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Hypotheses Disambiguation in Retrospective
Ohad Shelly and Vadim Indelman , Member, IEEE

Abstract—Robust perception is a key required capability in
robotics and AI when dealing with scenarios and environments
that exhibit some level of ambiguity and perceptual aliasing. In
this work we consider such a setting and contribute a framework
that enables to update probabilities of externally-defined data asso-
ciation hypotheses from some past time with new information that
has been accumulated until current time. In particular, we show
appropriately updating probabilities of past hypotheses within this
smoothing perspective potentially enables to disambiguate these
hypotheses even when there is no full disambiguation of the mixture
distribution at the current time. Further, we develop an incremental
algorithm that re-uses hypotheses’ weight calculations from previ-
ous steps, thereby reducing computational complexity. In addition
we show how our approach can be used to enhance current-time
hypotheses pruning, by discarding corresponding branches in the
hypotheses tree. We demonstrate our approach in simulation, con-
sidering an extremely aliased environment setting.

Index Terms—Localization, mapping, SLAM.

I. INTRODUCTION

AUTONOMOUS navigation in uncertain or unknown envi-
ronments is essential in numerous applications in robotics,

such as search and rescue, autonomous cars, indoor navigation,
and surveillance. Once the robot operations take place in an
unknown or uncertain environments, the navigation process also
involves environment mapping. The corresponding problem,
known as simultaneous localization and mapping (SLAM), has
been extensively investigated [1] in the last two decades by
the robotics and computer vision communities. Computation-
ally efficient online solvers that exploit the underlying inherent
sparsity of the problem and re-use of calculations are readily
available [2]–[4].

Traditional SLAM approaches include two parts, commonly
known as the “front-end” and the “back-end”. The latter main-
tains and updates a belief over robot past and current states
(e.g. poses) and mapped environment given the available data at
each time instant. This data can include any prior information,
if exists, performed actions and captured sensor observations
with the corresponding data association (DA). The latter is
determined by the front-end process, and can be considered
as associating observed scenes (e.g. in terms of landmarks)
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from current and previous time instances. A correct association
between an observed landmark and a received measurement is
crucial for accurate inference.

A key common assumption is that the data association has
been correctly determined by the front-end. Such an assumption,
however, is less valid in presence of perceptual aliasing and
ambiguity. An incorrect data association can lead to catastrophic
results in inference/SLAM, e.g. the robot might deduce it is
located in an incorrect similar-looking corridor, while assuming
it is perfectly solved within planning can lead to sub-optimal ac-
tions, that could lead to collision and unsafe behavior, in general.

Relaxing the data association assumption would lead to robust
perception approaches that are much required while operating
in the real world [1], which typically exhibit some level of
perceptual aliasing. Yet, this involves reasoning about DA as
part of inference, and results in a set of hypotheses, where each
one is built by a possible landmark association to the given
measurement in hand. Such a formulation corresponds to a
multi-modal belief, that can be represented, e.g. by a Gaussian
mixture model (GMM) [5], [6].

While robust inference approaches have been actively inves-
tigated in the last few years, till now existing approaches have
dealt with relaxing the DA assumption while examining the state
distribution at the current time instant. Moreover, except of [7],
typically calculations are done from scratch for each time step,
without calculation re-use.

In contrast, in this work we propose the notion of hypotheses
disambiguation in retrospective, i.e. after more information has
been collected. Our approach enables to re-evaluate the proba-
bility of externally-defined, key strategic hypotheses from a past
time, given the information obtained up to the current time, while
accounting for the data association hypotheses developed since
that past time. See illustrations in Fig. 1. For example, these
hypotheses could refer to an observation of an important but
ambiguous event (e.g. did we observe scene/object A or B in the
past?). We propose to utilize data that has been obtained since
that time to update the posterior probabilities of these key past
hypotheses. We envision such a capability and the general con-
cept to be of interest in various contexts in robotics and beyond.

A. Related Work

In the past years the research community has been actively
investigating robust inference approaches to be resilient to false
data association overlooked by front-end algorithms, i.e. by
relaxing the assumption that the DA provided by front-end
algorithms is outlier-free. An early work on DA is joint prob-
ability data association (JPDA) by Fortman et al. [8] which
considers all possible DA options in the context of multi-target
tracking. Sunderhauf and Protzel [9] introduced the so called
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Fig. 1. (a) In this work we aim to calculate the probability of externally-
defined hypothesis from some past time k − p given the information that has
been obtained until current time k. In other words, we would like to calcu-
late wi

k−p|k = P(γk−p = i | Hk). The diagram illustrates, for simplicity, a
branching factor of two, i.e. each hypothesis branches at the next time into
two child hypotheses (e.g. due to obtained measurement with an ambiguous
data association). For instance, we might be interested in calculating the weight
wi=1

k−p|k , which corresponds to probability of the hypothesis indicated by the

blue node, given data until time k. (b) A toy example illustration of the general
concept from (a), where p = 1, the prior belief is a Gaussian Mixture with two
components, and upon performing an action the robot makes an observationzk of
one of two identical triangular landmarks. Due to ambiguous data association,
the number of components in the posterior belief at time k is four. Posterior
and propagated beliefs are denoted by solid and dashed lines, respectively. In
this single step update scenario we wish to re-evaluate at time k the weight of
hypothesis i from time k − 1, i.e. wi

k−1|k , given the observation zk .

switchable constraints to detect faulty loop closures that lead
to erroneous data association in back-end optimization. Ol-
son and Agarwal [10] proposed a robust approach that uses
max-mixture models. Carlone et al. [11] addressed the problem
from a different perspective, looking for a maximal coherent set
among the given loop closure candidates. Indelman et al. [12]
proposed a multi-robot framework for SLAM with ambiguous
data association. Wong et al. [13] presented a Dirichlet Process
Mixture Model (DPMM) for data association in partially ob-
served environments. More recently, optimization approaches
robust to outliers have been investigated in works such as [14],
[15]. Finally, [16] and [7] develop incremental optimization
approaches considering ambiguous data association.

A recent work by Pathak et al. [5] targets perceptual aliasing
by explicitly reasoning about and probabilistically maintaining
ambiguous DA hypotheses, in both inference and belief space
planning. In contrast to many of the works mentioned above,
it explicitly calculates the probability of different hypotheses,
i.e. weights of GMM components, rather than assuming these
to be identical. Tchuiev et al. [6] extend the passive infer-
ence formulation from [5] by utilizing semantic information
and viewpoint-dependent classifier models, as well as weight
pruning to reduce the number of DA hypotheses.

B. Contributions

While the above-mentioned approaches address inference
considering the (GMM) belief from the current time, we
investigate a complimentary aspect, namely, utilizing current
information to re-evaluate the probability of past, externally-
specified, DA hypotheses. Specifically, building upon [5], [6]
we develop a smoothing approach for updating the weights of

past GMM beliefs, while properly accounting for the ambiguous
data association hypotheses that have been acquired since then.

Specifically, our main contributions in this letter are as fol-
lows: (a) we introduce the problem of hypotheses disambigua-
tion in retrospective, which, to the best of our knowledge has
not appeared thus far in literature; (b) we develop a probabilistic
approach to update the probability of selected past hypotheses
considering a smoothing formulation, while properly accounting
for the ambiguous data association hypotheses that have been
acquired since that time; (c) we derive a scheme for calculation
re-use within this approach to reduce computational time; (d)
we enhance hypotheses pruning also at current time, by lever-
aging the proposed concept of past hypotheses re-evaluation in
retrospective and drawing a connection between hypotheses at
current time and the corresponding ancestor hypotheses; and (e)
we evaluate our approach in simulation considering an extremely
aliased environment comprising identical landmarks. This letter
is accompanied with supplementary material [17].

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

Letxk represent the robot current pose at timek, and denote by
Xk = {x0, x1, . . ., xk} all robot poses until that time. We define
uk and zk to be, respectively, the robot’s action and captured
observation at time k. Further, we represent the environment by
landmarks L = {li}|L|

i=1, and assume they are static and known.
We note that in case landmarks are uncertain, as in a typical
SLAM setting, the observed landmarks up to time k would
become part of the stateXk, and the formulation of our approach
can be straightforwardly adjusted to such a setting. We should
note, however, that such an extension will necessitate coping
with the inherent curse of dimensionality, which is outside the
scope of this letter. Furthermore, the concept presented in this
work is applicable also to other environment representations,
such as grid-based localization, as long as one can formulate the
corresponding data association hypotheses (see e.g. [5]).

Further, denote data association (DA) at time k by a discrete
latent variable βk, i.e. measurement zk is associated to landmark
(or object/scene) lβk=p, where p ∈ [1, |L|]. It is important to note
that in the general case of obtaining a number of measurements
in a single step, βk would have been addressed to as a vector
built from the landmarks associated to each measurement, as
done in [6].

We use motion and observation models

xk = g(xk−1, uk−1) + w , zk = h(xk, lβk
) + v, (1)

where w ∼ N (μw,Σw) and v ∼ N (μv,Σv). The process and
measurement covariance matrices, Σw and Σv , as well as the
functions g(.) and h(.) are assumed to be known.

Let history Hk represent all the robot’s actions and received
measurements till time k along with the set of known land-
marks L, Hk = {z1:k, u0:k−1, L}. Similarly, denote by H−

k
history without the received measurement at time k, H−

k =
{z1:k−1, u0:k−1, L}. The probability density function (pdf), the
belief, at time k over Xk is then given by,

b[Xk] = P (Xk | Hk). (2)

Since we consider ambiguous scenarios, one cannot assume
data association to be given and perfect. Similar to [5], [6], the
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number of hypotheses at time k, without yet considering pruning
or merging, is given by all possible realizations of the sequence
β1:k = {β1, . . . , βk}. For convenience we denote γk � β1:k,
and consider at time k to have Mk hypotheses, i.e. γk ∈ [1,Mk].
Thus, the ith hypothesis, i.e. γk = i, corresponds to a specific
sequence of β1:k.

Hence, by marginalization of (2) over γk, and chain rule,

b[Xk] =

Mk∑
i=1

P (γk = i|Hk)︸ ︷︷ ︸wi
k · P (Xk | γk = i,Hk)︸ ︷︷ ︸ bi[Xk],

(3)

where bi[Xk] and wi
k represent, respectively, the conditional

belief and the weight of the ith hypothesis at time k, and∑Mk

i=1 w
i
k = 1. Finally, we denote the propagated belief as the

belief conditioned on H−
k instead of Hk, i.e. without consid-

ering the measurement at the current time, zk. Similarly, a
propagated belief for the ith hypothesis is defined as bi−[Xk] =
P (Xk | γk = i,H−

k ).

B. Problem Formulation

In this work we wish to re-evaluate, in retrospective, the
probability of externally-specified hypothesis (or hypotheses)
from some past time, i.e. given new information acquired since
then. Specifically, we wish to re-evaluate a hypothesis weight
for a given γk−p = i. Thus, our goal is to calculate

wi
k−p|k � P (γk−p = i | Hk), (4)

where 1 ≤ p < k. In other words, in this work we investigate
a smoothing perspective considering discrete random variables
(data association hypotheses), which are, however, coupled with
continuous random variables (e.g. robot poses).

Another variant of this problem is to re-evaluate the proba-
bility of some past association, βk−p instead of a sequence of
associations γk−p ≡ β1:k−p. We consider this setting in Sec-
tion III-D.

We believe both problem variants can be of interest in different
contexts: For example, considering specific realizations of γk−p

may be useful in terms of localization, as each such realization
corresponds to a posterior over Xk, see (3); This is in contrast to
considering specific data association realizations from past time
k − p, i.e. βk−p, which can be of interest on its own.

To shorten notations in the sequel, we denote m � k − p and
re-write (4) as wi

m|k � P (γm = i | Hk).

III. APPROACH

A. Derivation of a General Formulation for wi
m|k

In this section we develop a general formulation for calculat-
ing (4). First, we perform Bayes rule considering the most recent
measurement, zk:

P (γm = i | Hk) =
P (zk | γm = i,H−

k )

P (zk | H−
k )

· P (γm = i | Hk−1)︸ ︷︷ ︸wi
m|k−1,

where we use, here and in the sequel, the fact
P (γm = i | Hk−1, uk−1) ≡ P (γm = i | Hk−1), i.e. the weights
of a GMM are not impacted by the motion model.

Considering wi
m|k−1, we now repeat the above process and

perform Bayes rule once again, which yields,

P (γm = i | Hk) =
P (zk | γm = i,H−

k )

P (zk | H−
k )

·

· P (zk−1 | γm = i,H−
k−1)

P (zk−1 | H−
k−1)

· P (γm = i | Hk−2)︸ ︷︷ ︸wi
m|k−2 (5)

It is not difficult to see that performing Bayes rule sequentially
in a similar fashion yields the following formulation:

wi
m|k =

[ ∏p−1
j=0 P (zk−j | γm = i,H−

k−j)∏p−1
j=0 P (zk−j | H−

k−j)︸ ︷︷ ︸
Ψm|k

]
· wi

m|m

(6)

Here, wi
m|m is the weight of the i-th GMM component at

time m, while Ψm|k is the update factor that is based on the data
obtained in the period [m+ 1, k]. Therefore, we need now to
calculate this term in order to get wi

m|k.
Since the denominator in (6) is not conditioned on γm = i,

its explicit calculation can be avoided. Instead, we first calculate
the numerator,

w̃i
m|k �

p−1∏
j=0

P (zk−j | γm = i,H−
k−j) · wi

m|m, (7)

for all i ∈ [1,Mm], i.e. all hypotheses from time m, and then
normalize as

wi
m|k = w̃i

m|k/
Mm∑
q=1

w̃q
m|k. (8)

Calculating (6) requires first computing the terms
P (zk−j | γm = i,H−

k−j) for all j ∈ [0, p− 1]. In the next
section we develop an approach to do so. Yet, naïvely, one
would calculate each of the above terms from scratch. In
contrast, in Section III-C, we derive an incremental version,
which re-uses calculations from previous steps.

B. Single Step Update, p = 1

We start with the simplest case of a single step update, i.e. p =
1 and m = k − 1, as illustrated in fig 1(b). In this case, the
un-normalized weight from (7) is given by

w̃i
m|k = P (zk|γm = i,H−

k ) · wi
m|m. (9)

To calculate P (zk|γm = i,H−
k ) we marginalize over robot

pose at time k and all the possible landmark associations βk for
the measurement zk. Applying chain rule yields

P (zk|γm = i,H−
k )=

|L|∑
g=1

∫
xk

P (zk|βk = g, xk, γm = i,H−
k )·

·P (βk = g | xk, lg) · P (xk | γm = i,H−
k )︸ ︷︷ ︸

bi−m [xk]

dxk,

(10)

where P (βk = g|xk, γm = i,H−
k ) ≡ P (βk = g | xk, lg) indi-

cates the probability of observing the landmark lg from robot
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pose xk. Here, and throughout the letter, we use �i
m to indicate

conditioning on γm = i.
We reiterate that, while in this letter we assume landmarks are

known, in case landmarks are uncertain and part of the belief, we
would need to also marginalize over them in (10). Furthermore,
for simplicity in this work we model P (βk = g | xk, lg) as a
uniform distribution with some finite support Ωlg (i.e. only for
certain viewpoints, a given landmark is within sensor’s field of
view), and re-write (10) as

P (zk|γm = i,H−
k )

=

|L|∑
g=1

1

|Ωlg |
∫
xk∈Ωlg

P (zk | lg, xk)b
i−
m [xk]dxk. (11)

Since an analytical solution is not feasible, we resort to a
sampling based approach and approximate (11) considering a
set of {xn,i

k }Sn=1 sampled values from bi−[xk], with S denoting
the number of samples:

P (zk|γm = i,H−
k )≈

1

S

S∑
n=1

|L|∑
g=1

1

|Ωlg |
P (zk|lg, xn,i

k )1Ωlg
(xn,i

k ),

(12)
where 1Ωlg

(x) is an indicator function, indicating if landmark
lg is within sensor’s field of view from pose x.

Finally we calculate wi
k−1|k via normalization as in (8).

C. Multiple Steps Incremental Calculation of wi
m|m+p

In the previous section we addressed the calculation of a single
step update considering p = 1. In this section we consider the
general case of 1 ≤ p < k, as illustrated in Fig. 1(a), and develop
a formulation to calculate the terms P (zk−j | γm = i,H−

k−j)

from (6) for all j ∈ [0, p− 1]. While a naïve approach would
calculate each of these terms from scratch, we develop an
incremental version that allows to re-use calculations between
different values of j.

We start by considering j = p− 1 and j = p− 2, and then
discuss calculations for a general j ∈ [0, p− 1].

1) j = p− 1: The corresponding term in (6) for j = p− 1
is P (zm+1|γm = i,H−

m+1). One can observe this is identical to
the single step update case considered in Section III-B, yet here
we consider a single step fromm = k − p. Therefore, following
a similar process we generate a set of samples {xn,i

m+1}Sn=1 from
the propagated belief bi−m [xm+1],

bi−m [xm+1] � P (xm+1 | H−
m+1, γm = i), (13)

and approximate P (zm+1|γm = i,H−
m+1) as

1

S

S∑
n=1

|L|∑
g=1

1

|Ωlg |
P (zm+1|lg, xn,i−

m+1)1Ωlg
(xn,i

m+1), (14)

which corresponds to (12). Note that for this first step, i.e. j =
p− 1, bi−m [xm+1] is a Gaussian distribution.

To shorten notations in the following sections, we denote

f(x, z) � 1

S

|L|∑
g=1

1

|Ωlg |
P (z|lg, x)1Ωlg

(x). (15)

Intuitively, f(x, z) represents the probability of obtaining a
given measurement z from robot pose x considering all possible
data associations to the |L| landmarks.

Finally, substituting (15) into (14) yields

P (zm+1 | γm = i,H−
m+1) ≈

S∑
n=1

f(xn,i
m+1, zm+1). (16)

2) j = p− 2: We now consider calculation of the term
P (zm+2 | γm = i,H−

m+2) from (6).
Similarly to (11), performing marginalization and chain rule,

yields
|L|∑
g=1

1

|Ωlg |
∫
xm+2∈Ωlg

P (zm+2 | lg, xm+2)b
i−
m [xm+2]dxm+2,

(17)

where, as in (13), bi−m [xm+2] � P (xm+2 | H−
m+2, γm = i).

Performing chain and Bayes rules, marginalizing over xm+1

and data association hypotheses for zm+1 yields

bi−m [xm+2] =
1

ηim+1

|L|∑
g=1

1

|Ωlg |
∫
xm+1∈Ωlg

P (xm+2 | xm+1, um+1)

·P (zm+1 | lg, xm+1)b
i−
m [xm+1]dxm+1,

(18)

where ηim+1 � P (zm+1 | H−
m+2, γm = i).

In practice, we approximate bi−m [xm+2] and ηim+1 via sam-
pling, considering S samples from bi−m [xm+1]:

bi−m [xm+2] ≈
S∑

n=1

ζn,im+1P (xm+2 | xn,i
m+1, um+1), (19)

and

ζn,im+1 � f(xn,i
m+1, zm+1)/η̂

i
m+1, (20)

with η̂im+1 �
∑S

n=1 f(x
n,i
m+1, zm+1), such that

∑S
n=1 ζ

n,i
m+1 =

1. Note, the set of samples {xn,i
m+1} from bi−m [xm+1] was already

obtained from section III-C1.
Further, observe that bi−m [xm+2] from (19) corresponds to a

mixture belief over xm+2, where each of the samples xn,i
m+1

from the previous step is propagated via the transition model
(1). Thus, in context of Sequential Monte Carlo (SMC), this
corresponds to the bootstrap particle filter [18], i.e. where the
proposal distribution is chosen to be transition model. Yet, here
we also account for ambiguous data association aspects. Thus,
as we consider in this work Gaussian models (1), bi−m [xm+2] is
a GMM belief with S components, where ζn,im+1 is the weight of
the nth component.

Note that in (19) and (20) we have f(xn,i
m+1, zm+1). Instead

of calculating it from scratch considering samples xn,i
m+1 from

the propagated belief bi−m [xm+1], our key observation is that it is
already available from the calculations for j = p− 1, see (16).

As before, we approximate the integral in (17) by generating
a set {xn,i

m+2}Sn=1 of S samples from the GMM bi−m [xm+2] from
(19), thus approximating P (zm+2 | γm = i,H−

m+2) as

1

S

|L|∑
g=1

1

|Ωlg |
S∑

n=1

P (zm+2 | lg, xn,i
m+2)1Ωlg

(xn,,i
m+2), (21)
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which, recalling the definition (15), can be finally written as

P (zm+2 | γm = i,H−
m+2)≈

S∑
n=1

f(xn,i
m+2, zk+2)� η̂im+2.

(22)

3) General Case: We are now in a position to calculate
P (zm+j | γm = i,H−

m+j) for the general case. This is stated
in the following Theorem.

Theorem 1: The expression for P (zm+j | γm = i,H−
m+j)

from (6) for any j ∈ [2, p− 1] is given by,

P (zm+j | γm = i,H−
m+j) ≈

S∑
n=1

f(xn,i
m+j , zm+j) � η̂im+j .

(23)

A detailed proof via induction is given in the Supplemen-
tary [17]. Informally, as in (17), P (zm+j | γm = i,H−

m+j) can
be written as

|L|∑
g=1

1

|Ωlg |
∫
xm+j∈Ωlg

P (zm+j | lg, xm+j)b
i−
m [xm+j ]dxm+j ,

(24)

where bi−m [xm+j ] is a GMM of S components,

bi−m [xm+j ]
.
=

S∑
n=1

ζn,im+j−1P (xm+j | xn,i
m+j−1, um+j−1), (25)

where, similar to (20),

ζn,im+j−1 � f(xn,i
m+j−1, zm+j−1)/η̂

i
m+j−1, (26)

with η̂im+j−1 �
∑S

n=1 f(x
n,i
m+j−1, zm+j−1).

The next step is to approximate the integral in (24) via
sampling from the GMM bi−[xm+j ], which yields (23).

Similarly to Section III-C2, calculation re-use can be per-
formed also for the general case considered here. To see that, note
the set of samples {xn,i

m+j−1}Sn=1, as well as the corresponding

values f(xn,i
m+j−1, zm+j−1) and ηim+j−1 are already available

to us from calculations performed for the previous step, i.e. for
j − 1, and thus can be conveniently re-used. In contrast, in the
naive approach, one would have to re-sample the entire chain
from scratch, i.e. starting with m+ 1 and until m+ j − 1.

4) Final Calculation of Ψm|k: Based on (7), the the un-
normalized weight w̃i

m|k is

w̃i
m|k ≈

p−1∏
j=0

η̂ik−j · wi
m|m. (27)

As mentioned in Section III-A, calculating the normalized
weightwi

m|k can be done via (8), which requires to first calculate
w̃q

m|k for all hypotheses from time instant m, i.e. ∀q ∈ [1,Mm].

D. Re-Evaluation in Retrospective of a Specific Data
Association Hypothesis

In a similar manner, we can also consider a specific data
association hypothesis βk−p = c from some past time k − p,
with c ∈ [1, |L|], rather than a sequence of data association hy-
potheses γk−p ≡ β1:k−p = i as done above. Note i ∈ [1,Mk−p];
without pruning Mk−p = |L|k−p.

Indeed, by marginalizing over γk−p−1 ≡ β1:k−p−1 we get

P (βk−p = c |Hk) =

Mk−p−1∑
l=0

P (βk−p = c, β1:k−p−1 = l |Hk).

(28)
However, recall γk−p ≡ β1:k−p, which can assume Mk−p =

Mk−p−1 · |L| values. Further, the probability for the ith realiza-
tion of γk−p conditioned on Hk, i.e. wi

k−p|k with i ∈ [1,Mk−p],
is given by (6).

We now observe the index i designates a combination of some
specific realization l of γk−p−1 ≡ β1:k−p−1 and some specific
realization r of βk−p. We shall denote these specific realizations
for a given i as i.l and i.r, respectively (standing for left and
right).

Recall that wi
k−p is available for any i ∈ [1,Mk−p] from (6),

see Section III-C4. Based on (28), we get

P (βk−p = c |Hk) =

Mk−p∑
i=1

wi
k−p|k1{c}(i.r), (29)

i.e. we sum only those realizations of γk−p that consider the cth
data association from time k − p.

E. Enhanced Pruning of Hypotheses At Current Time

Another immediate implication of our framework is the ability
to enhance hypotheses pruning at current time. In detail, consider
we re-evaluated in retrospective hypotheses i ∈ [1,Mm] from
past timem = k − p, i.e.wi

k−p|k, as discussed in Section III-C4.
Then, considering some user-specified pruning threshold th, for
anywi

k−p|k < thwe can prune also all its descendant hypotheses
at time k.

More formally, considering the jth hypothesis at time k with
j ∈ [1,Mk], i.e. γk ≡ β1:k = j, we again observe that index j
designates a combination of some specific realization of β1:k−p

and some specific realization of βk−p+1:k. In a similar fashion
to Section III-D, we shall denote these realizations for a given
j as j.l and j.r, respectively (standing for left and right). Then,
for any wi

k−p|k < th we can prune all hypotheses j ∈ [1,Mk]

from current time k that satisfy j.l = i. In other words, each
hypothesis j ∈ [1,Mk] is pruned if its ancestor hypothesis from
time k − p, with index j.l is below the pruning threshold th. The
updated hypotheses’ weights are therefore

w̃j
k

.
= wj

k · 1{j.l}(w
j.l
k−p|k > th). (30)

In order to retrieve a valid GMM the weights should be re-
normalized to sum to one, i.e.wj

k
.
= w̃j

k/
∑Mk

j=1 w̃
j
k, and the zero-

weight (pruned) hypotheses discarded.
We note that, in general, a hypothesis j pruned this way may

be above a pruning threshold, i.e. wj
k > th, and thus would

not be pruned without re-evaluating its ancestor hypothesis in
retrospective, as suggested herein. We demonstrate this aspect
in the results section.

F. Computational Complexity Aspects and Algorithm

Calculating wi
m|k involves computation of the unweighted

weights w̃q
m|k, using (27), for each of the Mm hypotheses from

time instant m, and then normalization via (8). For each given
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Algorithm 1: wi
m|k Calculation.

1: Inputs:
2: Hk: History at time k
3: b[Xm]: GMM belief at time m = k − p
4: i: hypothesis index from time m = k − p
5: for q=1:Mm do
6: Calculate w̃q

m|k using Algorithm 2.
7: end for
8: � Normalization via (8)
9: wi

m|k = w̃i
m|k/

∑Mm

q=1 w̃
q
m|k

10: return wi
m|k

q ∈ [1,Mm], following (27), this involves calculating η̂qk−j for
all j ∈ [0, p− 1], i.e. from η̂qk−p+1 ≡ η̂qm+1 until η̂qk ≡ η̂qm+p.

In the naïve approach, such calculations are performed from
scratch for each η̂qk−j . In other words, as described in previous
sections, this involves sequentially sampling the beliefs from
time instances k until k − j, for each j ∈ [0, p− 1]. Assuming
the same number of samples is taken at each time, for a given j,
with j ∈ [0, p− 1], this operation involves generatingS samples
j times. Hence, evaluating (27) is

S︸︷︷︸
j=p−1

+ 2 · S︸︷︷︸
j=p−2

+. . .+p · S︸︷︷︸
j=0

=
(1 + p) · p

2
· S ∈ O(p2S).

As this evaluation has to be performed Mm times, the overall
complexity of the naïve approach is O(p2SMm).

In contrast, our approach uses calculations in a recursive form,
therefore we only need N samples for every calculation of ηqk−j .
Thus, evaluating (27) is

S︸︷︷︸
j=p−1

+ S︸︷︷︸
j=p−2

+ . . .+ S︸︷︷︸
j=0

= p · S ∈ O(p · S),
and the corresponding overall complexity of our approach is
O(pSMm), i.e. one order of magnitude smaller in p than the
naïve approach.

Algs. 1 and 2 summarize our approach from Section III-C.

IV. EXPERIMENTS

In this section we examine our proposed algorithm in simula-
tion considering an extremely perceptually aliased environment
comprising |L| = 8 identical spatially scattered static known
landmarks. Our simulations are based on the GTSAM library [3]
with a Matlab wrapper.

The robot acquires relative pose observations to landmarks
during its motion, yet the data association is not assumed to be
externally provided, i.e. it is unknown which landmark gener-
ated each observation. Two scenarios of 5 and 10 time steps
and differently scattered landmarks are considered, as shown
in Figs. 2(a) and 3(a). In both cases, the robot starts with a
uni-modal Gaussian prior belief on its initial location, b[X0]
and performs a pre-defined trajectory.

Algorithm 2: w̃i
m|k Calculation With Computation Re-use.

1: Inputs:
2: Hk: History at time k
3: b[Xm]: GMM belief at time m = k − p
4: q: hypothesis index from time m = k − p
5: for j = 1 : p do
6: if j = 1 then
7: Sample set {xn,q

m+1}Sn=1 from bq−m [xm+1], see
Section III-C1

8: else
9: Reuse {ζn,qm+j−1}Sn=1 to form a GMM belief

bq−m [xm+j ] from (25)
10: Sample set {xn,q

m+j}Sn=1 from bq−m [xm+j ]
11: end if
12: Calculate η̂qm+j using samples {xn,q

m+j}Sn=1 as shown
in (23).

13: Calculate weights {ζn,qm+j}Sn=1 via (26) for sample
set {xn,q

m+j}Sn=1

14: end for
15: Calculate and return w̃q

m|k via (27):

We use a diagonal process covariance matrix Σw with stan-
dard deviation (std) of position of 0.5 meters and std of orien-
tation of 10−3 radians. The measurement covariance matrix Σv

is also diagonal with position std of 0.48 meters and orientation
std of 0.87 · 10−2 radians.

Figs. 2 and 3 show the results for both scenarios. At each time
step k, following [5], [6], we update the belief from the previous
time with the performed action and acquired observation with
unknown data association, producing b[Xk] from (3). For each
case, we show in Figs. 2(b)–(d) and 3(b)–(d) the corresponding
posterior GMM belief, shown in blue at specific time instances
of interest.

Theoretically, the number of GMM components, grows ex-
ponentially according to the recursion Mk = Mk−1 · |L|. How-
ever, we prune components with negligible weights and show
only the remaining components. Further, similarly to [5], [6], we
occasionally merge sufficiently similar components, as shown
in Figs. 3(d) and 2(d). We use the notation �̃ to denote the belief
and components’ weights after merging.

Given the above, in both scenarios we consider the ith data
association hypothesis from time instant 1, and execute Algo-
rithm 1 to re-evaluate its probability in retrospective, i.e. given
current time is k we calculate wi

1|k. For each step in our weight
update we take a set of S = 1000 samples from the GMM
created via (25). In our current implementation, samples are
taken globally from the entire GMM, where the number of
samples per each component is determined according to the
GMM weights distribution.

The results for the first and second scenarios are shown,
respectively, in Figs. 2(e) and 3(e). In both cases we can see
that at k = 1 we lack the ability to disambiguate between
the hypotheses, however when using the information up to
time k = 5 and k = 10 respectively, we can perform full
disambiguation according to the updated weight distribution,
via w1|k where k ∈ [5, 10].
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Fig. 2. First scenario: (a) Five-step ground truth trajectory, an initial prior belief P(X0), and known identical landmarks. (b) b[Xk=1] is a GMM with five
components. We choose this point as our ”re-evaluation” point, where we test our algorithm. The hypothesis marked in green, states the correct hypothesis
generated from the landmark associated to the given measurement. Notice that the bolder lines correspond to a higher weight of the hypothesis. (c) GMM belief at
k = 5; we should note that the number of components doesn’t increase from the “re-evaluation” point as a result of pruning. (d) The belief at k = 5 after merging,
which reduces the number of hypotheses to M5 = 2. (e) The calculated weight distribution at time k = 1 given the gathered information up to time k = 1 (see
(b)), and given information up to time k = 5. The green circle marks the weight of the correct hypothesis as shown in (b). (f) Run-Time in seconds of wi

k−4|k
calculation vs. number of samples S. The calculation was performed for both the naïve and the proposed incremental approach. (g) The current weight distribution
of b[X5] as shown in (c), via wi

k=5|k=5
, where i ∈ [1..M5] and M5 = 4. (h) Current weight distribution after merging, i.e. b̃[X5], where M5 = 2. (i) Entropy

distribution of the weights at time k = 1 given information at different time points up to time k = 5.

Fig. 3. Second scenario: (a) Ten-step ground truth trajectory, an initial prior belief P(X0), and known identical landmarks. (b) The belief at k = 1, our
re-eveluation point, is a GMM with four components. The hypothesis marked in green, states the correct hypothesis generated from the landmark associated to the
given measurement. (c) The updated belief at current time, k = 10. Due to the ambiguity of the environment, the number of hypotheses increased from M1 = 4 to
M10 = 28 given pruning. (d) The belief at k = 10 with the merging effect, reduces the number of hypotheses to M10 = 4. (e) The calculated weight distribution at
time k = 1 given the gathered information up to time k = 1, and given information up to time k = 10. The green circle marks the weight of the correct hypothesis
as shown in 3(b). (f) Run-Time in seconds of wi

k−p|k calculation vs. p for the naïve and the proposed incremental approach. (g) The current weight distribution

of b[X10], i.e. wi
k=10|k=10

, where M10 = 28. (h) Current weight distribution after merging, b̃[X10], where M10 = 4. (i) Entropy of the weights at time k = 1

given information at different time points up to time k = 10.

In addition in the second test case shown in Fig. 3 we see
that even after new information has been acquired along the
trajectory, we still have an ambiguous setting with or with-
out the merging effect: the corresponding weight distribution
of the current belief includes several non-negligible hypotheses
at k = 10, as shown in Fig. 3(g) and (h). This is in contrast
to the first scenario that after merging shows a single none
negligible weight as shown in Fig. 2(h). Nevertheless, as shown
in Figs. 2(e) and 3(e), our approach to update the weights in
retrospective utilizing the information acquired until time k
leads to more informative weight distributions. In particular, in
both considered scenarios one of the hypotheses’ value becomes
substantially higher than the rest.

We also report runtime for both the naïve and our incremental
approach. For the first scenario we calculated runtime as a

function of number of samples S ∈ [50, 1000], where the result
per a number of samples is the statistical average of 20 runs.
As shown in Fig. 2(f) the naïve approach calculation grows in a
higher rate than the incremental. For the second scenario, as
shown in Fig. 3(f), we calculated the runtime as a function
of the parameter p, see e.g. (4), where for this analysis the
number of samples was fixed at 100. The runtime of the naïve
approach shows a growth at a rate of p2, while the incremental
one increases in a linear rate of p, which is in correlation to our
calculation in Section III-F.

In addition Figs. 2(i) and 3(i) show the entropy of the weight
distribution at the “re-evaluation” point given information at dif-
ferent time instances, i.e. H(W1|j) = −∑M1

i=1 w
i
1|j · log(wi

1|j)
where j ∈ [1, k]. Both test cases show that as we use more
information at the “re-evaluation” point, the level of uncertainty
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Fig. 4. (a) The calculated weight distribution at time k = 1 given the gathered information up to time k = 1, and given information up to time k = 10. (b)
The weight distribution at k = 10. The descendants of w1

1 and w2
1 are marked in blue and orange, respectively. In total we have M10 = 14 hypotheses (GMM

components). (c) The updated weight distribution at k = 10, where all descendants of w1
1 have been discarded after re-evaluation of the weights at k = 1. The

number of hypotheses reduces to 10. (d) The entire hypothesis tree describing the evolution of hypotheses (GMM belief components) from the initial time and
until the current time k = 10. Blue and orange colors represent descendant hypotheses of w1

1 and w2
1 , respectively.

can reduce, although we should mention that this is not guar-
anteed, since it is conditioned on the landmarks setting, and the
randomized samples values.

Enhanced Pruning of Hypotheses at Current Time: In a simi-
lar simulation setting comprising eight identical landmarks and a
trajectory of 10 time steps we examined the enhanced pruning of
hypotheses at current time after re-evaluation in retrospective of
past hypotheses (at k = 1), as discussed in Section III-E. Results
are shown in Fig. 4.

Fig. 4(a) shows that at time k = 1 there are two un-pruned
hypotheses, i.e. whose weights are higher value than the pruning
threshold th = 0.005. After we perform re-evaluation, hypothe-
ses w1

1|10 was pruned, and we remain with a single hypotheses

w1
2|10 marked in orange. As discussed in Section III-E, all the

descendant hypotheses of w1
1|10 can now be discarded. These

hypotheses are shown in blue color in the GMM “hypotheses
tree” in Fig. 4(d). More in detail, Fig. 4(b) shows the weights of
the original GMM belief atk = 10, withM10 = 14 components:
4 descendant hypotheses ofw1

1 and 10 ofw2
1 , marked in blue and

orange, respectively. Note all components are above the pruning
threshold th. Fig. 4(c) shows the reduced GMM after pruning all
the blue hypotheses (descendants of w1

1|10) and re-normalizing
the weights. Thus, leveraging the proposed concept the number
of components reduces to 10.

V. CONCLUSION

We presented an approach to update probabilities of
externally-specified hypotheses from some past time with in-
formation obtained since then and until the current time. Our
approach is particularly of interest in the context of robust
perception and autonomous navigation in ambiguous and per-
ceptually aliased scenarios, which necessitate reasoning about
data association hypotheses and thus to maintain mixture distri-
butions such as GMM. In addition we developed an incremental
form for calculation re-use, as opposed to a naïve approach that
performs recalculation in each step. Another direct consequence
of our approach is enhanced pruning of hypotheses at current
time, leveraging the updated weights of corresponding ancestor
hypotheses given information thus far. Our simulation shows
that re-evaluation of a past time in a highly aliased setting can
assist with hypotheses disambiguation both in past and current
time, and with our ability to discard an entire branch(es) from
the GMM hypothesis tree. In future research we aim to study the
performance of our approach in real world settings, explore how
adding landmarks to the state (i.e. a high dimensional setting)

effects the computational complexity, and investigate how it can
be incorporated within the planning phase.
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