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Abstract

In this thesis we develop a new approach for decentralized multi-robot belief space
planning in high-dimensional state spaces while operating in unknown environments.
State of the art approaches often address related problems within a sampling based
motion planning paradigm, where robots generate candidate paths and are to choose
the best paths according to a given objective function. As exhaustive evaluation of
all candidate path combinations from different robots is computationally intractable,
a commonly used (sub-optimal) framework is for each robot, at each time epoch, to
evaluate its own candidate paths while only considering the best paths announced by
other robots. Yet, even this approach can become computationally expensive, especially
for high-dimensional state spaces and for numerous candidate paths that need to be
evaluated. In particular, upon an update in the announced path from one of the robots,
state of the art approaches re-evaluate belief evolution for all candidate paths and do
so from scratch. In this work we develop a framework to identify and efficiently update
only those paths that are actually impacted as a result of an update in the announced
path. Our approach is based on appropriately propagating belief evolution along
impacted paths while employing insights from factor graph and incremental smoothing
for efficient inference that is required for evaluating the utility of each impacted path.

We demonstrate our approach in a synthetic simulation.
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Chapter 1

Introduction

Collaboration between multiple robots pursuing common or individual tasks is impor-
tant in numerous problem domains, including cooperative navigation, collaborative
mapping and 3D reconstruction in indoor, underwater and urban environments, as
well as in various space applications and in the context of autonomous cars. A key
required capability is to autonomously determine robot actions while taking into account
different sources of uncertainty and to operate autonomously in unknown, uncertain or
dynamically changing environments.

The passive instance of the problem (i.e. inference), considering a single-robot setting
for now, involves localizing the robot while at the same time constructing or refining
a model of the environment. The corresponding problem is known as simultaneous
localization and mapping (SLAM), which requires reliable perception, i.e. sensing and
correctly interpreting the environment through on-board sensors (e.g. camera, range
sensor), and computationally efficient inference. The two processes are commonly known
in SLAM community as front-end and back-end, respectively.

The latter stage, involves inference over a high-dimensional state that comprises the
robot (past and) current pose and the observed environment thus far represented, for
example, by landmarks. In the last decade, much progress has been made in efficiently
solving this problem. In particular, state of the art approaches represent the problem
via a factor graph graphical model, which naturally encodes the inherent sparsity of the
problem (see e.g. [15,23]). The factor graph will be also used in this work, however, in
the context of (belief space) planning.

However, autonomous operation requires not only inference, but also involves a
second key-ingredient - determining the best future action(s) while accounting for
different sources of uncertainty and given some user-defined high-level objective. The
corresponding problem can be formulated within a partially observable Markov decision
process (POMDP) framework, which is known to be computationally intractable [33].
Thus, the research community has been extensively investigating approximate approaches
to provide better scalability to support real world problems. These methods are

commonly referred to as belief space planning (BSP) approaches, as they reason about



belief evolution due to different candidate actions. Here, the belief corresponds to the
probability density function (pdf) over the state. As in the passive case (SLAM), the
latter can be high-dimensional if the environment is uncertain or unknown.
Collaboration between multiple robots can significantly improve performance of
both inference and planning phases. In particular, by sharing relevant information
between robots, estimation quality can substantially improve, while by appropriately
coordinating actions the robots can often finish a task in a shorter time. However, these
advantages come with a price of more complicated inference and planning approaches.
In particular, multi-robot belief space planning involves reasoning about all permu-
tations of different candidate actions for different robots, which scales exponentially
and thus quickly becomes intractable. This is especially true while operating over
high-dimensional state spaces, as we consider here, as each such permutation involves
inference, calculating belief evolution given candidate actions, which by itself is compu-

tational expensive.

Contribution

In this work we contribute a multi-robot belief space planning approach which further
reduces computational complexity, considering the problem of multi-robot autonomous
navigation in unknown environments. Instead of re-evaluating from scratch each
candidate path, the key observation is that often, belief evolution changes only for part
of the candidate paths as a result of an update in the announced path from another
robot(s). We show how to identify and efficiently recalculate only those candidate paths
that are impacted as a result of an update in the announced paths from another robot.
See illustration in Figure 1.1. Our approach is based on appropriately propagating belief
evolution along impacted paths while employing insights from factor graph for efficient

inference that is required for evaluating the utility of each impacted path.
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Figure 1.1: Illustration of the proposed concept. The figure shows belief evolution
over a few candidate paths of robot r given an announced path P from robot 1’
and the corresponding multi-robot constraints that can represent, e.g., future mutual
observations of environments unknown at planning time [18]. Upon an update in an
announced path from P to P~ , a new set of such constraints will be generated (shown
in purple), requiring to re-calculate belief evolution for candidate paths. Covariance
ellipses are shown for illustration.






Chapter 2

Literature Review

As already mentioned, the partially observable Markov decision process (POMDP)
framework is computationally intractable [33] for all but the smallest problems. Thus,
the research community has been extensively investigating approaches that trade-off
computational complexity with sub-optimal performance. These approaches can be
roughly classified into four categories, some of which are further discussed below: point-
based value iteration methods (e.g. [29]), simulation based approaches (e.g. [37]) in
the context of active SLAM, sampling based approaches (e.g. [25,26,30]) and direct
trajectory optimization approaches (e.g. [20,35,38]).

In particular, sampling based approaches (e.g. [5,10,17,36]) discretize the state space
using randomized exploration strategies to explore the belief space in search of an optimal
plan. While many of these approaches, including probabilistic roadmap (PRM) [26],
rapidly exploring random trees (RRT) [30], and RRT* and Rapidly-exploring Random
Graph (RRG) [25], assume perfect knowledge of the state, deterministic control and a
known environment, efforts have been devoted in recent years to alleviate these restricting
assumptions. The corresponding approaches include, for example, the belief roadmap
(BRM) [36] and the rapidly-exploring random belief trees (RRBT) [10], where planning
is performed in the belief space, thereby incorporating the predicted uncertainties
of future position estimates. Similar strategies are used to address also informative
planning problems (see, e.g., [17]).

While typically the environment is assumed to be known, recent research focused on
facilitating autonomous operation also in the presence of uncertainty in the environment
and when the environment is a priori unknown and instead is mapped on the fly, see
e.g. [11,20,37].

The passive instance of this problem is called simultaneous localization and mapping
(SLAM), and has been extensively investigated in the last two decades. As the name
suggests, the objective is to solve two problems at once - estimating robot poses and
infer the observed environment thus far on the fly. Numerous approaches have been
developed over the years, ranging from Davison’s EKF-SLAM [13] that considered for

the first time real-time performance aspects in a monocular setting, to Eustice’s sparse



extended information filter (SEIF) [16] and Dellaert’s smoothing and mapping (SAM) [15]
paradigms. The latter led to the development of incremental SAM approaches [23,24],
most notably iISAM2, which are considered by many as the state of the art in (back-end)
SLAM. In this work we utilize these approaches for solving multi-robot SLAM.

The active instance of the problem, i.e. belief space planning in high-dimensional
state spaces due to unknown or uncertain environments, is also known as active SLAM.
Recent approaches that addressed this problem considering a single robot setting
include [20,28,37].

A multi-robot belief space framework has been also investigated in different contexts
in recent years, including multi-robot tracking, active SLAM and autonomous navigation
in unknown environments, planning for coverage tasks, and informative planning (see,
e.g. [8,18,19,31]). In particular, recent work [18,19] considered the problem of multi-robot
active collaborative estimation while operating in unknown environments and introduced
within the belief reasoning regarding future mutual observations of environments that are
unknown at planning time. Here, we build upon that work considering a decentralized
framework.

Unfortunately, solving exactly the corresponding decentralized POMDP problem is
computationally intractable and has been shown to be nondeterministic exponential
(NEXP) complete [9], and thus has been typically addressed using approximate ap-
proaches. Also, despite the intractable worse case complexity of decentralized POMDP,
there has been impressive progress in recent years in solving interesting instances of the
problem (e.g. [6]).

A common approach to reduce computational complexity is for each robot, at each
time epoch, to solve the belief space planning problem considering its own candidate
paths (generated, e.g., by some sampling method) and the best solutions found and
announced by other robots (e.g. [8,31]). The robot then announces its best path,
according to a user-defined objective function, to other robots which then proceed with
the same procedure. Such an approach avoids solving the problem jointly over all robots
and reduces the exponential complexity in the number of robots to linear complexity,
with performance guarantees analyzed in [§].

Yet, existing methods calculate the belief evolution over all candidate paths from
scratch each time a new announced plan from another robot is received, which by
itself can be computationally extensive operation. In contrast, in this work we develop
an approach to identify and efficiently recalculate belief evolution, while re-using
calculations, only of impacted paths. As will be seen, our approach yields identical
results to the above-mentioned announced path approach, while significantly reducing

running time.
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Chapter 3

Background

3.1 Factor Graph

Factor graphs are graphical models that are well suited to modeling complex estimation
problems, such as Simultaneous Localization and Mapping (SLAM) or Structure from
Motion (SFM). A factor graph is a bipartite graph consisting of factors connected
to variables. [15]. Variables nodes represent the unknown random variables, while
edges represent constrains between appropriate variables, constraints that correspond
to motion and measurement models and to prior knowledge. Each such constraint is

called a factor.

A toy example for a factor graph is shown in Figure 3.1. As seen, the factor graph
has three variable nodes, x1, x2, and x3, that could for example represent robot poses
at different time instances. The shown factors include unary and pairwise factors. For
example, the variable node x; has two unary factors attached to it (factors that only
involve a single variable node), that could correspond to prior knowledge and GPS
measurements. Pairwise factors, such as the factor that connects x1 and xo, could

represent a motion model or odometry, for example.

Mathematically, a joint pdf P(z1,z2,23|Z,U) over the variables x1, x2, and x3 can
be factorized as
3

P(z1, 29,232, U) = P(x0)P(ZF 7 wy) [ [ Plailaio, wi ) )P(Z775 ). (3.1)
1=2

where the motion and observation models (in this case, P(x;|z;—1,u;—1) and P(ZEP%|2;))

will be formally defined in the sequel.

The factor graph from Figure 3.1 is merely a graphical representation of this
factorization, which abstracts away and encapsulates information. Mathematically, it

can be written as

11



Figure 3.1: An example of a factor graph that the variables X; can represent the location
of the robots and the edges and dot represent the constraints between them. Image
taken from [15]

Figure 3.2: An example of a factor graph representing the joint belief b[P", 73”/] for some
candidate path P". Different factor graphs are obtained for each path P" considering
either P or P’

new:

f(x1, 22, 23) = Hfi(Xi) (3.2)

where X; C X = {1, z9, 23} is an appropriate subset of variables for each factor f;.

In this work we will also use factor graphs to represent the joint pdf - in our context,
this joint pdf will represent a future belief over states of multiple robots given specific

candidate actions. See illustration in Figure 3.2.
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Figure 3.3: Candidate paths shown on PRM. Robot starting positions are denoted by .
3.2 Probabilistic Roadmap Planners

The Probabilistic RoadMap (PRM) planner [7,27] is a sampling based method that for
given environment (known or unknown) takes a random sample from all over the open
space and creates verticies that represent possible future robot locations. Vertices are
connected by edges if there is a feasible control action, or robot motion, that brings the
robot from one vertex to another.

From a given starting point of the robot, goal and PRM, we can generate multiple
candidate paths and reason which path is the best for a given objective function. See
illustration for two robots in Figure 3.3.

Until recently, all such approaches considered a Markov Decision Process (MDP)
framework, i.e. the state to be fully observable and thus accurately known regardless
of the action (which can be stochastic in nature). The seminal work of Prentice and
Roy [36] extended the PRM to a partially observable setting, yielding an approach
called Belief Roadmap (BRM). The overall idea was to track the evolution of the belief
for paths over a PRM, and choose the one that, e.g., minimizes uncertainty at the goal.

Yet, the BRM assumes the environment map is given and relies on known beacons

to update the state. In contrast, in this work we consider unknown environments and a
multi-robot setting.

13






Chapter 4

Probabilistic Formulation and

Notations

We consider a group of R robots operating in unknown or uncertain environments,
aiming to autonomously decide their future actions based on information accumulated
thus far and a given objective function J, which is a function of robots’ beliefs at
different future time instances.

Let P(X}| 2., U1 ) represent the posterior probability distribution function (pdf)
at planning time ¢;, over states of interest X of robot r (e.g. current and past poses).
Here, Zj, and U, _, denote, respectively, all observations and controls by time 2.

Consider conventional state transition and observation models
Tip1 = f(@i i, wi) 5 zij = h(ws, 25,v55) (4.1)

with zero-mean Gaussian process and measurement noise w; ~ N(0,,,) and Vi~
N(0,yi5), and with known information matrices €2, and ,;;. Denoting the corre-
sponding probabilistic terms to Eq. (4.1) by P(a;|zi—1,ui—1) and P(2; j|z;, z;), the pdf
P(X} |20 U 1) can be written as

k
POXEIHE) o< B(r) [T B oy, o (2]1XT) (42)
i=1
where the history H}, is defined as H}, = {Z] ., U}, }-

The measurement likelihood term P(Z]|X]) can be expanded in terms of individual
observations, P(Z]|X7) = [, P(z];|X7;). Here, Z] = {2],;}’2, and n; denotes the
number of observations acquired at time ¢; and Xi’: j C X7 represents involved variables
in the jth observation model. Note this formulation assumes known data association
and does not consider outliers. Robust perception approaches do exist, however, both

in inference (e.g. [32]) and, recently, in belief space planning [34].

We now consider all the R robots in the group, and let P(X|H}) represent the pdf

15



over the joint state X}, at time ¢, where Xj, = {X]}, R | and Hy, = {Zo.6,Uo:k—1}, With
Zox = {25 iy and Ung—1 = {Ug ey

Let J denote a user-defined objective function J(U) = E [Zlel 1 (b[ X k1], ur+1) |
where uyy; = {uj, +l} and the expectation is taken with respect to future observations
of all robots, and where ¢; represents an immediate cost function at the Ith look ahead
step, which can be a function of the joint belief b[X%4;] (to be defined) and of the
controls. For simplicity, we use the same planning horizon L for all robots.

In this thesis we consider a special case of the objective function J and assume the

latter is of the following form:

L R

oD X ) | (4.3)

=1 r=1

where b[X} || = fﬁX,« b[ Xk and thus depends on the multi-robot belief b[ X} ].
Such a form naturally supports collaborative active state estimation, where each robot
aims to improve its estimation accuracy while considering additional terms in ¢, if
exist (see e.g. [19]). For example in our simulation, ¢; includes two terms: robot pose
uncertainty upon reaching the goal and the corresponding path length.

We assume all robots are capable of communicating with each other. Partial
communication, or failure in communication, is likely to negatively impact overall
performance of the algorithm. However, further analysis of such a scenario is left to
future research endeavors.

In this thesis, our objective is to find the optimal controls U* = arg miny, J(U) for
all robots in the group, considering a multi-robot decentralized framework discussed

below.
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Chapter 5

Decentralized Sampling-Based

Planning

We consider a decentralized framework, where each robot calculates candidate paths
using one of the existing sampling-based motion planning approaches (e.g. RRT, RRG,
PRM). Adopting typical notations in literature, let G" = (V", E") be a graph maintained
by robot r, with vertices V" representing sampled robot states and edges E" denoting
feasible paths between corresponding vertices. Each vertex v € V" is associated with a
set of belief nodes, with each belief node representing a path P" = {vg, ..., v} from the
initial vertex vy that could be followed to reach the vertex v.

In this thesis we interchangeably use P to represent a path and, when clear from
context, also the corresponding robot states along that path. Denoting the state at
each vertex v by x,, the corresponding joint belief over the entire path P", considering

for now only a single robot r, is
b[P"] = P( X, w2y |[Hy, UPT), Z(PT)), (5.1)

where U"(P") and Z"(P") represent, respectively, the corresponding controls and
(unknown) observations to be acquired by following the path P". This pdf can be
explicitely written in terms of the belief at planning time and the corresponding state

transition and observation models as (see Eq. (4.2))
b[P'] = P(Xg|[Hy)P(P|UT(P), Z"(P")), (5.2)

where, for convenience, the local information (factors) along path P" is defined as

L(P")
FGroeat(P") = [ Plaf, oy, ui,  )P(Z3, 1 XE ) (5-3)

Vp—1? V-1
=1

Throughout the thesis we will often use the factor graph graphical model to represent a
pdf. The factor graph for the pdf from Eq. (5.3) is denoted by FGjoeai(P").
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The measurement likelihood term P(Z; | X} ;) can be further expanded, similarly
to Eq. (4.2). Here, X, is the joint state up to the Ith vertex along the path P", i.e
X]:+l:X]Z+l(PT) Pk+l _{Xk’ ,UO,...,.ZCZL}. (54)

We now proceed to the multi-robot case and consider different paths P" for each robot
re€{1,...,R}. Letting P = {P"}E |, the multi-robot belief is given by

R
b[P] = ]P)(Xk‘Hk) H H P(ajzl‘x:}l,17u:}l,1)

r=1 =1

Zi X)) T PG Pl )| (5.5)
{i.5}

where the last product corresponds to multi-robot constraints that can involve different

time instances, representing mutual observations of a scene. With a slight abuse of

notation, we use xy, and xfj; in the measurement likelihood term P(z:;lleh,:rf,;) to

represent both a robot state before planning time, i.e. zj, C X € X"(P") (likewise for
o

xl ), and a future state along the path P". The latter case corresponds to a mutual

v
ob]servation of an area that is unknown at planning time, as introduced in our previous
work [18].

The index set {7, j} in Eq. (5.5) represents the time indices that facilitate multi-robot
constraints. We assume a given criteria function cryr(vi, v5) that determines if there
should be a multi-robot constraint between the two vertices v; and v;. This function
is conceptually similar to the indicator function used in [31], while in our previous
work [18] we used a simpler criteria (relative distance between poses). The joint belief
(5.5) can be represented by a factor graph graphical model, as illustrated in Figure 6.1.
Different candidate paths P typically yield different factor graphs.

In a decentralized multi-robot framework, each robot maintains the joint belief
(5.5) on its own while communicating to each other relevant pieces of information. We
assume, for simplicity, each robot is capable of calculating the joint pdf at planning time
P(Xy|H}) using one of the recently developed approaches (e.g. [12,21]). We note that
given transition and observation models (4.1), it is sufficient for each robot 7’ to only
transmit (in addition to what is required by multi-robot inference) the corresponding
controls to path P Any robot r that receives this information can then formulate the
multi-robot belief (5.5) [31].

Evaluating the objective function (4.3) for the considered paths P involves performing
inference over the multi-robot belief (5.5). As shown in prior work (e.g. [11,20]), this

inference can be performed in the information space:

L(PT)

Ak+z Z Arlocal+ZArr (56)
r=1

{i.g}

18



where A;’local = (FNTQuEr+Y, (Hr, )TQr, HP - and A;’;/ represents the information

vlm

from the multi-robot constraint term IP’(z:;,|xZZ,wZ;) in Eq. (5.5). Here, the matrices F
and H represent appropriate Jacobians of the state transition and observation models
(4.1), linearized about the considered candidate path and the MAP estimate of the joint
state at planning (current) time. Observe that the matrices in Eq. (5.6) are assumed
to be appropriately augmented (e.g. zero-padded) as the dimensionality of the state
increases with [; see similar treatment e.g. in [11,20].

Recalling that each robot r has numerous candidate paths over the graph G”,
determining the optimal controls involves considering all path combinations between
different robots, which is computationally intractable. Optimality here refers to choosing
the best path from the set of candidate paths.

Instead, a common (sub-optimal) approach for decentralized belief space planning is
for each robot r to consider only its own candidate paths and the announced paths of
other robots, see e.g. [8,31]. The robot can then select the best path, according to the
objective function (4.3), and announce this path to other robots, which then repeat the
same procedure on their end. Such an approach reduces the exponential complexity
in number of robots to a linear complexity, and can be viewed as a decentralized
coordindated descent [8,31], i.e. where robots either repeat this process until convergence
[8] or at some frequency [31]. Performance guarantees of such an approach are analyzed
in [8].

In particular, when an announced path of some robot 7’ is updated (e.g. from P
to PI’

new

), robot 7 has to recalculate the best path by re-evaluating its candidate paths
given Pg;w. Existing approaches perform this re-evaluation for all candidate paths from
scratch. In contrast, in the following section we develop an approach to identify and
efficiently re-evaluate, while re-using calculations, only impacted candidate paths due

to an update in the announced path.
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Chapter 6

Approach and Algorithm

Development

Although our approach applies for any number of robots, for simplicity we consider
the case of two robots r and 7’ and re-write the objective function J from Eq. (4.3)
as J(P",P") =E [Zle[c;(b[x,g o (PT) + e (X ) uy,(PT)] | Tn Section 6.4
we then generalize back to a general number of robots.

Consider robot r has already calculated belief evolution over all candidate paths
while accounting for the announced path P, and the latter is now updated to P,’;ew.

The corresponding multi-robot beliefs for some candidate path P of robot r are:

b[P", P =P (kak P(P"|UT(P" Z’“(P’“)) (6.1)
PP U (P, z7 (PT) [ BT |, a7)
{i.5}
bIP", Phey] = P(Xy|Hi)P(P"[UT(P"), Z"(P")) (6.2)
PPy U™ (Phe). 27 (Poe)) T BT I, a0,
{i.j}

where the changed terms are underlined and denoted in red.

One can consider the joint beliefs b[P",P"'] and b[P", PL. ] to be represented by
appropriate two different factor graphs (see Figures 1.1 and 6.1). Re-evaluating the
objective function for a candidate path P involves performing MAP inference over the
updated factor graph b[P", Pg;w]. In the general case, the factor graphs will be different
for each candidate path P.

The general concept of our approach is to track the multi-robot factors and local
information change between the two pdfs b[P",P™'] and b[P", P:., ]. This information
is then used to efficiently perform inference over the updated belief, which is required
for re-evaluating the objective function.

Our approach first identifies which candidate paths P of robot r are impacted as a

result of the update in the announced plan, and consequently operates only over these
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paths instead of always re-calculating belief evolution over all candidate paths. Second,
our approach efficiently calculates the belief evolution over these impacted paths, while
re-using calculations where possible.

The main steps of the proposed approach are summarized below and described in

detail in the following sections:

1. Section 6.1 calculates the change in local information between P"" and P7,, .

2. Section 6.2 identifies the impacted candidate paths P" and collects appropriate

multi-robot factors to be later used for efficient belief inference.

3. Section 6.3 re-evaluates the objective function for (only) the impacted candidate

paths, based on the output of Sections 6.1 and 6.2.

6.1 Change in Local Information between P and P’

We first calculate the change in local information between P and P . This calculation

new:*
is used later in Alg. 6.2 for consistent inference over appropriate beliefs while avoiding
double counting information that is shared by P™ and P, Specifically, recalling the
definition (5.3) of a factor graph FGjeeq(P™) that represents only the local information
along path P"" we identify which factors only appear in FGioeqr(P") or in FGioca (Pﬁ;w)
These factors will then be either added or removed upon re-evaluating belief evolution
along impacted candidate paths P". We therefore collect these factors into two separate

factor graphs:

FGI = {f | f € FGiocat(P") A f & FGiocat(Phhew)}

FG, = {f | f ¢ FGiocat(P") A f € FGrocat(Phhew)}

Additionally, we calculate belief evolution b[P’., ] along path P’ taking into
account only local information of robot 7/, and use it to calculate the change in the
immediate cost functions ¢ between b[Pr.,,] and b[PL.,]. Denoting this change by Acj’
we let AJ” =F [Zle Ac}"/] . This quantity will be used to very efficiently re-evaluate
the objective function for candidate paths P" that are not impacted, as discussed in
Section 6.3.

6.2 Impacted Paths and Change in Multi-Robot Factors

Next, we identify, among all the candidate paths of robot r, those paths P" that
are impacted as a result of the update in the announced path from P" to P’ . In
other words, recalling Eqs. (6.1)-(6.2), we are interested in finding paths P" such that
b[PT] # b'[P"], with

b[P'] = / B[P, PP, V[P = / [P, P 1dPr (6.3)
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Such paths P are marked, indicating that the objective function should be re-evaluated,
a process that involves re-calculating belief evolution. On the other hand, belief evolution
re-calculation is not required for candidate paths that are not impacted. In the latter
case, the objective function J(P, 77"/) is only updated due to the change in immediate

. / . . .
cost functions ¢ of robot 7, as discussed in Section 6.3.

We now describe our approach to identify the impacted paths, as well as collecting
the required information that will be used in Section 6.3 (Alg. 6.2) for efficient inference.

The key observation is that the belief over path P” is impacted due to an announced

7,/

rox

path P only if there exist multi-robot factors ]P’(z:’;lmw ) or, in certain cases, if

Vj

the states of robots 7 and r’ are already correlated at planning time, i.e.
(X3 Hr) # POXTIHRPX] [He) (6.4)

This is the case if, by planning time t;, the robots have already performed some

multi-robot update, e.g. by mutually observing a common scene.

Clearly, in absence of multi-robot factors and prior correlation, the belief over a

candidate path P" is not impacted by neither P nor P’

e However, it is also interesting

to note that also when there is prior correlation, but no changes in multi-robot factors
between b[P",P"'] and b[P", P

new

], the belief over path P" typically remains the same.
In what follows we treat prior correlation just as a multi-robot factor, see Figure
6.1. However, this observation can be used to switch to a more efficient version of
the algorithm that approximately recovers the pdf b[P", P’ ]. Investigation of this

direction is left to future research.

As mentioned in Chapter 6, our approach tracks the changed multi-robot factors
and the local factors of robot 7’ between the beliefs [P, P"] and b[P", P~ ]. This
information is then used in Section 6.3 to efficiently re-evaluate the belief over path
P". However, such a procedure is required for each candidate path P" that has some
multi-robot factors, even if several paths are identical up to some point. This would

lead to the same work (i.e. computational effort) done multiple times.

To address this issue, rather than reasoning about robot r’s candidate paths, we
reason in terms of the corresponding wvertices in the graph G, that define the paths.
Our approach, summarized in Alg. 6.1, considers the corresponding graph vertices and
identifies the vertices Vj,, C V" that are involved in at least one multi-robot factor due
to either P"" or P

rew- Oee illustration in Figure 6.1. We then associate to each such

vertex v; € Vi, the changed multi-robot factors that involve v;, i.e. any such factor
f should either appear in b[P", 737”/] or in b[P", P

" ew)- In the former case, f should be

removed from the corresponding factor graph, and as such is added to v;. FG)s (line

20); in the latter case, f should be added and is thus added to v;. FG4%4 (line 22).
Finally, the algorithm marks all paths P" that include at least one vertex in V] = as

impacted paths (line 25), to indicate belief re-evaluation is required.
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Algorithm 6.1: identifyInvolvedPaths. Identify vertices
multi-robot factors considering announced paths P”" and P’

Inputs:

G" = (V",E"): graph of robot r

PT/, Pg;w: prev. and updated announced path of robot r’
crvr (vi, v5): multi-robot factor criteria function
Outputs:

V. .. involved vertices in multi-robot factors

Vv € Vipy 1 v.FGS3%, 0. FG344,

VI,=¢ /+ Initialization o/

foreach v" € P” UP. do
Find all nearby vertices {v} C V" to v"" such that
- at least one candidate path P" goes through v
- multi-robot criteria cryg (v, v™) is satisfied
Vinw = Vine U {v}
foreach v; € {v} do
Generate multi-robot factor f(x
if v; € P and v; € Pr.,,, then
‘ continue
end
if v; € P’ then
‘ Add f(xf,i,acf,/) to v;. FGRJR
else
| Add f(z},,28) to v;. FG4,
end

’
T ' )
v ? xl}

end
Mark all candidate paths P” that go through vertex v;
end

return

T
inv

. . .
o, C V involving

o> and the corresponding

multi-robot factors. Each vertex v € V;,, is associated with appropriate multi-robot
factors to be later used in Alg. 6.2.
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U Q vertices in Vj,,
robot r N/
robot r’

Figure 6.1: Graph G = (V, E) along which different candidate paths P" of robot r can
be defined. Announced paths P” and P, from robot 7 facilitate multi-robot factors

fl’f27f3 and f4-
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6.3 Objective Function Re-Evaluation for Candidate Paths

As mentioned in Chapter 5, each robot r evaluates the objective function by considering
its candidate paths and the announced paths of different robots. Such a process requires
performing inference over the belief b[X}], for each look ahead step [, to recover its

first two moments
O[Prrts Prral = N (et A];J,l-l)v (6.5)

where the general form for the information matrix Axy; is given by Eq. (5.6). Observe
that if the objective function J(P”,P") only includes immediate cost functions for
some of the look ahead steps [, then the above inference is only required for these time
instances. For example, one may be interested only in the uncertainty at the final
step (e.g. upon reaching a goal), in which case inference should be performed only for
[ = L. On the other hand, in chance-constrained motion-planning (see e.g. [10]), belief

evolution is typically needed for many (or all) look ahead steps I.

Since the objective function .J(P",P"") has been already calculated for different
candidate paths P" and the announced path PT/, a process that also involves inference
over the corresponding beliefs b[P", PT’], our objective now is to efficiently evaluate the

objective function considering the updated announced path PI.. .

Our approach for re-evaluating the objective function J(P", 28 ) for each candidate

new
path P", while exploiting results from the previous inference b[P", PT/], is summarized

in Alg. 6.2 and further discussed below.
The algorithm calculates the maximum a posteriori (MAP) information matrix that

corresponds to the belief [P, P71 for each of the future time instances, which is

new
then used for evaluating the objective function J(P", P~ ). Let A = A(P",P") and
N = A(PT, Pfl;w) represent the corresponding MAP information matrices to the beliefs

b[P",P"'| and b[P", P, |, respectively. Denote also by Aj4; the information matrix
that corresponds to the belief over the first [ steps, b[Py,;, P,::rl], and likewise for Aj ;.
Since inference over b[PT,P’J] has been already performed, the matrices Ay for all
steps [ are known. We now focus on calculating A}, 4> for each candidate path P".

If a candidate path P" has been determined in the previous section not to be
), there is

no need to recalculate the immediate functions cl of robot r. We note this holds true

impacted as a result of the update in the announced path (from P" to PZ..,

due to the considered form of J, where c] only involves b[P}_ ;] and not also b[P,:;rl].
The latter can still change due to new local information between P" and P’ . but
that change does not affect ¢} (since b[P"] = ¥/[P]). Therefore, to get J(P", Pr.,,) from
J(P",P"") we only have to update the terms clrl (lines 8-11 in Alg. 6.2). This update
is the same for all non-impacted paths P” and is given by AJ" from Section 6.1. We
note, however, that often, AJ" is negligible.

For each marked (impacted) path P" and for each | € L(P"), we start with the
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Inputs:

V’!‘

: involved vertices in multi-robot factors

v -°

For each candidate path P": J(P",P"); VI € L(P") : Ajy; from Eq. (6.5)
AJ" from Sec. 6.1
Outputs:

‘ For each impacted candidate path P": J(P", P,

new

foreach candidate path P" do

if =PT.isMarked then
J(PT,PL.,) = J(P",P") + AJ"
continue
end
/* re—evaluate belief over PT
J(P", Prew) = 0
for ([ =1:L(P") do
if A;C_H is not required in Eq. (4.3) then
‘ continue
end
/* Get previous belief b[P,:H,P,:;rl]
Aprr = Ay (PT,P7) from Eq. (6.5)
/+ Initialize Ay, = Ap(P",Phy)
Aot = Miy
foreach v € P" andv €V}, do
/* MR factors involving ve V],
A, = updInfo (A}, v.FGYR,l, rmv)
A}, = updInfo (A}, v.FG4%, 1, add)
end
/* Changed local info. of robot 7’
A}, = updInfo (A;CH,FG%IC‘L,Z, add)
Ay = updInfo (A}, FG'0, 1, rmv)
Evaluate ¢ and clr, from Eg. (4.3)
end
end

); ¥l € L(P")

A/
. Ak+l

*/

*/

*/

*/

Algorithm 6.2: evalObjFunc. Re-evaluate objective function for candidate paths
P" upon update in an announced path from another robot /. Notations: MR=Multi-
Robot; rmv = remove.
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Inputs:
FG,l: factor graph and time index
Linearlization point = graph vertices V and X
toAddflag: indicates if to add or subtract information
A: input information matrix to be updated
Outputs:
‘ A: updated information matrix

{f} = getFactorsCausal(FG,I)

foreach f € {f} do

10 Linearize f about linearization point and calculate A(f)
11 Adjust size of A, if needed

12 if toAddflag then

N o0 ok WK

]

©

13 | A=A+A(f)
14 else

15 ‘ A=A—-A(f)
16 end

17 end

Algorithm 6.3: updInfo. Update information matrix by adding or subtracting
information from factors.

previously calculated information matrix Agy; and update it by adding and subtracting
the multi-robot and local factors that were collected as explained in Sections 6.1 and
6.2. See lines 16-24 in Alg. 6.2.

Specifically, referring to Eq. (5.6), and resorting to factor graph notation FG =
b[P", P"'] and FG' = b[P",PL.,] , the updated information matrix A}, ., can be written

as

N =M= Y, MO+ D A (6.6)

feFG feFa
f ¢ FG' f ¢ FG
fit <t fit <t

The operator f.t extracts the time instances involved with the factor f, such that the
condition f.t <ty enforces causality, i.e. we do not consider factors involving states at
times greater than k + [. The corresponding steps are summarized in Alg. 6.3 that is
invoked by Alg. 6.2. We assume existence of the function getFactorsCausal that
takes as input a factor graph and time ¢, and outputs only factors involving variables
up to that time. Given these factors, Alg. 6.3 extracts the corresponding information
matrices and adds or substracts these matrices as in Eq. (6.6). This process involves
linearizing the corresponding nonlinear functions, where the linearization point is either
the graph vertices V or, in case states from X} are involved, the corresponding MAP
estimate X}, of P(Xk|Hk), which is known at time k.

We note that, similar to Eq. (5.6), the information matrices in Eq. (6.6) should
be appropriately augmented: for example, the matrices Apy; and A} 4, represent

uncertainty over two partially overlapping joint states {X], H(Pr),X};;l(PT’)} and
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(X1 (P, X[y (Phew) s respectively.

One can go further, and perform the calculation in Eq. (6.6) incrementally, by updat-

/
k+1+1

factors that involve time k+[-+ 1. This would provide an efficient mechanism to evaluate

ing A based on Aj_; while adding and subtracting information from appropriate
the belief for each look ahead step, if that is required by the objective function J. We
leave further investigation of this direction to future research and formulate Alg. 6.2

according to "batch’ version (Eq. (6.6)).

Illustrative Example Figure 6.1 illustrates key aspects of our approach. The figure
indicates the set Vi, of involved vertices in multi-robot factors in either P and Pﬁ;w
by bold circle marks. As seen there are three such vertices (v;, v;+1 and v;42) and four
multi-robot factors (f1, f2, f3 and f1). As detailed in Alg. 6.1, each vertex v € Vi,
includes the changed multi-robot factors that have to be either added or removed. In this
example, for v; there are no changed factors, since although originating from different
paths, fi and fy are actually identical factors. On the other hand, v; 41 includes the
factor f3 to be removed, while v; o includes the factor fy to be added. All the candidate
paths P" that go through some vertex v € Vj,, should be updated with the multi-robot

factors included in v.

6.4 More than 2 Robots

The presented approach is not limited to 2 robots and naturally supports any number
R of robots, with the objective function specified in Eq. (4.3). In this section we briefly
specify the changes in each of the algorithmic steps to accommodate this general setting.

Section 6.1: Change in local information (Section 6.1), should be calculated with
respect to all R robots, excluding current robot r. One can go further and also
incorporate within AJ” and AJ”" the impact of changed multi-robot factors between
any two robots v’ and 7. This direction is left to future research. Section 6.2: No
modification is needed. Section 6.3: Algorithm 6.2 remains the same, however the input
to the algorithm is now J(P", {PT/}rfe{l,m’r,l,ﬂrl’“_,R}) instead of J(P",P").
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Prev. announced path pr

New announced path P,
ew

Prev. announced path pr'

New announced path 7)”1'0
.

Robot r'

PXiZo.x, Upk—1)

PXi|Zo.ie, Upr—1)

Multi-robot pdf at . Multi-robot pdf at
Robot r planning l?me 1k Robot planning tlljme 13
(a) (b)

Figure 6.2: (a) Illustration of the proposed concept without correlation as show before
in Figure 1.1 compare with (b) Illustration of the proposed concept with correlation
between robot states at planning time & (referred also as prior correlation in the text)
due to mutual past landmark observations.

6.5 Prior Correlation

In this section we revisit the case where at planning time k, robot states are already
correlated, e.g. due to observation of a common scene, see illustration in Figure 6.2. In
other words Eq. (6.4) holds:

P(X5|[Hy) # PXEHG)PXT [He). (6.7)

As will be seen, our approach is applicable also in such a case with minor changes.
Thus, the proposed approach also supports more realistic, unrolling scenarios where
robot states become correlated at some point and the candidate paths can go through

unknown or previously mapped areas, or a combination of both.
Prior correlation at planning time k£ can be expressed as

P(a, o, |Hy) = /  P(XR[Hy) = N (%, Z(af, 7)), (6.8)

-y, T,

where x denotes some entry that is not of interest in the current context, and

Moo N ,
/ . L L T T
Y(xp,xp ) = 7 Teofe (6.9)
k> *k
’V‘I ‘e Z T‘, 7"
T T T Tk

The correlation (or cross-covariance) term X, .~ will be non-zero because of Eq. (6.7).
kk
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Figure 6.3: Prior correlation: (a) with and (b) without multi-robot factors.

Conceptually, marginalizing past robot poses and observed landmarks, the pdf (6.8)
induces a multi-robot factor between the variables xj, and azzl, as depicted in Figure 6.3.

Now, considering some candidate path P of robot r and previous and new announced
paths P" and P’

" e from robot 7/, there are two possible cases (see Figure 6.3): (a) there

are some multi-robot factors between P" and P"’, and/or between P” and PI.. ; or (b)

there are no multi-robot factors between P” and P” and also no multi-robot factors
between P" and P

new:*

In the first case, prior correlation can be considered just as an additional multi-robot
factor that is treated similarly to other multi-robot factors by our approach (see Chapter
6).

The second case (no multi-robot factors but with prior correlation) deserves further
analysis. Figure 6.3b shows a diagram of such a scenario. Since there are no multi-robot

factors, the posterior beliefs from Egs. (6.1) and (6.2) turn into

B[P", P = P(Xy|Hy)P(PT|UT(PT), Z" (P"))B(P" |U" (P"), Z" (P"))
B[P, Prew] = P(Xk|Hi)P(P" U™ (P"), Z"(P")P(Phei|U" (Phew). 2" (Phw)),

where the changed entries are underlined and shown in red color.
In the above case, if at planning time there was no prior correlation (i.e. xj and le
are not correlated), as considered in Section 6.2, then P" would not be impacted by the

change in the announced path from P to P... . In other words (see also Eq. (6.3)):

b[P'] = / B[P, PP = b [P"] = / [P, Pl AP (6.10)

and thus, P” would not be marked. However, this does not hold in general in the

presence of prior correlation.
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Interestingly, however, despite having prior correlation, we observe that as long as
the paths P7, P and P

" ow 80 through unknown areas with no sources of absolute

information (such as GPS or known landmarks), any such candidate path P" of robot

r is not impacted due to change in the announced path (from P to P, ) and thus

new

should not be marked, thereby saving calculations.
We now illustrate this observation in a simple example, and then discuss in Section
6.7 the more general case, where the above conditions are not met, and discuss a slight

modification to our approach.

6.6 Simple Example

We consider a simple example where paths P and P’

rew only include a single look

ahead step. Both paths pass through unknown areas and thus we assume existence

only of visual odometry measurements zV© that provide relative information between
. . ! / . . ’

consecutive states. The posterior over zj and zj |, given 2VO from either P"" or PI.,.,

is
P(}, , 2y [He, 27C) oc Py, [ HR)P(2V €2}, 27 y1), (6.11)

where P(2}, |H1) = N(x, Zx) describes the posterior over 2} at planning time k, which
could be obtained e.g. via P(x} |Hy) = fxi P(x}, ' [Hy)-

We now show the posterior over le is not influenced by the new information
(measurement zV©), e.g. the covariance does not change. Performing standard maximum

a posteriori (MAP) inference yields the following least-squares expression:

r'x _r'x : r’ ~r' 12 VO VO .r' o 2
T s Tpq1 = Argimin |z, — 2% sz +[[z7% = h" " (g, ’x’ﬂ-l-l)”zvo’ (6.12)
ThTh
where hY© and Yy are the corresponding measurement function and measurement

noise covariance for visual odometry (see e.g. [22]). Linearizing and augmenting the

Jacobians we get

!

A % A e . A A‘Tz —b 2 1

2 Aajfy = argmin | " I, (6.13)
Azt Azt Az}

where b is an appropriate right hand side (rhs) vector and

»-1/2 0
i ~1/2 (6.14)
Evo Hyo _Evo

The posterior covariance over :r’,;/ and :z::Jrl is (ATA)fl, from which we will now extract
the entry that corresponds to le and show it is equal to X, despite the new information

(measurement z"©).
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First, the information matrix is calculated as

A B
C D

ATA = . (6.15)

—1 —1 —1
S+ HioSyoHvo Hio¥yo ] _
1 1
Xyl 2y0

The covariance entry that corresponds to x};/ is the top left block matrix of (ATA)_I.

Using block matrix inversion this entry can be calculated as

- —-Bpl¢)”!
(AT4) " = [ . ) ] (6.16)
X X
Substituting matrices A, B, C and D from Eq. (6.15) and performing basic algebraic

manipulation we get

(A-BD'C) ' = (5 + FTS ' F — FTS 'Sl s F) = 5, (6.17)
as claimed. In other words, adding new relative information does not impact the state
le. Hence, it does not matter whether this new information is added due to path P*’
or P - in both cases, the state xy, of robot r is not impacted despite the existence
of prior correlation between xj and x};/. This means, in turn, that all candidate paths
P’ of robot r that do not have multi-robot factors with P and P,

L ews Call remain

unmarked and should not be recalculated.

This concludes the simple example; we now proceed to discuss a more general case,
where the covariance over le does change as a result of incorporating new information
along a candidate path, and we outline a slight modification of our algorithm to also

handle this case.

6.7 A More General Case

When the conditions mentioned toward the end of Section 6.5 are not met, e.g. at least
one of the paths P", P"" or Pﬁ;w go through previously mapped areas, or when along
P or P’ there are a priori known landmarks or available GPS signal, then Eq. (6.10)
does not necessarily hold. Intuitively, a substantial update along P (or P’ ), e.g. due

to GPS measurement, will impact the posterior over mzl:
P(a}, |Hi, U™ (P™), 27 (P")) # P(a}, | M) (6.18)

Due to prior correlation, that couples xj with ;v’,;,, the new information will also pass,
to some degree, onward to robot r, impacting the posterior over z7. If the information

along the previous and new announced paths P” and P’

" ew 18 substantially different,
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then the impact on the posterior of zj can also be different, i.e.:

P(ah[Hy, U™ (P7), 27 (P")) = / Py, @, [He, U™ (P7), 27 (P™))  (6.19)

o

= N(x,S(U" (P, 2" (P™)) (6.20)

P(‘rz‘HhUr/(p;lew%ZT,(,P;;;w)) :/,P(x};ale‘%k,Ur/(,Pr::aw%ZT,(,P;;;w)) (621>
o

= NSE(U (Phy), 27 (Phy) (6.22)
and
P(af[Hp, U™ (P™), Z7 (P™)) # P(x}[Hi, U (Phe)s Z7 (Phew)). (6.23)

Hence, the posteriors over candidate path P, b[P"] and ¥'[P"] will change (Eq. (6.10)
will not hold). It would thus seem that P" should be necessarily marked, to trigger
belief evolution recalculation.

However, it is often the case that while the posteriors (6.19) and (6.21), and therefore
b[P"] and b'[P"], are not identical, in practice the difference is small and can be considered
negligible given some threshold. In such a case, there is no need in recalculating belief
evolution along path P”", and thus the latter should not be marked.

Based on the above observation, we propose the following slight modification to
our approach. First, we evaluate the posteriors (6.19) and (6.21) - this is a one-time

calculation for given previous and new announced paths P and P, which is valid to

new?
all candidate paths P" of robot r. Then, we decide if the two posteriors are sufficiently
similar given a user-defined threshold th: different information-theoretic costs can be
used for this purpose (e.g. KL-divergence and relative entropy). A simple alternative,
for example, is to calculate the difference in the determinant (or trace) of the posterior
covariance in each case. More specifically, recalling Egs. (6.20) and (6.22), the candidate

path P” is marked only if
det (Sh(U” (i), 2 (i) ) = det (Sk(U” (Pi) 27 (Pi) ) > the (6.24)

In our current implementation we use the above criteria with the threshold th set to 10.
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Chapter 7

Results

We demonstrate our approach in simulation considering scenario involving two and
four robots operating in Largeunknown and GPS-deprived environments that need
to navigate to different goals in minimum time but also with highest accuracy. In
this basic evaluation we use a prototype implementation in Matlab and GTSAM [14]
to investigate key aspects of the proposed approach. The objective function (4.3) is
J = Zil ﬂgoalt;oal + Kytr (Egoalﬂv where E;oal and t;ml represent, respectively, the
covariance upon reaching the goal and time of travel (or path length) for robot r. The
parameters HZ oa a0d K%, weight the importance of each term (we use H;ath = 0.1 and
Kimeert = 1). A probabilistic roadmap (PRM) [26] is used, to discretize the (partially
unknown) environment and generate candidate paths over the roadmap. Figures 7.1
and 7.2 show the considered scenarios for two and four robots and the generated 25
candidate paths for each robot. In this and all figures to follow, we use the notation *
to indicate the starting position of each robot.

We compare our approach to a standard approach that re-evaluates from scratch
belief evolution and objective function for each candidate path of each robot r given
announced paths from other robots (e.g. [8,18,31]). This comparison has two merits:
(a) verify our approach correctly recovers the underlying pdf while identifying and

re-evaluating only the impacted paths; and (b) has computational benefits.

7.1 Basic Scenarios

Figure 7.5 shows, for the two-robot scenario, one of the candidate paths of robot r, an
announced path of robot 7/, and the generated multi-robot factors (cyan color); see also
concept illustration in Figure 1.1. The corresponding belief evolution (covariance ellipses)
is displayed in black. Robot r determines its best path, and announces it to other
robots, which do the same; the process is repeated until convergence. Similar to [18], we
use a simple heuristic for the function cryvg (vi, v;) (line 4 of Alg. 6.1) to determine if
two poses admit a multi-robot constraint: these constraints, possibly involving different

future time instances, are formulated between any two poses with relative distance closer
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Figure 7.1: Candidate paths shown on PRM. Robot starting positions are denoted by .

than d = 300 meters. More advanced methods could be implemented, e.g. considering

also statistical knowledge.

The set of involved vertices in PRM, V4, depicted conceptually in Figure 6.1, is
shown for robot r in Figure 7.6 for the two-robot scenario. The figure shows marked
(impacted) candidate paths of robot r, as a result of an update in the announced path of
robot 7/ from P to P’ in one of the iterations. To reduce clutter, only the impacted
(marked) candidate paths of robot r are shown. The corresponding multi-robot factors
are color-coded: cyan indicates unchanged multi-robot factors (associated with both
P and P..,,,), and yellow and magenta indicate multi-robot factors that are associated,
respectively, only with P" and P}"L/ew. These factors are appropriately then included
with in the corresponding vertices in Vj,, and are used for calculating belief evolution,
following Algorithms 6.1 and 6.2.

In the specific situation shown in Figure 7.6, only some of the candidate paths are
impacted. Our approach correctly identifies, marks and consequently re-evaluates the
belief over only these impacted paths. This is in contrast to the Standard approach
that re-evaluates the belief from scratch over all candidate paths and recalculates the
objective function for each. As a consequence, our approach exhibits substantially
reduced running time, compared to the Standard approach, while producing identical

results.
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Figure 7.2: Candidate paths shown on PRM. Robot starting positions are denoted by .

Figures 7.3 and 7.4 reports statistical timing results as a function of number of
candidate paths N q,q for each robot, considering the two-robot and four-robot scenarios
from Figures 7.1 and 7.2. These results were obtained by running each approach 50
times, for each considered N_,,q. In each such run, the scenario remains the same
(goals, starting locations), while the candidate paths randomly change. As seen, as
Neang increases the ratio between running time of the two approaches increases, in favor
of our approach. In particular, for 50 candidates and two robots, our approach is 2.5
times faster compared to the standard approach (35 versus 85 seconds); A similar trend
can be seen also for four robots. In all cases, identical results were obtained, compared

with the Standard approach.
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one of the candidate paths from Figure 7.1, considering an announced path P"".

39



e A
i Al
a2 T sl e
& SN NPERY]
AN
\V ‘Y‘&V.L'A";\
NSRS

? 5
A
VavAYA{|

1500 PR NI 6K )\

L
R
A\

N

NZay >

T ]
ok
4

E

< ]

= -

s} / /{ L o,

z1ooo SZR S
X A

500 RN\

’\

N\
%

2 AN

DU\ DU DR RHK N\ A<
o S ERPEPKFa  AJ o PR DKo A A
-1000 -500 0 500 1000 -1000 -500 0 500 1000
East [m] East [m]
(a) (b)

Figure 7.6: Illustration of the proposed approach considering a group of two robots (see
Figure 6.1). Vertices in Vjy, for robot r given a (a) previous and (b) new announced
path of robot 7’ are shown as circles. Unchanged multi-robot factors are shown in cyan.
Changed multi-robot factors associated with P" and P!, are shown in yellow and
magenta, respectively. Only impacted candidate paths of robot r are shown.
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7.2 Large Scale Scenarios

We also examine our approach in a larger scenario, where each robot has to reach
multiple pre-defined goals while operating in unknown environments. Such a scenario
involves multiple planning sessions and multi-robot SLAM - reaching each goal triggers
a new planning session during which the robots update theirs best paths. These paths
are then translated into commands, in our case, the change in heading angle. In our
simulative framework, the robots execute these commands and acquire new bearing and
range observations of landmarks. Note that the latter can be either previously seen
landmarks, that correspond to already mapped areas, and new landmarks. Considering
perfect association of the landmark observations, the robots then calculate a multi-robot
SLAM solution, i.e. the term P(X%|Hx) in Eq. (5.5).

Figures 7.7-7.14 show the results of each of the planning and SLAM sessions, while
the running time is reported in Figure 7.15. Goals are indicated in these figures using
both numbers and colors, with the former denoting sequence (i.e. goal 1 should be
visited before goal 2), and colors indicating different robots. As seen, four robots are
considered (red, green, blue and purple), and each robot has a sequence of three goals.
We intentionally scattered the goals in such a way that both planning in unknown and
previously-mapped environments is examined.

We show, for each planning session, the candidate paths for all robots and the
best paths identified by the proposed approach, see Figures 7.7, 7.9, 7.11 and 7.13.
Multi-robot factors involving future poses of different robots (along the chosen paths),
and factors involving a future pose of robot r € [1,..., R] and a landmark, previously
observed by robot r or by any other robot in the group, are indicated in cyan color. See,
e.g. Figure 7.9b for combination of both of these factors. As in the basic study (Section
7.1), covariances along the chosen paths are also shown.

At the first planning session (Figure 7.7), the robot start operating with only prior
information on their initial poses (we use le—6 [m], meaning robots know their exact
start locations) - in other words, there is no correlation between the robot states. Using
the proposed approach, the best path for each robot in the group is determined and
executed until one of the robots reaches a goal. In particular, the chosen paths of the
red and green robots admit a single multi-robot factor within planning. Figure 7.8a
shows the corresponding SLAM solution, while Figure 7.8b shows position covariance
evolution (from SLAM). While not explicitly shown, the states of red and green robots,
and of blue and purple robots become correlated towards the end of this phase due to
mutual landmark observations.

From this moment onward, thus, the states of these robots are (somewhat) correlated
and the discussion from Section 6.5 regarding prior correlation becomes relevant. In
the second planning session (Figures 7.9 and 7.10), the goals are scattered such that
vast majority of the candidate paths still go through unknown areas (see Figure 7.9a).

Looking at the determined best paths (Figure 7.9b), one can observe the planned
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multi-robot collaboration between two robot pairs (red-green and blue-purple), which is
exhibited either in terms of multi-robot factors or observations of landmarks previously
observed by another robot.

Despite prior correlation, however, our approach is capable of significantly reducing
running time (by a factor of two, see Figure 7.15) while yielding the same results in
terms of the chosen paths. This goes in hand with the observation from Section 6.5
that the belief along path of any robot 7 is not impacted by change in the announced
path of other robots if these paths go through unknown areas and without sources of
absolute information, which is the case here (recall also the example from Section 6.6).

In the third planning session, the red robot still has not reached its second goal,
while all the other robots already consider their next goals. After the red robot reaches
its second goal, another planning session is triggered. We note that in practice, only
the red robot could actually generate new candidate paths while the rest of the robots
could remain with candidate paths from the previous planning session.

The third goal of each robot was intentionally chosen to force the robots to re-
visit previously mapped environments (see e.g. Figures 7.13 and 7.14). As in the
previous planning sessions, the states of the two robot pairs red-green and blue-purple
are correlated. However, here, in addition the robots consider impact of loop closure
observations within planning. These are often mutual multi-robot observations, i.e. the
same previously-observed landmarks are planned to be observed by multiple robots -
see the cyan lines in Figure 7.13b. Given the corresponding best paths, which were
determined as such (mainly) due to these multi-robot constraints that allow significant
uncertainty reduction, a multi-robot SLAM session is performed. As evident from
Figure 7.14, the robots indeed reach the goals with small uncertainty, which roughly
corresponds to the prior uncertainty (due to loop closures).

Finally, Figure 7.15 depicts running time for each of the planning sessions, comparing
the proposed approach with the Standard approach (that does not attempt to re-use
calculations). It can be clearly seen that our approach is substantially faster in all
planning sessions. In particular, it is faster by a factor of two and seven in the second
and third planning sessions, respectively. We emphasize this significant reduction in
running time comes with no sacrifice in performance, i.e. the same paths were chosen
by our and Standard approach in all planning sessions.

We also can see the benefit of MR factors compared with Scenario3 without MR
factors. The peak of the covariance in this scenario is much lower as figures 7.14b and
7.16b show.

In addition to the above-described scenario, we examined our approach in two other
related scenarios. Table 7.1 provides a description of these scenarios, while the results

are given in Appendix A, to avoid clutter.
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Figure 7.7: Scenariol. First planning session. States of different robots are not
correlated. (a) Candidate paths to the first goal of each robot; (b) Chosen paths by the
planning approach.
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Scenario Description Big covariance | MR factors

All robots have small and identical
Scenariol | covariances at the beginning. MR no yes
factors are used within planning.

Red and green robots have large
uncertainty covariances at the be-
ginning. All robots use MR factors
within planning.

Scenario2 yes yes

All robots have small and identical
, covariances at the beginning. MR
Scenario3 i no no
factors are not used within plan-

ning.

Table 7.1: Scenarios description
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Figure 7.8: Scenariol. (a) Multi-robot SLAM given paths determined in the first
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.9: Scenariol. Second planning session. (a) Candidate paths to the second
goal of each robot; (b) Chosen paths by the planning approach.
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Figure 7.10: Scenariol. (a) Multi-robot SLAM given paths determined in the second
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.11: Scenariol. Third planning session. (a) Candidate paths to the second
goal for the red robot, and to the third goal of each other robot; (b) Chosen paths by
the planning approach.
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Figure 7.12: Scenariol. (a) Multi-robot SLAM given paths determined in the third
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.13: Scenariol. Fourth planning session. (a) Candidate paths to the third
goal of each robot; (b) Chosen paths by the planning approach.
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Figure 7.14: Scenariol. (a) Multi-robot SLAM given paths determined in the fourth
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.15: Scenariol. Running time comparison between the proposed and the
Standard approach. (a) running time for each planning session. (b) Time ratio.
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planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Chapter 8

Conclusion

We addressed the problem of decentralized belief space planning over high-dimensional
state spaces while operating in unknown environments. Since exact solution is computa-
tionally intractable, a common approach is to address this problem within a sampling
based motion planning paradigm, where each robot repeatedly considers its own candi-
date paths given the best paths (announced paths) transmitted by other robots. The
process is typically repeated numerous times by each robot either until convergence or
on a constant basis, with each time involving belief propagation along all candidate
paths. In this thesis we developed an approach that identifies and efficiently re-evaluates
the belief over only those candidate paths that are impacted upon an update in the
announced path transmitted by another robot. Determining the best path can therefore
be performed without re-evaluating the utility function for each candidate path from
scratch. We demonstrated in simulation our approach is capable of correctly identifying
and calculating belief evolution over impacted paths, and significantly reduces computa-
tion time without any degradation in performance. In future work, we are planning to

evaluate the developed approach in real world and realistic synthetic experiments.
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Appendix A

Additional Large Scale Scenarios

In addition to the large scale scenario from Section 7.2, we examined our approach in

two other related scenarios. Table 7.1 provides a description of these scenarios.

A.1 Scenario 2

In Scenario2, red and green robots have large uncertainty covariances at the beginning,
while the other two robots (blue and purple) have a small initial covariance as in
Scenariol. In this scenario all robots use MR factors within planning. Figures
A.1-A 4 provide the results for each planning session, while Figure A.5 shows running
time. As seen, the large uncertainties of the red and green robots are reduced due
to mutual observations with the blue robot, observations that were planned by the
proposed approach. As earlier, running time of the latter is significantly smaller than of

the Standard approach, while in both cases the same results are obtained.
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Third planning session. (a) Candidate paths to the third
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A.2 Scenario 3

In Scenario3, all robots have small and identical covariances at the beginning, as
in Scenariol. However, in this scenario the robots do not use MR factors within
planning. Figures A.6-A.8 provide the results for each planning session, while Figure

A.9 shows running time.
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Figure A.6: Scenario3. First planning session. States of different robots are not
correlated. (a) Candidate paths to the first goal of each robot; (b) Chosen paths by the
planning approach. (¢) Multi-robot SLAM given paths determined in the first planning
session. The tiny dots represent a simplified environment in terms of landmarks, some
of which are being observed during SLAM. (d) Corresponding position covariance
evolution.
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Figure A.7: Scenario3. Second planning session. (a) Candidate paths to the second
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59



2500

2000

X
1500 (/N\EYXES

North [m]

1000

500

2500

2000

1500

North [m]

500

ot

East [m]

(a)

b3 w3

y

R
=S

7
0N
N

—
’AV

%7

®3 ‘@3

RSP

(2
KN

P

WV

AN

X

N
%

A
2‘4

4

)
3

o
o

o
S

o

Position norm error [m]

-2000

-1500

-500 0
East [m]

(©)

-1000

500

1000

1500

2000

,.
Y

KL/

AVANS O
SN T
X] IRRD
l ¥
AVi

N
5

2
7

74
)/
K
»
$

7
s00 [P/

SR 7

G

RS
»Aﬂ“é"a I
AN

=

DN
PN TR NN
EARPA AR Y
e
AN K
DA NATN
,/A‘VAA‘ g; \VA‘;«" X

KL RS
IN Vi
b

W

5
PN
' Ay @4‘){1&’“
K KIS
vy

East [m]

(b)

-o-Cov r4
~0-Cov r3
~#-Cov r2
-a-Cov r1

0 |
140
Pose index

(d)

Figure A.8: Scenario3. Third planning session. (a) Candidate paths to the third goal
of each robot; (b) Chosen paths by the planning approach. (c¢) Multi-robot SLAM given
paths determined in the third planning session. The tiny dots represent a simplified
environment in terms of landmarks, some of which are being observed during SLAM.
(d) Corresponding position covariance evolution.

300

250

200

Time [Seconds]
g

Figure A.9: Scenario3. Running time for

Planning

60

2 3
session

each planning session.



List of my Publications

1]

T. Regev and V. Indelman. Multi-robot decentralized belief space planning in
unknown environments via efficient re-evaluation of impacted paths. In Israel

Annual Conference on Aerospace Sciences, 2016.

T. Regev and V. Indelman. Multi-robot decentralized belief space planning in
unknown environments via efficient re-evaluation of impacted paths. In Israel
Robotics Conference, 2016.

T. Regev and V. Indelman. Multi-robot decentralized belief space planning
in unknown environments via efficient re-evaluation of impacted paths. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016. Ac-
cepted.

T. Regev and V. Indelman. Multi-robot decentralized belief space planning
in unknown environments via efficient re-evaluation of impacted paths. Au-
tonomous Robots, 2016. To be submitted.

61






Bibliography

[5]

[13]

A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato. Firm: Sampling-
based feedback motion planning under motion uncertainty and imperfect

measurements. Intl. J. of Robotics Research, 2014.

C. Amato, G. D. Konidaris, A. Anders, G. Cruz, J. P. How, and L. P.
Kaelbling. Policy search for multi-robot coordination under uncertainty. In
Robotics: Science and Systems (RSS), 2015.

Nancy M Amato and Yan Wu. A randomized roadmap method for path
and manipulation planning. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 1, pages 113-120. IEEE,
1996.

N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas. Decentralized active
information acquisition: Theory and application to multi-robot slam. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2015.

D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations
research, 27(4):819-840, 2002.

A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 723-730, 2011.

S. M. Chaves, A. Kim, and R. M. Eustice. Opportunistic sampling-based
planning for active visual slam. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 3073-3080. IEEE, 2014.

A. Cunningham, V. Indelman, and F. Dellaert. DDF-SAM 2.0: Consistent
distributed smoothing and mapping. In IEEFE Intl. Conf. on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 2013.

Andrew J Davison. Real-time simultaneous localisation and mapping with a
single camera. In Intl. Conf. on Computer Vision (ICCV), pages 1403-1410.
IEEE, 2003.

63



[14]

[15]

[17]

18]

[19]

[20]

[21]

[22]

[23]

F. Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical
Report GT-RIM-CP&R-2012-002, Georgia Institute of Technology, September
2012.

F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and
mapping via square root information smoothing. Intl. J. of Robotics Research,
25(12):1181-1203, Dec 2006.

R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters
for view-based SLAM. IEEE Trans. Robotics, 22(6):1100-1114, Dec 2006.

G. A. Hollinger and G. S. Sukhatme. Sampling-based robotic information
gathering algorithms. Intl. J. of Robotics Research, pages 1271-1287, 2014.

V. Indelman. Towards cooperative multi-robot belief space planning in
unknown environments. In Proc. of the Intl. Symp. of Robotics Research
(ISRR), September 2015.

V. Indelman. Towards multi-robot active collaborative state estimation via
belief space planning. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), September 2015.

V. Indelman, L. Carlone, and F. Dellaert. Planning in the continuous domain:
a generalized belief space approach for autonomous navigation in unknown
environments. Intl. J. of Robotics Research, 34(7):849-882, 2015.

V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Graph-based distributed
cooperative navigation for a general multi-robot measurement model. Intl. J.
of Robotics Research, 31(9), August 2012.

V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. Information fusion in
navigation systems via factor graph based incremental smoothing. Robotics
and Autonomous Systems, 61(8):721-738, August 2013.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert.
iISAM2: Incremental smoothing and mapping using the Bayes tree. Intl. J.
of Robotics Research, 31:217-236, Feb 2012.

M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing
and mapping. [EEE Trans. Robotics, 24(6):1365-1378, Dec 2008.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. Intl. J. of Robotics Research, 30(7):846-894, 2011.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IFEE
Trans. Robot. Automat., 12(4):566-580, 1996.

64



[27]

28]

[29]

Lydia Kavraki and J-C Latombe. Randomized preprocessing of configuration
for fast path planning. In Robotics and Automation, 199/. Proceedings., 1994
IEEE International Conference on, pages 2138-2145. IEEE, 1994.

A. Kim and R. M. Eustice. Active visual slam for robotic area coverage:
Theory and experiment. Intl. J. of Robotics Research, 2014.

H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based pomdp
planning by approximating optimally reachable belief spaces. In Robotics:
Science and Systems (RSS), volume 2008, 2008.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Intl. J.
of Robotics Research, 20(5):378-400, 2001.

D. Levine, B. Luders, and J. P. How. Information-theoretic motion planning
for constrained sensor networks. Journal of Aerospace Information Systems,
10(10):476-496, 2013.

E. Olson and P. Agarwal. Inference on networks of mixtures for robust robot
mapping. Intl. J. of Robotics Research, 32(7):826-840, 2013.

C. Papadimitriou and J. Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441-450, 1987.

S. Pathak, A. Thomas, A. Feniger, and V. Indelman. Robust active perception
via data-association aware belief space planning. arXiv preprint: 1606.05124,
2016.

R. Platt, R. Tedrake, L.P. Kaelbling, and T. Lozano-Pérez. Belief space
planning assuming maximum likelihood observations. In Robotics: Science
and Systems (RSS), pages 587-593, Zaragoza, Spain, 2010.

S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space
by factoring the covariance. Intl. J. of Robotics Research, 2009.

C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration
using rao-blackwellized particle filters. In Robotics: Science and Systems
(RSS), pages 65-72, 2005.

J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under uncer-
tainty using iterative local optimization in belief space. Intl. J. of Robotics
Research, 31(11):1263-1278, 2012.

65






DY5000 NIAY YA XMIANDNN NN 1wN (Announced path) 9NN 9HONN XIP)
,INNNN DO T2 NNND,DDITN IRY DY 02NN ONDDNN 1N1NA VIIN DY DX THVIND
NN NVVYNY MIND .DXDI1AIN INY DY DTN DNDDNN YD NAY DYNINND DIWNN NI
0PN NAY TN TN NP> NPND N2ID 1 NYY ,NNNNN NOXYNN NP2IYN TPNO0N INY
Sy MANAN0N ANINN OV WN YNINND DNIY DTN 00N NN NP VI DOV D
D T NN MO IOV NN 200NN NX IDTYN OV THRY 2NN ,NIONND TPNPNS 9

TN O TRVINN DVDNN DR AYAN VININ TPYIVNR DI NN NOWN

D2Y0NN NN P PNITY NN 0T DY NN 2NDDNN NV NN DY»D NV NN R NvNa
9N2) D150 WIN NI DIDON NADNN 219D ,IN2N JIDDNN YW NASNNNN NNNIND DYIVINY
DI D5 M2y WTAM W ,DINN DIY0NN DY DNNSN DY P 00N DN L(DTP) W
(Viny) ©227y0 NN DIRIPIY ,NPNAD DINDDNI DIRYDIY DYIVIND DPNNYN NN 2INDN 1IN
P9 D2VYNN DX NN 9D NAY .INRNNA TNNI) POIND TIASY DINIIND NN 0NAY D2AVND)
NPITYN NN DAYNN DX WTNHD 2N KO NNTIPN TPNIVINAD IDND POIND WY NITYN NN
NOO DDDNN MDD ,DYaVIN KOV D9YDND qDNA AN DID0NN NPYN INXIND YAy
IOV NVWYN .DPDIDDN DMNX DD D2V 7292 TR 2N DXAVNN DN ,IPNIVN NMND ,DINIDN
,D22NYNN NN NIRYD WIVINY DXNDDNN DV YHNN PITY NN YIYad J10v 15 Dy Novan
TN NP NNY TPNIPPVNND NVW NNINRD INMS NPPOININ DAY .DTIP 12DV 19D
TN DY 2N DAV 47 NP 97 DTN HY MOIN DY NN NV DYNNYN DX iSam
IVWND YIATIN MDD NIN 297 DTN 000NN DY PNNN NPNPN 29 DY YMIIANDN ANINN DY

YOVINY 990N D55 NOTYN

DVIY DN AUND ,072 TPNYNNN MNONP PR DVIAIOY DN ,DWNINN DY NWRIN PoN2
JPNOMP NNYP 0N OAPN DY NTTINNN PXTY 1OV NVWN TN ,DD0D0NN DY 21w M ION
NVAIN .D2Y0NN DI NITYD NPP DPYaN DNPINOND ,DMMDN DNINI ,IPNYNP W DN ODIPN2
NN 2YN2Y ,DYaving 0NN DXDDNN DD NN PNONMP ¥ 12 NAPN 93 9O NN»N NN
oY PNDMPN SV NPTN DYV ¥ GUND P9 N0V NVva  NNT NNYD .0NYY YMIANvN anan
aANINN NN VNN ,DYavIND DININ DNODNN D3 NXR JIDN DNINIONRN ,DINN ONO0NN
,2VPN N0 ,OPNWIND TPNDNPN DX DD R DIPINONN ,NYON NYAVNN IUND o MIanon

NTIPN NPOAA 11D MNPY RO 0NN ODD0NN NN AVYNI)

D012 4 D 2 P2 DIRNNDY DN DYININ NIY . PVVYID PNIDI NHY NN NN DIPINHD DN
12°202 .0MPON VNI TN NIN YR MV NONNN NTIPI NNPN VI DY AT RO 12202
DY) PN DXOIANIN 2I1D0N NIDN PINK 1D ,NONNNA VI DT PN KD TYUN DNNY PN NNNY

SLAM w182 >0 Tin mavnn Hayy

NOWN PAY NHY NVWVN P DINT MY .DWNIN 9010 D9 TUN PNYN DN PN NYNI
DIPN ,07IY 290 NP NPNN INY OV NOWN DNV DVWNIND DD NIY  .PNITIVDN
.89 Ty DMON

ii



8N

NINAN NOIYN YDOPR VINID XMIANDN ANIN PION DY NYTN DY) DNNHD PNIX 1 NN
MNA0 TN W NINT KD N0 DIRNN) D'VIAIN IYND AT XD N2202 MNNOVIS NN
22PN NPYIN IR NN TNN W 9N DI DY DIPIN TIYY NNX N22 NPy OnY
1992 DINYN DIP NN NYTO TNY ¥ 010 DIPN NN TIYYY 27D .70TT0 ImMYN 1Y )11on
NN 99 ,PTH NP VIN DIPH DX NYTY ¥ NN DNINYN NN YYD ST, PMTN Ny
.(SLAM) Simultaneous Localization and Mapping 5 ny1™ 1t 7y .13mt712 JMN 0IM9
97 YT yan IR 5SS > (Factor Graph) 973 MOPa NIPIN 297 DTN DYHNYN DN
.12°202 ONSYN 01PN VI DI HYND ,iPYaa DOPRIAPNRD DMNOYIN NN DDNDN DINNSN
MY P2 PNIN DY IR NONTD 95N OPRIPNR DNYY) P DINDND NN MONON MNVpn
MINYN DY PRI JWPN DY NIIR NI NODN NONT .(MIVMTIN XNDNTI) ,01N YV D¥aNNn

12202 DMNYN HY DIPP NINYNY DI DI

21901 1I0NY I VIIN 19D ,ANT KD NDADA YDUPN ONDDN NIONA DPOIY DN N NPNA
TIONY DI DN IMUIN NI 12202 YNY 9152 VIANIN DN DNDONN 90N INMVIN J9INI
921 VAN IV ,N2ADI NMNIYAN DY XD T9DNI Y1ID D5V VININY Td NTTAD NIV NN
MM X NONT W ,PRM owa nnnT nowa ownnwn DX .02IN2) MMpna pa o
DNNY DY N9N NN .Y DNR MNP MTIPI NN POMITII 19INI NWIT NON N2
12 9190100 AN MYNDN MNYPM ,0Na X¥NND 912 V1IN IUN D170 DN DYN0N IUN
MINYD ANMD 51 VIAIN L,O0PO NTIPN NONNN NTIPY INPNA .IMND NMINHD YIID 91 VIIN

01PN TPXPNS THD YY NP2 0N DDN NNAD 02NN DINDDN 190N

P00 NP DI NIND PNITPN IYND ,DX01217 I9010 P2 N9 NPV DX TPNRNN X Mt IPNNa
NONDT NOVW DY NDDIAN OV NYNIN LPMTN INY 12202 DNNY DI MNSY DI TV
DD0UN OIRIPI YN D000 90N DIN»N DXVIAT TR MNP NPYsa n1avmy PRM

00N DPYPND THO DY 10 DN NDDNN NN DN OIMA DX TVIN

95w nowa .(Exhaustive) n¥nnn nOwn NRIPI YN DDDON NNIAY TPODVINRD NV
IND NP N NVY DNV DVIAIN P DNV DINVDNN P NMIVIND DO NN VNN VI
NNIPY WX DNTIPN DOWY SOWLVMNRTIN PINS NN ANV NOPN N0 DO .IPAIWN
;01217 D5 NI 992V 7O, DVIVKR 1t NV .(Announced path) Inadn 00NN NV
DPRIPRN DNOYIN NAY 'MIANON Nan N YD (Belief) »maanon anmn nx avnn
290NN AN VI IMA ,TPNONN PYIVNI 2WNN ANRD .N0N TPXPNS 29 DY VININ YV
M OVON  .DVIAIN IRYD N D000 NOWY NIVNN TPNPNG 9 DY ND TY N8NY NP2 20N






NOYIPAL ,NPPOINNTNN NDTIND NOVNPON DTN OFTNY NI HY INPNINA Y2 IPNNN
INRAWY MMONO0 ON T POV AVNNN KYTNID

MmN

DD WNN D) KON 070N DRV DY A0 TITH P ROV OV NN MNIind n¥a N
APNY NYINA MAT D Y ,TITH TN DOD 02 10NNy AUR NN dNNAYNY  .Ipnna DwTn
AUN YN D7YN DNV 0D DN AP J9IND YN ,NTAYNN TN G0N MTIND N¥IT 1IN
N8 IN NHDAYY .NNNN DY 121N N9 21NV TRPHNI OV NYNN PP DN IPY 0NN PON

ST TYUNA DNHYN THNNIA PNYIT AUR DN NN MDD

STNONYNA N2TIN FPADIN NPNNN DY PIDVY NTIN MIN






YAOPR VINIT INNANDN AN 115N
NINYIVYO NI NINIAN NHYYNA
VT XY Narava

PPN DY NN

ANINN NOAPO MYWITN YV 'PON "o Db
2AVUNNN PYTHI DYTND VDN

234 Yo

INRIYD MDDV NON — POV VIV YN
2016 12NVYD na°n Y'ywnn 519N






YAOPR VINIT INNANDN AN 115N
NINYIVYO NI NINIAN NHYYNA
VT XY Narava

234 Yo



	List of Figures
	List of Algorithms
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Literature Review
	3 Background
	3.1 Factor Graph
	3.2 Probabilistic Roadmap Planners

	4 Probabilistic Formulation and Notations
	5 Decentralized Sampling-Based Planning
	6 Approach and Algorithm Development
	6.1 Change in Local Information between ChangeLocalInfo
	6.2 Impacted Paths and Change in Multi-Robot Factors
	6.3 Objective Function Re-Evaluation for Candidate Paths
	6.4 More than 2 Robots
	6.5 Prior Correlation
	6.6 Simple Example
	6.7 A More General Case

	7 Results
	7.1 Basic Scenarios
	7.2 Large Scale Scenarios

	8 Conclusion
	A Additional Large Scale Scenarios
	A.1 Scenario 2
	A.2 Scenario 3

	Bibliography
	Hebrew Abstract

