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Abstract

As of today, most approaches that deal with the simultaneous localization and mapping (e.g.

SLAM) of the robot’s trajectory and surroundings assume that the data association, i.e.mapping

between sensor measurements and the observed environment (e.g.landmarks) , is given and

perfect. Such an assumption can be very problematic in the real world, especially in highly

ambiguous scenarios (for instance similar corridors), therefore Robust perception is a key

required capability in robotics and AI - Artificial Intelligence. In such cases, one has to maintain

multiple data association hypotheses which can be represented by a multi-modal belief. While

the SLAM community has been addressing relaxing the data association from the front-end for

some years now, current existing approaches are still computational expensive and address only

certain aspects of the general problem.

In this work we contribute a framework that enables to update probabilities of externally-

defined data association hypotheses from some past time with new information that has been

accumulated until current time. In particular, we show appropriately updating probabilities of

past hypotheses within this smoothing perspective potentially enables to disambiguate these

hypotheses even when there is no full disambiguation of the mixture distribution at the current

time. Further, we develop an incremental algorithm that re-uses hypotheses’ weight calculations

from previous steps, thereby reducing computational complexity. In addition we show how our

approach can be used to enhance current-time hypotheses pruning, by discarding corresponding

branches in the hypotheses tree. We demonstrate our approach in simulation, considering an

extremely aliased environment setting.
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Abbreviations and Notations

BSP : Belief Space Planning

POMDP : Partially Observable Markov Decision Process.

SLAM : Simultaneous Localisation and Mapping.

iSAM : Incremental Smoothing and Mapping.

GT-SAM : Georgia Tech-Smoothing and Mapping.

GMM : Gaussian mixture model.

xk : The robot’s pose at time k

Xk : The accumulative robot poses till at time k, denoted by Xk = {x0, x1, ..., xk}.

Xk−p : past state vector for any valid value of p ∈ [1..k − 1].

uk : The robot’s action at time k.

zk : Captured observation at time k.

li : Landmark i representation where i ∈ [1..L].

βk : Measurement zk is associated to landmark (or object/scene) lβk=i , where i ∈ [1..L].

Hk : Accumulative vector of obtained measurements and actions till time k, via {z1:k, u1:k−1}.

H−
k

: The propagated history vector till time k, via {z1:k−1, u1:k−1}.

b[Xk] : belief of state vector Xk, represented as a GMM.

b−[Xk] : The propagated belief of state vector Xk.

bi[Xk] : The i’th hypothesis of the belief at time k.

γk : An indicator of a given i hypothesis at time k.

: The indicator is a vector of DA till time k, meaning γk � {β0, β1..., βk} = i.

wi
k

: The weight of the i’th hypothesis at time k.

Mk : The number of hypotheses at time k.

Σk : covariance matrix of state vector Xk.

H (·) : differential entropy.
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Chapter 1

Introduction

1.1 Background

Autonomous navigation in uncertain or unknown environments is essential in numerous ap-

plications in robotics, such as search and rescue, autonomous cars, indoor navigation, and

surveillance. Once the robot operations take place in an unknown or uncertain environments, the

navigation process also involves environment mapping. The corresponding problem, known as

simultaneous localization and mapping (SLAM), has been extensively investigated [2–4] in the

last two decades by the robotics and computer vision communities, where current approaches

differ in various aspects, such as the inferred state, estimation method and sensors being used.

If we observe SLAM history as discussed by Durrant-WhyteandBailey in [5] we see first

approaches referring to extended Kalman filters, and maximum likelihood estimation. In

particular, a seminal work by Davison et [6] showed a first EKF-SLAM system that works

online given a monocular imagery input. Yet, these early EKF-based approaches were not

well-suited to large scale operation, as calculations are made in the covariance form.

Later period was the algorithmic phase, during which the research community focused on

investigating and improving basic aspects in SLAM such as observability, convergence and

consistency. A number of approaches that improved the efficiency and optimization of the

problem are [7–11]. These works formulate SLAM as a maximum-a-posteriori estimation

problem, and often use factor graphs to exploit the inherent sparsity of the underlying matrices

and re-use calculations between consecutive time instances.

Computationally efficient online solvers that exploit the underlying inherent sparsity of the

problem and re-use of calculations are readily available [12–14].

Traditional SLAM approaches include two parts, commonly known as the ”front-end” and

the ”back-end”. The latter maintains and updates a belief over robot past and current states

(e.g. poses) and mapped environment given the available data at each time instant. This data can

include any prior information, if exists, performed actions and captured sensor observations with

the corresponding data association (DA). The latter is determined by the front-end process, and

can be considered as associating observed scenes (e.g. in terms of landmarks) from current and

previous time instances. A correct association between an observed landmark and a received

5



measurement is crucial for accurate inference.

A key common assumption is that the data association has been correctly determined by

the front-end. Such an assumption, however, is less valid in presence of perceptual aliasing and

ambiguity. Figure 1.1 for instance illustrates how from the uncertainty of our pose space from

two different locations, one can observe two different landmarks from the scene space that will

generate the same measurement in the observation space. An incorrect data association can

lead to catastrophic results in inference/SLAM, e.g. the robot might deduce it is located in an

incorrect similar-looking corridor, while assuming it is perfectly solved within planning can

lead to sub-optimal actions, that could lead to collision and unsafe behavior, in general.

Figure 1.1: Two different landmark A1 and A3 from the scene space can be associated to the same measurement, via ẑ from two

different poses, x and x′ respectively. Figure taken from [15]

.

Relaxing the data association assumption would lead to robust perception approaches that

are much required while operating in the real world [2], which typically exhibit some level of

perceptual aliasing. Yet, this involves reasoning about DA as part of inference, and results in

a set of hypotheses, where each one is built by a possible landmark association to the given

measurement in hand. Such a formulation corresponds to a multi-modal belief, that can be

represented, e.g. by a Gaussian mixture model (GMM) [16, 17].

1.2 Motivation

While robust inference approaches have been actively investigated in the last few years, till

now existing approaches have dealt with relaxing the DA assumption while examining the state

distribution at the current time instant. Moreover, except of [18], typically calculations are done

from scratch for each time step, without calculation re-use.

In contrast, in this work we propose the notion of hypotheses disambiguation in retrospective,

i.e. after more information has been collected. Our approach enables to re-evaluate the proba-

bility of externally-defined, key strategic hypotheses from a past time, given the information

obtained up to the current time, while accounting for the data association hypotheses developed

since that past time. A motivation can be seen in Fig. 1.2. The illustration in Fig 1.2a shows

6



a general case where we isolate an ambiguous event from some past time k − p, and wish to

re-evaluate hypothesis i from that time given information obtained till time k.

We propose to utilize data that has been obtained since that time to update the posterior

probabilities of these key past hypotheses. We envision such a capability and the general concept

to be of interest in various contexts in robotics and beyond. For instance in Fig 1.2b we see a

specific setting where one cant disambiguate any of the hypotheses, both at time k − 1 and at

time k. In such a case examining the weight distribution at k− 1 given new obtained information

might assist in the re-evaluation of a selected action, or in distinguishing the correct hypothesis

by performing full disambiguation.

.

.

.
. . .

k
−

1
k

k
−

p

k
−

p
+
1

k
−

p
+
2

. . .

i = 1

(a) General problem illustration

k
-1

1

i=1

k

1

(b) Single step update setting

Figure 1.2: (a) In this work we aim to calculate the probability of externally-defined hypothesis from some past time k− p given the

information that has been obtained until current time k. In other words, we would like to calculate wi
k−p|k

= P(γk−p = i | Hk). The

diagram illustrates, for simplicity, a branching factor of two, i.e. each hypothesis branches at the next time into two child hypotheses

(e.g. due to obtained measurement with an ambiguous data association). For instance, we might be interested in calculating the

weight wi=1
k−p|k

, which corresponds to probability of the hypothesis indicated by the blue node, given data until time k. (b) A toy

example illustration of the general concept from (a), where p = 1, the prior belief is a Gaussian Mixture with two components, and

upon performing an action the robot makes an observation zk of one of two identical triangular landmarks. Due to ambiguous data

association, the number of components in the posterior belief at time k is four. Posterior and propagated beliefs are denoted by

solid and dashed lines, respectively. In this single step update scenario we wish to re-evaluate at time k the weight of hypothesis i

from time k − 1, i.e. wi
k−1|k

, given the observation zk .
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1.3 Related Work

In the past years the research community has been actively investigating robust inference

approaches to be resilient to false data association overlooked by front-end algorithms, i.e. by

relaxing the assumption that the DA provided by front-end algorithms is outlier-free. An early

work on DA is joint probability data association (JPDA) by Fortman et al. [19] which considers

all possible DA options in the context of multi-target tracking. Some previous works refer to the

case where a loop closure detection is reliable or false, by introducing a binary random variable

for each loop closure candidate and solving inference via expectation-maximization [20, 21].

Sunderhauf and Protzel [22] introduced the so called switchable constraints to detect faulty loop

closures that lead to erroneous data association in back-end optimization. Other approaches

include the so called switchable constraints,see e.g. [23]. Carlone et al. [24] address the problem

from a different perspective, looking for a maximal coherent set among the given loop closure

candidates. Olson and Agarwal [25] proposed a robust approach that uses max-mixture models.

Wong et al. [26] presented a Dirichlet Process Mixture Model (DPMM) for data association in

partially observed environments. More recently, optimization approaches robust to outliers have

been investigated in works such as [27, 28]. Finally, Fourie et al. [29] addressed computational

aspects, aiming to update the GMM belief incrementally. One limitation of their approach,

however, is that the association probabilities of a new measurement to different scenes/objects

are assumed to have a uniform distribution,i.e.identical weights.

Another relevant work on active hypothesis disambiguation in the context of object detection

and classification [30–33]. these approaches model a set of hypotheses for the landmarks pose

and class in a given setting, and wish to retrieve a set of view points that will allow to perform

full disambiguation, i.e. identifying the correct hypothesis. However this approaches assume

the robot’s location is accurate. [34] addresses the issue of active SLAM while reducing the

DA assumption, and wishes to find a set of actions to enable disambiguation and finding the

correct hypothesis in the belief. Although we should note that the author assumes ambiguous

setting only for initial belief, as well he assumes he can find a set of actions that leads to a full

disambiguation.

A recent and more robust approach was shown by Pathak et al. [16] targets perceptual aliasing

by explicitly reasoning about and probabilistically maintaining ambiguous DA hypotheses, in

both inference and belief space planning. In contrast to many of the works mentioned above, it

explicitly calculates the probability of different hypotheses, i.e. weights of GMM components,

rather than assuming these to be identical. In addition it works in a more robust setting allowing

ambiguous scenarios along the robot’s trajectory. Tchuiev et al. [17] extend the passive inference

formulation from [16] by utilizing semantic information and viewpoint-dependent classifier

models, as well as weight pruning to reduce the number of DA hypotheses.

8



1.4 Contributions

While the above-mentioned approaches address inference considering the (GMM) belief from

the current time, we investigate a complimentary aspect, namely, utilizing current information

to re-evaluate the probability of past, externally-specified, DA hypotheses. Specifically, building

upon [16, 17] we develop a smoothing approach for updating the weights of past GMM beliefs,

while properly accounting for the ambiguous data association hypotheses that have been acquired

since then. Therefore, our main contributions are as follows:

1. We introduce the problem of hypotheses disambiguation in retrospective, which, to the

best of our knowledge has not appeared thus far in literature.

2. We develop a probabilistic approach to update the probability of selected past hypotheses

considering a smoothing formulation, while properly accounting for the ambiguous data

association hypotheses that have been acquired since that time.

3. We derive a scheme for calculation re-use within this approach to reduce computational

time.

4. We enhance hypotheses pruning also at current time, by leveraging the proposed concept

of past hypotheses re-evaluation in retrospective and drawing a connection between

hypotheses at current time and the corresponding ancestor hypotheses.

5. We evaluate our approach in simulation considering an extremely aliased environment

comprising identical landmarks.

1.5 Organization

This thesis is organized as follows.

1. Chapter 2 introduces the belief in the GMM form, along with the basic setting this work

is based on. In addition represents the formulation of the problem in hand.

2. Chapter 3 describes the mathematical development of our approach, along with complexity

calculations for both approaches - the incremental one shown in this work, and the naive

one, without calculation reuse.

3. Chapter 4 presents experimental results, and calculation comparison between both ap-

proaches.

4. Conclusions and possible future work are shown in Chapter 5.

5. For purpose of simplicity, the proof of the lemma 3.1 is moved into Appendix 6.

9
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Chapter 2

Notation and problem formulation

2.1 Notations

Let xk represent the robot current pose at time k, and denote by Xk = {x0, x1, ..., xk} all robot

poses until that time.

We define uk and zk to be, respectively, the robot’s action and captured observation at time

k. Further, we represent the environment by landmarks L = {li}
|L|

i=1
, and assume they are static

and known. We note that in case landmarks are uncertain, as in a typical SLAM setting, the

observed landmarks up to time k would become part of the state Xk, and the formulation of our

approach can be straightforwardly adjusted to such a setting. We should note, however, that

such an extension will necessitate coping with the inherent curse of dimensionality, which is

outside the scope.

Furthermore, the concept presented in this work is applicable also to other environment

representations, such as grid-based localization, as long as one can formulate the corresponding

data association hypotheses (see e.g. [16]).

Further, denote data association (DA) at time k by a discrete latent variable βk, i.e. measure-

ment zk is associated to landmark (or object/scene) lβk=p, where p ∈ [1, |L|]. It is important to

note that in the general case of obtaining a number of measurements in a single step, βk would

have been addressed to as a vector built from the landmarks associated to each measurement, as

done in [17].

We use motion and observation models

xk = g(xk−1, uk−1) + w , zk = h(xk, lβk
) + v, (2.1)

where w ∼ N(µw,Σw) and v ∼ N(µv,Σv). The process and measurement covariance matrices,

Σw and Σv, as well as the functions g(.) and h(.) are assumed to be known.

Let history Hk represent all the robot’s actions and received measurements till time k along

with the set of known landmarks L, Hk = {z1:k, u0:k−1, L}. Similarly, denote by H−
k

history

without the received measurement at time k, H−
k
= {z1:k−1, u0:k−1, L}. The probability density

11



function (pdf), the belief, at time k over Xk is then given by,

b[Xk] = P(Xk | Hk). (2.2)

Since we consider ambiguous scenarios, one cannot assume data association to be given

and perfect. Similar to [16, 17], the number of hypotheses at time k, without yet considering

pruning or merging, is given by all possible realizations of the sequence β1:k = {β1, . . . , βk}. For

convenience we denote γk , β1:k, and consider at time k to have Mk hypotheses, i.e. γk ∈ [1,Mk].

Thus, the ith hypothesis, i.e. γk = i, corresponds to a specific sequence of β1:k.

Hence, by marginalization of (2.2) over γk, and chain rule,

b[Xk] =

Mk∑

i=1

P(γk = i|Hk)
︸         ︷︷         ︸

wi
k

·P(Xk | γk = i,Hk)
︸                ︷︷                ︸

bi[Xk]

, (2.3)

where bi[Xk] and wi
k

represent, respectively, the conditional belief and the weight of the ith

hypothesis at time k, and
∑Mk

i=1
wi

k
= 1. Finally, we denote the propagated belief as the belief

conditioned on H−
k

instead of Hk, i.e. without considering the measurement at the current time, zk.

Similarly, a propagated belief for the ith hypothesis is defined as bi−[Xk] = P(Xk | γk = i,H−
k

).

2.2 Problem Formulation

In this work we wish to re-evaluate, in retrospective, the probability of externally-specified

hypothesis (or hypotheses) from some past time, i.e. given new information acquired since then.

Specifically, we wish to re-evaluate a hypothesis weight for a given γk−p = i. Thus, our goal is

to calculate

wi
k−p|k , P(γk−p = i | Hk), (2.4)

where 1 ≤ p < k. In other words, in this work we investigate a smoothing perspective considering

discrete random variables (data association hypotheses), which are, however, coupled with

continuous random variables (e.g. robot poses).

Another variant of this problem is to re-evaluate the probability of some past association,

βk−p instead of a sequence of associations γk−p ≡ β1:k−p. We consider this setting in Section 3.4.

We believe both problem variants can be of interest in different contexts: For example,

considering specific realizations of γk−p may be useful in terms of localization, as each such

realization corresponds to a posterior over Xk, see (2.3); This is in contrast to considering

specific data association realizations from past time k − p, i.e. βk−p, which can be of interest

on its own. To shorten notations in the sequel, we denote m , k − p and re-write (2.4) as

wi
m|k
, P(γm = i | Hk).

12



Chapter 3

Approach

3.1 Derivation of a General Formulation for wi
m|k

In this section we develop a general formulation for calculating (2.4). First, we perform Bayes

rule considering the most recent measurement, zk:

P(γm = i | Hk) =
P(zk | γm = i,H−

k
)

P(zk | H
−
k

)
· P(γm = i | Hk−1)
︸              ︷︷              ︸

wi
m|k−1

,

where we use, here and in the sequel, the fact P(γm = i | Hk−1, uk−1) ≡ P(γm = i | Hk−1), i.e. the

weights of a GMM are not impacted by the motion model.

Considering wi
m|k−1

, we now repeat the above process and perform Bayes rule once again,

which yields,

P(γm = i | Hk) =
P(zk | γm = i,H−

k
)

P(zk | H
−
k

)
·

·
P(zk−1 | γm = i,H−

k−1
)

P(zk−1 | H
−
k−1

)
· P(γm = i | Hk−2)
︸              ︷︷              ︸

wi
m|k−2

(3.1)

It is not difficult to see that performing Bayes rule sequentially in a similar fashion yields the

following formulation:

wi
m|k =

[ ∏p−1

j=0
P(zk− j | γm = i,H−

k− j
)

∏p−1

j=0
P(zk− j | H

−
k− j

)
︸                              ︷︷                              ︸

Ψm|k

]

· wi
m|m (3.2)

Here, wi
m|m

is the weight of the i-th GMM component at time m, while Ψm|k is the update factor

that is based on the data obtained in the period [m + 1, k]. Therefore, we need now to calculate

this term in order to get wi
m|k

.

Since the denominator in (3.2) is not conditioned on γm = i, its explicit calculation can be

13



avoided. Instead, we first calculate the numerator,

w̃i
m|k ,

p−1∏

j=0

P(zk− j | γm = i,H−k− j) · w
i
m|m, (3.3)

for all i ∈ [1,Mm], i.e. all hypotheses from time m, and then normalize as

wi
m|k = w̃i

m|k/

Mm∑

q=1

w̃
q

m|k
. (3.4)

Calculating (3.2) requires first computing the terms P(zk− j | γm = i,H−
k− j

) for all j ∈ [0, p − 1].

In the next section we develop an approach to do so. Yet, naı̈vely, one would calculate each

of the above terms from scratch. In contrast, in Section 3.3, we derive an incremental version,

which re-uses calculations from previous steps.

3.2 Single Step Update, p = 1

We start with the simplest case of a single step update, i.e. p = 1 and m = k − 1, as illustrated in

fig 1.2b. In this case, the un-normalized weight from (3.3) is given by

w̃i
m|k = P(zk|γm = i,H−k ) · wi

m|m. (3.5)

To calculate P(zk|γm = i,H−
k

) we marginalize over robot pose at time k and all the possible

landmark associations βk for the measurement zk. Applying chain rule yields

P(zk |γm = i,H−k )=

|L|∑

g=1

∫

xk

P(zk |βk = g, xk, γm = i,H−k ) ·

·P(βk = g | xk, lg) · P(xk | γm = i,H−k )
︸                ︷︷                ︸

bi−
m [xk]

dxk, (3.6)

where P(βk = g|xk, γm = i,H−
k

) ≡ P(βk = g | xk, lg) indicates the probability of observing the

landmark lg from robot pose xk. Here, and throughout the paper, we use �i
m to indicate

conditioning on γm = i.

We reiterate that, while we assume landmarks are known, in case landmarks are uncertain

and part of the belief, we would need to also marginalize over them in (3.6).

Furthermore, for simplicity in this work we model P(βk = g | xk, lg) as a uniform distribution

with some finite support Ωlg (i.e. only for certain viewpoints, a given landmark is within sensor’s

field of view), and re-write (3.6) as

P(zk |γm = i,H−k )=

|L|∑

g=1

1

|Ωlg |

∫

xk∈Ωlg

P(zk | lg, xk)bi−
m [xk]dxk. (3.7)

Since an analytical solution is not feasible, we resort to a sampling based approach and ap-
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proximate (3.7) considering a set of {x
n,i

k
}S
n=1

sampled values from bi−[xk], with S denoting the

number of samples:

P(zk|γm = i,H−k )≈
1

S

S∑

n=1

|L|∑

g=1

1

|Ωlg |
P(zk|lg, x

n,i

k
)1Ωlg

(x
n,i

k
), (3.8)

where 1Ωlg
(x) is an indicator function, indicating if landmark lg is within sensor’s field of view

from pose x.

Finally we calculate wi
k−1|k

via normalization as in (3.4).

3.3 Multiple Steps Incremental Calculation of wi
m|m+p

In the previous section we addressed the calculation of a single step update considering p = 1.

In this section we consider the general case of 1 ≤ p < k, as illustrated in Fig. 1.2a, and develop

a formulation to calculate the terms P(zk− j | γm = i,H−
k− j

) from (3.2) for all j ∈ [0, p− 1]. While

a naı̈ve approach would calculate each of these terms from scratch, we develop an incremental

version that allows to re-use calculations between different values of j.

We start by considering j = p − 1 and j = p − 2, and then discuss calculations for a general

j ∈ [0, p − 1].

3.3.1 j = p − 1

The corresponding term in (3.2) for j = p − 1 is P(zm+1|γm = i,H−
m+1

). One can observe this

is identical to the single step update case considered in Section 3.2, yet here we consider a

single step from m = k − p. Therefore, following a similar process we generate a set of samples

{x
n,i

m+1
}S
n=1

from the propagated belief bi−
m [xm+1],

bi−
m [xm+1] , P(xm+1 | H

−
m+1, γm = i), (3.9)

and approximate P(zm+1|γm = i,H−
m+1

) as

1

S

S∑

n=1

|L|∑

g=1

1

|Ωlg |
P(zm+1|lg, x

n,i−

m+1
)1Ωlg

(x
n,i

m+1
), (3.10)

which corresponds to (3.8). Note that for this first step, i.e. j = p − 1, bi−
m [xm+1] is a Gaussian

distribution. To shorten notations in the following sections, we denote

f (x, z) ,
1

S

|L|∑

g=1

1

|Ωlg |
P(z|lg, x)1Ωlg

(x). (3.11)

Intuitively, f (x, z) represents the probability of obtaining a given measurement z from robot

pose x considering all possible data associations to the |L| landmarks. Finally, substituting (3.11)

15



into (3.10) yields

P(zm+1 | γm = i,H−m+1) ≈

S∑

n=1

f (x
n,i

m+1
, zm+1). (3.12)

3.3.2 j = p − 2

We now consider calculation of the term P(zm+2 | γm = i,H−
m+2

) from (3.2). Similarly to (3.7),

performing marginalization and chain rule, yields

|L|∑

g=1

1

|Ωlg |

∫

xm+2∈Ωlg

P(zm+2 | lg, xm+2)bi−
m [xm+2]dxm+2, (3.13)

where, as in (3.9), bi−
m [xm+2] , P(xm+2 | H

−
m+2
, γm = i).

Performing chain and Bayes rules, marginalizing over xm+1 and data association hypotheses

for zm+1 yields

bi−
m [xm+2] =

1

ηi
m+1

|L|∑

g=1

1

|Ωlg |

∫

xm+1∈Ωlg

P(xm+2 | xm+1, um+1)

·P(zm+1 | lg, xm+1)bi−
m [xm+1]dxm+1, (3.14)

where ηi
m+1
, P(zm+1 | H

−
m+2
, γm = i).

In practice, we approximate bi−
m [xm+2] and ηi

m+1
via sampling, considering S samples from

bi−
m [xm+1]:

bi−
m [xm+2] ≈

S∑

n=1

ζ
n,i

m+1
P(xm+2 | x

n,i

m+1
, um+1), (3.15)

and

ζ
n,i

m+1
, f (x

n,i

m+1
, zm+1)/η̂i

m+1, (3.16)

with η̂i
m+1
,
∑S

n=1 f (x
n,i

m+1
, zm+1), such that

∑S
n=1 ζ

n,i

m+1
= 1.

Note, the set of samples {x
n,i

m+1
} from bi−

m [xm+1] was already obtained from section 3.3.1.

Further, observe that bi−
m [xm+2] from (3.15) corresponds to a mixture belief over xm+2, where

each of the samples x
n,i

m+1
from the previous step is propagated via the transition model (2.1).

Thus, in context of Sequential Monte Carlo (SMC), this corresponds to the bootstrap particle

filter [35], i.e. where the proposal distribution is chosen to be transition model. Yet, here we also

account for ambiguous data association aspects. Thus, as we consider in this work Gaussian

models (2.1), bi−
m [xm+2] is a GMM belief with S components, where ζ

n,i

m+1
is the weight of the

nth component.

Note that in (3.15) and (3.16) we have f (x
n,i

m+1
, zm+1). Instead of calculating it from scratch

considering samples x
n,i

m+1
from the propagated belief bi−

m [xm+1], our key observation is that it is
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already available from the calculations for j = p − 1, see (3.12).

As before, we approximate the integral in (3.13) by generating a set {x
n,i

m+2
}S
n=1

of S samples

from the GMM bi−
m [xm+2] from (3.15), thus approximating P(zm+2 | γm = i,H−

m+2
) as

1

S

|L|∑

g=1

1

|Ωlg |

S∑

n=1

P(zm+2 | lg, x
n,i

m+2
)1Ωlg

(x
n,,i

m+2
), (3.17)

which, recalling the definition (3.11), can be finally written as

P(zm+2 | γm = i,H−m+2)≈

S∑

n=1

f (x
n,i

m+2
, zk+2), η̂i

m+2. (3.18)

3.3.3 General case

We are now in a position to calculate P(zm+ j | γm = i,H−
m+ j

) for the general case. This is stated

in the following Theorem.

Theorem 3.1. The expression for P(zm+ j | γm = i,H−
m+ j

) from (3.2) for any j ∈ [2, p − 1] is

given by,

P(zm+ j | γm = i,H−m+ j) ≈

S∑

n=1

f (x
n,i
m+ j
, zm+ j) , η̂

i
m+ j. (3.19)

A detailed proof via induction is given in 6.

Informally, as in (3.13), P(zm+ j | γm = i,H−
m+ j

) can be written as

|L|∑

g=1

1

|Ωlg |

∫

xm+ j∈Ωlg

P(zm+ j | lg, xm+ j)b
i−
m [xm+ j]dxm+ j, (3.20)

where bi−
m [xm+ j] is a GMM of S components,

bi−
m [xm+ j] �

S∑

n=1

ζ
n,i

m+ j−1
P(xm+ j | x

n,i

m+ j−1
, um+ j−1), (3.21)

where, similar to (3.16),

ζ
n,i

m+ j−1
, f (x

n,i

m+ j−1
, zm+ j−1)/η̂i

m+ j−1, (3.22)

with η̂i
m+ j−1

,
∑S

n=1 f (x
n,i

m+ j−1
, zm+ j−1).

The next step is to approximate the integral in (3.20) via sampling from the GMM bi−[xm+ j],

which yields (3.19).

Similarly to Sec. 3.3.2, calculation re-use can be performed also for the general case

considered here. To see that, note the set of samples {x
n,i

m+ j−1
}S
n=1

, as well as the corresponding

values f (x
n,i

m+ j−1
, zm+ j−1) and ηi

m+ j−1
are already available to us from calculations performed for
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the previous step, i.e. for j − 1, and thus can be conveniently re-used. In contrast, in the naive

approach, one would have to re-sample the entire chain from scratch, i.e. starting with m + 1

and until m + j − 1.

3.3.4 Final calculation of Ψm|k

Based on (3.3), the un-normalized weight w̃i
m|k

is

w̃i
m|k ≈

p−1∏

j=0

η̂i
k− j · w

i
m|m. (3.23)

As mentioned in Section 3.1, calculating the normalized weight wi
m|k

can be done via (3.4),

which requires to first calculate w̃
q

m|k
for all hypotheses from time instant m, i.e. ∀q ∈ [1,Mm].
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3.4 Re-Evaluation in Retrospective of a Specific Data Association

Hypothesis

In a similar manner, we can also consider a specific data association hypothesis βk−p = c from

some past time k − p, with c ∈ [1, |L|], rather than a sequence of data association hypotheses

γk−p ≡ β1:k−p = i as done above. Note i ∈ [1,Mk−p]; without pruning Mk−p = |L|
k−p.

Indeed, by marginalizing over γk−p−1 ≡ β1:k−p−1 we get

P(βk−p = c |Hk)=

Mk−p−1∑

l=0

P(βk−p = c, β1:k−p−1 = l |Hk). (3.24)

However, recall γk−p ≡ β1:k−p, which can assume Mk−p = Mk−p−1 · |L| values. Further, the

probability for the ith realization of γk−p conditioned on Hk, i.e. wi
k−p|k

with i ∈ [1,Mk−p], is

given by (3.2).

We now observe the index i designates a combination of some specific realization l of

γk−p−1 ≡ β1:k−p−1 and some specific realization r of βk−p. We shall denote these specific

realizations for a given i as i.l and i.r, respectively (standing for left and right).

Recall that wi
k−p

is available for any i ∈ [1,Mk−p] from (3.2), see Section 3.3.4. Based on

(3.24), we get

P(βk−p = c |Hk) =

Mk−p∑

i=1

wi
k−p|k1{c}(i.r), (3.25)

i.e. we sum only those realizations of γk−p that consider the c’th data association from time

k − p.

1

k=2
b

3

k=2
b

k=0 k=1 k=2

32
  =lβ

2

i
w

(a)

1
k=2b

3
k=2b

k=0 k=1 k=2

32
  =lβ

2|3
i
w

k=3

(b)

Figure 3.1: An example scenario on how new information can effect a specific DA evaluation. In 3.1a the DA evaluation, via

P(β2 = l3 | H2) will be equal to the summation of the hypotheses weights that were generated by β2 = l3, meaning w1
2

and w3
2
.

After performing re-evaluation as seen in 3.1b the value of the weights is updated, and as a direct result our specific DA evaluation

is updated as well, via P(β2 = l3 | H3) = w1
2|3
+ w3

2|3
.
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The example above shows a simple case where at time k = 2 as shown in 3.1a the orange

and green hypotheses are resulted from the same DA, via β2 = l3. Therefore the value of the

probability for this specific DA to be the correct one, would be the summation of the weights for

both of this hypotheses, meaning the green and orange weights. In 3.1b we obtain information

at k = 3, therefore in a direct from, our updated weights due to re-evaluating the previous step

weight distribution, would effect our ability to re-evaluate a specific DA as well.

3.5 Enhanced Pruning of Hypotheses at Current Time

Another immediate implication of our framework is the ability to enhance hypotheses pruning

at current time. In detail, consider we re-evaluated in retrospective hypotheses i ∈ [1,Mm]

from past time m = k − p, i.e. wi
k−p|k

, as discussed in Section 3.3.4. Then, considering some

user-specified pruning threshold th, for any wi
k−p|k

< th we can prune also all its descendant

hypotheses at time k.

More formally, considering the jth hypothesis at time k with j ∈ [1,Mk], i.e. γk ≡ β1:k = j,

we again observe that index j designates a combination of some specific realization of β1:k−p

and some specific realization of βk−p+1:k. In a similar fashion to Section 3.4, we shall denote

these realizations for a given j as j.l and j.r, respectively (standing for left and right). Then, for

any wi
k−p|k

< th we can prune all hypotheses j ∈ [1,Mk] from current time k that satisfy j.l = i.

In other words, each hypothesis j ∈ [1,Mk] is pruned if its ancestor hypothesis from time k − p,

with index j.l is below the pruning threshold th. The updated hypotheses’ weights are therefore

w̃
j

k
� w

j

k
· 1{ j.l}(w

j.l

k−p|k
> th). (3.26)

In order to retrieve a valid GMM the weights should be re-normalized to sum to one, i.e. w
j

k
�

w̃
j

k
/
∑Mk

j=1
w̃

j

k
, and the zero-weight (pruned) hypotheses discarded.

We note that, in general, a hypothesis j pruned this way may be above a pruning threshold,

i.e. w
j

k
> th, and thus would not be pruned without re-evaluating its ancestor hypothesis in

retrospective, as suggested herein. We demonstrate this aspect in the results section.
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Figure 3.2: An example for enhanced pruning, where re-evaluation of a strategic point from the past, can result in pruning of all of

the decedents of a given hypothesis. At 3.2a Both hypotheses at k = 1 above threshold, therefore a full GMM tree is created till

k = 3. Where in 3.2b we see that w2
1|3

is below pruning threshold, therefore all descendants of b2
2

can be pruned.

In the example above we see a case where at k = 1 none of weights are pruned given the

information till that time, this resulted in a full GMM spanning tree created till k = 3, as seen in

3.2a. Yet on the other hand, when we perform re-evaluation, we notice w2
1|3

is below pruning

threshold, therefore all of its descents can be pruned as well, and specifically the once at current

time, via k = 3, as seen in 3.2b. By that our updated GMM at current time holds four hypotheses

instead of eights, with updated values for there weights, as a result of normalization.

3.6 Computational Complexity Aspects and Algorithm

3.6.1 Computational Complexity

Calculating wi
m|k

involves computation of the unweighted weights w̃
q

m|k
, using (3.23), for each

of the Mm hypotheses from time instant m, and then normalization via (3.4). For each given

q ∈ [1,Mm], following (3.23), this involves calculating η̂
q

k− j
for all j ∈ [0, p − 1], i.e. from

η̂
q

k−p+1
≡ η̂

q

m+1
until η̂

q

k
≡ η̂

q
m+p.

In the naı̈ve approach, such calculations are performed from scratch for each η̂
q

k− j
. In other

words, as described in previous sections, this involves sequentially sampling the beliefs from

time instances k until k − j, for each j ∈ [0, p − 1]. Assuming the same number of samples

is taken at each time, for a given j, with j ∈ [0, p − 1], this operation involves generating S

samples j times. Hence, evaluating (3.23) is

S
︸︷︷︸

j = p − 1

+ 2 · S
︸︷︷︸

j = p − 2

+. . .+ p · S
︸︷︷︸

j = 0

=
(1 + p) · p

2
· S ∈ O(p2S ).

As this evaluation has to be performed Mm times, the overall complexity of the naı̈ve

approach is O(p2S Mm).

In contrast, our approach uses calculations in a recursive form, therefore we only need N
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samples for every calculation of η
q

k− j
. Thus, evaluating (3.23) is

S
︸︷︷︸

j = p − 1

+ S
︸︷︷︸

j = p − 2

+ . . . + S
︸︷︷︸

j = 0

= p · S ∈ O(p · S ),

and the corresponding overall complexity of our approach is O(pS Mm), i.e. one order of

magnitude smaller in p than the naı̈ve approach.

3.6.2 Algorithm

Algs. 3.1 and 3.2 summarize our approach from Section 3.3.

Algorithm 3.1 wi
m|k

calculation

1: Inputs:

2: Hk: History at time k

3: b[Xm]: GMM belief at time m = k − p

4: i: hypothesis index from time m = k − p

5:
6: for q=1:Mm do

7: Calculate w̃
q

m|k
using Alg. 3.2.

8: end for

9: ⊲ Normalization via (3.4)

10: wi
m|k
= w̃i

m|k
/
∑Mm

q=1
w̃

q

m|k

11: return wi
m|k

Algorithm 3.2 w̃i
m|k

calculation with computation re-use

Inputs:

2: Hk: History at time k

b[Xm]: GMM belief at time m = k − p

4: q: hypothesis index from time m = k − p

6: for j = 1 : p do

if j = 1 then

8: Sample set {x
n,q

m+1
}S
n=1

from b
q−
m [xm+1], see Sec. 3.3.1

else

10: Reuse {ζ
n,q

m+ j−1
}S
n=1

to form a GMM belief b
q−
m [xm+ j] from (3.21)

Sample set {x
n,q

m+ j
}S
n=1

from b
q−
m [xm+ j]

12: end if

Calculate η̂
q

m+ j
using samples {x

n,q

m+ j
}S
n=1

as shown in (3.19).

14: Calculate weights {ζ
n,q

m+ j
}S
n=1

via (3.22) for sample set {x
n,q

m+ j
}S
n=1

end for

16: Calculate and return w̃
q

m|k
via (3.23):
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Chapter 4

Results

In this section we examine our proposed algorithm in simulation considering an extremely

perceptually aliased environment comprising |L| = 8 identical spatially scattered static known

landmarks. Our simulations are based on the GTSAM library [13] with a Matlab wrapper.

The robot acquires relative pose observations to landmarks during its motion, yet the data

association is not assumed to be externally provided, i.e. it is unknown which landmark generated

each observation. Two scenarios of 5 and 10 time steps and differently scattered landmarks are

considered, as shown in Figs. 4.1a and 4.1b. In both cases, the robot starts with a uni-modal

Gaussian prior belief on its initial location, b[X0] and performs a pre-defined trajectory.

(a) Robot’s trajectory (b) Robot’s trajectory b

Figure 4.1: Ground truth trajectory for both for five steps as shown in a, and ten steps as shown in b. Both figures also show the

initial prior belief, and ambiguous landmark setting.

We use a diagonal process covariance matrix Σw with standard deviation (std) of position

of 0.5 meters and std of orientation of mrad. The measurement covariance matrix Σv is also

diagonal with position std of 0.48 meters and orientation std of 0.87 · 10−2 radians.
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(a) b[X1], M1 = 5 (b) b[X5], M5 = 4

(c) b̃[X5], M5 = 2 (d) wi
1|1

vs wi
1|5

(e) wi
5|5

, i ∈ [1..4] (f) w̃i
5
, i ∈ [1..2]

Figure 4.2: ]

First scenario:(a) b[Xk=1] is a GMM with five components. We choose this point as our ”re-

evaluation” point, where we test our algorithm. The hypothesis marked in green, states the

correct hypothesis generated from the landmark associated to the given measurement. Notice

that the bolder lines correspond to a higher weight of the hypothesis. (b) GMM belief at k = 5;

we should note that the number of components doesn’t increase from the ”re-evaluation” point

as a result of pruning. (c) The belief at k = 5 after merging, which reduces the number of

hypotheses to M5 = 2. (d) The calculated weight distribution at time k = 1 given the gathered

information up to time k = 1 (see (b)), and given information up to time k = 5. The green circle

marks the weight of the correct hypothesis as shown in (b). (e) The current weight distribution

of b[X5] as shown in (b), via wi
k=5|k=5

, where i ∈ [1..M5] and M5 = 4. (f) Current weight

distribution after merging, i.e. b̃[X5], where M5 = 2.
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Figs. 4.2 and 4.3 show the results for both scenarios. At each time step k, following

[16, 17], we update the belief from the previous time with the performed action and acquired

observation with unknown data association, producing b[Xk] from (2.3). For each case, we show

in Figs. 4.2(a)-(b) and Figs. 4.3(a)-(b) the corresponding posterior GMM belief, shown in blue

at specific time instances of interest.

Theoretically, the number of GMM components, grows exponentially according to the

recursion Mk = Mk−1 · |L|. However, we prune components with negligible weights and show

only the remaining components. Further, similarly to [16,17], we occasionally merge sufficiently

similar components, as shown in Fig 4.3c and 4.2c. We use the notation �̃ to denote the belief

and components weights after merging.

Given the above, in both scenarios we consider the ith data association hypothesis from time

instant 1, and execute Alg. 3.1 to re-evaluate its probability in retrospective, i.e. given current

time is k we calculate wi
1|k

.

For each step in our weight update we take a set of S = 1000 samples from the GMM

created via (3.21). In our current implementation, samples are taken globally from the entire

GMM, where the number of samples per each component is determined according to the GMM

weights distribution.

The results for the first and second scenarios are shown, respectively, in Figs. 4.2d and

4.3d. In both cases we can see that at k = 1 we lack the ability to disambiguate between the

hypotheses, however when using the information up to time k = 5 and k = 10 respectively, we

can perform full disambiguation according to the updated weight distribution, via w1|k where

k ∈ [5, 10]. In addition in the second test case shown in Fig. 4.3 we see that even after new

information has been acquired along the trajectory, we still have an ambiguous setting with or

without the merging effect: the corresponding weight distribution of the current belief includes

several non-negligible hypotheses at k = 10, as shown in Figs. 4.3e and 4.3f. This is in contrast

to the first scenario that after merging shows a single none negligible weight as shown in

Fig. 4.2f. Nevertheless, as shown in Figs. 4.2d and 4.3d, our approach to update the weights in

retrospective utilizing the information acquired until time k leads to more informative weight

distributions. In particular, in both considered scenarios one of the hypotheses’ value becomes

substantially higher than the rest.
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(a) b[X1], M1 = 4 (b) b[X10], M10 = 28

(c) b̃[X10], M10 = 4 (d) wi
1|1

vs wi
1|10

(e) wi
10

, i ∈ [1..28] (f) w̃i
10

, i ∈ [1..4]

Figure 4.3: ]

Second scenario: (a) The belief at k = 1, our re-eveluation point, is a GMM with four

components. The hypothesis marked in green, states the correct hypothesis generated from the

landmark associated to the given measurement. (b) The updated belief at current time, k = 10.

Due to the ambiguity of the environment, the number of hypotheses increased from M1 = 4 to

M10 = 28 given pruning. (c) The belief at k = 10 with the merging effect, reduces the number of

hypotheses to M10 = 4. (d) The calculated weight distribution at time k = 1 given the gathered

information up to time k = 1, and given information up to time k = 10. The green circle marks

the weight of the correct hypothesis as shown in 4.3a. (e) The current weight distribution of

b[X10], i.e. wi
k=10|k=10

, where M10 = 28. (f) Current weight distribution after merging, b̃[X10],

where M10 = 4.
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4.1 Run-Time analysis and Entropy calculation

(a) Run-Time as a function of S (b) Runtime as a function of p

Figure 4.4: (a) Run-Time in seconds of wi
k−4|k

calculation vs. number of samples S . The calculation was performed for both the

naı̈ve and the proposed incremental approach. (b) Run-Time in seconds of wi
k−p|k

calculation vs. p for the naı̈ve and the proposed

incremental approach.

We also report runtime for both the naı̈ve and our incremental approach. For the first scenario

we calculated runtime as a function of number of samples S ∈ [50, 1000], where the result per a

number of samples is the statistical average of 20 runs. As shown in Fig. 4.4a the naı̈ve approach

calculation grows in a higher rate than the incremental. For the second scenario, as shown in

Fig. 4.4b, we calculated the runtime as a function of the parameter p, see e.g. (2.4), where for

this analysis the number of samples was fixed at 100. The runtime of the naı̈ve approach shows

a growth at a rate of p2, while the incremental one increases in a linear rate of p, which is in

correlation to our calculation in Section 3.6.1.

(a) H(w1| j), j ∈ [1..5] (b) H(w1| j), j ∈ [1..10]

Figure 4.5: a The histogram of weight distribution at k = 1 given information at different time points for the five steps trajectory

case, via H(wi| j) where j ∈ [1..5], and i ∈ [1..M1]. b The histogram of weight distribution at k = 1 given information at different

time points for the ten steps trajectory case, via H(w1| j) where j ∈ [1..10], and i ∈ [1..M1]..

In addition Figs. 4.5a and 4.5b show the entropy of the weight distribution at the ”re-

evaluation” point given information at different time instances, i.e. H(W1| j) = −
∑M1

i=1
wi

1| j
·

log(wi
1| j

) where j ∈ [1, k]. Both test cases show that as we use more information at the ”re-

evaluation” point, the level of uncertainty can reduce, although we should mention that this is

not guaranteed, since it is conditioned on the landmarks setting, and the randomized samples

values.
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4.2 Enhanced Pruning of Hypotheses at Current Time

In a similar simulation setting comprising eight identical landmarks and a trajectory of 10 time

steps we examined the enhanced pruning of hypotheses at current time after re-evaluation in

retrospective of past hypotheses (at k = 1), as discussed in Section 3.5. Results are shown in

Fig. 4.6.

Fig. 4.6a shows that at time k = 1 there are two un-pruned hypotheses, i.e. whose weights are

higher value than the pruning threshold th = 0.005. After we perform re-evaluation, hypotheses

w1
1|10

was pruned, and we remain with a single hypotheses w1
2|10

marked in orange. As discussed

in Section 3.5, all the descendant hypotheses of w1
1|10

can now be discarded. These hypotheses

are shown in blue color in the GMM ”hypotheses tree” in Fig. 4.6d. More in detail, Fig 4.6b

shows the weights of the original GMM belief at k = 10, with M10 = 14 components: 4

descendant hypotheses of w1
1

and 10 of w2
1
, marked in blue and orange, respectively. Note all

components are above the pruning threshold th. Fig. 4.6c shows the reduced GMM after pruning

all the blue hypotheses (descendants of w1
1|10

) and re-normalizing the weights. Thus, leveraging

the proposed concept the number of components reduces to 10.

(a) wi
1|1

vs wi
1|10 (b) wi

10
, i ∈ [1..14]

(c) w̃i
10

, i ∈ [5..14] (d) GMM weights spanning tree.

Figure 4.6: (a) The calculated weight distribution at time k = 1 given the gathered information up to time k = 1, and given

information up to time k = 10. (b) The weight distribution at k = 10. The descendants of w1
1

and w2
1

are marked in blue and orange,

respectively. In total we have M10 = 14 hypotheses (GMM components). (c) The updated weight distribution at k = 10, where all

descendants of w1
1

have been discarded after re-evaluation of the weights at k = 1. The number of hypotheses reduces to 10. (d)

The entire hypothesis tree describing the evolution of hypotheses (GMM belief components) from the initial time and until the

current time k = 10. Blue and orange colors represent descendant hypotheses of w1
1

and w2
1
, respectively.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We presented an approach to update probabilities of externally-specified hypotheses from some

past time with information obtained since then and until the current time. Our approach is

particularly of interest in the context of robust perception and autonomous navigation in am-

biguous and perceptually aliased scenarios, which necessitate reasoning about data association

hypotheses and thus to maintain mixture distributions such as GMM. In addition we developed

an incremental form for calculation re-use, as opposed to a naı̈ve approach that performs re-

calculation in each step. Another direct consequence of our approach is enhanced pruning of

hypotheses at current time, leveraging the updated weights of corresponding ancestor hypotheses

given information thus far. Our simulation shows that re-evaluation of a past time in a highly

aliased setting can assist with hypotheses disambiguation both in past and current time, and with

our ability to discard an entire branch(es) from the GMM hypothesis tree.

5.2 Future work

Possible directions for future work can be,

1. Study the performance of our approach in different real world settings, and see how it

effects the calculated run-time of our algorithm in appose to the naı̈ve approach.

2. Add uncertainty to our scattered landmark in a given setting, and explore how this effects

both the formulation of our solution, as well to the aspect of calculation time.

3. In our work we have explored the effect of current time information on a past strategic

point in the robot’s trajectory. However our work deals with the correlation of the full

GMM spanning tree resulted from the chosen hypothesis from time k − p. We think that

another interesting option would be to review a specific correlation between two different

hyptheses from two different time points.

4. Taking this platform to the planning phase.
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Chapter 6

Proof of Lemma 3.1

We now prove Theorem 3.1 from 3.3.3

Theorem 6.1. The expression for P(zm+ j | γm = i,H−
m+ j

) for any j ∈ [2, p − 1] is given by,

P(zm+ j | γm = i,H−m+ j) ≈

S∑

n=1

f (x
n,i
m+ j
, zm+ j) , η̂

i
m+ j. (6.1)

6.1 Base Case: j = p − 2

We wish to prove that,

P(zm+2 | γm = i,H−m+2) ≈

S∑

n=1

f (xm+2
n , zm+2). (6.2)

Performing marginalization and chain rule yields,

P(zm+2 | γm = i,H−m+2) =

NL∑

g=1

∫

xm+2

P(zm+2 | lg, xm+2)P(βm+2 = g | xm+2)P(xm+2 | γm = i,H−m+2)
︸                      ︷︷                      ︸

bi−
m [xm+2]

dxm+2 =

NL∑

g=1

1

|Ωlg |

∫

xm+2∈Ωlg

P(zm+2 | lg, xm+2)bi−
m [xm+2]dxm+2 (6.3)

Notice argument bi−
m [xm+2] is conditioned by H−

m+2
. where H−

m+2
includes a new obtained

measurement zm+1, therefore its calculation in (6.3) is not received in a direct form, as we will

show in the following section.

bi−
m [xm+2] calculation

First, let us perform marginalization over xm+1 and chain rule,

bi−
m [xm+2] ≡ P(xm+2 | γm = i,H−m+2) =
∫

xm+1

P(xm+2 | xm+1, um+1) · P(xm+1 | γm = i,H−m+2)dxm+1 (6.4)
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Second, we take the argument P(xm+1 | γm = i,H−
m+2

) from (6.4), perform Bayes rules, and

marginalization over all possible landmarks to obtain the measurement model,

P(xm+2 | γm = i,H−m+2) =

NL∑

g=1

1

|Ωlg |

∫

xm+1∈Ωlg

P(xm+2 | xm+1, um+1)
[ P(zm+1 | lg, xm+1)bi−[xm+1]

P(zm+1 | γm = i,H−
m+1
, am+1)

]

dxm+1 = (6.5)

1

P(zm+1 | γm = i,H−
m+1
, am+1)

NL∑

g=1

1

|Ωlg |

∫

xm+1∈Ωlg

P(xm+2 | xm+1, um+1)P(zm+1 | lg, xm+1)bi−[xm+1]dxm+1

P(βm+1 = g | xm+1), sets the boundaries of the integral where xm+1 in Ωlg . We start noticing

a strong resemblance to the calculation done for j = p − 1. A direct approach would be to

re-sample the propagated belief b−[xm+1] and receive a set of samples xn
m+1

with n ∈ [1..S ].

However, in such an approach we would need to recalculate from scratch the f (x, z) values. In

contrast we propose to re-use the previous taken samples of bi
[
xm+1] from the previous step, and

by that, re-use the calculated values of f (xn
m+1
, zm+1). By doing so (6.5) can be denoted as,

bi−
m [xm+2] ≈

∑S
n=1 P(xm+2 | x

n
m+1
, um+1) · f (xn

m+1
, zm+1)

P(zm+1 | γm = i,H−
m+1
, am+1)

(6.6)

In the nominator we have two arguments per given sample xn
m+1

, the first is the motion model,

and the second is the value of the f function for the given sample and measurement.

In order to calculate the denominator let us perform marginalization and chain rule over all

possible landmarks and state at xm+1,

P(zm+1 | γm = i,H−m+1, um+1) = (6.7)

NL∑

g=1

∫

xm+1

P(zm+1 | xm+1, lg)P(βm+1 = g | xm+1)P(xm+1 | γm = i,H−m+1)dxm+1 =

NL∑

g=1

1

|Ωlg |

∫

xm+1∈Ωlg

P(zm+1 | xm+1, lg)bi−[xm+1]dxm+1

let us notice that the received result is identical to the result of j = m + 1. As before we perform

reuse of the sampled values of bi−[xm+1] taken from the previous step, and calculated values of

f (xn
m+1
, zm+1), where n ∈ [1..S ]. Therefore we denote,

P(zm+1|γm = i,H−m+1) ≈

S∑

n=1

f (xn
m+1, zm+1) , ηi

m+1. (6.8)

By taking the denominator from (6.8) and placing it back in (6.6) we will get,

bi−
m [xm+2] ≈

S∑

n=1

P(xm+2 | x
n
m+1, um+1)

f (xn
m+1
, zm+1)

ηi
m+1

︸           ︷︷           ︸

ζ
n,i
m+1

(6.9)
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Since the motion model in (6.9) per a given sample of xn
m+1

is a Gaussian distribution we can

address bi−[xm+2] as a GMM with S components, where is fact ζ
n,i

m+1
is the normalized weight

of a given n component.

Now that we have shown that bi−
m [xm+2] can be addressed as a valid GMM, let us return to

(6.3). In resemblance to previous step of j = m + 1, P(βm+2 = g | xm+2) sets finite boundaries

to the integral, therefore in order to calculate we will sample bi−
m [xm+2] and receive a set of

samples, xn
m+2
, n ∈ [1, S ].

P(zm+2 | γm = i,H−m+2) =
1

S
·

S∑

n=1

NL∑

g=1

1

|Ωlg |
P(zm+2 | lg, x

n
m+2) (6.10)

As in previous sections we can replace the landmark associated index βm+2 = g, with the

landmark’s given coordinates, lg. For the same motivation of calculation re-use as before we

can present (6.10), as

P(zm+2|γm = i,H−m+2) ≈ ·

S∑

n=1

f (xn
m+2, zm+2) , η̂i

m+2 (6.11)

In conclusion we have proven that for the base case of j = m + 2, P(zm+2 | γm = i,H−
m+2

) ≈
∑S

n=1 f (xm+2
n , zm+2).

6.2 Induction assumption

Let us make the induction assumption for j = m + l − 1,

P(zm+ j−1 | γm = i,H−m+ j−1) ≈

S∑

n=1

f (xn
m+ j−1, zm+ j−1) (6.12)

Where xn
m+ j−1

, n ∈ [1..S ] is a set of taken samples from P(xm+ j−1 | γm = i,H−
m+ j−1

) � bi−
m [xm+ j−1].

33



6.3 Inductive step for j = m + l

We wish to prove,

P(zm+ j | γm = i,H−m+ j) ≈

S∑

n=1

f (xn
m+ j, zm+ j) (6.13)

We begin our induction proof by performing as before marginalization and chain rule over all

given landmark index’s at time m + j, and over the state at xm+ j,

P(zm+ j | γm = i,H−m+ j) =

NL∑

g=1

∫

xm+ j

P(zm+ j | lg, xm+ j)P(βm+ j = g | xm+ j)b
i−
m [xm+ j]dxm+ j (6.14)

Where bi−
m [xm+ j] � P(xm+ j | γm = i,H−

m+ j
). We notice the calculation of bi−

m [xm+ j] in (6.14),

resemblance to the calculation of bi−
m [xm+2] in (6.3). Again, in order to calculate bi−

m [xm+ j] we

use chain rule and marginalization over the previous state, via xm+ j−1, and landmark associations,

perform Bayes rule to substract the observation model for measurement zm+ j−1,

bi−
m [xm+ j] =

∫

xm+ j−1

P(xm+ j | xm+ j−1, um+ j−1) · (6.15)

[∑NL

g=1
P(zm+ j−1 | xm+ j−1, lg) · P(βm+ j−1 = g | xm+ j−1) · bi−

m [xm+ j−1]
]

dxm+ j−1

P(zm+ j−1 | γm = i,H−
m+ j−1

)

In order to calculate bi−
m [xm+ j−1] at (6.15) in the naive approach one needs to marginalize and

perform Byes rule till retrieving the calculations to the time of the hypothesis we wish to

reevaluate its weight. Instead let us look on the argument inside the brackets in (6.15), and see

it resembles the value of P(zm+ j−1 | γm = i,H−
m+ j−1

) from our induction assumption in 6.2. So

instead of the direct approach that requires recalculation and re-sample of bi−
m [xm+ j−1], we will

re-use the set of samples xn
m+ j−1

, and by that the set of calculated values of the f function from

the induction assumption. So (6.15) can appear as such,

bi−
m [xm+ j] ≈

S∑

n=1

P(xm+ j | x
m+ j−1
n , um+ j−1) ·

f (xn
m+ j−1

, zm+ j−1)

P(zm+ j−1 | γm = i,H−
m+ j−1

)
(6.16)

For the denominator in resemble to 6.1 we marginalize over all given landmarks and xm+ j−1,

and perform chain rule as before,

P(zm+ j−1 | γm = i,H−m+ j−1) =

NL∑

j=1

1

|Ωlg |

∫

xm+ j−1∈Ωlg

P(zm+ j−1 | lg, xm+ j−1)bi−
m [xm+ j−1]dxm+ j−1

≈
1

|Ωlg |

S∑

n=1

P(zm+ j−1 | lg, x
n
m+ j−1) � η̂i

m+ j−1 (6.17)
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By placing (6.17) into (6.16) we get,

bi−
m [xm+ j] ≈

S∑

n=1

P(xm+ j | x
m+ j−1
n , um+ j−1) ·

f (xn
m+ j−1

, zm+ j−1)

ηi
m+ j−1

︸                ︷︷                ︸

ζ
n,i
m+ j−1

(6.18)

In resemble to (6.9), in (6.18) we get a GMM with S components, where P(xm+ j | x
m+ j−1
n , um+ j−1)

is a motion model with Gaussian distribution per a given sample, xn
m+ j−1

,nd ζ
n,i

m+ j−1
acts as the

normalized weight for a given n hypothesis in the GMM.

Now after we have shown that bi−
m [xm+ j] is a valid GMM, we can take a set of samples xn

m+ j

where n ∈ [1..S ]. And by that (6.14) yields into,

P(zm+ j | γm = i,H−m+ j) ≈
1

S

S∑

n=1

NL∑

g=1

1

|Ωlg |
P(zm+ j | lg, x

n
m+ j) �

S∑

n=1

f (xn
m+ j, zm+ j), (6.19)

where (6.19) is what we wished to prove by induction.
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בעבודה זו כפי שנאמר אנו מניחים כי מודל שיוך המידע אינו מושלם, כיוצא מכך בניגוד 
לדעה הרווחת בו מניחים כי החישה מתבצעת רק בקורולציה עם אוביקט אחד, בעבודה  

זו אנו לוקחים בחשבון כי שיוך המידע של המדידה הנוכחית יכול להיות עם סט של  
' זמן מסויימת מתפצלת למס' אמונות החיות אוביקטים. על כן האמונה שלנו בנק

במקביל, כאשר כל אחת מהן הינה פונקציית הסתברות בעלת פילוג גאוסי, ויחדיו 
gaussian mixture model (GMM.)  למעשה כל היפותזה בסכום הכולל של הGMM  

מוכפלת בהסתברות שלה להיות ההיפותזה בעלת שיוך המידע ה"נכון", לאיבר זה אנו 
 , סך המשקלים הינו אחד. marginalization-(, כאשר כתוצאה כ weightמשקל ) קוראים

בנק' זמן הסופית נתון ומוגמר, וכעת עלינו  GMMאנו עוסקים במקרה הפסיבי בו ה  
לבצע הערכה מחדש של המשקל של היפותזת מפתח כלשהי מהעבר. בחישוב המלא אנו 

,   מקורי מוכפל בגורם עידכוןמציגים כי המשקל המעודכן הינו תוצאה של המשקל ה 
גורם זה הינו מכפלה של איברים כאשר כל איבר הינו עידכון הנובע מנק' הזמן  

בגישה שלנו אנו מציגים גישה  .הרלוונטית בין הזמן של היפותזת המפתח לזמן הנוכחי
אינקרמנטלית, שבה חישוב של כל איבר שכזה בצעד מסויים מתבססת על החישובים 

שנעשו בצעד שקודם אליו. יכולת זו של שימוש חוזר בחישובים מקטינה את זמן הריצה  
   לעומת הגישה של חישוב מחדש בסדר גודל.

ו משמעויות רבות, בהן מספר רב  בסימולציות שבוצעו נלקחו בחשבון סביבות בעלות ד
 .הסימולציות בוצעו בשני חלקים עיקרים  היו מפוזרים במרחב.ששל איברים זהים 

הסופי בתרחישים של בין חמישה לעשרה צעדים, והשני  GMMהראשון חישוב של ה  
בשתי   חישוב מחדש של פיזור המשקולות צעד אחד קדימה מנק' ההתחלה של הרובוט.

בעבודה זו אנו יכולים לראות כי על פי פיזור המשקולות בנק'   הדוגמאות המוצגות
בהינתן המידע  כן המפתח בזמן המקורי לא היה ניתן לבצע שיוך מדידה מלא,  ועם זאת 

 עד סוף המסלול. 
בנוסף על כך אנו משווים את זמני הריצה השונים של הגישה הנאיבית המבצעת חישוב  

, שאנו מציגים צעד קודםה ש חוזר בחישובים מחדש לכל איבר, וגם של הגישה של שימו
פונקציה של המרחק בין הזמן הנוכחי לנק' המפתח, וגרף שני  הינו כ גרף אחדכאשר 

 .כפונקציה של מס' הדגימות. שני הגרפים מראים יתרון ברור לגישה שאנו מציגים

באופן כללי   (pruning)נוסף על כך ביצענו סימולציות המראות את היכולת לבצע גיזום 
כאשר אנו משליכים את היכולת שלנו לבצע גיזום של היפותזת עבר על כל   ,יותר מהיום

  השפעותעץ ההיפותזות הנובעות ממנה, וזאת בדגש על אלו בזמן הנוכחי. לדבר יש מספר  
ההיפותזות הכוללות לאורך כל המסלול של הרובוט, והן  מעניינות, הן בצמצום מספר  

של   יותר צומצםממבחינת פיזור המשקולות בזמן הסופי כתוצאה מנירמול מספר 
 המשקולות. 

לסיכום אנו מאמינים כי עבודה זו מראה כי איבחון מחדש של היפותזות עבר בהינתן 
. גישה זו יכולה  חסינה לסביבות בעלות דו משמעותמידע חדש יכול לסייע בחישה יותר  

להילקח לכל מיני כיוונים, כמו ביצוע סימולציית בסביבה אמיתית בעלת דו משמעות,  
באופן קבלת ההחלטות של הרובוט בשלב   לבסוף הורדת ההנחה שהמפה ידועה מראש, ו

התכנון. 
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 תקציר

ניווט אוטונומי בסביבות לא ידועות הוא חלק חיוני במספר תחומים ברובוטיקה. במהלך  
המסלול של הרובוט קיימת אי וודאות באיכון המיקום של הרובוט, דבר אשר יכול לנבוע מאי  

וודאות הן בתנועת הרובוט והן בחישה עצמה. יש לציין  כי בנוסף לכך המיקום הראשוני של  
(. על מנת שנוכל לבצע שיערוך של  ”prior“ו ידוע באופן מוחלט ) נקרא הרובוט גם הוא אינ

מיקום הרובוט אנו מייצרים ווקטור של נעלמים המתאר את מיקום הרובוט לאורך המסלול.  
באופן כללי כאשר המרחב בו אנו נמצאים אינו וודאי גם כן, ווקטור המצב יכלול בתוכו גם תת  

 האוביקטים השונים במרחב.ווקטור המתאר את מיקום 
 ( . beliefמשערך זה אשר נבנה על ידי פונקציית הסתברות הידועה גם בשם אמונה )

 

אחד המרכיבים החיוניים הן בתהליך ההסקה והן בתהליך החישה הינו תהליך שיוך המידע  
(Data association) כלומר בעת קבלת מדידה, על הרובוט לבצע שיוך של המדידה הנוכחית ,

ל האוביקט הנכון במרחב ממנו היא התקבלה. אם זאת בעולם האמיתי במספר רב של  א
למשל מספר רב של כיסאות או שולחנות זהים המפוזרים   -תרחישים קיימת דו משמעויות 
( להיות יותר מתאגרת ופחות חסינה. יש לציין כי  perceptionבמרחב, דבר זה גורם לחישה ) 

גם עקב   ת אך ורק באוביקטים דומים, היא יכולה לנבועבעיית שיוך המידע אינה מסתכמ
 מגבלת המרחק של חיישני המדידה. 

נשאלת השאלה מה עלול לקרות עקב שיוך מידע לא נכון. אובכן בצורה הפשוטה דבר זה יכול  
לגרום לסטייה מסויימת מהמסלול האופטימלי של הרובוט, ולהגדלת אי הוודאות הקיימת  

ם. עם זאת במקרים מסויימים דבר זה עלול אף לגרום לתוצאות במרחב לפרק זמן מסויי
למשל הגעת הרובוט למבוי סתום, ועל כן יש חשיבות רבה לקחת זאת בחשבון בעת   -הרסניות 

 פיתוח גישות להסקה חסינה במרחב הסתברותי.

בתחום  עד כה בקהילת המחקר ברובוטיקה התעסקו בפיתוח גישות אלו, כאשר הרוב התעסקו 
ההסקה, וחלק קטן באופן המשפיע על בחירת סט הפעולות שנלקחות על ידי הרובוט  

)"תכנון"(. העבודות השונות התמקדו הן בפיתוח מודלים גרפים מעודכנים הלוקחים בחשבון  
את אי הוודאות הקיימת במרחב, מציאת דרכי עידכון אינקרמטליות על מנת לצמצם בזמני  

מציאת פעולה המקטינה את אי הוודאות המצטברת של   חישוב, ובמקרה האקטיבי,
ההיפותזות השונות בזמן מסויים. עם זאת יש לציין כי כל המחקרים המצויינים לעיל התעסקו  

בפיתוח גישות הסקה אשר מתעסקות בנק' זמן הנוכחית או העתידית במקרה של תכנון, אף  
עד נק' הזמן הנוכחית, על אי  אחת מהן לא שקלה את ההשפעה שיכולה להיות למידע שנאסף  

 וודאות מסויימת מנק' זמן עבר במסלולו של הרובוט.
 

עבודה זו מציעה גישה של עדכון היפותזות בדיעבד. כלומר לאחר שכל המידע נאסף עד נק'  
הזמן הנוכחית, אנו יכולים לבצע הערכה מחדש של נכונות היפותזת מפתח כלשהי מהעבר.  

לוקחים בחשבון את כל האי וודאויות שנאספו עד נק' הזמן   כאשר על מנת לעשות זאת אנו
עד לנקודת   הנוכחית. מוטיבציה לכך יכולה להינתן במקרה הפשוט שבו לאור המידע הקיים

המפתח לא יכולנו לבצע שיוך מידע נכון, עם זאת כאשר לוקחים בחשבון מידע שנאסף עד סוף  
  המסלול של הרובוט דבר זה הינו בר ביצוע.

סף לכך אנו מראים בעבודה זו איך לעדכון היפותזת עבר כלשהי יכולות להיות השלכות גם  בנו
( את הצאצאים של  pruningעל הערכה של שיוך מידע ספציפי, ובנוסף על היכולת שלנו לגזום )

היפותזת המפתח במקרה שבו החישוב מחדש מאפשר זאת 
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