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Introduction




Autonomous Systems

What is an autonomous system?

o System: can span from a small drone to a city and beyond...

o Autonomous: there are many sub-problems in making a
system fully autonomous, e.g.:
o Learning
e Perception / Inference




Informative Planning
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Problem setting & contributions

o What is the problem we aim to solve?
o Informative Planning
o (Under uncertainty)
o Belief-space is high-dimensional
o Beliefs are non-parametric

o What are the contributions?

|. Dimensionality reduction for evaluating uncertainty (involve-Ml)
o Non-augmented & augmented
Il. Avoiding the reconstruction of future belief’s surfaces (IMI-SMC)

lll. Applicability to belief trees




Related Work

o Iafermative Planning with High-Dimensional Non-Parametric Beliefs:
o Kurniawati et al., RSS’04 (SARSOP)
o Silver and Veness, NIPS’10 (POMCP)
o Somaniet al., NIPS’13 (DESPOT)
o Gargetal.,, RSS’19 (DESPOT-a)

o Informative Planning with High-Bimensienal Non-Parametric Beliefs:

o Sunberg and Kochenderfer, ICAPS’18 (PFT-DPW)
o Fischer and Tas, ICML 20 (IPFT)
o Plattetal., ISRR’11

o Informative Planning with High-Dimensional Nen-Parametric Beliefs:

o Kopitkov and Indelman, IJRR’17
o Elimelech and Indelman, IJRR’21 (Accepted)

o Related to specific planning/decision making tasks:
o Chli, Ph.D. Thesis’09 (CLAM)
o Zhang et al., IJRR’20 (FSMI)
o Stachniss et al., RSS’05




Problem Formulation
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Beliefs: accounting for uncertainty

o State attime t:
X, ERP

o D is the dimension of the state

o In Full SLAM, for example, the state is composed of the

robot’s trajectory and the map:
X¢ = {x1.¢, M}




Beliefs: accounting for uncertainty

o State attime t: X;

. 0 Probabilistic transition model:
o x¢ = g(X¢_1,a;_q,n0ise)
o x¢ ~ Pr(xe | Xe—q,a0-1)




Beliefs: accounting for uncertainty

o State attime t: X;
o Probabilistic transition model: x; ~ Pr(x; | X¢i—1, ar_1)

o Probabilistic observation model:
. o Z; = h(X,,noise)
o Zy ~ Pz (Z | X¢)




Beliefs: accounting for uncertainty

o State attime t: X;
o Probabilistic transition model: x; ~ Py (x; | Xe—q, a;_1)
o Probabilistic observation model: Z; ~ Py(Z,; | X;)

o History up to time t:
: ht — {Zl:ti aO:t—l}

o Belief at time t:
bl X.] £ P(X¢ | he)




Beliefs: accounting for uncertainty

Beliefs can be represented as factor graphs
o Bi-partite graphs

o Variable nodes

o Factor nodes — probabilistic constraints

For example:




Planning

o Toy example:

o A drone (+) needs to choose
where to go next

o What is the best action?




Planning framework — POMDPs

(X, A, Z;b[Xo]; Pr, Py, 7)

U
o Rewards: Belief at planning time = prior

e =1r(Xe,ae), 17 = 17(X7)

o A Partially Observable Markov Decision Process (POMDP):

o Objective function:

T—1
J(blXol, ap.r—1) = Ez, ., [Zt_lrt + TT]

o Choosing the best action (sequence):

aog.r—1 " = argmax J(b[Xol, ag.r-1)
Ag:T—1€A

Our approach also supports policy formulation




Planning framework — p-POMDPs

o For Informative Planning we use p-POMDP:
(X, A, Z,b|Xo], Pr, Pz, p)

o Info-theoretic rewards (allows measuring uncertainty):
pe = p(bl X, a), pr = p(b1X,])

o Objective function:

T—1
J(b[Xol, ap.r—1) = Eg, . [thlpt + PT]

o Choosing the best action (sequence):

aog.r—1 " = argmax J(b[Xol, ag.r—1)
Ag:T—1€A




POMDPs VS. p-POMDPs

POMDP: . p-POMDP: E
o Reward: r(X;, a;) O Reward:p(b[Xt],at)E

Reward over the belief
U
Evaluation of the
distribution's value

U
Higher complexity




Solving a planning problem

The solution is comprised of many building blocks, e.g.:
o Optimization method (belief tree, gradient descent)

o Inference method (factor graph methods, particle filter)

The focus of this work




Info-theoretic rewards

o (Negative) Differential entropy:
o Before getting an observation:

_3e[x] & fx P(X) log P(X) dX

o After getting an observation: r:tgeh;;::;n
_HIX | Z = 2] éf P(X | Z =2)logP(X | Z =z)dX
X :

. o Information Gain (IG): :
' IG[X;Z =z] 2 H[X] - H[X1Z=2z] :

The amount of information gained by this observation




Augmentation

o In this work, we use a smoothing formulation
o Reminder: x; = g(X;_4,a;_1, noise)
o When transitioning the state, the new state is augmented to the previous:
Xt — {Xt—l'xt}
o Infiltering: a subset of X;_; might be marginalized out
o Necessary only in the context of planning

o We might encounter this, for example, in active SLAM

o In short, we will denote:
X = XO' XneW = X1:t X, — Xt




Info-theoretic rewards

With augmentation:

o (Negative) Differential entropy:

—H[X' | Z=2] 2 J b[X']logh[X']dX" "

Eo Augmented IG: :
: IGaug[X Xonew; Z =z £ H[X] = H([X, X0 | Z = 2]

easures also the uncertainty introduced by transitionin
o Augmen eg F(?IS a genera |zaR/on ofol(éi y &

o ForXpew = 0= 1Gguq = 1G

*X' = {X' Xnew}



Info-theoretic rewards

o Which reward function should we use?

o For p-POMDPs:

o The prior entropy H [X] is equal for any action
0 —HIX, Xnew | Z = 2] © 1GaygX B Xpewi Z = 2

"
= H[X] — H[X, Xpe | Z = 2]

)

o We will work with (augmented) I1G




iefs

Non-parametric bel

o Usually represented with a weighted particle set:
{X(l)

Curse of Dimensionality
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Approach




Approach

Dimensionality reduction for reward evaluation




Dimensionality reduction

o Getting back to the toy example:

o Adrone (4) needs to choose
between 2 actions

o The belief is high-dimensional — many

landmarks (- ) LTI .
o It might observe only a subset of the ‘., °
landmarks set ( *) ! *, ° +. ;
o The involved variables \‘\ . . ______ It
\\\\\ 4.»/,/

o Can we solve the informative
planning problem considering
only the involved variables?




Dimensionality reduction

The involved variables

o Represented with a factor graph:

X ={x0.4, 1.5}




Dimensionality reduction

The involved variables

o Represented with a factor graph: e e




Dimensionality reduction

The involved variables

o Represented with a factor graph:
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Dimensionality reduction

The involved variables

o Directly participate in generating future transitions and
observations

o Pr(xe | Xe—1,ae-1) = Pr(x; | Xitl'at—l)

tr obs in
: X0 e X
o Py(Z: 1 X, ) =Py(Z, | X27°) Hi

o A subset of the entire prior state: X'* € X

o Might be much lower-dimensional: X** € R%, d <« D




Dimensionality reduction

The involved variables

o Given the involved variables < exploiting structure

o For Gaussian beliefs:
o |G over the involved variables is exactly IG over the entire state:
1GauglX B Xnew; Z = 2] = 1Gayg[X™ B Xnew:; Z = 7|
o Kopitkov and Indelman IJRR’17 (marginalization)
o Elimelech and Indelman 1JRR’21 (sparsification)

o For Non-Gaussian — not necessarily true




Dimensionality reduction

Info-theoretic EXPECTED rewards

o Reminder - objective function:

T-1
J=Ez, [zt_lpt + pT]

o Can also be written as sum of expected rewards:

J = 2:11 [IEZLT [Pt]] +Ez . lor]

Expected rewards

o Can we reduce the dimensionality for the evaluation of the expected
rewards?




Dimensionality reduction

o The expected reward of IG — Mutual Information (Ml):
I[X;Z] 2 Ez|IG[X; Z = 7]]

2 H[X]-H[X|Z]

:0 Ml over the involved variables is exactly Ml over the entire
: state: .

IX;Z] = 1|X™; Z|

e e " s  aTTTTTTTTTTTTUsT’T’T’T’T’T’T’T’T’T’T’T’T’T’T’’T!TsMmsTmTsmTnmMmMmMmTmT mMmmMmMmmT mTmT T T MM M T -

o For any distribution
o Integration is done over a smaller subset of state

o Underlying assumption: data association is assumed to be solved (at
planning time)




Dimensionality reduction

I[X; Z] = I|x™; Z|

Information diagram

I[X;Z] I[x"; 7]

Y

H([X]



Dimensionality reduction

Augmentation

o Augmented mutual information:

Iaug [X

Xnews Z] £ Eg [IGaug X

Xnew; Z = Z]]

= }[[X] _:H‘[X:Xnew | Z]

o Dimensionality reduction for the augmented MI calculation:
Iaug[X Xnew; Z] = Iaug[Xm

o Relation to Ml:

lauglX

Xnew; Z] = I[Xin:Xnew;Z] —

Original Ml

Xnew: Z]

H| Xpew | X

Expected uncertainty
from transition model




Dimensionality reduction

Ioug X H Xnew: Z] = Iaug [Xin Xnews Z]

= I|X"™, X pew; Z| —

H[Xpew]  H[X7] H[Xpew]  H[X™]




Dimensionality reduction

involve-M|

o An algorithm which uses: |
Iaug X HH Xnew: Z] = Iaug [Xm Xnew;Z]

o Basic framework:
o Determine involved (with some heuristic)
o Marginalize out uninvolved variables
o Calculate Ml over the involved variables

o It can be used for any task involving Ml calculation between two multi-
dimensional variables




Dimensionality reduction

involve-MI - extension

o Marginalization might entail heavy costs

o We can choose a bigger subset X"**, which follows
Xin - Xin+ c X

o e.g. for one-time marginalization: X" = U , X"™(@)

o A more general relation: _
Iaug X B Xnew: Z] = Iaug [Xm+ H X‘new;Z]




Dimensionality reduction

involve-MlI - extension

o Represented with a factor graph: e




Dimensionality reduction

o involve-MI breaks the relation between the dimensionality D
of the state to the accuracy and complexity

o These are now dependentond <K D

d

o Onlyn « a® samples are needed, andn <K N




Approach

Avoiding the reconstruction of future belief’s surfaces




Avoiding beliefs reconstruction

o The common approach to calculate Ml is to go through the entropy terms
o Reminder: I, 4[X B Xnew; Z] 2 H[X] — H[X, Xpew | Z]

O Ehﬁ efntropy terms are calculated through the evaluation of the posterior
eliefs

o Reminder: —H[X' | Z =z] & fx,b[X’] logh[X'] dX’

o Some estimators wish to first reconstruct these beliefs, such as the re-
substitution estimator:

P

o b[X'] is an estimation of the belief with e.g. KDE




Avoiding beliefs reconstruction

o We would like to avoid future beliefs reconstruction:
o It might add to the estimation error
o It might entail another level of complexity (hyperparameters)

: 0 The MI can be calculated using known models:
. Iaug[Xin 6 XneW;Z] — _}[[Xnew | Xin] _ }[[Z | Xin’Xnew] 4+ }[[Z]

Transition Observation Normalization
uncertainty uncertainty uncertainty

o H|[Z]is calculated using known models as well
o Integration over involved variables only

No need to reconstruct future beliefs surfaces




Avoiding beliefs reconstruction

MI-SMC

o An estimator which uses the relation
Iaug[Xin == Xnew;Z] — _}[[Xnew | Xin] _ }[[Z | Xin,XneW] 1+ f]‘[[Z]

o General idea:
o Propagate state samples in a Sequential Monte Carlo (SMC) manner
o Generate possible future observations
o_Evaluate the models at these sampled.instances

Related to involve-MI




Avoiding beliefs reconstruction

MI-SMC

o Complexity: O(nmd)
o n —number of state samples
o m—number of observation samples
o d — dimensionality of involved variables subset
®

For using involve-MI
Otherwise: O(N*mD)

o Anytime algorithm




Approach

Applicability to belief trees




Applicability to belief trees

O }'he solution to the planning problem is obtained by maximizing the objective
unction:

o Recursively —the Bellman optimality equation:
Ji = max{p; + Ez,., [Jis]]

Po

R OR
TR R

o Commonly solved with a belief tree:




Applicability to belief trees

o The Bellman optimality equation:
Ji = rrzgx{pt + Ez. ., []Z‘+1]}

Not trivial




Applicability to belief trees

How can involve-MlI cope with belief trees?

o Reminder: Ipy[X B Xnews Z1 = laug | X™ B Xnew; Z]
E[p,] IE[pf;"]

o We cannot state in general that p, and p}" are equal (without
expectation)

o However: solving the optimization problem with any of these
rewards is equivalent!




Applicability to belief trees

How can involve-MlI cope with belief trees?

o Answer: solve the planning problem with the involved reward:

o Using the formulation with X't — maintaining a low-dimensional belief
during the planning process




Applicability to belief trees

How can MI-SMIC cope with belief trees?

o Reminder:
o MI-SMC calculates Ml directly (without going through IG)

o Naively calculating the sequential Ml
vields a degenerate belief tree:




Applicability to belief trees

How can MI-SMIC cope with belief trees?

o Denote:
o Sequential MlI: I
o Consecutive MIl:  If_,

® Solvm% the optimization problem with the new reward is
equivalent to solving it with the original reward!




Applicability to belief trees

How can MI-SMIC cope with belief trees?

o Answer: solve the planning problem with the new reward:

, , 31'11
p2"=p1’+1;

o Using the formulation with X't — maintaining a low-dimensional belief
during the planning process




Results




Scenario

o 2D SLAM
o Created synthetically by a factor graph

o Gaussian distributions
o For analytical solution

o 3 calculation methods: e °
o Naive KDE + 1.
o involve-MI-KDE . . by
o involve-MI-SMC +

o Note: KDEs were implemented with
perfect inference




Dimensionality = Choosing an action

True optimal Chosen action

. . action for naive
o 4 different actions U y
o Dimension of X: I )y
~ 150 3.5 1
o Dimension of X'*: 4 \
o Samples: 300 T
o Trials: 100 s |9
S 2.5
_________________________________ :
b}
o High variance for the .
naive approach '
o Impacts action to be — Analytic L
chosen 15| ~I— Naive KDE @
. —— involve-MI-KDE
o Low variance for —— involve-MI-SMC
involve-MI v T T T

o Bias of MI-SMC Action #




Dimensionality = Accuracy

o One action

o Increasing — Naive KDE
dimensionality of X 0.6 — involve-MI-KDE
. — involve-MI-SMC
o Dimension of X': 4 s
o Samples: 300
H [
o Trials: 100 2 04
3
_______________________________ En.a
o Increasing variance
for the naive 0.2
approach
o Constant variance 0.14 KA A A
for involve-MI
o Smallest variance o 20 40 60 80 100 120 140 160

for MI'SMC State dimensionality




Dimensionality = Timing

o One action

o Increasing — Naive KDE
dimensionality of X —— involve-MI-KDE

. — involve-MI-SMC
o Dimension of X'*: 4
o Samples: 300
o Trials: 100

=]
o]
i

S

o Increasing calculation
time for the naive
approach

o Constant calculation
time for involve-MiI 0.

o Smallest calculation 0 20 4 6 8 100 120 140 160
time for MI-SMC State dimensionality

Average calculation time [sec]
Pad
o
i




Summary




Summary

o What is the problem we aimed to solve?
o Informative Planning
o (Under uncertainty)
o Belief-space is high-dimensional
o Beliefs are non-parametric

o What are the contributions?

|. Dimensionality reduction for evaluating uncertainty (involve-Ml)
o Non-augmented & augmented
Il. Avoiding the reconstruction of future belief’s surfaces (IMI-SMC)

lll. Applicability to belief trees




Future research

o Focused case:
o Quantifying the uncertainty over a subset of the entire state X € X

o Non-parametric inference impact:
o Huang et al., arXiv’'21 (NF-iSAM)
o Relevant for efficient and accurate non-parametric marginalization




Thank you!

Questions?




