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Abstract In this paper we develop a new approach for
decentralized multi-robot belief space planning in high-
dimensional state spaces while operating in unknown envi-
ronments. State of the art approaches often address related
problems within a sampling based motion planning
paradigm, where robots generate candidate paths and are to
choose the best paths according to a given objective function.
As exhaustive evaluation of all candidate path combinations
from different robots is computationally intractable, a com-
monly used (sub-optimal) framework is for each robot, at
each time epoch, to evaluate its own candidate paths while
only considering the best paths announced by other robots.
Yet, even this approach can become computationally expen-
sive, especially for high-dimensional state spaces and for
numerous candidate paths that need to be evaluated. In par-
ticular, upon an update in the announced path from one of the
robots, state of the art approaches re-evaluate belief evolution
for all candidate paths and do so from scratch. In this work
we develop a framework to identify and efficiently update
only those paths that are actually impacted as a result of
an update in the announced path. Our approach is based on
appropriately propagating belief evolution along impacted
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paths while employing insights from factor graph and incre-
mental smoothing for efficient inference that is required for
evaluating the utility of each impacted path. We demonstrate
our approach in a synthetic simulation.
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1 Introduction

Collaboration between multiple robots pursuing common or
individual tasks is important in numerous problem domains,
including cooperative navigation, mapping, tracking, and
active sensing. A key required capability is to autonomously
determine robot actions while taking into account different
sources of uncertainty.

The corresponding problem can be formulated within
a partially observable Markov decision process (POMDP)
framework,which is known to be computationally intractable
(Papadimitriou and Tsitsiklis 1987). Thus, the research
community has been extensively investigating approximate
approaches to provide better scalability to support real world
problems. These approaches can be roughly classified into
four categories, some of which are further discussed below:
point-based value iteration methods (e.g. Kurniawati et al.
2008), simulation based approaches (e.g. Stachniss et al.
2005) in the context of active SLAM, sampling based
approaches (e.g. Kavraki et al. 1996; LaValle and Kuffner
2001; Karaman and Frazzoli 2011) and direct trajectory opti-
mization approaches (e.g. Platt et al. 2010; Berg et al. 2012;
Indelman et al. 2015).

In particular, sampling based approaches (e.g. Pren-
tice and Roy 2009; Bry and Roy 2011; Hollinger and
Sukhatme 2014; Agha-Mohammadi et al. 2014) discretize
the state space using randomized exploration strategies to
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explore the belief space in search of an optimal plan. While
many of these approaches, including probabilistic roadmap
(PRM) (Kavraki et al. 1996), rapidly exploring random trees
(RRT) (LaValle and Kuffner 2001), and RRT* and Rapidly-
exploring Random Graph (RRG) (Karaman and Frazzoli
2011), assume perfect knowledge of the state, deterministic
control and a known environment, efforts have been devoted
in recent years to alleviate these restricting assumptions. The
corresponding approaches include, for example, the belief
roadmap (BRM) (Prentice and Roy 2009) and the rapidly-
exploring random belief trees (RRBT) (Bry and Roy 2011),
where planning is performed in the belief space, thereby
incorporating the predicted uncertainties of future position
estimates. Similar strategies are used to address also infor-
mative planning problems (see, e.g. Hollinger and Sukhatme
2014).

While typically the environment is assumed to be known,
recent research focused on facilitating autonomous opera-
tion also in the presence of uncertainty in the environment
and when the environment is a priori unknown and instead
is mapped on the fly, see e.g. Stachniss et al. (2005),
Chaves et al. (2014), Indelman et al. (2015). The problem is
tightly related to active SLAM and can be formulated within
POMDP framework.

A multi-robot belief space framework has been also
investigated in different contexts in recent years, including
multi-robot tracking, active SLAM and autonomous nav-
igation in unknown environments, planning for coverage
tasks, and informative planning (see, e.g. Levine et al. 2013;
Atanasov et al. 2015; Indelman 2015a, b). In particular, in a
recent work (Indelman 2015a) we considered the problem of
multi-robot active collaborative estimation while operating
in unknown environments and introduced within the belief
reasoning regarding future mutual observations of environ-
ments that are unknown at planning time.

Here, we build upon that work considering a decentralized
framework, which has numerous advantages compared to the
centralized case (e.g. robustness to failure, communication
to a single computational unit is not required).

Unfortunately, solving exactly the corresponding decen-
tralized POMDP problem is computationally intractable and
has been shown to be nondeterministic exponential (NEXP)
complete (Bernstein et al. 2002), and thus has been typically
addressed using approximate approaches. Also, despite the
intractable worse case complexity of decentralized POMDP,
there has been impressive progress in recent years in solving
interesting instances of the problem (e.g. Amato et al. 2016).

A common approach to reduce computational complex-
ity is for each robot, at each time epoch, to solve the belief
space planning problem considering its own candidate paths
(generated, e.g., by some samplingmethod) and the best solu-
tions found and announced by other robots (e.g. Levine et al.
2013; Atanasov et al. 2015). The robot then announces its

best path, according to a user-defined objective function, to
other robots which then proceed with the same procedure.
Such an approach avoids solving the problem jointly over all
robots and reduces the exponential complexity in the number
of robots to linear complexity, with performance guarantees
analyzed in Atanasov et al. (2015).

Yet, existing methods calculate the belief evolution over
all candidate paths from scratch each time a new announced
plan from another robot is received, (see, e.g. Levine et al.
2013; Atanasov et al. 2015) , which by itself can be compu-
tationally extensive operation. Another related recent body
of work (Agha-Mohammadi et al. 2014; Agha-mohammadi
et al. 2015) proposes to dynamically re-plan in belief space to
address discrepancy between the actual motion and observa-
tionmodels and those used in the planning stage. However, as
opposed to the research presented herein, these works do not
focus on a multi-robot setup and do not consider unknown
or uncertain environments.

In this work we contribute a multi-robot belief space plan-
ning approach which further reduces computational com-
plexity, considering the problem of multi-robot autonomous
navigation in unknown environments. Instead of re-evalua-
ting from scratch each candidate path, the key observation is
that often, belief evolution changes only for part of the candi-
date paths as a result of an update in the announced path from
another robot(s). We show how to identify and efficiently
recalculate only those candidate paths that are impacted as
a result of an update in the announced paths from another
robot. See illustration in Fig. 1. Our approach is based on
appropriately propagating belief evolution along impacted
paths while employing insights from factor graph for effi-
cient inference that is required for evaluating the utility of
each impacted path.

The present paper is an extension of the work presented
in (Regev and Indelman 2016). As a further contribution,
in this manuscript we extend our approach to also support
scenarios where states of different robots are correlated at
planning time (Sect. 5), for example, due to previous mutual
landmark observations. Moreover, we provide an extensive
experimental evaluation in simulation (Sect. 7.2), where the
robots have to accurately autonomously navigate to multiple
pre-defined goals in unknown environments. The considered
scenario involves multi-robot SLAM and multiple planning
sessions in some of which the robots’ states are correlated.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces notations and formulates the addressed
problem. Section 3 presents decentralized sampling based
planning framework that is used as a baseline method.
Section 4 presents our multi-robot belief space planning
approach. Section 5 focuses on the case where the states
of different robots are correlated at planning time. Section 7
presents experimental results, considering several simulated
scenarios. Conclusions are provided in Sect. 8.
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Fig. 1 Illustration of the proposed concept. The figure shows belief
evolution over a few candidate paths of robot r given an announced
path Pr ′

from robot r ′ and the corresponding multi-robot constraints
that can represent, e.g., future mutual observations of environments
unknown at planning time (Indelman 2015a). Upon an update in an

announced path from Pr ′
to Pr ′

new , a new set of such constraints will
be generated (shown in purple), requiring to re-calculate belief evolu-
tion for candidate paths. Covariance ellipses are shown for illustration
(Color figure online)

2 Probabilistic formulation and notations

We consider a group of R robots operating in unknown or
uncertain environments, aiming to autonomously decide their
future actions based on information accumulated thus far and
a given objective function J , which is a function of robots’
beliefs at different future time instances.

LetP(Xr
k |Zr

0:k,Ur
0:k−1) represent the posterior probability

distribution function (pdf) at planning time tk over states of
interest Xr

k of robot r (e.g. current and past poses). Here,
Zr
0:k and Ur

0:k−1 denote, respectively, all observations and
controls by time tk . Consider conventional state transition
and observation models

xi+1 = f (xi , ui , wi ) , zi, j = h(xi , x j , vi, j ) (1)

with zero-mean Gaussian process and measurement noise
wi ∼ N (0,Ωw) and vi, j ∼ N (0,Ωvi j ), and with known
informationmatricesΩw andΩvi j . Denoting the correspond-
ing probabilistic terms to Eq. (1) by P(xi |xi−1, ui−1) and
P(zi, j |xi , x j ), the pdf P(Xr

k |Zr
0:k,Ur

0:k−1) can be written as

P(Xr
k |Hr

k)∝P(xr0)
k∏

i=1

P(xri |xri−1, u
r
i−1)p(Z

r
i |Xr

i ) (2)

where the history Hr
k is defined as Hr

k
.= {Zr

0:k,Ur
0:k−1}.

The measurement likelihood term P(Zr
i |Xr

i ) can be
expanded in terms of individual observations,

P(Zr
i |Xr

i ) =
ni∏

j=1

P(zri, j |Xr
i, j ). (3)

Here, Zr
i

.= {zri, j }nij=1 and ni denotes the number of observa-
tions acquired at time ti and Xr

i, j ⊆ Xr
i represents involved

variables in the j th observation model. Note this formulation
assumes known data association and does not consider out-
liers. Robust perception approaches do exist, however, both
in inference (e.g. Olson and Agarwal 2013) and, recently, in
belief space planning (Pathak et al. 2016).

We now consider all the R robots in the group, and let
P(Xk |Hk) represent the pdf over the joint state Xk at time
tk , where Xk

.= {Xr
k}Rr=1 and Hk

.= {Z0:k,U0:k−1}, with
Z0:k

.= {Zr
0:k}Rr=1 and U0:k−1

.= {Ur
0:k}Rr=1.
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Let J denote a user-defined objective function

J (U) = E

[
L∑

l=1

cl(b[Xk+l ], uk+l)

]
, (4)

where uk+l
.= {urk+l} and the expectation is taken with

respect to future observations of all robots, and where cl
represents an immediate cost function at the lth look ahead
step, which can be a function of the joint belief b[Xk+l ] (to
be defined) and of the controls. For simplicity, we use the
same planning horizon L for all robots.

In this paper we consider a special case of the objective
function J and assume the latter is of the following form:

J (U) = E

[
L∑

l=1

R∑

r=1

crl
(
b[Xr

k+l ], urk+l

)
]

, (5)

where b[Xr
k+l ] = ∫

¬Xr
k+l

b[Xk+l ] and thus depends on the

multi-robot belief b[Xk+l ]. Such a form naturally supports
collaborative active state estimation, where each robot aims
to improve its estimation accuracy while considering addi-
tional terms in cl , if exist (see e.g. Indelman 2015b).

In this paper, our objective is to find the optimal controls

U� = argmin
U

J (U) (6)

for all robots in the group, considering a multi-robot decen-
tralized framework discussed below.

3 Decentralized sampling-based planning

We consider a decentralized framework, where each robot
calculates candidate paths using one of the existing sampling-
based motion planning approaches (e.g. RRT, RRG, PRM).
Adopting typical notations in literature, let Gr = (Vr , Er )

be a graph maintained by robot r , with vertices Vr repre-
senting sampled robot states and edges Er denoting feasible
paths between corresponding vertices. Each vertex v ∈ Vr

is associated with a set of belief nodes, with each belief node
representing a path Pr .= {v0, . . . , v} from the initial vertex
v0 that could be followed to reach the vertex v.

In this paper we interchangeably use Pr to represent a
path and, when clear from context, also the corresponding
robot states along that path. Denoting the state at each vertex
v by xv , the corresponding joint belief over the entire path
Pr , considering for now only a single robot r , is

b[Pr ] .= P(Xr
k , x

r
v0

, . . . , xrv |Hr
k,U (Pr ), Z(Pr )), (7)

whereUr (Pr ) and Zr (Pr ) represent, respectively, the corre-
sponding controls and (unknown) observations to be acquired

by following the path Pr . This pdf can be explicitly written
in terms of the belief at planning time and the corresponding
state transition and observation models as (see Eq. (2))

b[Pr ] = P(Xr
k |Hr

k)P(Pr |Ur (Pr ), Zr (Pr )), (8)

where, for convenience, the local information (factors) along
path Pr is defined as

FGlocal(Pr )
.=

L(Pr )∏

l=1

P(xrvl |xrvl−1
, urvl−1

)P(Zr
vl

|Xr
k+l). (9)

Throughout the paper we will often use the factor graph
graphical model to represent a pdf. The factor graph for the
pdf from Eq. (9) is denoted by FGlocal(Pr ).

Themeasurement likelihood termP(Zr
vl

|Xr
k+l) can be fur-

ther expanded, similarly to Eq. (2). Here, Xr
k+l is the joint

state up to the lth vertex along the path Pr , i.e.:

Xr
k+l = Xr

k+l(Pr ) ≡ Pr
k+l

.= {Xr
k, x

r
v0

, . . . , xrvl }. (10)

We now proceed to the multi-robot case and consider dif-
ferent paths Pr for each robot r ∈ {1, . . . , R}. Letting
P .= {Pr }Rr=1, the multi-robot belief is given by

b[P] = P(Xk |Hk)

R∏

r=1

⎡

⎣
L(Pr )∏

l=1

P(xrvl |xrvl−1
, urvl−1

)

·P(Zr
vl

|Xr
k+l)

∏

{i, j}
P(zr,r

′
i, j |xrvi , xr

′
v j

)

⎤

⎦ , (11)

where the last product corresponds to multi-robot constraints
that can involve different time instances, representingmutual
observations of a scene. With a slight abuse of notation,
we use xrvi and xr

′
v j

in the measurement likelihood term

P(zr,r
′

i, j |xrvi , xr
′

v j
) to represent both a robot state before plan-

ning time, i.e. xrvi ⊂ Xr
k ⊆ Xr (Pr ) (likewise for xr

′
v j
), and a

future state along the path Pr . The latter case corresponds to
a mutual observation of an area that is unknown at planning
time, as introduced in our previous work (Indelman 2015a).

The index set {i, j} in Eq. (11) represents the time indices
that facilitate multi-robot constraints. We assume a given cri-
teria function crMR(vi , v j ) that determines if there should be
a multi-robot constraint between the two vertices vi and v j .
This function is conceptually similar to the indicator func-
tion used in Levine et al. (2013), while in our previous work
(Indelman2015a)weused a simpler criteria (relative distance
between poses). The joint belief (11) can be represented by a
factor graph graphical model, as illustrated in Fig. 2. Differ-
ent candidate paths P typically yield different factor graphs.
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Fig. 2 (left) Graph G = (V, E) along which different candidate paths
Pr of robot r can be defined. Announced pathsPr ′

andPr ′
new from robot

r ′ facilitate multi-robot factors f1, f2, f3 and f4. (right) An example

of a factor graph representing the joint belief b[Pr ,Pr ′ ] for some can-
didate path Pr . Different factor graphs are obtained for each path Pr

considering either Pr ′
or Pr ′

new

In a decentralized multi-robot framework, each robot
maintains the joint belief (11) on its own while commu-
nicating to each other relevant pieces of information. We
assume, for simplicity, each robot is capable of calculat-
ing the joint pdf at planning time P(Xk |Hk) using one of
the recently developed approaches (e.g. Cunningham et al.
2013; Indelman et al. 2012). We note that given transition
and observation models (1), it is sufficient for each robot r ′
to only transmit (in addition to what is required by multi-
robot inference) the corresponding controls to path Pr ′

. Any
robot r that receives this information can then formulate the
multi-robot belief (11) (Levine et al. 2013).

Evaluating the objective function (5) for the considered
paths P involves performing inference over the multi-robot
belief (11).As shown in priorwork (e.g. Indelman et al. 2015;
Chaves et al. 2014), this inference can be performed in the
information space:

Λ(P) = Λk +
R∑

r=1

⎡

⎣
L(Pr )∑

l=1

Λ
r,local
l +

∑

{i, j}
Λ

r,r ′
i, j

⎤

⎦ , (12)

where

Λ
r,local
l = (Fr

l )TΩr
wFr

l +
∑

m

(Hr
l,m)TΩr

vlm H
r
l,m, (13)

and Λ
r,r ′
i, j represents the information from the multi-robot

constraint term P(zr,r
′

i, j |xrvi , xr
′

v j
) in Eq. (11). Here, the matri-

ces F and H represent appropriate Jacobians of the state
transition and observation models (1), linearized about the
considered candidate path and the MAP estimate of the
joint state at planning (current) time. Observe that the matri-
ces in Eq. (12) are assumed to be appropriately augmented
(e.g. zero-padded) as the dimensionality of the state increases
with l; see similar treatment e.g. in Indelman et al. (2015),
Chaves et al. (2014).

Recalling that each robot r has numerous candidate paths
over the graphGr , determining the optimal controls involves
considering all path combinations between different robots,
which is computationally intractable. Optimality here refers
to choosing the best path from the set of candidate paths.

Instead, a common (sub-optimal) approach for decentral-
ized belief space planning is for each robot r to consider
only its own candidate paths and the announced paths of
other robots, see e.g. Levine et al. (2013), Atanasov et al.
(2015). The robot can then select the best path, accord-
ing to the objective function (5), and announce this path
to other robots, which then repeat the same procedure on
their end. Such an approach reduces the exponential com-
plexity in number of robots to a linear complexity, and can
be viewed as a decentralized coordinated descent (Levine
et al. 2013; Atanasov et al. 2015), i.e. where robots either
repeat this process until convergence (Atanasov et al. 2015)
or at some frequency (Levine et al. 2013). Performance guar-
antees of such an approach are analyzed in Atanasov et al.
(2015).

In particular, when an announced path of some robot r ′
is updated (e.g. from Pr ′

to Pr ′
new), robot r has to recalcu-

late the best path by re-evaluating its candidate paths given
Pr ′
new. Existing approaches perform this re-evaluation for all

candidate paths from scratch. In contrast, in the following
section we develop an approach to identify and efficiently
re-evaluate, while re-using calculations, only impacted can-
didate paths due to an update in the announced path.

4 Approach

Although our approach applies for any number of robots, for
simplicity we consider the case of two robots r and r ′ and
re-write the objective function J from Eq. (5) as
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J (Pr ,Pr ′
) = E

[
L∑

l=1

[
crl (b[Xr

k+l ], urk+l(Pr ))

+ cr
′

l (b[Xr ′
k+l ], ur

′
k+l(Pr ′

)

] ]
. (14)

In Sect. 4.4 we consider again a general number of robots.
Consider robot r has already calculated belief evolution

over all candidate paths while accounting for the announced
path Pr ′

, and the latter is now updated to Pr ′
new. The corre-

sponding multi-robot beliefs for some candidate path Pr of
robot r are:

b[Pr ,Pr ′ ] = P(Xk |Hk)P(Pr |Ur (Pr ), Zr (Pr ))

P(Pr ′ |Ur ′
(Pr ′

), Zr ′
(Pr ′

))
∏

{i, j}
P(zr,r

′
i, j |xrvi , xr

′
v j

) (15)

b[Pr ,Pr ′
new] = P(Xk |Hk)P(Pr |Ur (Pr ), Zr (Pr ))

P(Pr ′
new|Ur ′

(Pr ′
new), Zr ′

(Pr ′
new))

∏

{i, j}
P(zr,r

′
i, j |xrvi , xr

′
v j

), (16)

where the changed terms are underlined.
One can consider the joint beliefs b[Pr ,Pr ′ ] and

b[Pr ,Pr ′
new] to be represented by appropriate two different

factor graphs (see Figs. 1, 2). Re-evaluating the objective
function for a candidate path Pr involves performing MAP
inference over the updated factor graph b[Pr ,Pr ′

new]. In the
general case, the factor graphs will be different for each can-
didate path Pr .

The general concept of our approach is to track the multi-
robot factors and local information change between the two
pdfs b[Pr ,Pr ′ ] and b[Pr ,Pr ′

new]. This information is then
used to efficiently perform inference over the updated belief,
which is required for re-evaluating the objective function.

Our approach first identifies which candidate paths Pr of
robot r are impacted as a result of the update in the announced
plan, and consequently operates only over these paths instead
of always re-calculating belief evolution over all candidate
paths. Second, our approach efficiently calculates the belief
evolution over these impacted paths, while re-using calcula-
tions where possible.

The main steps of the proposed approach are summarized
below and described in detail in the following sections:

1. Section 4.1 calculates the change in local information
between Pr ′

and Pr ′
new.

2. Section 4.2 identifies the impacted candidate paths Pr

and collects appropriate multi-robot factors to be later
used for efficient belief inference.

3. Section 4.3 re-evaluates the objective function for (only)
the impacted candidate paths, based on the output of
Sects. 4.1 and 4.2.

4.1 Change in local information between P r ′
and P r ′

new

We first calculate the change in local information between
Pr ′

and Pr ′
new. This calculation is used later in Algorithm 2

for consistent inference over appropriate beliefs while avoid-
ing double counting information that is shared by Pr ′

and
Pr ′
new. Specifically, recalling the definition (9) of a factor

graph FGlocal(Pr ′
) that represents only the local informa-

tion along path Pr ′
we identify which factors only appear

in FGlocal(Pr ′
) or in FGlocal(Pr ′

new). These factors will then
be either added or removed upon re-evaluating belief evolu-
tion along impacted candidate pathsPr . We therefore collect
these factors into two separate factor graphs:

FGrmv
local

.=
{
f | f ∈ FGlocal(Pr ′

) ∧ f /∈ FGlocal(Pr ′
new)

}

FGadd
local

.=
{
f | f /∈ FGlocal(Pr ′

) ∧ f ∈ FGlocal(Pr ′
new)

}

Additionally, we calculate belief evolution b[Pr ′
new] along

pathPr ′
new taking into account only local information of robot

r ′, and use it to calculate the change in the immediate cost
functions cr

′
l between b[Pr ′

new] and b[Pr ′ ] . Denoting this

change by Δcr
′

l we let

ΔJr
′ .= E

[
L∑

l=1

Δcr
′

l

]
. (17)

For example, if cr
′

l quantifies uncertainty, e.g. cr
′

l =
det (Λr ′

k+l), , thenΔJr
′ = det (Λr ′

k+l)−det (Λr ′
k+l,new)where

Λr ′
k+l and Λr ′

k+l,new are obtained, respectively, from b[Pr ′ ]
and b[Pr ′

new] at the lth step along appropriate paths (i.e. Pr ′

and Pr ′
new). Note that the expectation operator in such a case

can be dropped as the posterior information (covariance)
matrix can be typically approximated well by a single Gauss
Newton iteration, and hence it is not a function of future
observations (see e.g. Indelman et al. 2015).

The term ΔJr
′
from Eq. (17) will be used to very effi-

ciently re-evaluate the objective function for candidate paths
Pr that are not impacted, as discussed in Sect. 4.3.

4.2 Impacted paths and change in multi-robot factors

Next, we identify, among all the candidate paths of robot r ,
those paths Pr that are impacted as a result of the update
in the announced path from Pr ′

to Pr ′
new. In other words,

recalling Eqs. (15, 16), we are interested in finding paths Pr

such that b[Pr ] 
= b′[Pr ], with

b[Pr ]=
∫

b[Pr ,Pr ′ ]dPr ′
, b′[Pr ]=

∫
b[Pr ,Pr ′

new]dPr ′
new

(18)
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Such paths Pr are marked, indicating that the objective
function should be re-evaluated, a process that involves
re-calculating belief evolution. On the other hand, belief evo-
lution re-calculation is not required for candidate paths that
are not impacted. In the latter case, the objective function
J (Pr ,Pr ′

) is only updated due to the change in immediate
cost functions cr

′
l of robot r ′, as discussed in Sect. 4.3.

We now describe our approach to identify the impacted
paths, as well as collecting the required information that will
be used in Sect. 4.3 (Algorithm 2) for efficient inference.

The key observation is that the belief over path Pr is
impacted due to an announced path Pr ′

only if there exist
multi-robot factors P(zr,r

′
i, j |xrvi , xr

′
v j

) or, in certain cases, if the
states of robots r and r ′ are already correlated at planning
time, i.e.

P(Xk |Hk) 
= P(Xr
k |Hk)P(Xr ′

k |Hk). (19)

This is the case if, by planning time tk , the robots have already
performed somemulti-robot update, e.g. bymutually observ-
ing a common scene.We refer to this case (i.e. Eq. (19) holds)
as prior correlation.

Clearly, in absence of multi-robot factors and prior cor-
relation, the belief over a candidate path Pr is not impacted
by neither Pr ′

nor Pr ′
new. However, it is also interesting to

note that also when there is prior correlation, but no changes
in multi-robot factors between b[Pr ,Pr ′ ] and b[Pr ,Pr ′

new],
the belief over path Pr typically remains the same. We defer
further discussion regarding prior correlation to Sect. 5, and
in what follows we treat prior correlation between states xrk
and xr

′
k , if such correlation exists, as a multi-robot factor, see

Fig. 2.
As mentioned in Sect. 4, our approach tracks the changed

multi-robot factors and the local factors of robot r ′ between
the beliefs b[Pr ,Pr ′ ] and b[Pr ,Pr ′

new]. This information is
then used in Sect. 4.3 to efficiently re-evaluate the belief over
path Pr . However, such a procedure is required for each
candidate path Pr that has some multi-robot factors, even if
several paths are identical up to some point. This would lead
to the same work (i.e. computational effort) done multiple
times.

To address this issue, rather than reasoning about robot
r ’s candidate paths, we reason in terms of the corresponding
vertices in the graph Gr , that define the paths. Our approach,
summarized in Algorithm 1, considers the corresponding
graph vertices and identifies the vertices Vinv ⊆ V r that
are involved in at least one multi-robot factor due to either
Pr ′

or Pr ′
new. See illustration in Fig. 2. We then associate to

each such vertex vi ∈ Vinv the changed multi-robot factors
that involve vi , i.e. any such factor f should either appear in
b[Pr ,Pr ′ ] or in b[Pr ,Pr ′

new]. In the former case, f should
be removed from the corresponding factor graph, and as such

1 Inputs:
2 Gr = (V r , Er ): graph of robot r

3 Pr ′
, Pr ′

new: prev. and updated announced path of robot r ′
4 crMR(vi , v j ): multi-robot factor criteria function
5

6 Outputs:
7 V r

inv : involved vertices in multi-robot factors
8 ∀v ∈ Vinv : v.FGadd

MR, v.FGadd
MR

9

10 V r
inv = φ /* Initialization */

11 foreach vr
′ ∈ Pr ′ ∪ Pr ′

new do
12 Find all nearby vertices {v} ⊆ V r to vr

′
such that

13 - at least one candidate path Pr goes through v

14 - multi-robot criteria crMR(v, vr
′
) is satisfied

15 V r
inv = V r

inv ∪ {v}
16 foreach vi ∈ {v} do
17 Generate multi-robot factor f (xrvi , x

r ′
v )

18 if vi ∈ Pr ′
and vi ∈ Pr ′

new then
19 continue
20 end
21 if vi ∈ Pr ′

then
22 Add f (xrvi , x

r ′
v ) to vi .FGrmv

MR
23 else
24 Add f (xrvi , x

r ′
v ) to vi .FGadd

MR
25 end
26 end
27 Mark all candidate paths Pr that go through vertex vi

28 end
29 return V r

inv

Algorithm 1: identifyInvolvedPaths. Identify
vertices Vr

inv ⊆ V involving multi-robot factors consider-

ing announced paths Pr ′
and Pr ′

new, and the corresponding
multi-robot factors. Each vertex v ∈ Vinv is associated with
appropriate multi-robot factors to be later used in Algo-
rithm 2

is added to vi .FGrmv
MR (line 22); in the latter case, f should

be added and is thus added to vi .FGadd
MR (line 24).

Finally, the algorithm marks all paths Pr that include at
least one vertex inV r

inv as impacted paths (line 27), to indicate
belief re-evaluation is required.

4.3 Objective function re-evaluation for candidate paths

As mentioned in Sect. 3, each robot r evaluates the objec-
tive function by considering its candidate paths and the
announced paths of different robots. Such a process requires
performing inference over the belief b[Xk+l ], for each look
ahead step l, to recover its first two moments

b[Pr
k+l ,Pr ′

k+l ] = N (μk+l ,Λ
−1
k+l), (20)

where the general form for the information matrix Λk+l is
given by Eq. (12). Observe that if the objective function
J (Pr ,Pr ′

) only includes immediate cost functions for some
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of the look ahead steps l, then the above inference is only
required for these time instances. For example, one may be
interested only in the uncertainty at the final step (e.g. upon
reaching agoal), inwhich case inference shouldbeperformed
only for l = L . On the other hand, in chance-constrained
motion-planning (see e.g. Bry and Roy 2011), belief evolu-
tion is typically needed for many (or all) look ahead steps
l.

Since the objective function J (Pr ,Pr ′
) has been already

calculated for different candidate pathsPr and the announced
path Pr ′

, a process that also involves inference over the
corresponding beliefs b[Pr ,Pr ′ ], our objective now is to
efficiently evaluate the objective function considering the
updated announced path Pr ′

new.
Our approach for re-evaluating the objective function

J (Pr ,Pr ′
new) for each candidate path Pr , while exploiting

results from the previous inference b[Pr ,Pr ′ ], is summa-
rized in Algorithm 2 and further discussed below.

The algorithmcalculates themaximumaposteriori (MAP)
informationmatrix that corresponds to the beliefb[Pr ,Pr ′

new]
for each of the future time instances, which is then used
for evaluating the objective function J (Pr ,Pr ′

new). Let Λ
.=

Λ(Pr ,Pr ′
) and Λ′ .= Λ(Pr ,Pr ′

new) represent the corre-
spondingMAP informationmatrices to the beliefsb[Pr ,Pr ′ ]
and b[Pr ,Pr ′

new], respectively.Denote also byΛk+l the infor-
mation matrix that corresponds to the belief over the first l
steps, b[Pr

k+l ,Pr ′
k+l ], and likewise for Λ′

k+l . Since inference

over b[Pr ,Pr ′ ] has been already performed, the matrices
Λk+l for all steps l are known. We now focus on calculating
Λ′

k+l , for each candidate path Pr .
If a candidate path Pr has been determined in the previ-

ous section not to be impacted as a result of the update in
the announced path (from Pr ′

to Pr ′
new), there is no need to

recalculate the immediate functions crl of robot r . We note
this holds true due to the considered form of J , where crl only

involves b[Pr
k+l ] and not also b[Pr ′

k+l ]. The latter can still

change due to new local information between Pr ′
and Pr ′

new,
but that change does not affect crl (since b[Pr ] = b′[Pr ]).
Therefore, to get J (Pr ,Pr ′

new) from J (Pr ,Pr ′
)we only have

to update the terms cr
′

l (lines 10–13 in Algorithm 2). This
update is the same for all non-impacted pathsPr and is given
by ΔJr

′
from Sect. 4.1. We note, however, that often, ΔJr

′

is negligible.
For each marked (impacted) path Pr and for each l ∈

L(Pr ), we start with the previously calculated information
matrix Λk+l and update it by adding and subtracting the
multi-robot and local factors that were collected as explained
in Sects. 4.1 and 4.2. See lines 18–26 in Algorithm 2.

Specifically, referring to Eq. (12), and resorting to factor
graph notation FG

.= b[Pr ,Pr ′ ] and FG ′ .= b[Pr ,Pr ′
new],

1 Inputs:
2 V r

inv : involved vertices in multi-robot factors

3 For each candidate path Pr : J (Pr ,Pr ′
); ∀l ∈ L(Pr ) : Λk+l

from Eq. (20)
4 ΔJr

′
from Sect. 4.1

5

6 Outputs:
7 For each impacted candidate path Pr : J (Pr ,Pr ′

new);
∀l ∈ L(Pr ) : Λ′

k+l
8

9 foreach candidate path Pr do
10 if ¬Pr .isMarked then
11 J (Pr ,Pr ′

new) = J (Pr ,Pr ′
) + ΔJr

′

12 continue
13 end

/* re-evaluate belief over Pr */

14 J (Pr ,Pr ′
new) = 0

15 for l = 1 : L(Pr ) do
16 if Λ

′
k+l is not required in Eq. (5) then

17 continue
18 end

/* Get previous belief b[Pr
k+l ,Pr ′

k+l ] */

19 Λk+l
.= Λk+l(Pr ,Pr ′

) from Eq. (20)

/* Initialize Λ′
k+l

.= Λk+l(Pr ,Pr ′
new) */

20 Λ′
k+l = Λk+l

21 foreach v ∈ Pr and v ∈ V r
inv do

/* MR factors involving v ∈ V r
inv */

22 Λ′
k+l = updInfo(Λ′

k+l , v.FGrmv
MR , l, rmv)

23 Λ′
k+l = updInfo(Λ′

k+l , v.FGadd
MR, l, add)

24 end

/* Changed local info. of robot r ′ */

25 Λ′
k+l = updInfo(Λ′

k+l ,FG
add
local , l, add)

26 Λ′
k+l = updInfo(Λ′

k+l ,FG
rmv
local , l, rmv)

27 Evaluate crl and cr
′

l from Eq. (5)
28 end
29 end

Algorithm 2: evalObjFunc. Re-evaluate objective
function for candidate paths Pr upon update in an
announced path from another robot r ′. Notations:
MR=Multi-Robot; rmv = remove

the updated information matrix Λ′
k+l can be written as

Λ′
k+l = Λk+l −

∑

f ∈ FG
f /∈ FG ′
f.t ≤ tk+l

Λ( f ) +
∑

f ∈ FG ′
f /∈ FG
f.t ≤ tk+l

Λ( f ). (21)

The operator f.t extracts the time instances involved with
the factor f , such that the condition f.t ≤ tk+l enforces
causality, i.e. we do not consider factors involving states at
times greater than k + l. The corresponding steps are sum-
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1 Inputs:
2 FG, l: factor graph and time index

3 Linearization point = graph vertices V and X̂k
4 toAddflag: indicates if to add or subtract information
5 Λ: input information matrix to be updated
6

7 Outputs:
8 Λ: updated information matrix
9

10 { f } = getFactorsCausal(FG, l)

11 foreach f ∈ { f } do
12 Linearize f about linearization point and calculate Λ( f )
13 Adjust size of Λ, if needed
14 if toAddflag then
15 Λ = Λ + Λ( f )
16 else
17 Λ = Λ − Λ( f )
18 end
19 end

Algorithm 3: updInfo. Update information matrix by
adding or subtracting information from factors

marized in Algorithm 3 that is invoked by Algorithm 2. We
assume existence of the function getFactorsCausal
that takes as input a factor graph and time t , and outputs
only factors involving variables up to that time. Given these
factors, Algorithm 3 extracts the corresponding information
matrices and adds or substracts these matrices as in Eq. (21).
This process involves linearizing the corresponding nonlin-
ear functions, where the linearization point is either the graph
vertices V or, in case states from Xk are involved, the cor-
responding MAP estimate X̂k of P(Xk |Hk), which is known
at time k.

We note that, similar to Eq. (12), the information matrices
in Eq. (21) should be appropriately augmented: for example,
the matrices Λk+l and Λ′

k+l represent uncertainty over two

partially overlapping joint states {Xr
k+l(Pr ), Xr ′

k+l(Pr ′
)} and

{Xr
k+l(Pr ), Xr ′

k+l(Pr ′
new)}, respectively.

One can go further, and perform the calculation in Eq. (21)
incrementally, by updating Λ′

k+l+1 based on Λ′
k+l while

adding and subtracting information from appropriate factors
that involve time k + l + 1. This would provide an efficient
mechanism to evaluate the belief for each look ahead step, if
that is required by the objective function J . We leave further
investigation of this direction to future research and formu-
late Algorithm 2 according to ‘batch’ version (Eq. (21)).

Illustrative Example Figure 2 illustrates key aspects of
our approach. The figure indicates the set Vinv of involved
vertices in multi-robot factors in eitherPr ′

andPr ′
new by bold

circle marks. As seen there are three such vertices (vi , vi+1

and vi+2) and four multi-robot factors ( f1, f2, f3 and f4). As
detailed in Algorithm 1, each vertex v ∈ Vinv includes the
changed multi-robot factors that have to be either added or
removed. In this example, for vi there are no changed factors,

since although originating from different paths, f1 and f2 are
actually identical factors. On the other hand, vi+1 includes
the factor f3 to be removed, while vi+2 includes the factor
f4 to be added. All the candidate paths Pr that go through
some vertex v ∈ Vinv should be updated with the multi-robot
factors included in v.

RemarkMany real world scenarios require obstacle detec-
tion and avoidance. In such a case, a detection of a previously
unmapped, potentially dynamic, obstacle can trigger a re-
planning session, for example, as done in our previous
work (Indelman 2017). A straightforward application of the
method proposed herein would improve efficiency, while
treating each of the re-planning sessions separately.However,
we envision similar reasoning, with appropriate adaptation,
could be used also in-between re-planning sessions. This
aspect is outside the scope of the current work and is left
to future research.

4.4 More than 2 robots

The presented approach is not limited to 2 robots and nat-
urally supports any number R of robots, with the objective
function specified in Eq. (5). In this sectionwe briefly specify
the changes in each of the algorithmic steps to accommodate
this general setting.

Section 4.1 Change in local information, should be cal-
culated with respect to all R robots, excluding current robot
r . One can go further and also incorporate within ΔJr

′
and

ΔJr
′′
the impact of changed multi-robot factors between any

two robots r ′ and r ′′. This direction is left to future research.
Section 4.2Nomodification is needed. Section 4.3Algorithm
2 remains the same, however the input to the algorithm is now
J (Pr , {Pr ′ }r ′∈{1,...,r−1,r+1,...,R}) instead of J (Pr ,Pr ′

).
Remark For more than two robots, the efficiency of

the proposed approach could vary for different orders of
announced updated robot paths. However, our claim is
that given an arbitrary such order, the proposed approach
improves efficiency compared to the state of the art announ-
ced path approach. We further analyze computational com-
plexity aspects in Sect. 6.

5 Prior correlation

In this section we revisit the case where at planning time k,
robot states are already correlated, e.g. due to observation of
a common scene, see illustration in Fig. 3. In other words
Eq. (19) holds:

P(Xk |Hk) 
= P(Xr
k |Hk)P(Xr ′

k |Hk). (22)

As will be seen, our approach is applicable also in such
a case with minor changes. Thus, the proposed approach
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Fig. 3 Illustration of the proposed concept with correlation between robot states at planning time k (referred also as prior correlation in the text)
due to mutual past landmark observations (compare with Fig. 1)

also supports more realistic, unrolling scenarios where robot
states become correlated at some point and the candidate
paths can go through unknown or previously mapped areas,
or a combination of both.

Prior correlation at planning time k can be expressed as

P(xrk , x
r ′
k |Hk) =

∫

¬xrk ,x
r ′
k

P(Xk |Hk)
.= N (×,Σ(xrk , x

r ′
k )),

(23)

where × denotes some entry that is not of interest in the
current context, and

Σ(xrk , x
r ′
k )

.=
[

Σxrk ,x
r
k

Σxrk ,x
r ′
k

Σxr
′

k ,xrk
Σxr

′
k ,xr

′
k

]
. (24)

The correlation (or cross-covariance) term Σxrk ,x
r ′
k

will be

non-zero because of Eq. (22). Conceptually, marginaliz-
ing past robot poses and observed landmarks, the pdf (23)

induces a multi-robot factor between the variables xrk and

xr
′

k , as depicted in Fig. 4.
Now, considering some candidate path Pr of robot r and

previous and new announced paths Pr ′
and Pr ′

new from
robot r ′, there are two possible cases (see Fig. 4): a there
are some multi-robot factors between Pr and Pr ′

, and/or
between Pr and Pr ′

new; or b there are no multi-robot factors
between Pr and Pr ′

and also no multi-robot factors between
Pr and Pr ′

new.
In the first case, prior correlation can be considered just

as an additional multi-robot factor that is treated similarly to
other multi-robot factors by our approach (see Sect. 4 and
Fig. 4a and b ).

The second case (no multi-robot factors but with prior
correlation) deserves further analysis. Figure 4c and d show
a diagram of such a scenario. Since there are no multi-robot
factors, the posterior beliefs from Eqs. (15) and (16) turn
into
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(a) (b)

(c) (d)

Fig. 4 Prior correlation with and without multi-robot factors: a and
c show graph G = (V, E) along with different candidate paths Pr

of robot r , and previous and new announced paths by robot r ′ (Pr ′

and Pr ′
new). a Scenario with prior correlation and multi-robot factors;

b Corresponding factor graph for paths Pr and Pr ′
; c Scenario with

prior correlation but without multi-robot factors; d Corresponding fac-
tor graph for pathsPr andPr ′

. Compare toFig. 2where prior correlation
is not considered

Fig. 5 Candidate paths shown on PRM. Robot starting positions are denoted by �
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Fig. 6 a Statistics for running time as a function of number of candidate paths for each robot, considering groups of 2 and 4 robots. bMulti-robot
factors (cyan color) and belief evolution (covariance ellipses) for one of the candidate paths from Fig. 5, considering an announced path Pr ′

(Color
figure online)

Fig. 7 Illustration of the proposed approach considering a group of two
robots (see Fig. 2). Vertices in Vinv for robot r given a a previous and b
new announced path of robot r ′ are shown as circles. Unchanged multi-

robot factors are shown in cyan. Changedmulti-robot factors associated
withPr ′

andPr ′
new are shown in yellow andmagenta, respectively. Only

impacted candidate paths of robot r are shown (Color figure online)

b[Pr ,Pr ′ ] = P(Xk |Hk)P(Pr |Ur (Pr ), Zr (Pr ))

P(Pr ′ |Ur ′
(Pr ′

), Zr ′
(Pr ′

))

b[Pr ,Pr ′
new] = P(Xk |Hk)P(Pr |Ur (Pr ), Zr (Pr ))

P(Pr ′
new|Ur ′

(Pr ′
new), Zr ′

(Pr ′
new)),

where the changed entries are underlined.
In the above case, if at planning time there was no prior

correlation (i.e. xrk and xr
′

k are not correlated), as considered
in Sect. 4.2, then Pr would not be impacted by the change
in the announced path from Pr ′

to Pr ′
new. In other words (see

also Eq. (18)):

b[Pr ] .=
∫

b[Pr ,Pr ′ ]dPr ′ ≡ b′[Pr ] .=
∫

b[Pr ,Pr ′
new]dPr ′

new,

(25)

and thus, Pr would not be marked. However, this does not
hold in general in the presence of prior correlation.

Interestingly, however, despite having prior correlation,
we observe that as long as the paths Pr , Pr ′

and Pr ′
new go

through unknown areas with no sources of absolute informa-
tion (such as GPS or known landmarks), any such candidate
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Table 1 Large-scale scenarios
description

Scenario Description Big covariance MR factors

Scenario1 All robots have small and identical
covariances at the beginning. MR
factors are used within planning

No Yes

Scenario2 All robots have small and identical
covariances at the beginning. MR
factors are not used within
planning

No No

Scenario3 Red and green robots have large
uncertainty covariances at the
beginning. All robots use MR
factors within planning

Yes Yes

path Pr of robot r is not impacted due to change in the
announced path (from Pr ′

to Pr ′
new) and thus should not be

marked, thereby saving calculations.
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Fig. 8 Scenario1. First planning session. States of different robots
are not correlated. a Candidate paths to the first goal of each robot;
b Chosen paths by the planning approach

We now illustrate this observation in a simple example,
and then discuss in Sect. 5.2 the more general case, where
the above conditions are not met, and discuss a slight modi-
fication to our approach.

5.1 Simple example

We consider a simple example where paths Pr ′
and Pr ′

new
only include a single look ahead step.Both paths pass through
unknown areas and thus we assume existence only of visual
odometry measurements zV O that provide relative informa-
tion between consecutive states. The posterior over xr

′
k and

xr
′

k+1, given zV O from either Pr ′
or Pr ′

new is

P(xr
′

k , xr
′

k+1|Hk, z
V O) ∝ P(xr

′
k |Hk)P(zV O |xr ′

k , xr
′

k+1),

(26)

where P(xr
′

k |Hk) = N (×,Σk) describes the posterior over

xr
′

k at planning time k, which could be obtained e.g. via

P(xr
′

k |Hk) = ∫
xrk
P(xrk , x

r ′
k |Hk).

We now show the posterior over xr
′

k is not influenced by
the new information (measurement zV O ), e.g. the covariance
does not change. Performing standard maximum a posteriori
(MAP) inference yields the following least-squares expres-
sion:

xr
′�

k , xr
′�

k+1 = argmin
xr

′
k ,xr

′
k+1

‖xr ′
k − x̂r

′
k ‖2Σk

+‖zV O − hV O(xr
′

k , xr
′

k+1)‖2ΣV O
, (27)

where hV O and ΣV O are the corresponding measurement
function andmeasurement noise covariance for visual odom-
etry (see e.g. Indelman et al. 2013). Linearizing and augment-
ing the Jacobians we get

Δxr
′�

k ,Δxr
′�

k+1 = argmin
Δxr

′
k ,Δxr

′
k+1

‖A
(

Δxr
′

k
Δxr

′
k+1

)
− b‖2, (28)
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Fig. 9 Scenario1. a Multi-robot SLAM given paths determined in
the first planning session. The tiny dots represent a simplified environ-
ment in terms of landmarks, some of which are being observed during

SLAM. b Corresponding position covariance evolution as a function
of time (represented discretely by pose index in simulation)

where b is an appropriate right hand side (rhs) vector and

A
.=

[
Σ

−1/2
k 0

Σ
−1/2
V O HVO −Σ

−1/2
V O

]
. (29)

The posterior covariance over xr
′

k and xr
′

k+1 is
(
AT A

)−1
, from

which we will now extract the entry that corresponds to xr
′

k
and show it is equal toΣk , despite the new information (mea-
surement zV O ).

First, the information matrix is calculated as

AT A =
[

Σ−1
k + HT

V OΣ−1
V O HVO HT

V OΣ−1
V O

Σ−1
V O F Σ−1

V O

]
=

[A B
C D

]
.

(30)

The covariance entry that corresponds to xr
′

k is the top left

block matrix of
(
AT A

)−1
. Using block matrix inversion this

entry can be calculated as

(
AT A

)−1 =
[(A − BD−1C)−1 ×

× ×

]
(31)

Substituting matrices A, B, C and D from Eq. (30) and per-
forming basic algebraic manipulation we get

(
A − BD−1C

)−1 =
(
Σ−1

k + FTΣ−1
w F

−FTΣ−1
w Σ1

ωΣ−1
w F

)−1 = Σk, (32)

as claimed. In other words, adding new relative informa-
tion does not impact the state xr

′
k . Hence, it does not matter

whether this new information is added due to path Pr ′
or

Pr ′
new - in both cases, the state xrk of robot r is not impacted

despite the existence of prior correlation between xrk and x
r ′
k .

This means, in turn, that all candidate paths Pr of robot r
that do not have multi-robot factors with Pr ′

and Pr ′
new, can

remain unmarked and should not be recalculated.
This concludes the simple example; we now proceed to

discuss a more general case, where the covariance over xr
′

k
does change as a result of incorporating new information
along a candidate path, and we outline a slight modification
of our algorithm to also handle this case.

5.2 A more general case

When the conditions mentioned in Sect. 5 are not met, e.g. at
least one of the paths Pr , Pr ′

or Pr ′
new go through previously

mapped areas, or when along Pr ′
or Pr ′

new there are a priori
known landmarks or available GPS signal, then Eq. (25) does
not necessarily hold. Intuitively, a substantial update along
Pr ′

(orPr ′
new), e.g. due to GPS measurement, will impact the

posterior over xr
′

k :

P(xr
′

k |Hk,U
r ′
(Pr ′

), Zr ′
(Pr ′

)) 
= P(xr
′

k |Hk). (33)

Due to prior correlation, that couples xrk with xr
′

k , the new
information will also pass, to some degree, onward to robot
r , impacting the posterior over xrk . If the information along

the previous and new announced paths Pr ′
and Pr ′

new is sub-
stantially different, then the impact on the posterior of xrk can
also be different, i.e.:
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P(xrk |Hk,U
r ′
(Pr ′

), Zr ′
(Pr ′

))

=
∫

xr
′

k

P(xrk , x
r ′
k |Hk,U

r ′
(Pr ′

), Zr ′
(Pr ′

)) (34)

.= N (×,Σk(U
r ′
(Pr ′

), Zr ′
(Pr ′

)) (35)

P(xrk |Hk,U
r ′
(Pr ′

new), Zr ′
(Pr ′

new))

=
∫

xr
′

k

P(xrk , x
r ′
k |Hk,U

r ′
(Pr ′

new), Zr ′
(Pr ′

new)) (36)

.= N (×,Σk(U
r ′
(Pr ′

new), Zr ′
(Pr ′

new)) (37)

and
P(xrk |Hk ,U

r ′
(Pr ′

), Zr ′
(Pr ′

)) 
= P(xrk |Hk ,U
r ′
(Pr ′

new), Zr ′
(Pr ′

new)).

(38)

Hence, the posteriors over candidate path Pr , b[Pr ] and
b′[Pr ] will change (Eq. (25) will not hold). It would thus
seem that Pr should be necessarily marked, to trigger belief
evolution recalculation.

However, it is often the case that while the posteriors (34)
and (36), and therefore b[Pr ] and b′[Pr ], are not identical,
in practice the difference is small and can be considered neg-
ligible given some threshold. In such a case, there is no need
in recalculating belief evolution along path Pr , and thus the
latter should not be marked.

Based on the above observation, we propose the follow-
ing slight modification to our approach. First, we evaluate
the posteriors (34) and (36) - this is a one-time calculation
for given previous and new announced paths Pr ′

and Pr ′
new,

which is valid to all candidate paths Pr of robot r . Then,
we decide if the two posteriors are sufficiently similar given
a user-defined threshold th: different information-theoretic
costs can be used for this purpose (e.g. KL-divergence and
relative entropy). A simple alternative, for example, is to
calculate the difference in the determinant (or trace) of the
posterior covariance in each case. More specifically, recall-
ing Eqs. (35) and (37), the candidate path Pr is marked only
if

det
(
Σk(U

r ′
(Pr ′

new), Zr ′
(Pr ′

new)
)

− det
(
Σk(U

r ′
(Pr ′

new), Zr ′
(Pr ′

new)
)
> th. (39)

In our current implementation we use the above criteria
with the threshold th set to 10. We note that retrieving the
marginal covariances involved in Eq. (39) can be done effi-
ciently from the (square root) information matrix (Golub and
Plemmons 1980). Another alternative might be to utilize our
recently developed variant of the matrix determinant lemma
(Kopitkov and Indelman 2016, 2017) tomake these one-time
calculations even more efficient.

6 Computational complexity aspects

Exhaustively evaluating all candidate path combinations
between different robots results in exponential computational
complexity in number of robots. Resorting to announced path
approach (Levine et al. 2013; Atanasov et al. 2015) reduces
this complexity to linear, at the cost of sub-optimality,
i.e. O(R · M · T ) · O(B f ull) where R is the number of
robots, M is the number of candidate paths of each robot,
and T denotes the number of iterations until convergence.
O(B f ull) represents the computational complexity of eval-
uating the objective function (5) given a candidate path and
announced path from other robots. In particular, O(B f ull)

involves inference over the joint belief for appropriate paths,
and retrieval of a covariance term as required by the objective
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Fig. 10 Scenario1. Second planning session. a Candidate paths
to the second goal of each robot; b Chosen paths by the planning
approach , including uncertainty propagation along each path that cor-
responds to multi-robot beliefs from appropriate look ahead steps. The
figure also shows in cyan observations of previously-mapped landmarks
and multi-robot indirect constraints. constraints (Color figure online)
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Fig. 11 Scenario1. a Multi-robot SLAM given paths determined
in the second planning session. The tiny dots represent a simplified
environment in terms of landmarks, some of which are being observed
during SLAM as shown in (c) . b Corresponding position covariance
evolution as a function of time (represented discretely by pose index in

simulation). c SLAM visualization of (a), including explicit represen-
tation of landmark observations. Uncertainty covariances were inflated
for visualization purposes. Note the mutual landmark observations by
different robots

function (5). While previous announced approaches, such as
Atanasov et al. (2015), perform calculations efficiently by
exploiting sparsity, no calculation re-use is done between
different candidate actions, and therefore O(B f ull) is the
complexity for evaluating each action.

In contrast, the proposed approach reduces O(B f ull),
starting from the second iteration, by identifying non-
impacted paths and re-using calculations for impacted paths.
We shall denote this reduced complexity by O(B).

Specifically, calculating the objective function for non-
impacted paths involves a one-time calculation of ΔJr

′
that

only depends on the length, in terms of number of nodes in
PRM,of the previous andnewannouncedpaths (seeSect. 4.1,
and line 11 in Algorithm 2). We thus denote this complexity
as O(L(P)). Given this one time calculation, the per-action
complexity is O(B) = O(1).

For the impacted paths, O(B) is a function of how many
factors the previous and new announced paths have in com-
mon, see Eq. (21). While one could reduce this complexity
even further by resorting to incremental inference (e.g. ISAM
Kaess et al. 2012), in this work we consider batch inference.
Under this setting, O(B) ≤ O(B f ull). In other words, the
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computational complexity of performing (batch) inference
while reusing calculations, and then retrieving the required
covariances is less or equal to the same operation without
re-using calculations, i.e. using Eq. (12).

To summarize, for m and M − m non-impacted and
impacted paths, respectively, the per-iteration computational
complexity for each robot, starting from the second iteration,
is reduced as follows:

O(MB f ull) → O(L(P)) + mO(1) + (1 − m)O(B),

(40)

with m ∈ [0, M].

7 Experiments

We demonstrate our approach in simulation considering sce-
nario involving two and four robots operating in unknown
and GPS-deprived environments that need to navigate to dif-
ferent goals in minimum time but also with highest accuracy.
In this basic evaluation we use a prototype implementation
in Matlab and GTSAM (Dellaert 2012) to investigate key
aspects of the proposed approach. The objective function (5)
is

J =
∑R

r=1

[
κrgoal t

r
goal + κrΣ tr

(
Σr

goal

)]
, (41)

where Σr
goal and trgoal represent, respectively, the covari-

ance upon reaching the goal and time of travel (or path
length) for robot r . The parameters κrgoal and κrΣ weight
the importance of each term (we use κrpath = 0.1 and
κruncert = 1). A probabilistic roadmap (PRM) (Kavraki et al.
1996) is used, to discretize the (partially unknown) envi-
ronment and generate candidate paths over the roadmap.
Unknown areas in the environment are treated in the cur-
rent implementation similarly, i.e. addressed as unoccupied.
Although outside the scope of this work, one can also update
the roadmap and the candidate paths once new informa-
tion becomes available (e.g. obstacle detection), such that
only valid, non-colliding paths remain (see e.g. our previous
research Indelman 2017).

We compare our approach to a standard approach that
re-evaluates from scratch belief evolution and objective func-
tion for each candidate path of each robot r given announced
paths from other robots (e.g. Levine et al. 2013; Indelman
2015a; Atanasov et al. 2015). This comparison has two mer-
its: (a) verify our approach correctly recovers the underlying
pdf while identifying and re-evaluating only the impacted
paths; and (b) has computational benefits. In all the sce-
narios reported in the sequel, typically 3–4 iterations were
required until convergence.
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Fig. 12 Scenario1. Third planning session. a Candidate paths to
the second goal for the red robot, and to the third goal of each other
robot; b Chosen paths by the planning approach , including uncertainty
propagation along eachpath that corresponds tomulti-robot beliefs from
appropriate look ahead steps. The figure also shows in cyan observations
of previously-mapped landmarks and multi-robot indirect constraints
(Color figure online)

7.1 Basic scenario

Figure 5 shows the considered scenarios for two and four
robots and the generated 25 candidate paths for each robot.
In this and all figures to follow, we use the notation � to
indicate the starting position of each robot.

Figure 6b shows, for the two-robot scenario, one of the
candidate paths of robot r , an announced path of robot r ′,
and the generated multi-robot factors (cyan color); see also
concept illustration in Fig. 1. The corresponding belief evo-
lution (covariance ellipses) is displayed in black. Robot r
determines its best path, and announces it to other robots,
which do the same; the process is repeated until convergence.
Similar to Indelman (2015a), we use a simple heuristic for the
function crMR(vi , v j ) (line 4 of Algorithm 1) to determine if
two poses admit a multi-robot constraint: these constraints,
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possibly involving different future time instances, are formu-
lated between any twoposeswith relative distance closer than
d = 300m. More advanced methods could be implemented,
e.g. considering also statistical knowledge.

The set of involved vertices in PRM, Vinv , depicted con-
ceptually in Fig. 2, is shown for robot r in Fig. 7 for the
two-robot scenario. The figure shows marked (impacted)
candidate paths of robot r , as a result of an update in
the announced path of robot r ′ from Pr ′

to Pr ′
new in one

of the iterations. To reduce clutter, only the impacted
(marked) candidate paths of robot r are shown. The corre-
sponding multi-robot factors are color-coded: cyan indicates
unchanged multi-robot factors (associated with both Pr ′

and
Pr ′
new), and yellow and magenta indicate multi-robot factors

that are associated, respectively, only with Pr ′
and Pr ′

new.
These factors are appropriately then included within the cor-
responding vertices in Vinv and are used for calculating belief
evolution, following Algorithms 1 and 2.

In the specific situation shown in Fig. 7, only some of the
candidate paths are impacted. Our approach correctly iden-
tifies, marks and consequently re-evaluates the belief over
only these impacted paths. This is in contrast to the Standard
approach that re-evaluates the belief from scratch over all
candidate paths and recalculates the objective function for
each. As a consequence, our approach exhibits substantially
reduced running time, compared to the Standard approach,
while producing identical results.

Figure 6a reports statistical timing results as a function of
number of candidate paths Ncand for each robot, considering
the two-robot and four-robot scenarios from Fig. 5. These
results were obtained by running each approach 50 times,
for each considered Ncand . In each such run, the scenario

remains the same (goals, starting locations), while the candi-
date paths randomly change. As seen, as Ncand increases the
ratio between running time of the two approaches increases,
in favor of our approach. In particular, for 50 candidates and
two robots, our approach is 2.5 times faster compared to the
standard approach (35 versus 85 seconds); A similar trend
can be seen also for four robots. In all cases, identical results
were obtained, compared with the Standard approach.

7.2 Larger Scenarios

We also examine our approach in a larger scenario,
Scenario1, where the world is represented by 200 (a pri-
ori unknown) landmarks, randomly scattered in a rectangular
area of 2000 × 2500 meters squared. In this scenario each
robot has to reach multiple pre-defined goals while operating
in unknown environments. Such a scenario involves multi-
ple planning sessions and multi-robot SLAM - reaching each
goal triggers a new planning session during which the robots
update theirs best paths. These paths are then translated into
commands, in our case, the change in heading angle. In our
simulative framework, the robots execute these commands
and acquire new bearing and range observations of land-
marks. Note that the latter can be either previously seen
landmarks, that correspond to alreadymapped areas, and new
landmarks. Considering perfect association of the landmark
observations, the robots then calculate a multi-robot SLAM
solution, i.e. the term P(Xk |Hk) in Eq. (11).

Two variations (Scenario2 and Scenario3) of this
scenario were also considered. These scenarios differ in the
initial uncertainty (prior) and whether multi-robot factors
are integrated within planning, as in the proposed approach,
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Fig. 13 Scenario1. aMulti-robot SLAMgiven paths determined in
the third planning session. The tiny dots represent a simplified environ-
ment in terms of landmarks, some of which are being observed during

SLAM. b Corresponding position covariance evolution as a function
of time (represented discretely by pose index in simulation)
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or not. Table 1 summarizes all the three considered large-
scale scenarios. We now proceed to in-depth performance
evaluation of Scenario1, and then in the sequel also
briefly summarize performance aspects for Scenario2 and
Scenario3.

Figures 8–15 show the results of each of the planning
and SLAM sessions, while the running time is reported in
Fig. 16. Goals are indicated in these figures using both num-
bers and colors, with the former denoting sequence (i.e. goal
1 should be visited before goal 2), and colors indicating dif-
ferent robots. As seen, four robots are considered (red, green,
blue andpurple), and each robot has a sequenceof three goals.
We intentionally scattered the goals in such a way that both
planning in unknown and previously-mapped environments
is examined.

We show, for each planning session, the candidate paths
for all robots and the best paths identified by the proposed
approach, see Figs. 8, 10, 12 and 14. Multi-robot factors
involving future poses of different robots (along the cho-
sen paths), and factors involving a future pose of robot
r ∈ [1, . . . , R] and a landmark, previously observed by robot
r or by any other robot in the group, are indicated in cyan
color. See, e.g. Fig. 10b for combination of both of these fac-
tors. As in the basic study (Sect. 7.1), covariances along the
chosen paths are also shown.

At the first planning session (Fig. 8), the robot start oper-
ating with only prior information on their initial poses (we
use 1e−6 [m], meaning robots know their exact start loca-
tions) - in other words, there is no correlation between the
robot states. Using the proposed approach, the best path for
each robot in the group is determined and executed until one
of the robots reaches a goal. In particular, the chosen paths
of the red and green robots admit a single multi-robot factor
within planning. Figure 9a shows the corresponding SLAM
solution, while Fig. 11c shows position covariance evolution
(from SLAM). While not explicitly shown, the states of red
and green robots, and of blue and purple robots become cor-
related towards the end of this phase due to mutual landmark
observations.

From this moment onward, thus, the states of these robots
are (somewhat) correlated and the discussion from Sect. 5
regarding prior correlation becomes relevant. In the second
planning session (Figs. 10 and 11), the goals are scattered
such that vast majority of the candidate paths still go through
unknown areas (see Fig. 10a). Looking at the determined
best paths (Fig. 10b), one can observe the planned multi-
robot collaboration between two robot pairs (red-green and
blue-purple),which is exhibited either in terms ofmulti-robot
factors or observations of landmarks previously observed by
another robot.

Despite prior correlation, however, our approach is capa-
ble of significantly reducing running time (by a factor of two,
see Fig. 16) while yielding the same results in terms of the

chosen paths. This goes in hand with the observation from
Sect. 5 that the belief along path of any robot r is not impacted
by change in the announced path of other robots if these paths
go through unknown areas and without sources of absolute
information, which is the case here (recall also the example
from Sect. 5.1).

In the third planning session, the red robot still has not
reached its second goal, while all the other robots already
consider their next goals. After the red robot reaches its sec-
ond goal, another planning session is triggered. We note that
in practice, only the red robot could actually generate new
candidate paths while the rest of the robots could remainwith
candidate paths from the previous planning session.

The third goal of each robot was intentionally chosen
to force the robots to re-visit previously mapped environ-
ments (see e.g. Figs. 14 and 15). As in the previous planning
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Fig. 14 Scenario1. Fourth planning session. a Candidate paths to
the third goal of each robot; b Chosen paths by the planning approach ,
including uncertainty propagation along each path that corresponds to
multi-robot beliefs from appropriate look ahead steps. The figure also
shows in cyan observations of previously-mapped landmarks andmulti-
robot indirect constraints (Color figure online)
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Fig. 15 Scenario1. aMulti-robot SLAMgiven paths determined in
the fourth planning session. The tiny dots represent a simplified environ-
ment in terms of landmarks, some of which are being observed during

SLAM. b Corresponding position covariance evolution as a function
of time (represented discretely by pose index in simulation)
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Fig. 16 Scenario1. Running time comparison between the proposed and the Standard approach. a Running time for each planning session.
b Ratio of running time of the proposed and standard approaches
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Fig. 17 Scenario2. aMulti-robot SLAM given paths determined in the third planning session. The tiny dots represent a simplified environment
in terms of landmarks, some of which are being observed during SLAM. b Corresponding position covariance evolution
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Fig. 18 Scenario3. aMulti-robot SLAMgiven paths determined in
the third planning session. The tiny dots represent a simplified environ-
ment in terms of landmarks, some of which are being observed during

SLAM. b Corresponding position covariance evolution as a function
of time (represented discretely by pose index in simulation)
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Fig. 19 Scenario3. Running time comparison between the proposed and the Standard approach. a Running time for each planning session.
b Ratio of running time of the proposed and standard approaches

sessions, the states of the two robot pairs red-green and
blue-purple are correlated. However, here, in addition the
robots consider impact of loop closure observations within
planning. These are often mutual multi-robot observations,
i.e. the same previously-observed landmarks are planned to
be observed bymultiple robots - see the cyan lines in Fig. 14b.
Given the corresponding best paths, which were determined
as such (mainly) due to these multi-robot constraints that
allow significant uncertainty reduction, a multi-robot SLAM
session is performed. As evident from Fig. 15, the robots
indeed reach the goals with small uncertainty, which roughly
corresponds to the prior uncertainty (due to loop closures).

Finally, Fig. 16 depicts running time for each of the plan-
ning sessions, comparing the proposed approach with the
Standard approach (that does not attempt to re-use calcula-

tions). It can be clearly seen that our approach is substantially
faster in all planning sessions. In particular, it is faster by a
factor of two and seven in the second and third planning
sessions, respectively. We emphasize this significant reduc-
tion in running time comes with no sacrifice in performance,
i.e. the same pathswere chosen by our and Standard approach
in all planning sessions.

We now summarize main aspects also for the other two
large scale scenarios, Scenario2 and Scenario3 (see
Table 1).

In Scenario2, all robots have (small) identical prior
covariances, as in Scenario1. However, in this scenario
the robots do not use MR factors within planning (multi-
robot SLAM is still performed). The obtained multi-robot
SLAM results given the calculated paths by this variation
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of the planning approach are shown in Fig. 17a, while Fig.
17b depicts the corresponding covariance evolution. Com-
paring the covariance in Fig. 15b, which was obtained with
MR factorswithin planning (the proposed approach), one can
clearly observe uncertainty reaches significantly higher val-
ues in Fig. 17b (without using MR factors within planning).

In Scenario3, red and green robots have larger initial
uncertainty covariances, while the other two robots (blue and
purple) have a small initial covariance as in Scenario1. In
both cases, all robots useMR factors within planning. Figure
18 shows the results and the covariance evolution, while Fig.
19 compares running time between the proposed approach
and the Standard approach. As seen, the large uncertainties
of the red and green robots are reduced due to mutual obser-
vations with the blue robot, observations that were planned
by the proposed approach. As earlier, running time of the
latter is significantly smaller than of the Standard approach,
while in both cases the same results are obtained.

8 Conclusions

We addressed the problem of decentralized belief space plan-
ning over high-dimensional state spaces while operating in
unknown environments. Since exact solution is computa-
tionally intractable, a common approach is to address this
problemwithin a sampling basedmotion planning paradigm,
where each robot repeatedly considers its own candidate
paths given the best paths (announced paths) transmitted
by other robots. The process is typically repeated numer-
ous times by each robot either until convergence or on a
constant basis, with each time involving belief propagation
along all candidate paths. In this paper we developed an
approach that identifies and efficiently re-evaluates the belief
over only those candidate paths that are impacted upon an
update in the announced path transmitted by another robot.
Determining the best path can therefore be performed with-
out re-evaluating the utility function for each candidate path
from scratch. Our approach is applicable when states of dif-
ferent robots are statistically independent at planning time,
but also in presence of correlation, e.g. due to previous
mutual landmark observations, which is expected in prac-
tical real world scenarios. We demonstrated in simulation
our approach is capable of correctly identifying and calcu-
lating belief evolution over impacted paths, and significantly
reduces computation time without any degradation in per-
formance. Specifically, in large scale simulated scenarios
computation time of planning phase was reduced by a factor
ranging between ×2 and ×8.

Future work will focus on performance evaluation in real-
world experiments as well as improving different aspects
of the proposed method. The latter include resorting to
incremental factorization approaches to make evaluation of

impacted paths even more computationally efficient, reduc-
ing further run-time by avoiding explicitly evaluating the
poster joint belief (Kopitkov and Indelman 2016, 2017), and
re-using calculations between (multi-robot) inference and
planning phases (Farhi and Indelman 2017).

While the method currently uses PRM to generate the
candidate actions, any-time planning algorithms (e.g. RRT)
may be more appropriate for online operation in real world
settings.We believe the computational advantages of the pro-
posed method would apply directly in that framework as
well, and leave further investigation of these aspects to future
research.
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