{v_{l-1}}^{r'}, u_{v_{l-1}}^{r'}) \cdot p(Z_{v_{l}}^{r'} | X_{k+l}^{r'}) \right] \prod_{r=1}^{R} \left[\prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{i}}^{r}, x_{v_{j}}^{r'}) \right]$$

T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments. Graduate Seminar, July 2016 $\mathcal{P}_{new}^{r'}$

 \mathcal{P}^r

f4

Factor Graph Inference

• Joint state P^r, P^{r'}:

Joint state P^r, P^{r'}_{new}:

$$b[\mathbf{P}^{r}, \mathbf{P}^{r'}] = p(X_{k} | Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{l=1}^{L(\mathbf{P}^{r})} \left[p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \right]$$
$$\prod_{l=1}^{L(\mathbf{P}^{r'})} \left[p(x_{v_{l}}^{r'} | x_{v_{l-1}}^{r'}, u_{v_{l-1}}^{r'}) \cdot p(Z_{v_{l}}^{r'} | X_{k+l}^{r'}) \right] \prod_{r=1}^{R} \left[\prod_{\{i,j\}} p(z_{i,j}^{r,r'} | x_{v_{i}}^{r}, x_{v_{j}}^{r'}) \right]$$

robot r'

robot r

$$b[\mathbf{P}^{r}, \mathbf{P}_{new}^{r'}] = p(X_{k} | Z_{0:k}, \mathbf{U}_{0:k-1}) \prod_{l=1}^{L(\mathbf{P}^{r})} \left[p(x_{v_{l}}^{r} | x_{v_{l-1}}^{r}, u_{v_{l-1}}^{r}) \cdot p(Z_{v_{l}}^{r} | X_{k+l}^{r}) \right]$$

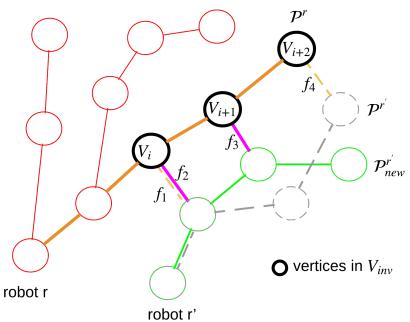
$$\prod_{l=1}^{L(\mathbf{P}^{r'})} \left[p(x_{v_{l}}^{r'} | x_{v_{l-1}}^{r'}, u_{v_{l-1}}^{r'}) \cdot p(Z_{v_{l}}^{r'} | X_{k+l}^{r'}) \right]$$

T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments. Graduate Seminar, July 2016 $\mathcal{P}_{new}^{r'}$

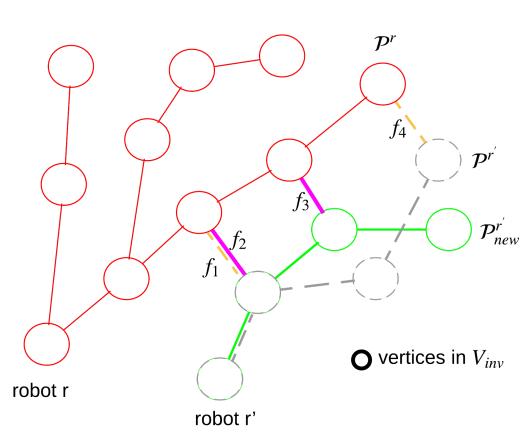
 \mathcal{P}^r

Algorithm Overview – High Level

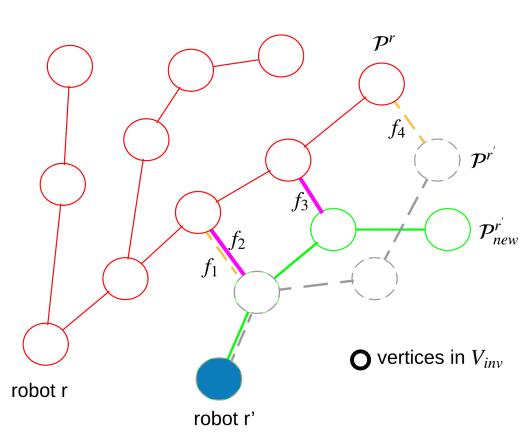
- Key Idea
 - Not all paths are impacted due to change in the announced paths
 - Impacted paths can be efficiently re-evaluated by reusing calculations
- Iterate over vertices in previous and new announced paths
- Identify **involved** vertices in multi-robot factors collect into set V_{inv}
- Identify and mark involved paths from all candidate paths



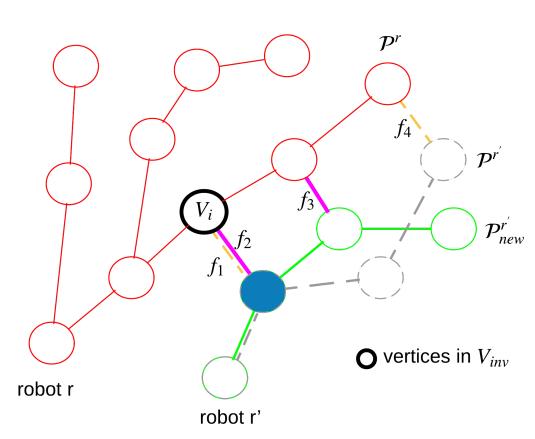
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



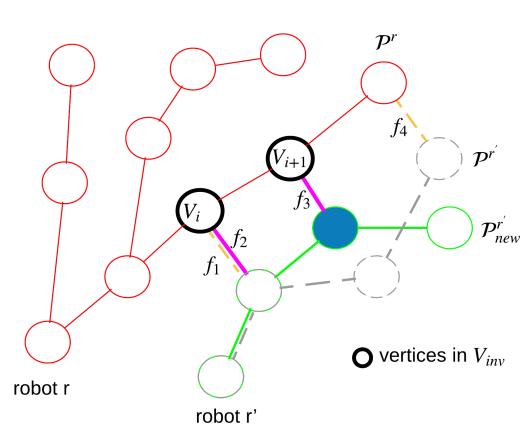
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



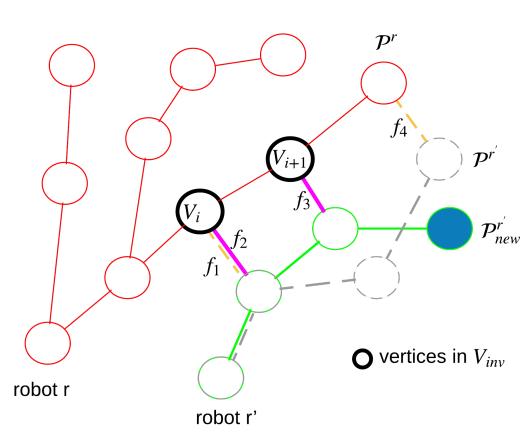
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



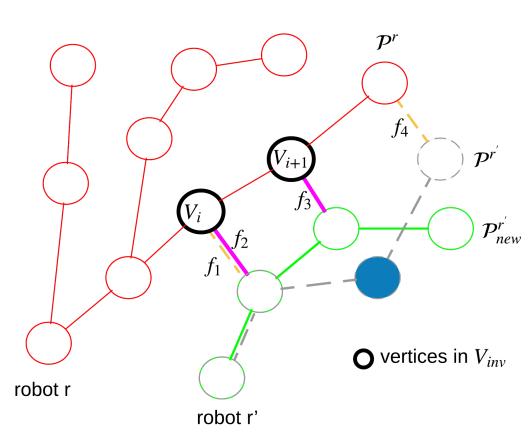
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



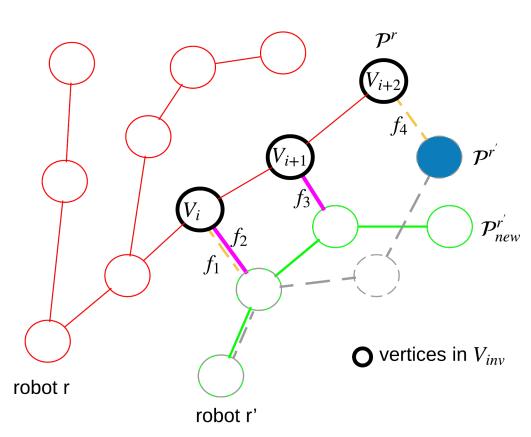
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



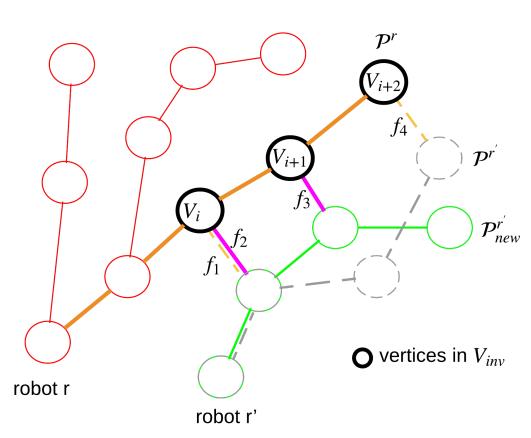
- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex

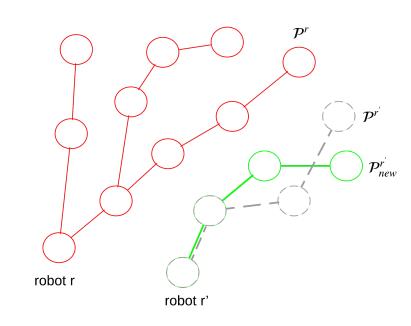


- Key Idea
 - Iterate vertices $v^{r'}$ that belong to $\mathcal{P}^{r'}$ or $\mathcal{P}^{r'}_{new}$
 - Find all nearby vertices $\{v^r\} \subseteq V^r$ to $v^{r'}$
 - Add v_i to V_{inv}
 - Identify multi-robot factors to be added or removed
 - Mark all candidate paths that go through vertex



Algorithm Overview

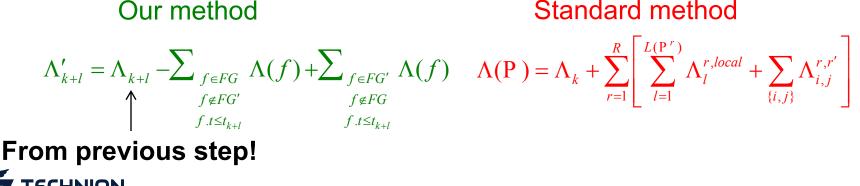
- Non-marked paths
 - Calculate once the change $\Delta J^{r'}$ B $\sum_{l=1}^{L} \Delta c_{l}^{r'}$
 - Add $\Delta J^{r'}$ to old objective function

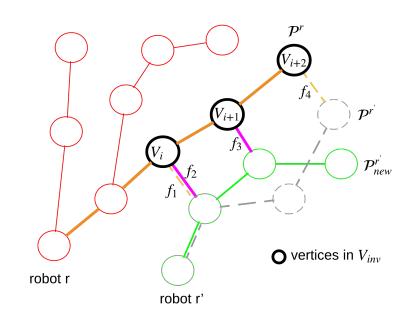


Algorithm Overview

- Non-marked paths
 - Calculate once the change $\Delta J^{r'} = \sum_{l=1}^{L} \Delta c_l^{r'}$
 - Add $\Delta J^{r'}$ to old objective function

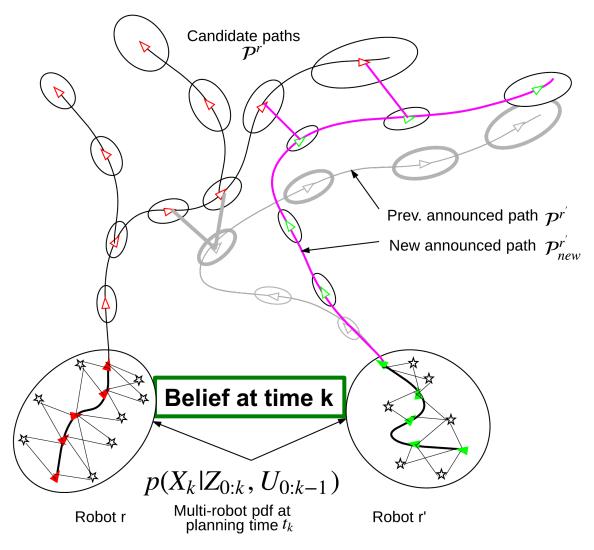
- Iterate over vertices in V_{inv} , add or remove multi-robot factors
- Evaluate objective function from new Information matrix





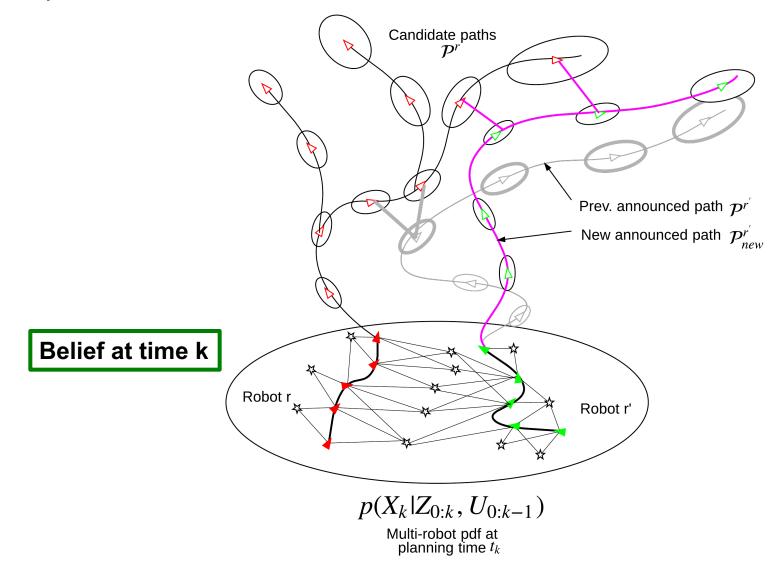
Algorithm Overview – Prior Correlation

No prior correlation at time k



Algorithm Overview – Prior Correlation

• With prior correlation at time k

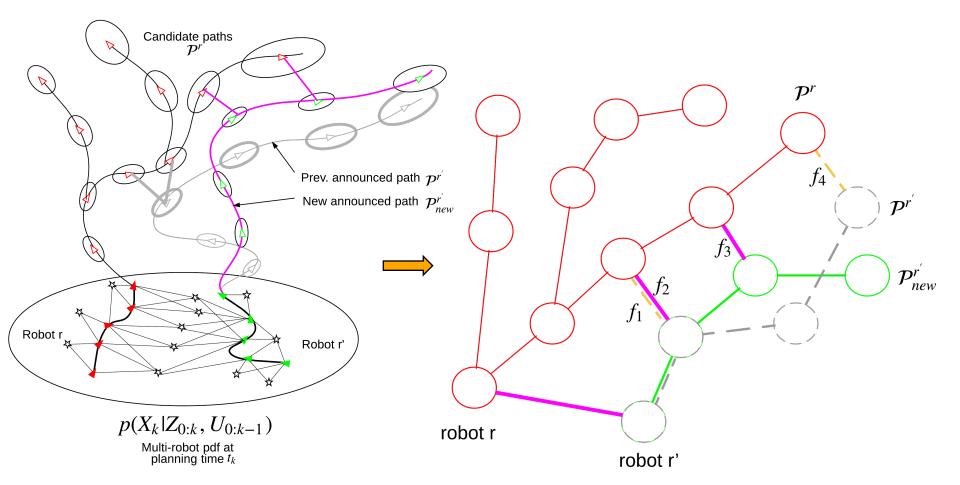


Algorithm Overview – Prior Correlation

- So far robots' beliefs at time k were assumed to be not correlated
- In practice, correlation may exist, e.g.:
 - Robots have observed a mutual scene (or landmarks)
 - Robots made a direct observation of each other
- Our approach handles these cases as well (next slides)

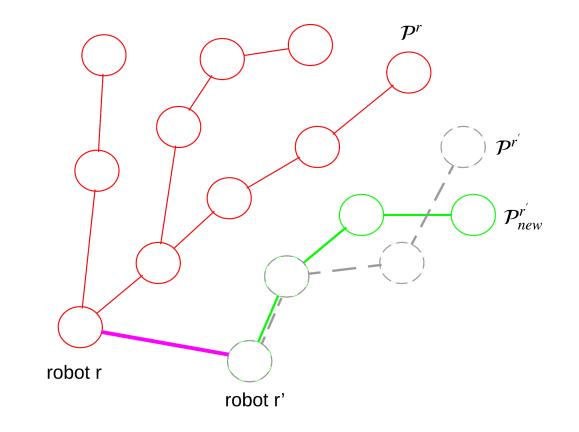
Algorithm Overview – Prior Correlation

- Two possible cases
 - With multi-robot factors
 - Without multi-robot factors



Algorithm Overview – Prior Correlation

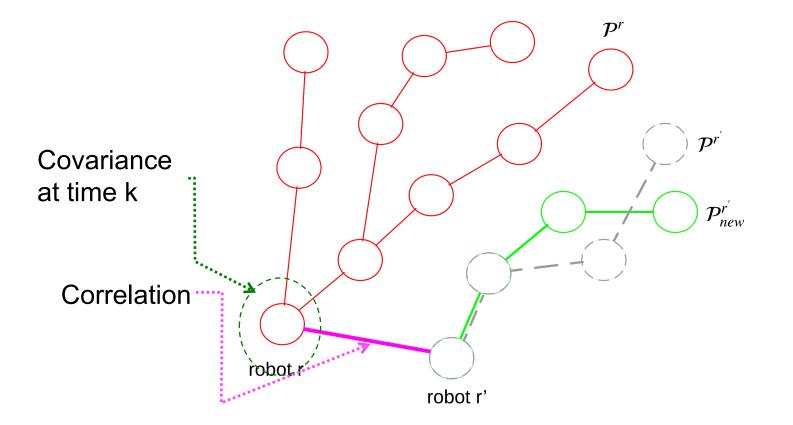
- Two possible cases
 - With multi-robot factors
 - Without multi-robot factors



Algorithm Overview – Prior Correlation

- Two possible cases
 - With multi-robot factors
 - Without multi-robot factors

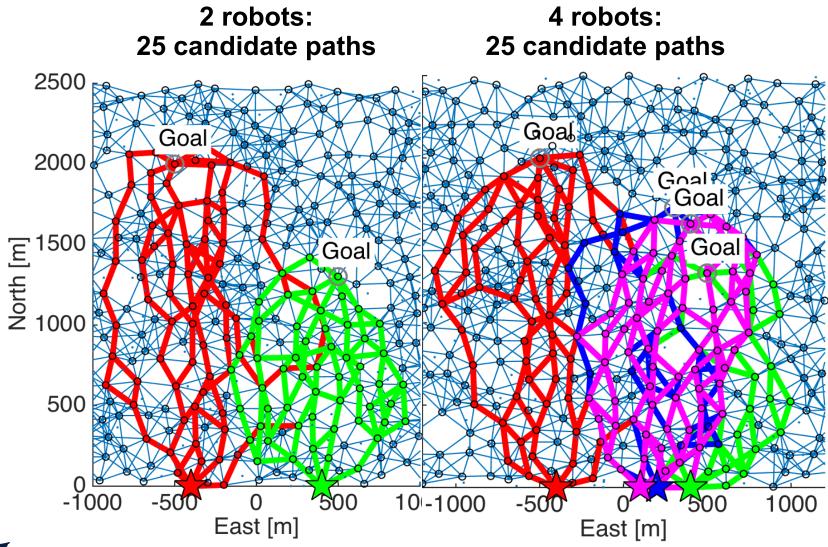
- If covariance changes significantly, mark all paths
- Otherwise, do not mark



Results

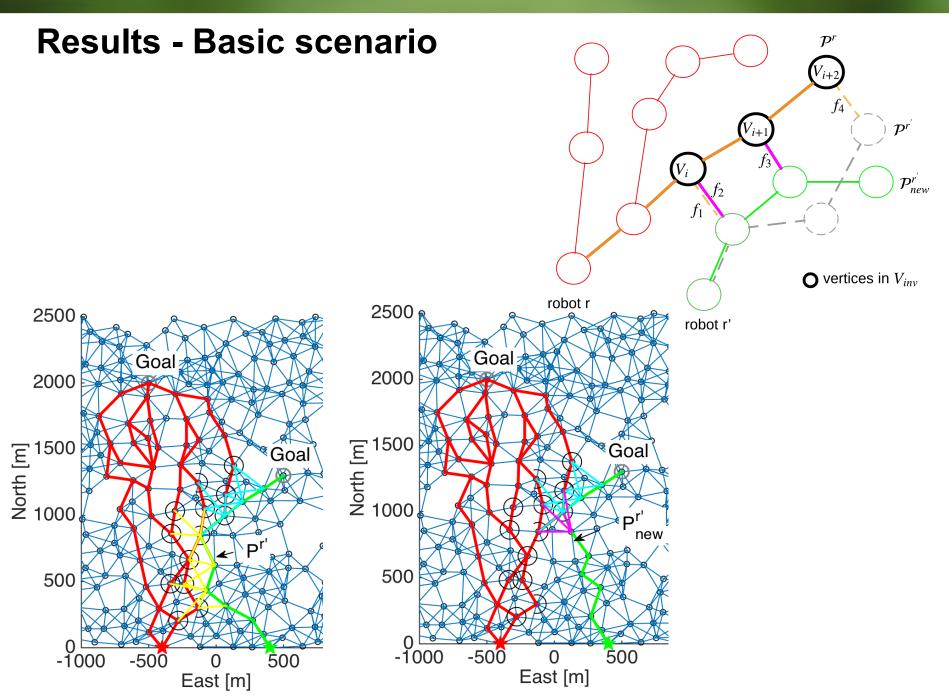
- Scenario: multiple robots autonomously navigating to goals in unknown environment
- Simulation results
 - 25 candidate paths per robot
 - PRM
 - No GPS
- Next slides:
 - Basic scenario: In-depth study for single goal
 - Larger scale scenario: multiple goals and planning sessions, SLAM in between

Results - Basic scenario



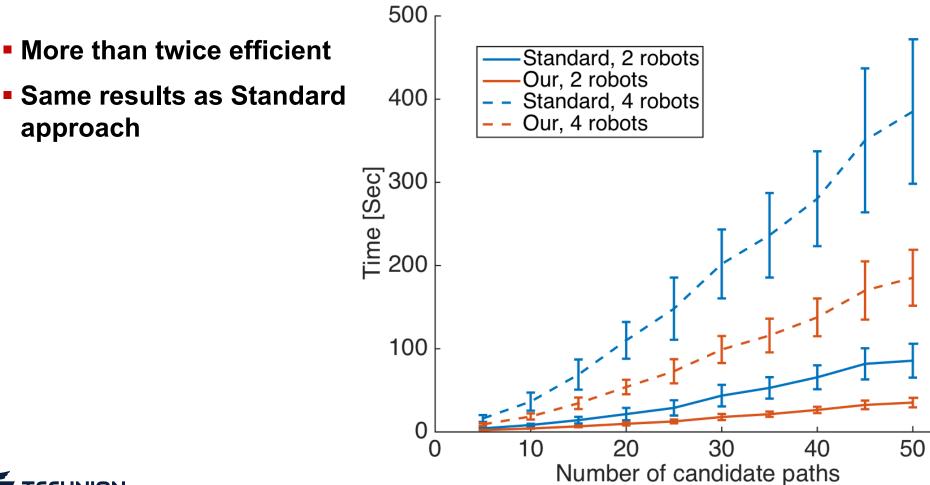
TECHNION Israel Institute of Technology

T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments. Graduate Seminar, July 2016



Results - Basic scenario

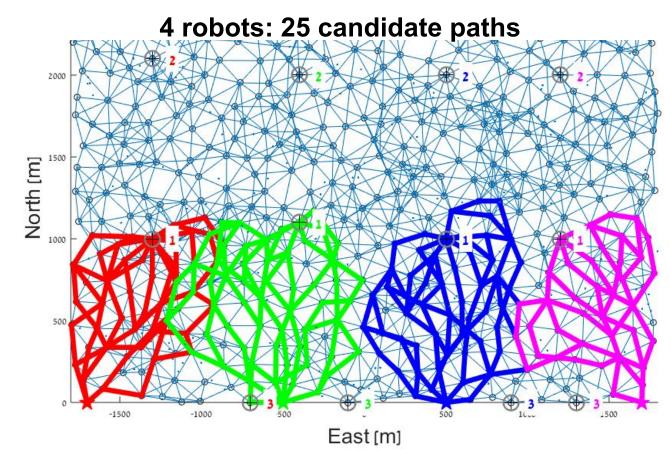
Statistical study of 50 runs (2 and 4 robots):

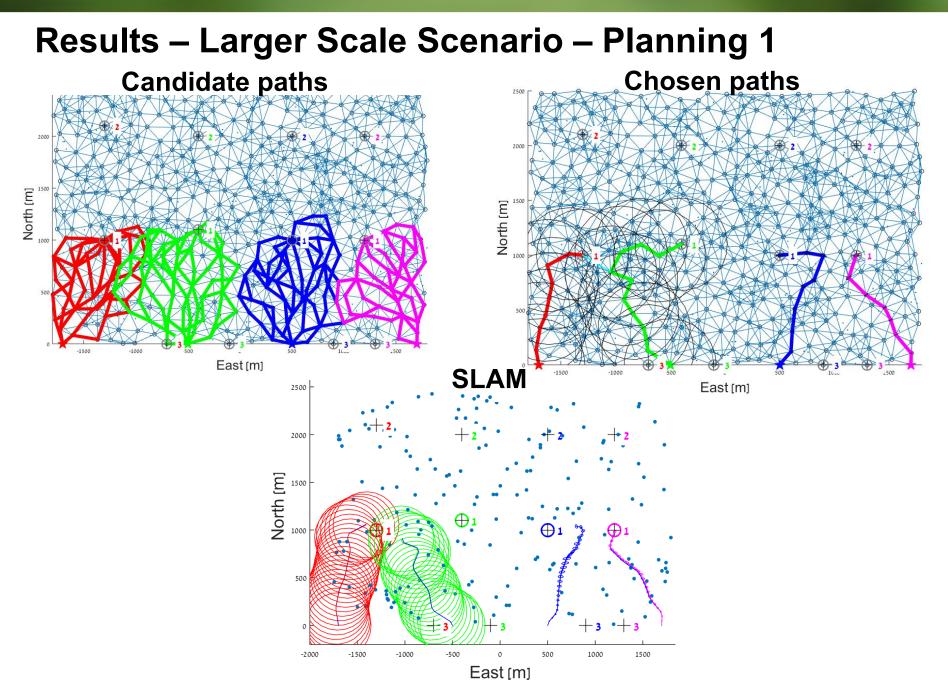


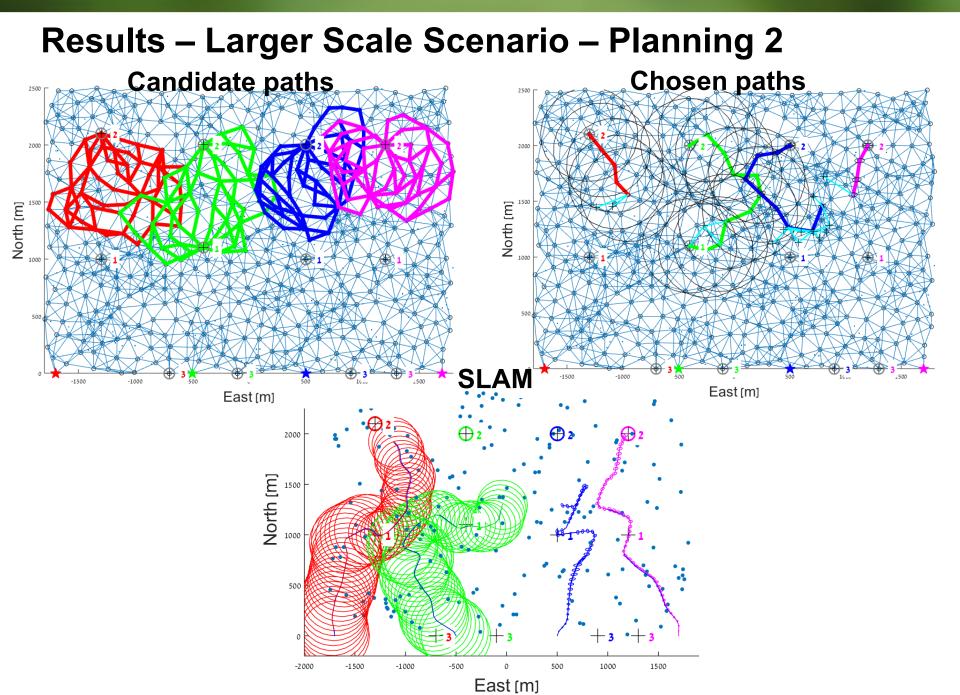
T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments. Graduate Seminar, July 2016

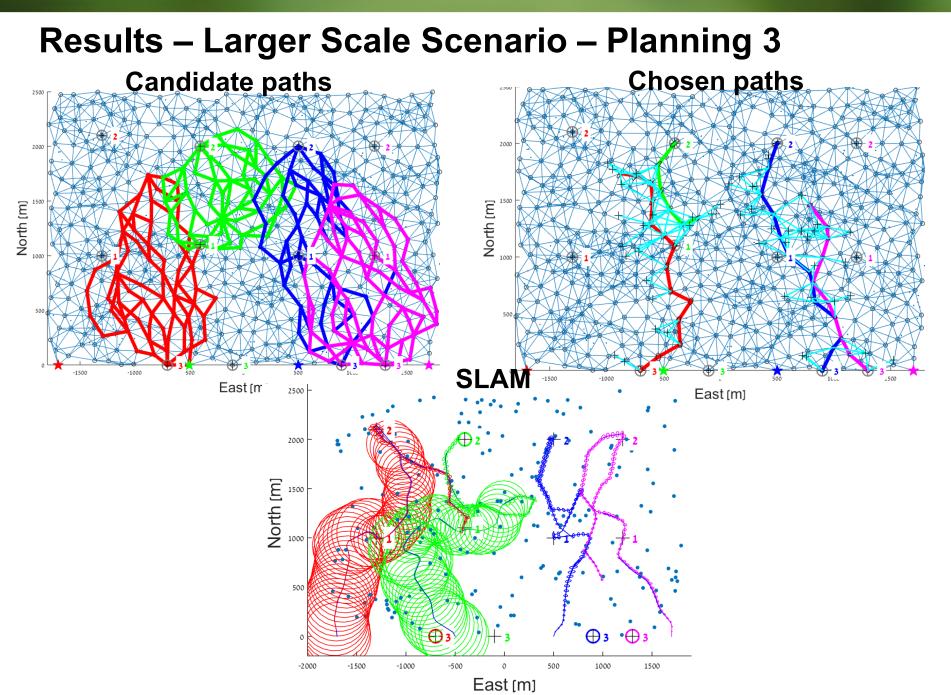
Results – Larger Scale Scenario

- Each robot has multiple goals
- Multiple planning sessions
- SLAM session given calculated robot paths (actions)
- Two first robots start with high position uncertainty

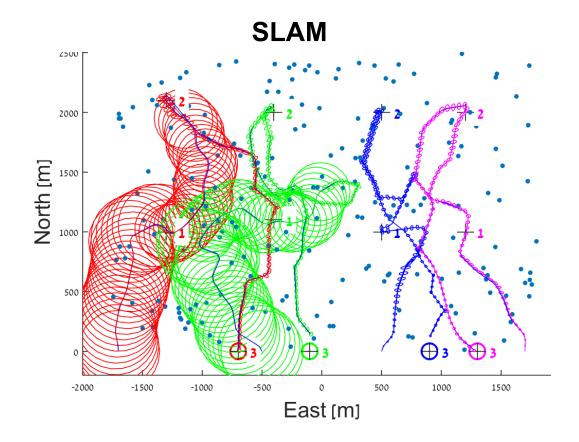








Results – Larger Scale Scenario – Final Result

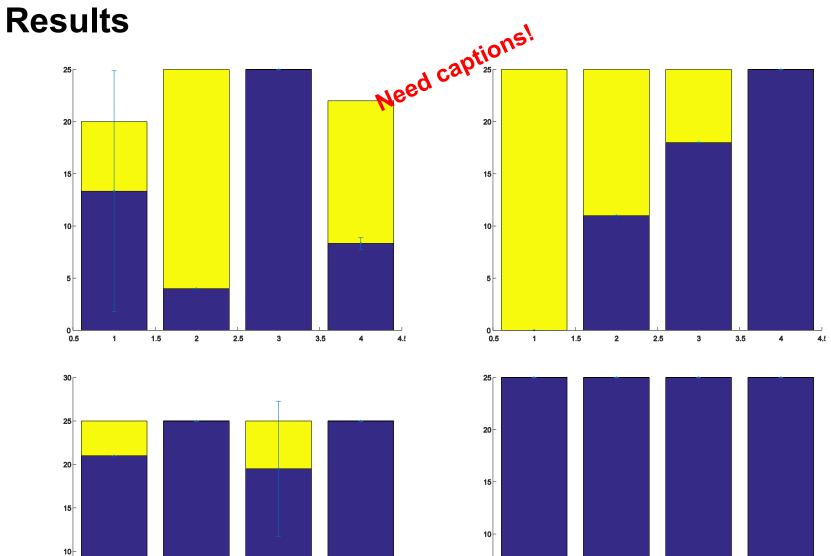


Conclusions and Future Work

Collaborative multi-robot belief space planning in unknown environments

Contribution:

- Identify impacted paths due to change in announced paths
- Efficiently re-evaluate belief only for impacted paths
- One-time re-calculation for all non-impacted paths
- Performance study in simulation
- Future work includes:
 - Concept may be generalized to other BSP approaches
 - Implement method in an incremental setting (e.g. RRG, RRT)
 - Extend approach to active cooperative localization and target tracking



5

0.5

1.5

1

2.5

3

2

3.5

4

4.(

1

1.5

2.5

3

2

3.5

4.

4

0 0.5

Results

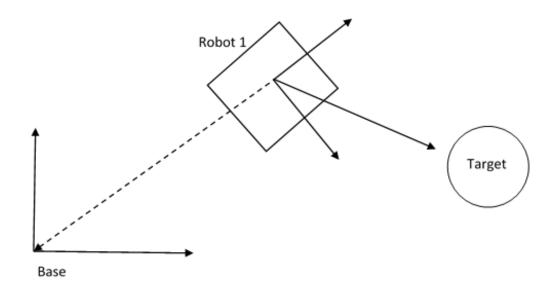
Timing results

Introduction – Localization

Navigation in known environment or with GPS.

Localization: Where am I?

What happens when map is unknown and without GPS?



T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments. Graduate Seminar, July 2016