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Autonomous Systems

What is an autonomous system?

o System: can span from a small drone to a city and beyond…

o Autonomous: there are many sub-problems in making a 
system fully autonomous, e.g.:
o Learning

o Perception / Inference

o Decision making / Planning
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Informative Planning
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Problem setting & contributions

o What is the problem we aim to solve?
o Informative Planning
o (Under uncertainty)
o Belief-space is high-dimensional
o Beliefs are non-parametric

o What are the contributions?
I. Dimensionality reduction for evaluating uncertainty (involve-MI)

o Non-augmented & augmented

II. Avoiding the reconstruction of future belief’s surfaces (MI-SMC)
III. Applicability to belief trees
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Related Work

o Informative Planning with High-Dimensional Non-Parametric Beliefs:
o Kurniawati et al., RSS’04 (SARSOP)
o Silver and Veness, NIPS’10 (POMCP)
o Somani et al., NIPS’13 (DESPOT)
o Garg et al., RSS’19 (DESPOT-𝛼)

o Informative Planning with High-Dimensional Non-Parametric Beliefs:
o Sunberg and Kochenderfer, ICAPS’18 (PFT-DPW)
o Fischer and Tas, ICML’20 (IPFT)
o Platt et al., ISRR’11

o Informative Planning with High-Dimensional Non-Parametric Beliefs:
o Kopitkov and Indelman, IJRR’17
o Elimelech and Indelman, IJRR’21 (Accepted)

o Related to specific planning/decision making tasks:
o Chli, Ph.D. Thesis’09 (CLAM)
o Zhang et al., IJRR’20 (FSMI)
o Stachniss et al., RSS’05
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Beliefs: accounting for uncertainty

o State at time 𝑡:
𝑋𝑡 ∈ ℝ

𝐷

o 𝐷 is the dimension of the state

o In Full SLAM, for example, the state is composed of the 
robot’s trajectory and the map:

𝑋𝑡 = 𝑥1:𝑡, 𝑀
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Beliefs: accounting for uncertainty

o State at time 𝑡:  𝑋𝑡

o Probabilistic transition model:
o 𝑥𝑡 = 𝑔 𝑋𝑡−1, 𝑎𝑡−1, noise

o 𝑥𝑡 ∼ ℙ𝑇 𝑥𝑡 ∣ 𝑋𝑡−1, 𝑎𝑡−1
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Beliefs: accounting for uncertainty

o State at time 𝑡:  𝑋𝑡
o Probabilistic transition model: 𝑥𝑡 ∼ ℙ𝑇 𝑥𝑡 ∣ 𝑋𝑡−1, 𝑎𝑡−1

o Probabilistic observation model:
o 𝑍𝑡 = ℎ 𝑋𝑡, noise

o 𝑍𝑡 ∼ ℙ𝑍 𝑍𝑡 ∣ 𝑋𝑡
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Beliefs: accounting for uncertainty

o State at time 𝑡:  𝑋𝑡
o Probabilistic transition model: 𝑥𝑡 ∼ ℙ𝑇 𝑥𝑡 ∣ 𝑋𝑡−1, 𝒂𝒕−𝟏
o Probabilistic observation model: 𝑍𝑡 ∼ ℙ𝑂 𝒁𝒕 ∣ 𝑋𝑡

o History up to time 𝑡:
ℎ𝑡 = 𝒁𝟏:𝒕, 𝒂𝟎:𝒕−𝟏

o Belief at time 𝑡:
𝑏 𝑋𝑡 ≜ ℙ 𝑋𝑡 ∣ ℎ𝑡
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Beliefs: accounting for uncertainty

Beliefs can be represented as factor graphs

o Bi-partite graphs

o Variable nodes

o Factor nodes – probabilistic constraints

For example:
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𝒃 𝒙𝟎:𝟒, 𝒍𝟏:𝟓
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Planning

o Toy example:

o A drone (    ) needs to choose
where to go next

o What is the best action?
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Planning framework – POMDPs

o A Partially Observable Markov Decision Process (POMDP):
𝒳,𝒜,𝒵, 𝑏 𝑋0 , ℙ𝑇 , ℙ𝑍, 𝑟

o Rewards:

𝑟𝑡 = 𝑟 𝑋𝑡 , 𝑎𝑡 , 𝑟𝑇 = 𝑟 𝑋𝑇

o Objective function:

𝐽 𝑏 𝑋0 , 𝑎0:𝑇−1 = 𝔼𝒵1:𝑇 ෍
𝑡=1

𝑇−1

𝑟𝑡 + 𝑟𝑇

o Choosing the best action (sequence):
𝑎0:𝑇−1

∗ = argmax
𝑎0:𝑇−1∈𝒜

𝐽 𝑏 𝑋0 , 𝑎0:𝑇−1
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14Our approach also supports policy formulation

⇓
Belief at planning time = prior
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Planning framework – 𝝆-POMDPs

o For Informative Planning we use 𝝆-POMDP:
𝒳,𝒜,𝒵, 𝑏 𝑋0 , ℙ𝑇 , ℙ𝑍, 𝝆

o Info-theoretic rewards (allows measuring uncertainty):

𝜌𝑡 = 𝜌 𝒃 𝑿𝒕 , 𝑎𝑡 , 𝜌𝑇 = 𝜌 𝒃 𝑿𝒕

o Objective function:

𝐽 𝑏 𝑋0 , 𝑎0:𝑇−1 = 𝔼𝒵1:𝑇 ෍
𝑡=1

𝑇−1

𝝆𝒕 + 𝝆𝑻

o Choosing the best action (sequence):
𝑎0:𝑇−1

∗ = argmax
𝑎0:𝑇−1∈𝒜

𝐽 𝑏 𝑋0 , 𝑎0:𝑇−1
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POMDPs VS. 𝝆-POMDPs

POMDP:

o Reward: 𝑟 𝑋𝑡, 𝑎𝑡

𝜌-POMDP:

o Reward: 𝜌 𝒃 𝑿𝒕 , 𝑎𝑡
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Evaluation of the 
distribution's value

⇓
Higher complexity
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Solving a planning problem

The solution is comprised of many building blocks, e.g.:

o Optimization method (belief tree, gradient descent)

o Inference method (factor graph methods, particle filter)

o Reward evaluation
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Info-theoretic rewards

o (Negative) Differential entropy:
o Before getting an observation:

−ℋ 𝑋 ≜ න
𝒳

ℙ 𝑋 logℙ 𝑋 𝑑𝑋

o After getting an observation:

−ℋ 𝑋 ∣ 𝑍 = 𝑧 ≜ න
𝒳

ℙ 𝑋 ∣ 𝑍 = 𝑧 logℙ 𝑋 ∣ 𝑍 = 𝑧 𝑑𝑋

o Information Gain (IG):
𝐼𝐺 𝑋; 𝑍 = 𝑧 ≜ ℋ 𝑋 −ℋ 𝑋 ∣ 𝑍 = 𝑧
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High-dim.
Integration



/ 61

Augmentation

o In this work, we use a smoothing formulation
o Reminder: 𝑥𝑡 = 𝑔 𝑋𝑡−1, 𝑎𝑡−1, noise
o When transitioning the state, the new state is augmented to the previous:

𝑋𝑡 = 𝑋𝑡−1, 𝑥𝑡
o In filtering: a subset of 𝑋𝑡−1 might be marginalized out
o Necessary only in the context of planning

o We might encounter this, for example, in active SLAM

o In short, we will denote:

𝑋 = 𝑋0, 𝑋𝑛𝑒𝑤 = 𝑥1:𝑡, 𝑋
′ = 𝑋𝑡
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Info-theoretic rewards

With augmentation:

o (Negative) Differential entropy:

−ℋ 𝑋′ ∣ 𝑍 = 𝑧 ≜ න
𝒳′
𝑏 𝑋′ log 𝑏 𝑋′ 𝑑𝑋′

o Augmented IG:
𝐼𝐺𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝑧 ≜ ℋ 𝑋 −ℋ 𝑋,𝑋𝑛𝑒𝑤 ∣ 𝑍 = 𝑧

o Augmented IG is a generalization of IG
o For 𝑋𝑛𝑒𝑤 = ∅⇒ 𝐼𝐺𝑎𝑢𝑔 = 𝐼𝐺
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Measures also the uncertainty introduced by transitioning

*𝑿′ = {𝑿,𝑿𝒏𝒆𝒘}

*
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Info-theoretic rewards

o Which reward function should we use?

o For 𝜌-POMDPs:
o The prior entropy ℋ 𝑋 is equal for any action

o −ℋ 𝑋,𝑋𝑛𝑒𝑤 ∣ 𝑍 = 𝑧 ⇔ 𝐼𝐺𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝑧

o We will work with (augmented) IG
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= ℋ 𝑋 −ℋ 𝑋, 𝑋𝑛𝑒𝑤 ∣ 𝑍 = 𝑧
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Non-parametric beliefs

o Usually represented with a weighted particle set:

𝑋(𝑖), 𝑤(𝑖)
𝑖=1

𝑁

o In order to have sufficient resolution: 𝑁 ∝ 𝛼𝐷 (𝛼 > 1)
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Curse of Dimensionality
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Approach

Dimensionality reduction for reward evaluation



/ 61

Dimensionality reduction

o Getting back to the toy example:
o A drone (    ) needs to choose

between 2 actions

o The belief is high-dimensional – many 
landmarks (     )

o It might observe only a subset of the 
landmarks set (   )
o The involved variables

25
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o Can we solve the informative 
planning problem considering 
only the involved variables?
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The involved variables

o Represented with a factor graph:

a

Dimensionality reduction
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𝑿 = 𝒙𝟎:𝟒, 𝒍𝟏:𝟓
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The involved variables

o Represented with a factor graph:

a

Dimensionality reduction
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New 
Factors

𝑿𝒊𝒏 = 𝒙𝟒, 𝒍𝟑, 𝒍𝟓
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The involved variables

o Represented with a factor graph:

a

Dimensionality reduction
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Factors

𝑿𝒊𝒏 = 𝒙𝟒, 𝒍𝟒, 𝒍𝟓
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Dimensionality reduction

The involved variables

o Directly participate in generating future transitions and 
observations
o ℙ𝑇 𝑥𝑡 ∣ 𝑋𝑡−1, 𝑎𝑡−1 = ℙ𝑇 𝑥𝑡 ∣ 𝑿𝒕−𝟏

𝒕𝒓 , 𝑎𝑡−1
o ℙ𝑍 𝑍𝑡 ∣ 𝑋𝑡 = ℙ𝑍 𝑍𝑡 ∣ 𝑿𝒕

𝒐𝒃𝒔

o A subset of the entire prior state: 𝑋𝑖𝑛 ⊆ 𝑋

o Might be much lower-dimensional: 𝑋𝑖𝑛 ∈ ℝ𝑑, 𝑑 ≪ 𝐷
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𝑿𝒕−𝟏
𝒕𝒓 , 𝑿𝒕

𝒐𝒃𝒔 ∈ 𝑿𝒊𝒏
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Dimensionality reduction

The involved variables

o Given the involved variables ⟺ exploiting structure

o For Gaussian beliefs:
o IG over the involved variables is exactly IG over the entire state:

𝐼𝐺𝑎𝑢𝑔 𝑋⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝑧 = 𝐼𝐺𝑎𝑢𝑔 𝑋𝑖𝑛 ⊞𝑋𝑛𝑒𝑤; 𝑍 = 𝑧
o Kopitkov and Indelman IJRR’17 (marginalization)
o Elimelech and Indelman IJRR’21 (sparsification)

o For Non-Gaussian – not necessarily true

30

A
p

p
ro

ac
h



/ 61

Info-theoretic EXPECTED rewards

o Reminder - objective function:

𝐽 = 𝔼𝒵1:𝑇 ෍
𝑡=1

𝑇−1

𝜌𝑡 + 𝜌𝑇

o Can also be written as sum of expected rewards:

𝐽 =෍
𝑡=1

𝑇−1

𝔼𝒵1:𝑇 𝜌𝑡 +𝔼𝒵1:𝑇 𝜌𝑇

o Can we reduce the dimensionality for the evaluation of the expected
rewards?

Dimensionality reduction
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Dimensionality reduction

o The expected reward of IG – Mutual Information (MI):
𝐼 𝑋; 𝑍 ≜ 𝔼𝒵 𝐼𝐺 𝑋; 𝑍 = 𝑧

≜ ℋ 𝑋 −ℋ 𝑋 ∣ 𝑍

o MI over the involved variables is exactly MI over the entire 
state:

𝑰 𝑿; 𝒁 = 𝑰 𝑿𝒊𝒏; 𝒁

o For any distribution
o Integration is done over a smaller subset of state
o Underlying assumption: data association is assumed to be solved (at 

planning time)
32
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Dimensionality reduction

𝑰 𝑿; 𝒁 = 𝑰 𝑿𝒊𝒏; 𝒁

Information diagram
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ℋ 𝑋ℋ 𝑋¬𝑖𝑛ℋ 𝑋𝑖𝑛ℋ 𝑍

𝐼[𝑋; 𝑍]

ℋ 𝑋𝑖𝑛ℋ 𝑍

𝐼[𝑋𝑖𝑛; 𝑍]

ℋ 𝑋
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Dimensionality reduction

Augmentation

o Augmented mutual information:

𝐼𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 ≜ 𝔼𝒵 𝐼𝐺𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝑧

≜ ℋ 𝑋 −ℋ 𝑋,𝑋𝑛𝑒𝑤 ∣ 𝑍

o Dimensionality reduction for the augmented MI calculation:
𝑰𝒂𝒖𝒈 𝑿⊞𝑿𝒏𝒆𝒘; 𝒁 = 𝑰𝒂𝒖𝒈 𝑿𝒊𝒏 ⊞𝑿𝒏𝒆𝒘; 𝒁

o Relation to MI:
𝐼𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝐼 𝑋𝑖𝑛, 𝑋𝑛𝑒𝑤; 𝑍 −ℋ 𝑋𝑛𝑒𝑤 ∣ 𝑋𝑖𝑛
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Original MI Expected uncertainty 
from transition model
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Dimensionality reduction

35

A
p

p
ro

ac
h

𝑰𝒂𝒖𝒈 𝑿⊞𝑿𝒏𝒆𝒘; 𝒁 = 𝑰𝒂𝒖𝒈 𝑿𝒊𝒏 ⊞𝑿𝒏𝒆𝒘; 𝒁

= 𝑰 𝑿𝒊𝒏, 𝑿𝒏𝒆𝒘; 𝒁 −𝓗 𝑿𝒏𝒆𝒘 ∣ 𝑿𝒊𝒏
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Dimensionality reduction

involve-MI

o An algorithm which uses:
𝐼𝑎𝑢𝑔 𝑋 ⊞ 𝑋𝑛𝑒𝑤; 𝑍 = 𝐼𝑎𝑢𝑔 𝑋𝑖𝑛 ⊞𝑋𝑛𝑒𝑤; 𝑍

o Basic framework:
o Determine involved (with some heuristic)
o Marginalize out uninvolved variables
o Calculate MI over the involved variables

o It can be used for any task involving MI calculation between two multi-
dimensional variables

36

A
p

p
ro

ac
h



/ 61

Dimensionality reduction

involve-MI - extension

o Marginalization might entail heavy costs

o We can choose a bigger subset 𝑿𝒊𝒏+, which follows
𝑋𝑖𝑛 ⊆ 𝑿𝒊𝒏+ ⊆ 𝑋

o e.g. for one-time marginalization: 𝑿𝒊𝒏+ = 𝑎∈𝒜𝑋ڂ
𝑖𝑛(𝑎)

o A more general relation:
𝐼𝑎𝑢𝑔 𝑋 ⊞𝑋𝑛𝑒𝑤; 𝑍 = 𝐼𝑎𝑢𝑔 𝑿𝒊𝒏+⊞𝑋𝑛𝑒𝑤; 𝑍
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Dimensionality reduction

involve-MI - extension

o Represented with a factor graph:

a
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𝑿𝒊𝒏+
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Dimensionality reduction

o involve-MI breaks the relation between the dimensionality 𝐷
of the state to the accuracy and complexity

o These are now dependent on 𝑑 ≪ 𝐷

o Only 𝑛 ∝ 𝛼𝑑 samples are needed, and 𝑛 ≪ 𝑁
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Avoiding the reconstruction of future belief’s surfaces
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Avoiding beliefs reconstruction

o The common approach to calculate MI is to go through the entropy terms
o Reminder: 𝐼𝑎𝑢𝑔 𝑋⊞𝑋𝑛𝑒𝑤; 𝑍 ≜ ℋ 𝑋 −ℋ 𝑋,𝑋𝑛𝑒𝑤 ∣ 𝑍

o The entropy terms are calculated through the evaluation of the posterior 
beliefs
o Reminder: −ℋ 𝑋′ ∣ 𝑍 = 𝑧 ≜ ′𝒳׬ 𝑏 𝑋

′ log 𝑏 𝑋′ 𝑑𝑋′

o Some estimators wish to first reconstruct these beliefs, such as the re-
substitution estimator:

෡ℋ 𝑋′ ∣ 𝑍 = 𝑧 =෍

𝑖=1

𝑁

𝑤′ 𝑖 log ෠𝑏 𝑋′ 𝑖

o ෠𝑏 𝑋′ is an estimation of the belief with e.g. KDE

41
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Avoiding beliefs reconstruction

o We would like to avoid future beliefs reconstruction:
o It might add to the estimation error

o It might entail another level of complexity (hyperparameters)

o The MI can be calculated using known models:
𝐼𝑎𝑢𝑔 𝑿𝒊𝒏⊞𝑋𝑛𝑒𝑤; 𝑍 = −ℋ 𝑋𝑛𝑒𝑤 𝑿𝒊𝒏 −ℋ 𝑍 𝑿𝒊𝒏, 𝑋𝑛𝑒𝑤 +ℋ 𝑍

o ℋ 𝑍 is calculated using known models as well

o Integration over involved variables only

42
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Transition 
uncertainty

Observation
uncertainty

Normalization 
uncertainty

No need to reconstruct future beliefs surfaces
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Avoiding beliefs reconstruction

MI-SMC

o An estimator which uses the relation
𝐼𝑎𝑢𝑔 𝑋𝑖𝑛 ⊞𝑋𝑛𝑒𝑤; 𝑍 = −ℋ 𝑋𝑛𝑒𝑤 𝑋𝑖𝑛 −ℋ 𝑍 𝑋𝑖𝑛 , 𝑋𝑛𝑒𝑤 +ℋ 𝑍

o General idea:
o Propagate state samples in a Sequential Monte Carlo (SMC) manner
o Generate possible future observations
o Evaluate the models at these sampled instances

o Inherently we need samples of only the involved variables
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Related to involve-MI
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Avoiding beliefs reconstruction

MI-SMC

o Complexity: 𝑂 𝑛𝑚𝑑
o 𝑛 – number of state samples

o 𝑚 – number of observation samples

o 𝑑 – dimensionality of involved variables subset

o RS-KDE complexity (for example): 𝑂 𝑛2𝑚𝑑

o Anytime algorithm
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For using involve-MI

Otherwise: 𝑶 𝑵𝟐𝒎𝑫
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Applicability to belief trees
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Applicability to belief trees

o The solution to the planning problem is obtained by maximizing the objective 
function:

𝐽0
∗ = max

𝑎0:𝑡−1
𝔼𝒵1:𝑇 ෍

𝑡=1

𝑇−1

𝜌𝑡 + 𝜌𝑇

o Recursively – the Bellman optimality equation:
𝐽𝑡
∗ = max

𝑎𝑡
𝜌𝑡 + 𝔼𝒵𝑡+1 𝐽𝑡+1

∗

o Commonly solved with a belief tree:

o a
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Applicability to belief trees

o The Bellman optimality equation:
𝐽𝑡
∗ = max

𝑎𝑡
𝝆𝒕 + 𝔼𝒵𝑡+1 𝐽𝑡+1

∗

o Reminder: our approach deals with EXPECTED reward, 𝔼 𝝆𝒕

o Goal: our approach should cope with belief tree solvers
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Applicability to belief trees

How can involve-MI cope with belief trees?

o Reminder: 𝐼𝑎𝑢𝑔 𝑋 ⊞𝑋𝑛𝑒𝑤; 𝑍 = 𝐼𝑎𝑢𝑔 𝑋𝑖𝑛 ⊞𝑋𝑛𝑒𝑤; 𝑍

o We cannot state in general that 𝝆𝒕 and 𝝆𝒕
𝒊𝒏 are equal (without 

expectation)

o However: solving the optimization problem with any of these 
rewards is equivalent!
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Applicability to belief trees

How can involve-MI cope with belief trees?

o Answer: solve the planning problem with the involved reward:

o Using the formulation with 𝑿𝒊𝒏+⟹ maintaining a low-dimensional belief 
during the planning process
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Applicability to belief trees

How can MI-SMC cope with belief trees?

o Reminder:
o MI-SMC calculates MI directly (without going through IG)
o The MI was treated in general as sequential:

𝐼𝑎𝑢𝑔 𝑋𝑖𝑛 ⊞𝑋𝑛𝑒𝑤; 𝑍 = 𝐼𝑎𝑢𝑔 𝑋0
𝑖𝑛 ⊞𝑥1:𝑡; 𝑍1:𝑡

o Naively calculating the sequential MI
yields a degenerate belief tree:

a
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Applicability to belief trees

How can MI-SMC cope with belief trees?

o Denote:
o Sequential MI: 𝐼0

𝑡𝑖𝑛 ≜ 𝐼𝑎𝑢𝑔 𝑋0
𝑖𝑛 ⊞𝑥1:𝑡; 𝑍1:𝑡

o Consecutive MI: 𝐼𝑡−1
𝑡 𝑖𝑛

≜ 𝐼𝑎𝑢𝑔 𝑋𝑡−1
𝑖𝑛 ⊞𝑥𝑡; 𝑍𝑡

o Define a new reward over the consecutive MI values:

𝝆𝒕
′ = σ𝑖=1

𝑡+1 𝐼𝑖−1
𝑖 𝑖𝑛

o Solving the optimization problem with the new reward is 
equivalent to solving it with the original reward!
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Applicability to belief trees

How can MI-SMC cope with belief trees?

o Answer: solve the planning problem with the new reward:

o Using the formulation with 𝑿𝒊𝒏+⟹ maintaining a low-dimensional belief 
during the planning process
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Scenario

o 2D SLAM
o Created synthetically by a factor graph

o Gaussian distributions
o For analytical solution

o 3 calculation methods:
o Naïve KDE
o involve-MI-KDE
o involve-MI-SMC

o Note: KDEs were implemented with 
perfect inference
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Dimensionality ⟹ Choosing an action

o 4 different actions

o Dimension of 𝑋: 
∼ 150

o Dimension of 𝑋𝑖𝑛: 4

o Samples: 300

o Trials: 100

---------------------------------

o High variance for the 
naïve approach
o Impacts action to be 

chosen

o Low variance for 

o Bias of MI-SMC
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Dimensionality ⟹ Accuracy

o One action

o Increasing 
dimensionality of 𝑋

o Dimension of 𝑋𝑖𝑛: 4

o Samples: 300

o Trials: 100

-------------------------------

o Increasing variance 
for the naïve
approach

o Constant variance 
for 

o Smallest variance 
for MI-SMC
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Dimensionality ⟹ Timing

o One action

o Increasing 
dimensionality of 𝑋

o Dimension of 𝑋𝑖𝑛: 4

o Samples: 300

o Trials: 100

---------------------------------

o Increasing calculation 
time for the naïve
approach

o Constant calculation 
time for 

o Smallest calculation 
time for MI-SMC

57

R
es

u
lt

s



Summary



/ 61

Summary

o What is the problem we aimed to solve?
o Informative Planning
o (Under uncertainty)
o Belief-space is high-dimensional
o Beliefs are non-parametric

o What are the contributions?
I. Dimensionality reduction for evaluating uncertainty (involve-MI)

o Non-augmented & augmented

II. Avoiding the reconstruction of future belief’s surfaces (MI-SMC)
III. Applicability to belief trees
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Future research

o Focused case:
o Quantifying the uncertainty over a subset of the entire state 𝑋𝐹 ⊆ 𝑋

o Non-parametric inference impact:
o Huang et al., arXiv’21 (NF-iSAM)

o Relevant for efficient and accurate non-parametric marginalization
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Thank you!

Questions?


