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Introduction

Autonomous car Xiaomi Roborock

Quad Copter
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Introduction

I Autonomous navigation high level framework.

I Estimation of the robot’s location.
I Choose and perform a course of action.
I Receive a measurement, and re estimate the robot’s

location.
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Motivation-Ambiguous environment

Angeli et al., TRO’08

]

Pathak, Thomas, Indelnan, IJRR 2018

Mu et al., IROS’16
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Motivation-Ambiguous environment

I Ambiguity can be due to (combination of):
I Perceptually aliased scenes (two similar objects).
I Limited/imperfect sensing (limited sensing range).

How can we deal with this ambiguity in inference
and planning?
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Motivation - Data Association (DA)

Given two identical landmarks, commonly it is assumed to
be known which landmark generated the current
measurement.

What happens in the case of making a false data
association?.
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Motivation

I A simplified static world illustration
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Motivation

I Robot’s belief at time k − 2

The robot decides to take an action of one step forward.
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Motivation
I Inference at time k − 1

The robot receives a measurement of a single cup (but
which one?).
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Motivation

I Robot at time k − 1

The robot decides to take a one step forward action.
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Motivation

I Robot’s location at time k

I The robot receives a measurement of a single table.

I Can information at time k help/impact inference estimation at time
k − 1?
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Our Contribution

I Introduce the problem of hypotheses disambiguation
in retrospective.
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Our Contribution

I Re-evaluation of a strategic past event/point using
current information.

I Incremental calculation in order to reduce
complexity.

I Re-evaluation of specific pas DA hypothsis using
current information.

I Enhance hypotheses pruning also at current time.

I Publications:
O. Shelly and V. Indelman. Hypotheses Disambiguation in Retrospective.

I IEEE Robotics and Automation Letters (RA-L), 2022.
IEEE Intl. Conf. on International Conference on Robotics and
Automation (ICRA), 2022.
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Approach

I Notations
I b[Xk ] = P(Xk | Hk ) - The belief at time k .

I Xk = {x0, ...xk} - Robot pose vector.
I Hk = {Uk−1︸ ︷︷ ︸

actions

, Zk︸︷︷︸
measurements

} - History vector, where

Uk−1 = u0,...,k−1 and ZK−1 = z1,...,k .

I bi [Xk ] = P(Xk | γk = i,Hk ) - The i hypothesis at time k .
I γk = β1,...,k - A vector of DA.
I βk - A specific DA of zk , where βk is equal to given

landmark, lj , j ∈ [1..L].

I bi−[Xk ] = P(Xk | H−k ) Propagated belief, where H−k = {Uk−1, Zk−1}.
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Approach

I Assumptions
I Map is given* - represented by static landmarks.
I Observation and motion model with Gaussian noise.

xk = f (xk−1,uk−1) + w
zk = h(xk , l) + v

Where w ∼ N (µw ,Σw ) and v ∼ N (µv ,Σv ).
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Approach

I GMM Belief
When removing DA assumption we marginalize over
all possible associations.

b[Xk ] =

Mk∑
i=1

P(γk = i | Hk)︸ ︷︷ ︸
w i

k

·P(Xk | γk = i,Hk)︸ ︷︷ ︸
bi [Xk ]

I w i
k - Probability of the i’th hypothesis, via its weight.

I bi [Xk ] - Belief over Xk of the i’th hypothesis.
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Approach

I Problem formulation
I Given the belief bi

k−p, we wish to update the weight
w i

k−p|k−p, with gathered information up to time k , via
w i

k−p|k = P(γk−p = i | Hk ).
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Approach

I Single step update p = 1
I By performing Bayes rule we

receive,

w i
k−1|k =

P(zk | γk−1 = i,H−k )

P(zk | H−k )︸ ︷︷ ︸
update factor

·w i
k−1

k-
1

1

i=1

k

1
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Approach
I Update factor calculation

P(zk |γk−1 = i,H−k ) =

|L|∑
g=1

∫
xk

P(zk ,

∗︷︸︸︷
βk = g, xk |γk−1 = i,H−k )dxk =

I βk - Random variable on all landmark index’s
associations.

I We marginalize over all possible landmarks and
current state.

P(zk |γk−1 = i,H−k ) =

|L|∑
g=1

∫
xk

P(zk | βk = g, xk )︸ ︷︷ ︸
a

·P(βk = g | xk , lg)︸ ︷︷ ︸
b

·bi−[xk ]︸ ︷︷ ︸
c

dxk

I a - Observation model.
I b - Sets integral finite borders per lg, via Ωlg .
I c - Propagated belief at time k .
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Approach

I Update factor calculation

I Since the integral has finite borders, we take S samples
from bi−[xk ].

P(zk |γk−1 = i,H−k ) ≈ ·
S∑

n=1

L∑
g=1

1
|Ωlg |

P(zk | lβk =g, x
n,i
k ) · 1Ωlg

(xn,i
k )

I In order to avoid calculating the denominator I
denote, w̃ i

k−1|k
.

= P(zk |γk−1 = i,H−k ) ·w i
k−1.

I We received an un-normalized weight, w̃ i
k−1|k is

un-normalize, therefore we Normelize via,

w i
k−1|k =

w̃ i
k−1|k∑Mk−1

j=1 w̃ j
k−1|k
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Approach

I Multiple steps, 0 6 p < k

.... . .
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I Let us try to re-evaluate a hypothesis from p steps prior
to time k , via m .

= k − p.
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Approach

I Multiple steps, 0 6 p < k

I Applying Bayes rule and performing marginalization
yields:

w i
m|k =

[∏p
j=1 P(zm+j | γm,H−m+j)∏p

j=1 P(zm+j | H−m+j)

]
︸ ︷︷ ︸

Ψm|k

·w i
m|m︸ ︷︷ ︸
B

I A naive approach would be to calculate
P(zm+j | γm,H−m+j) from scratch up for any j.
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Approach

I Multiple steps, Calculation for any j

I P(zm+j | γm = i,H−m+j) for a given value of j,

|L|∑
g=1

1
|Ωlg |

∫
xm+j∈Ωlg

P(zm+j | lg, xm+j)bi−
m [xm+j ]dxm+j

I bi−
m [xm+j ] is a GMM with S components,

bi−
m [xm+j ]

.
=

S∑
n=1

f (xn,i
m+j−1, zm+j−1)

η̂i
m+j−1︸ ︷︷ ︸
ζn,i

m+j−1

·P(xm+j | xn,i
m+j−1,um+j−1)
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Approach

I Multiple steps, Calculation for any j

I ζn,i
m+j−1 (GMM weights) are calculated from the

previous step m + j − 1, where,

I f (x , z)
.

=
1
S
·
∑L

g=1
1
|Ωlg |

P(z | lg, x) · P(lg | x)

I η̂ ,
∑S

n=1 f (xn, z)

I Since P(zm+j | γm = i,H−m+j) holds finite borders we need
to sample bi−

m [xm+j ].

P(zm+j | γm,H−m+j) ≈ 1
S
·

S∑
n=1

L∑
g=1

1
|Ωlg |

P(zm+j | lg, xn,i
m+j) · 1Ωlg

(xn,i
m+j)

=
S∑

n=1

f (xn,i
m+j , zm+j)
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Approach

I Multiple steps, 0 6 p < k

I Therefore, w i
m|k yields into,

w i
m|k ≈

[∑p
j=1 η̂

n,i
m+j

]
·w i

m|m∏p−1
j=0 P(zk−j | H−k−j)

=
w̃ i

m|m∏p−1
j=0 P(zk−j | H−k−j)

I We normalize in the same form as in single step,

w i
m|k =

w̃ i
m|k∑Mm

j=1 w̃ j
m|k
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Approach

I Computational Complexity

I Näıve approach - Calculation performed from scratch
for each step.

S︸︷︷︸
m + 1

+ 2 · S︸︷︷︸
m + 2

+ . . .+ p · S︸︷︷︸
m + p

=
(1 + p) · p

2
· S ∈ O(p2S).

I Incremental approach - Calculation reuse from
previous step.

S︸︷︷︸
m + 1

+ S︸︷︷︸
m + 2

+ . . .+ S︸︷︷︸
m + p

= p · S ∈ O(p · S),

I Our approach reduces the complexity in one order of
magnitude in p.
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Approach

I Specific DA re-evaluation

I A specific DA probebilty can be
described as, P(βk−p

.
= c | Hk−p).

I Recall each hypothesis i at time k − p
equals,

γk−p = {β1, .., βk−p−1︸ ︷︷ ︸
l

, βk−p︸ ︷︷ ︸
r

} .= i

I Therefore we suggest,

P(βk−p
.

= c | Hk−p)
.

=

Mk−p∑
i=1

w i
k−p1{c}(i.r)

P(β2 = l3 | H2) = w1
2 +w3

2

1
k=2b

3
k=2b

k=0 k=1 k=2

32
  =lβ

2
iw
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Approach

I Specific DA re-evaluation

I My framework allows re-evaluation
given the updated weights, w i

k−p|k .
Therefore,

P(βk−p
.

= c | Hk )
.

=

Mk−p∑
i=1

w i
k−p|k1{c}(i.r)

P(β2 = l3 | H3) = w1
2|3+w3

2|3

1
k=2b

3
k=2b

k=0 k=1 k=2

32
  =lβ

2|3
iw

k=3
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Approach

I Enhanced Pruning

I In the common case pruning is
performed at current time.

w̃ i
k−p

.
= w i

k−p · 1(w i
k−p > th)

I In the following example at k = 1 both
hypotheses weights are above pruning
threshold.

I This resulted in a full hypothesis tree from
both till current time, via k = 3.

k=0 k=1 k=2 k=3
th

1
1|1w

2
1|1w
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Approach

I Enhanced Pruning

I In case the updated weight is below
pruning threshold, we can prune also all
of its descendants.

I Specifically, the once at current time.

I As before we can denote,
γk

.
= {γk−p︸ ︷︷ ︸

i.l

, βk−p+1..., βk︸ ︷︷ ︸
i.r

} = i

I Therefore our weights at current time will
be,

w̃ j
k
.

= w j
k · 1{j.l}(w j.l

k−p|k > th)
k=0 k=1 k=2 k=3

th
1
1|3w

2
1|3w
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Evaluation

I Weight update simulations

I A setting of eight identical landmarks.

I First, calculate the GMM at the end of trajectory.

I Second, GMM weight re-evaluation at point m .
= 1.

Five steps robot’s trajectory Ten steps robot’s trajectory
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Evaluation

I Weight update simulations - Five steps

b[X1], M1 = 5 b[X5], M5 = 4

Merged belief, via b̃[X5], M5 = 2
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Evaluation
I Weight update simulations - Five steps

I Ambiguous hypotheses at k = 5 without the merging effect, and at
k = 1.

I Our algorithm enables to disambiguate and extract the correct
hypothesis at the re-evaluation point.

w i
5|5 distribution of b[X5] w̃ i

5 distribution of b̃[X5]

w i
1|1 vs w i
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Evaluation

I Weight update simulations - Ten steps

b[X1], M1 = 4 b[X10], M10 = 28

Merged belief, via b̃[X10], M10 = 4
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Evaluation
I Weight update simulations - Ten steps

I Ambiguous hypotheses at k = 10 with or without merging.

I Ambiguous setting as well at k = 1, the re-evaluation point.

I Our algorithm enables to disambiguate and extract the correct
hypothesis at the re-evaluation point.

w i
10, i ∈ [1..28] w̃ i

10, i ∈ [1..4]

w i
1|1 vs w i

1|10
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Evaluation

I Run-Time Calculations

Run-Time as a function of samples Runtime as a function of p

I Both analyses show an advantage to calculation
re-use approach.

I Run-Time as a function of p - Linear rate to the
incremental approach, while the Naive increments in
a square rate, as expected.
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Evaluation

I Histogram Calculation

H(w1|j ), j ∈ [1..5] H(w1|j ), j ∈ [1..10]

I In certain cases H(wp|j) where j ∈ [p..k] can reduce as
j increases.
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Evaluation

I Example for Enhanced pruning

w i
1|1 vs w i

1|10 w i
10, i ∈ [1..14]

I A ten steps trajectory, where the re-evaluation point at
p = 1.

I w1|1 holds two hypotheses, while w1
1|10 is

disambiguated.
I Current time holds four descendants of w1

1|10, via w i
10|10

where i ∈ [1..4].
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Evaluation

I Example for Enhanced pruning

GMM weights hypothesis
tree. w̃ i

10, i ∈ [5..14]

I In general the entire belief hypothesis tree of w1
1|10 is

obsolete. Specifically, descendants at current time,
via w i

10i ∈ [1..4].

I Therefore our current time GMM reduces to ten
components.
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Conclusions

I New information can have an impact on the weight
distribution, and our ability to disambiguate between
past hypotheses.

I Incremental approach to calculations.

I Enhanced pruning.
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Future Work

I Examine our approach in real world settings, in the
aspects of run-time and performance.

I Add uncertainty to the landmarks, and add them to
our state.

I Examine if there is an effect of two hypotheses from
different time points.

I Decision making under uncertainty - Take this
approach into planning.
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Thank you for listening!
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