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Introduction — Application

= Navigation and mapping in unknown environment with multiple robots (MR)

Navigation and mapping with MR:
Why is it interesting?

- - 4 26 -
Autonomous cars Space exploration Search & rescue
[google.com] [nasa.gov] operations
[spectrum.ieee.org]
~
TECHNION
Israel Institute T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments.

of Technology Graduate Seminar, July 2016



Introduction - SLAM

= Navigation and mapping in unknown environment without GPS

= Simultaneous localization and mapping (SLAM)

Estimation and Perception:
Where am |? What is the surrounding environment?

Estimation Perception

I

[societyofrobots.com]
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Introduction - SLAM

= Represent robot knowledge in a graph model
— Vertices represent the variables. For example location of robot

— Edges represent constrains between variables, also known as factors

Estimation Perception

I

= Allows computationally efficient probabilistic inference, given data

* For example, pose estimation given sensor data (e.g. images)
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Introduction - Planning

= Navigation and mapping in unknown environment without GPS

= Key components for autonomous operation include

— Estimation and Perception:
Where am |? What is the surrounding environment?

— Planning: What to do next?

Estimation _)E Perception

Planning

= Belief space planning (BSP) - fundamental problem in robotics
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B
Introduction — Multi Robot SLAM

= Navigation and mapping in unknown environment with multiple robots (MR)
— Robust and faster exploration/mapping

— Higher accuracy in a multi robot collaborative framework

- - -

[J. Dong et al. ‘15 ICRA] [Indelman ‘16 CSM, “14 ICRA]
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Introduction - Multi Robot Belief Space Planning

= Belief space planning in unknown environment with multiple robots (MR)

= Reason about uncertainty within planning and consider collaboration
between robots

[Indelman ‘15 ISRR]
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Related Work — Belief Space Planning (BSP)

= Solving multi-robot BSP is in particular challenging
— Involves considering all combinations of candidate paths of all robots

— Existing approaches typically assume environment/map is known

Purple
Robot
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Related Work — Sampling Methods

PRM

i

.

— Discretize the environment

= Sampling Methods

— Candidate trajectories
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— Rapidly exploring random trees (RRT)

= Existing approaches
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— Probabilistic road map (PRM)
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Related Work — Belief Space Planning (BSP)

— Existing approaches typically assume environment/map is known

= Recent works enable operation in unknown environments [kim et al. <14 1URR]
[Indelman et al. ‘15 IJRR] [Indelman ‘15 ISRR]

= |[n particular, reason about future observations of unknown environments
within multi-robot belief space planning [indeiman 15 1sRR]

P (O] Zo:k. uo:k—1)
Trajectories and mapped
Robot r areas by planning timet,  Robot 7’
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Related Work — Announced Path Approach

= A common (sub-optimal) iterative approach to reduce computational effort:
[Atanasov ‘14 TRO] [Levine '13 JAIS]

|Ca|cu|ations are performed from scratch at each iteration

Robot r

r
1st iteration P
Candidate Chosen path /
paths

Robot r P »
2nd jteration new
Candidate
paths Chosen path —
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Contribution

= Each time the announced path from some robot r’ changes, each robot r
has to re-evaluate its candidate paths

= Key idea

— Not all paths are
iImpacted due to change
in the announced paths

Prev. announced path pr’

— Impacted paths can be
efficiently re-evaluated by
reusing calculations

New announced path pr

PXilZo-xk, Up-k—1)

Multi-robot pdf at
Robot r planning time %



Formulation - Multi-robot Belief Space Planning

= Belief for robot r at a future time t;: b[X,’;H] B P(X;:H | Zg:kwu(’;:kﬂ_l)

—— ——
k k+1 - k+1l - k+L

Planning I-th look
time ahead step
= Xr - Poses and landmarks estimated by robot r
k+1

" Zbx+1 - Observations available to robot r

" Uy.+1—1 - Controls of robot r
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Formulation - Multi-robot Belief Space Planning

= Belief for robot r at a future time t;.;: b[X,’;H] B P(X;:H | Zg:kwu(’;:kﬂ_l)

—— ——
k k+1 - k+1l - k+L

Planning I-th look
time ahead step

= Multi-robot objective function:

J(U)=E {ZZC; (b[X,‘fH],u,:H)}

=1 r=1

= Optimal controls for all R robots: U” = argmin J(U)
U
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i-robot Belief Space Planning

- Mult

on

Formulat

= Probability distribution function (pdf) of multi robot at planning time ¢
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Formulation - Multi-robot Belief Space Planning

= Probability distribution function (pdf) of multi robot at planning time t;:

R [ L)
b[P 1= p(X, |ZO:k9UO:k—1)4_ |: 11 p(x; |x:l_1>u:,_l)'p(zvr, |X1:+z)l ] p(Zir,’; |x:,sx:j)}

=1 i j}
Prior
R L(Pr) ocal '
AP)Y=A +D 1 D A+ A
r=1 [=1 {i,j}

Prev. announced path pr’

= Maximum a posteriori (MAP) inference:

New announced path p7

bP]1=N(X(P),A™(P))

PXi|Zo.x, Up:k—1)

Multi-robot pdf at ]
Robot r planning time 7 Robot r
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Formulation - Multi-robot Belief Space Planning

= Probability distribution function (pdf) of multi robot at planning time t;:

R [ Leh)
b[P ]= p(X, |Zo;k,U0:k—1)4_ |: p(xvr, |xv“ uv“) p(Zr ‘XIZH) ) p(Zir,’; |xvriaxvr]):|

=1 {l J}
Prior Local information
R L(P )
AP)=A +)] Z AN AT
r=1 {i,7}

Prev. announced path pr’

= Maximum a posteriori (MAP) inference:

New announced path p7

bP]1=N(X(P),A™(P))

PXi|Zo.x, Up:k—1)

Multi-robot pdf at ]
Robot r planning time 7 Robot r
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Formulation - Multi-robot Belief Space Planning

= Probability distribution function (pdf) of multi robot at planning time t;:

R | L(P")
bIP 1= p(X; | Zoy> Uy | { | (x| X suy, ) p(Zy | X)) | | Pz XQ,XC])}

l=1 {l ]}
Prior Local information Mutual observations
R L(P")
A(P):Ak+z ZArlocal+zA1r
r=1 {i,j}

Prev. announced path pr’

= Maximum a posteriori (MAP) inference:

New announced path p7

bP]1=N(X(P),A™(P))

PXi|Zo.x, Up:k—1)

Multi-robot pdf at ]
Robot r planning time 7 Robot r
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Formulation - Multi-robot Belief Space Planning

= Probability distribution function (pdf) of multi robot at planning time t;:

=1 T

R [ Leh)
b[P ]= p(X, |ZO:k9U0:k—1)4_ { 1 p(xvr, |xvrl_la”:,_l)‘]9(zvr, |X/:+z)l ) p(Z,-r,}r |xvr,.axvrj




Factor Graph Inference P

= Joint state p’.p": (;_/) P
/
, L(P")
b[P",P" = p(X, | Zy;, Uy ) H [p(xvr, |xvrl_ls”vrl_l)'p(zvrl | X;;;)]
I=1
L(P") o ' LR , '
[T G 12 s ) p LX) T TG 1xx0) =
I=1 r=1 | 4./} robot r N_v
robot r’

= Joint state p",p" :
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Factor Graph Inference

= Joint state p’,p":

L(P")

b[P",P r’] = p(Xi [ Z4y, Upyy) H [p(xvr, |xvrl_ls”vrl_l)'p(zvr, | X;;;)]
I=1
L(P") ' , ' ' , R ’ '
[T e ) - pZ 1 I T TT G 150 =
=1 r=1 | (i)} / robot r N
robot r
= Joint state p".p" :
P /I Does not change
’ L(P")
b[P",P .. 1= P(X, | Z>Upy) H [p(xvr, |x;_la“;_l)'p(zvr, |X/:+z):|
I=1
L(P") ' , , ‘ ' R S '
[T oG 1 g - pz | XD [TT T oGy 1 x0)
I=1 r=l | {67}
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Factor Graph Inference P

= Joint state p’,p":

L(P")

b[P",P r’] = p(Xi [ Z4y, Upyy) H [p(xvr, |xvrl_ls”vrl_l)'p(zvr, | X;;;)]

I=1

L(P")
[T[pG 1 u): p(ZV|X,:+,>]H{Hp<z X, )} - ®

=1 r=1| {i,j} N
robot r’
Joint state prp..; /I Does not change
L(P")
b[P" Pnew] p(X, |ZOkan;k—1)H|:p(xvr, |xvl1 ”v“) P(Z |Xk+l)
=1

L(P")

[T PGl ) (2] 1 X)) |

=1
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Algorithm Overview — High Level

= |[terate over vertices in previous and new announced paths
= [dentify involved vertices in multi-robot factors — collect into set V/;,,,

= [dentify and mark involved paths from all candidate paths

Q vertices in Vyy,
robot r

robot r’
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Algorithm Overview — Details

= Key ldea

— lterate vertices v" that belong to P or P!,
Find all nearby vertices {v"} € V" to v"’

Add v; to V;,

— ldentify multi-robot factors to be
added or removed

— Mark all candidate paths that go
through vertex

robot r N
o~ robot r’
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Algorithm Overview — Details

= Key ldea

— lterate vertices v" that belong to P or P!,
Find all nearby vertices {v"} € V" to v"’

Add v; to V;,

— ldentify multi-robot factors to be
added or removed

— Mark all candidate paths that go
through vertex

Q vertices in Vj,,

robot r

—~ robot r’
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Algorithm Overview — Details

= Key ldea
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Q vertices in Vj,,
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Algorithm Overview — Details
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Q vertices in Vj,,
robot r

robot r’
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Algorithm Overview — Details

= Key ldea
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Algorithm Overview — Details

= Key ldea

— lterate vertices v" that belong to P or P!,
Find all nearby vertices {v"} € V" to v"’

Add v; to V;,

— ldentify multi-robot factors to be
added or removed

— Mark all candidate paths that go

through vertex ’ P

Q vertices in Vj,,

robot r

robot r’
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Algorithm Overview — Details

= Key ldea

— lterate vertices v" that belong to P or P!,
Find all nearby vertices {v"} € V" to v"’

Add v; to V;,

— ldentify multi-robot factors to be
added or removed

— Mark all candidate paths that go
through vertex

Q vertices in Vj,,

robot r

robot r’
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Algorithm Overview

= Non-marked paths

L
— Calculate once the change AJ" B ) A¢/

/=1

— Add AJ” to old objective function

robot r N/
robot r’
~w
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Algorithm Overview

= Non-marked paths

L
— Calculate once the change AJ" B ) A¢/

/=1

— Add AJ” to old objective function

Q vertices in V;,,

robot r’

= Marked paths

— lterate over vertices in V;,,,,, add or remove multi-robot factors
— Evaluate objective function from new Information matrix

Our method Standard method
R | L(P") .
’ r,loca r,r'
Ay =N, _Z feFG A(f) "‘z feFG' A(f) AP)= A+ Z Z A, + Z Ai,j
feFG' feFG r=l | [=] {i.)}
Sty Sty
From previous step!
7 TECHNION
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Algorithm Overview — Prior Correlation

= No prior correlation at time k

Prev. announced path pr'

New announced path pglew

PXilZo-x, Up-k—1)

Multi-robot pdf at :
Robot r planning time fx Robot r



Algorithm Overview — Prior Correlation

= With prior correlation at time k

Q Candida;srpaths 4
D
R DE

. _—
4

Prev. announced path pr

New announced path P’

)

Belief at time k | 4 S%

N
Robotr ‘M A* Robot r'
A=

P Xl Zok, Up-k—1)

Multi-robot pdf at
planning time %



Algorithm Overview — Prior Correlation

= So far — robots’ beliefs at time k were assumed to be not correlated

= [n practice, correlation may exist, e.g.:
— Robots have observed a mutual scene (or landmarks)
— Robots made a direct observation of each other

= Our approach handles these cases as well (next slides)

_~w
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Algorithm Overview — Prior Correlation

= Two possible cases

— With multi-robot factors

— Without multi-robot factors

Prev. announced path pr’

New announced path pg'ew

PXilZo.x, Upk—1) robot r
Multi-robot pdf at ,
planning time Z robot r



Algorithm Overview — Prior Correlation

= Two possible cases

— With multi-robot factors
— Without multi-robot factors

robot r’



Algorithm Overview — Prior Correlation

= Two possible cases = [f covariance changes significantly,

_ With multi-robot factors mark all paths

— Without multi-robot factors = Otherwise, do not mark

Covariance )
at time k

Correlation

.
.
/ PR
.
Y

rohot. ¥ \_/
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.
.
[
.
.
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robot r’



Results

= Scenario: multiple robots autonomously navigating to goals in
unknown environment

= Simulation results
— 25 candidate paths per robot
— PRM
— No GPS
= Next slides:
— Basic scenario: In-depth study for single goal

— Larger scale scenario: multiple goals and planning sessions, SLAM in
between
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Results - Basic scenario
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Results - Basic scenario

= Statistical study of 50 runs (2 and 4 robots):

500
= More than twice efficient —__Standard, 2 robots
——OQOur, 2 robots
= Same results as Standard 400} |- - Standard, 4 robots |
approach — - Our, 4 robots P
- /'
2300 .
g -
i: 200 B { // g - {
100} t J- 1
-
0 == - '
0 10 20 30 40 50
o~ Number of candidate paths
:rfeclr;lslt:ltlugN T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments.

of Technology Graduate Seminar, July 2016



Results — Larger Scale Scenario

= Each robot has multiple goals

= Multiple planning sessions
= SLAM session given calculated robot paths (actions)

= Two first robots start with high position uncertainty
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Results — Larger Scale Scenario — Planning 1
Candidate paths Chosen
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Results — Larger Scale Scenario — Planning 2
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Results — Larger Scale Scenario — Planning
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Results — Larger Scale Scenario — Final Result
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Conclusions and Future Work

= Collaborative multi-robot belief space planning in unknown environments
= Contribution:

— ldentify impacted paths due to change in announced paths

— Efficiently re-evaluate belief only for impacted paths

— One-time re-calculation for all non-impacted paths

— Performance study in simulation

= Future work includes:
— Concept may be generalized to other BSP approaches
— Implement method in an incremental setting (e.g. RRG, RRT)
— Extend approach to active cooperative localization and target tracking
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Introduction — Localization

= Navigation in known environment or with GPS.

Localization: Where am |?

What happens when map is unknown and without GPS?

Robot 1

AP /,’
/" Target
o~
TECHNION

Israel Institute T. Regev, Multi-Robot Decentralized Belief Space Planning in Unknown Environments.
of Technology Graduate Seminar, July 2016

4



