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Abstract

As of today, most approaches that deal with the simultaneous localization and mapping (e.g.
SLAM) of the robot’s trajectory and surroundings assume that the data association, i.e.mapping
between sensor measurements and the observed environment (e.g.landmarks) , is given and
perfect. Such an assumption can be very problematic in the real world, especially in highly
ambiguous scenarios (for instance similar corridors), therefore Robust perception is a key
required capability in robotics and Al - Artificial Intelligence. In such cases, one has to maintain
multiple data association hypotheses which can be represented by a multi-modal belief. While
the SLAM community has been addressing relaxing the data association from the front-end for
some years now, current existing approaches are still computational expensive and address only
certain aspects of the general problem.

In this work we contribute a framework that enables to update probabilities of externally-
defined data association hypotheses from some past time with new information that has been
accumulated until current time. In particular, we show appropriately updating probabilities of
past hypotheses within this smoothing perspective potentially enables to disambiguate these
hypotheses even when there is no full disambiguation of the mixture distribution at the current
time. Further, we develop an incremental algorithm that re-uses hypotheses’ weight calculations
from previous steps, thereby reducing computational complexity. In addition we show how our
approach can be used to enhance current-time hypotheses pruning, by discarding corresponding
branches in the hypotheses tree. We demonstrate our approach in simulation, considering an

extremely aliased environment setting.






Abbreviations and Notations

BSP . Belief Space Planning

POMDP : Partially Observable Markov Decision Process.

SLAM :  Simultaneous Localisation and Mapping.

iISAM : Incremental Smoothing and Mapping.

GT-SAM : Georgia Tech-Smoothing and Mapping.

GMM :  Gaussian mixture model.

Xk . The robot’s pose at time k

Xk : The accumulative robot poses till at time k, denoted by X; = {xo, x1, ..., X}

Xi—p :  past state vector for any valid value of p € [1..k — 1].

Uy, . The robot’s action at time k.

Zk :  Captured observation at time k.

l; :  Landmark 7 representation where i € [1..L].

Bk : Measurement z; is associated to landmark (or object/scene) lg,-; , where i € [1..L].
H; . Accumulative vector of obtained measurements and actions till time &, via {z1.r, U1.k—1}.
H . The propagated history vector till time &, via {z1.x—1, U1:4-1}-

b[Xi] . Dbelief of state vector Xj, represented as a GMM.

b7 [Xi] :  The propagated belief of state vector X.

b'[Xk] : The i’th hypothesis of the belief at time k.

Vi : An indicator of a given i hypothesis at time k.

The indicator is a vector of DA till time k, meaning yx = {B0,51.... Bk} = i.

wjc :  The weight of the i’th hypothesis at time k.
My :  The number of hypotheses at time k.

2k : covariance matrix of state vector Xj.

H() . differential entropy.






Chapter 1

Introduction

1.1 Background

Autonomous navigation in uncertain or unknown environments is essential in numerous ap-
plications in robotics, such as search and rescue, autonomous cars, indoor navigation, and
surveillance. Once the robot operations take place in an unknown or uncertain environments, the
navigation process also involves environment mapping. The corresponding problem, known as
simultaneous localization and mapping (SLAM), has been extensively investigated [2—4] in the
last two decades by the robotics and computer vision communities, where current approaches
differ in various aspects, such as the inferred state, estimation method and sensors being used.

If we observe SLAM history as discussed by Durrant-WhyteandBailey in [5] we see first
approaches referring to extended Kalman filters, and maximum likelihood estimation. In
particular, a seminal work by Davison et [6] showed a first EKF-SLLAM system that works
online given a monocular imagery input. Yet, these early EKF-based approaches were not
well-suited to large scale operation, as calculations are made in the covariance form.

Later period was the algorithmic phase, during which the research community focused on
investigating and improving basic aspects in SLAM such as observability, convergence and
consistency. A number of approaches that improved the efficiency and optimization of the
problem are [7-11]. These works formulate SLAM as a maximum-a-posteriori estimation
problem, and often use factor graphs to exploit the inherent sparsity of the underlying matrices
and re-use calculations between consecutive time instances.

Computationally efficient online solvers that exploit the underlying inherent sparsity of the
problem and re-use of calculations are readily available [12-14].

Traditional SLAM approaches include two parts, commonly known as the “’front-end” and
the “back-end”. The latter maintains and updates a belief over robot past and current states
(e.g. poses) and mapped environment given the available data at each time instant. This data can
include any prior information, if exists, performed actions and captured sensor observations with
the corresponding data association (DA). The latter is determined by the front-end process, and
can be considered as associating observed scenes (e.g. in terms of landmarks) from current and

previous time instances. A correct association between an observed landmark and a received



measurement is crucial for accurate inference.

A key common assumption is that the data association has been correctly determined by
the front-end. Such an assumption, however, is less valid in presence of perceptual aliasing and
ambiguity. Figure 1.1 for instance illustrates how from the uncertainty of our pose space from
two different locations, one can observe two different landmarks from the scene space that will
generate the same measurement in the observation space. An incorrect data association can
lead to catastrophic results in inference/SLAM, e.g. the robot might deduce it is located in an
incorrect similar-looking corridor, while assuming it is perfectly solved within planning can

lead to sub-optimal actions, that could lead to collision and unsafe behavior, in general.

observation-space

Scene-space

pose-space

Figure 1.1: Two different landmark A; and A3 from the scene space can be associated to the same measurement, via Z from two
different poses, x and xv respectively. Figure taken from [15]

Relaxing the data association assumption would lead to robust perception approaches that
are much required while operating in the real world [2], which typically exhibit some level of
perceptual aliasing. Yet, this involves reasoning about DA as part of inference, and results in
a set of hypotheses, where each one is built by a possible landmark association to the given
measurement in hand. Such a formulation corresponds to a multi-modal belief, that can be

represented, e.g. by a Gaussian mixture model (GMM) [16, 17].

1.2 Motivation

While robust inference approaches have been actively investigated in the last few years, till
now existing approaches have dealt with relaxing the DA assumption while examining the state
distribution at the current time instant. Moreover, except of [18], typically calculations are done
from scratch for each time step, without calculation re-use.

In contrast, in this work we propose the notion of hypotheses disambiguation in retrospective,
i.e. after more information has been collected. Our approach enables to re-evaluate the proba-
bility of externally-defined, key strategic hypotheses from a past time, given the information
obtained up to the current time, while accounting for the data association hypotheses developed

since that past time. A motivation can be seen in Fig. 1.2. The illustration in Fig 1.2a shows



a general case where we isolate an ambiguous event from some past time k — p, and wish to
re-evaluate hypothesis i from that time given information obtained till time k.

We propose to utilize data that has been obtained since that time to update the posterior
probabilities of these key past hypotheses. We envision such a capability and the general concept
to be of interest in various contexts in robotics and beyond. For instance in Fig 1.2b we see a
specific setting where one cant disambiguate any of the hypotheses, both at time k — 1 and at
time k. In such a case examining the weight distribution at k — 1 given new obtained information
might assist in the re-evaluation of a selected action, or in distinguishing the correct hypothesis

by performing full disambiguation.

N
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(a) General problem illustration (b) Single step update setting

Figure 1.2: (a) In this work we aim to calculate the probability of externally-defined hypothesis from some past time k — p given the
information that has been obtained until current time k. In other words, we would like to calculate W;(,p‘ v = POrk-p =i | Hi). The
diagram illustrates, for simplicity, a branching factor of two, i.e. each hypothesis branches at the next time into two child hypotheses
(e.g. due to obtained measurement with an ambiguous data association). For instance, we might be interested in calculating the
weight wf_lpl » Which corresponds to probability of the hypothesis indicated by the blue node, given data until time £. (b) A toy
example illustration of the general concept from (a), where p = 1, the prior belief is a Gaussian Mixture with two components, and
upon performing an action the robot makes an observation z of one of two identical triangular landmarks. Due to ambiguous data
association, the number of components in the posterior belief at time & is four. Posterior and propagated beliefs are denoted by
solid and dashed lines, respectively. In this single step update scenario we wish to re-evaluate at time k the weight of hypothesis i
from time k — 1, i.e. Wi—l\k’ given the observation zi.



1.3 Related Work

In the past years the research community has been actively investigating robust inference
approaches to be resilient to false data association overlooked by front-end algorithms, i.e. by
relaxing the assumption that the DA provided by front-end algorithms is outlier-free. An early
work on DA is joint probability data association (JPDA) by Fortman et al. [19] which considers
all possible DA options in the context of multi-target tracking. Some previous works refer to the
case where a loop closure detection is reliable or false, by introducing a binary random variable
for each loop closure candidate and solving inference via expectation-maximization [20,21].
Sunderhauf and Protzel [22] introduced the so called switchable constraints to detect faulty loop
closures that lead to erroneous data association in back-end optimization. Other approaches
include the so called switchable constraints,see e.g. [23]. Carlone et al. [24] address the problem
from a different perspective, looking for a maximal coherent set among the given loop closure
candidates. Olson and Agarwal [25] proposed a robust approach that uses max-mixture models.
Wong et al. [26] presented a Dirichlet Process Mixture Model (DPMM) for data association in
partially observed environments. More recently, optimization approaches robust to outliers have
been investigated in works such as [27,28]. Finally, Fourie et al. [29] addressed computational
aspects, aiming to update the GMM belief incrementally. One limitation of their approach,
however, is that the association probabilities of a new measurement to different scenes/objects
are assumed to have a uniform distribution,i.e.identical weights.

Another relevant work on active hypothesis disambiguation in the context of object detection
and classification [30-33]. these approaches model a set of hypotheses for the landmarks pose
and class in a given setting, and wish to retrieve a set of view points that will allow to perform
full disambiguation, i.e. identifying the correct hypothesis. However this approaches assume
the robot’s location is accurate. [34] addresses the issue of active SLAM while reducing the
DA assumption, and wishes to find a set of actions to enable disambiguation and finding the
correct hypothesis in the belief. Although we should note that the author assumes ambiguous
setting only for initial belief, as well he assumes he can find a set of actions that leads to a full
disambiguation.

A recent and more robust approach was shown by Pathak et al. [16] targets perceptual aliasing
by explicitly reasoning about and probabilistically maintaining ambiguous DA hypotheses, in
both inference and belief space planning. In contrast to many of the works mentioned above, it
explicitly calculates the probability of different hypotheses, i.e. weights of GMM components,
rather than assuming these to be identical. In addition it works in a more robust setting allowing
ambiguous scenarios along the robot’s trajectory. Tchuiev et al. [17] extend the passive inference
formulation from [16] by utilizing semantic information and viewpoint-dependent classifier

models, as well as weight pruning to reduce the number of DA hypotheses.
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Contributions

While the above-mentioned approaches address inference considering the (GMM) belief from

the current time, we investigate a complimentary aspect, namely, utilizing current information

to re-evaluate the probability of past, externally-specified, DA hypotheses. Specifically, building

upon [16, 17] we develop a smoothing approach for updating the weights of past GMM beliefs,

while properly accounting for the ambiguous data association hypotheses that have been acquired

since then. Therefore, our main contributions are as follows:

1.

1.5

We introduce the problem of hypotheses disambiguation in retrospective, which, to the

best of our knowledge has not appeared thus far in literature.

We develop a probabilistic approach to update the probability of selected past hypotheses
considering a smoothing formulation, while properly accounting for the ambiguous data

association hypotheses that have been acquired since that time.

. We derive a scheme for calculation re-use within this approach to reduce computational

time.

We enhance hypotheses pruning also at current time, by leveraging the proposed concept
of past hypotheses re-evaluation in retrospective and drawing a connection between

hypotheses at current time and the corresponding ancestor hypotheses.

We evaluate our approach in simulation considering an extremely aliased environment

comprising identical landmarks.

Organization

This thesis is organized as follows.

1.

Chapter 2 introduces the belief in the GMM form, along with the basic setting this work

is based on. In addition represents the formulation of the problem in hand.

Chapter 3 describes the mathematical development of our approach, along with complexity
calculations for both approaches - the incremental one shown in this work, and the naive

one, without calculation reuse.

. Chapter 4 presents experimental results, and calculation comparison between both ap-

proaches.
Conclusions and possible future work are shown in Chapter 5.

For purpose of simplicity, the proof of the lemma 3.1 is moved into Appendix 6.
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Chapter 2

Notation and problem formulation

2.1 Notations

Let x; represent the robot current pose at time k, and denote by X; = {xo, X1, ..., X¢} all robot

poses until that time.

We define u; and z; to be, respectively, the robot’s action and captured observation at time
IZ|
i=1°

and known. We note that in case landmarks are uncertain, as in a typical SLAM setting, the

k. Further, we represent the environment by landmarks L = {/;}.”',, and assume they are static
observed landmarks up to time k would become part of the state Xj, and the formulation of our
approach can be straightforwardly adjusted to such a setting. We should note, however, that
such an extension will necessitate coping with the inherent curse of dimensionality, which is

outside the scope.

Furthermore, the concept presented in this work is applicable also to other environment
representations, such as grid-based localization, as long as one can formulate the corresponding

data association hypotheses (see e.g. [16]).

Further, denote data association (DA) at time k by a discrete latent variable Sy, i.e. measure-
ment z; is associated to landmark (or object/scene) lg, -, where p € [1,|L]]. It is important to
note that in the general case of obtaining a number of measurements in a single step, 8 would
have been addressed to as a vector built from the landmarks associated to each measurement, as
done in [17].

‘We use motion and observation models
X = g1, uk—1) +w 2z = h(xg, Ig) + v, (2.1)

where w ~ N(u,, 2y) and v ~ N(u,, Z,). The process and measurement covariance matrices,

%, and X,, as well as the functions g(.) and &(.) are assumed to be known.

Let history Hy represent all the robot’s actions and received measurements till time k along
with the set of known landmarks L, Hy = {zi:, k-1, L}. Similarly, denote by H, history
without the received measurement at time k, H,” = {z1:4-1, to:k-1, L}. The probability density

11



function (pdf), the belief, at time k over X} is then given by,
b[Xi] = P(Xi | H). (2.2)

Since we consider ambiguous scenarios, one cannot assume data association to be given
and perfect. Similar to [16, 17], the number of hypotheses at time k, without yet considering
pruning or merging, is given by all possible realizations of the sequence S1.x = {81, .. .,Bk}. For
convenience we denote y; = 1.1, and consider at time k to have M} hypotheses, i.e. y; € [1, M].
Thus, the ith hypothesis, i.e. y; = i, corresponds to a specific sequence of 8.

Hence, by marginalization of (2.2) over 4, and chain rule,

My
BIXil = ) Pyi = ilHi) - P(Xe | v = iy H), (2.3)
i=1

Wl HIX]

where b'[X;] and w;'c represent, respectively, the conditional belief and the weight of the ith
hypothesis at time k, and Zf‘;’kl w;'( = 1. Finally, we denote the propagated belief as the belief
conditioned on H,_ instead of Hy, i.e. without considering the measurement at the current time, 7.

Similarly, a propagated belief for the ith hypothesis is defined as b~ [X;] = P(Xy | yx = i, H)).

2.2 Problem Formulation

In this work we wish to re-evaluate, in retrospective, the probability of externally-specified
hypothesis (or hypotheses) from some past time, i.e. given new information acquired since then.
Specifically, we wish to re-evaluate a hypothesis weight for a given y;_, = i. Thus, our goal is

to calculate
Wi 2 POyk-p = i | Hy), (24)

where 1 < p < k. In other words, in this work we investigate a smoothing perspective considering
discrete random variables (data association hypotheses), which are, however, coupled with
continuous random variables (e.g. robot poses).

Another variant of this problem is to re-evaluate the probability of some past association,
Bk—p instead of a sequence of associations yi—, = B1:k—p. We consider this setting in Section 3.4.

We believe both problem variants can be of interest in different contexts: For example,
considering specific realizations of y,_, may be useful in terms of localization, as each such
realization corresponds to a posterior over X, see (2.3); This is in contrast to considering
specific data association realizations from past time k — p, i.e. Bx—p, which can be of interest
on its own. To shorten notations in the sequel, we denote m = k — p and re-write (2.4) as

anlk = P(7m =i | Hk)-

12



Chapter 3

Approach

3.1 Derivation of a General Formulation for wfnlk

In this section we develop a general formulation for calculating (2.4). First, we perform Bayes

rule considering the most recent measurement, zj:

P(zk [ ym = laH]:)
PG [Hy)

Plym =il Hy) = “P(ym =i | H-1),
—— —————

i
Winlk—1

where we use, here and in the sequel, the fact P(y,, = i | Hy—1, ug—1) = P(y;, = i | Hy-1), i.e. the
weights of a GMM are not impacted by the motion model.
i

Considering w we now repeat the above process and perform Bayes rule once again,

mlk—1°
which yields,
. P(zx |7m =i, H)
Pom =R = e Ty
k
IP)(Zk—l | Ym = I H/:_l)
: - “P(ym =11 He2) (3.1
P(Zk—l |Hk—l) 7—#/

i
Winlk—2

It is not difficult to see that performing Bayes rule sequentially in a similar fashion yields the

following formulation:

T2 Pk | ym = i H_))
-1 _
M7 PGy | Hy))

le\k

wfnlk = - (3.2)

Here, anm is the weight of the i-th GMM component at time m, while ¥, is the update factor

|
that is based on the data obtained in the period [m + 1, k]. Therefore, we need now to calculate
i

this term in order to get w’ .
mlk

Since the denominator in (3.2) is not conditioned on y,, = i, its explicit calculation can be

13



avoided. Instead, we first calculate the numerator,
p-1
W 2 [ Pl m =i H )Wl (3.3)

J=0

for all i € [1, M,,], i.e. all hypotheses from time m, and then normalize as

S

anlk = Winlk/ wfrdk‘ (3.4)

Q
Il
—_

Calculating (3.2) requires first computing the terms P(zx—; | v = i, H,:_}.) forall je[0,p—1].
In the next section we develop an approach to do so. Yet, naively, one would calculate each
of the above terms from scratch. In contrast, in Section 3.3, we derive an incremental version,

which re-uses calculations from previous steps.

3.2 Single Step Update, p = 1

We start with the simplest case of a single step update, i.e. p = 1 and m = k — 1, as illustrated in

fig 1.2b. In this case, the un-normalized weight from (3.3) is given by
Wi = P@rlym = i Hi) - Wh (3.5)

To calculate P(zklym = i, H,)) we marginalize over robot pose at time k and all the possible

landmark associations S for the measurement z;. Applying chain rule yields

IZ|

PQzklym =1, Hk_)ZZfP(ZkI,Bk =8 Xk Ym = L, H) -
g=1"%

PBx = g | X, 1g) - Py | v = i, Hy) dx, (3.6)
—_— — ——¥¥
bl [x]

where P(By = glxk, ym = i, H;)) = P(Brx = g | x, lg) indicates the probability of observing the
landmark [, from robot pose x;. Here, and throughout the paper, we use o, to indicate
conditioning on y,, = i.

We reiterate that, while we assume landmarks are known, in case landmarks are uncertain
and part of the belief, we would need to also marginalize over them in (3.6).

Furthermore, for simplicity in this work we model P(8; = g | xx, l;) as a uniform distribution
with some finite support €, (i.e. only for certain viewpoints, a given landmark is within sensor’s
field of view), and re-write (3.6) as

IL|
R 1 i
P(Zkl7m=l,Hk)=§ o P(zx | Ly, x1)byy, [xi 1d X 3.7
g=1 4

Xk €Qy,

Since an analytical solution is not feasible, we resort to a sampling based approach and ap-

14



S

proximate (3.7) considering a set of {xZ’i }n:] sampled values from b~ [xi], with S denoting the

number of samples:

S L

1 n,i
Py = i, Hy)~ sz PGl o, (4, (3.8)

n=1 g=1

where 1 Q, (x) is an indicator function, indicating if landmark [, is within sensor’s field of view
from pose x.

Finally we calculate W;c—ll . Via normalization as in (3.4).

3.3 Multiple Steps Incremental Calculation of anlm+ »

In the previous section we addressed the calculation of a single step update considering p = 1.
In this section we consider the general case of 1 < p < k, as illustrated in Fig. 1.2a, and develop
a formulation to calculate the terms P(zx—; [ yim = i, H]:_j) from (3.2) for all j € [0, p — 1]. While
a naive approach would calculate each of these terms from scratch, we develop an incremental
version that allows to re-use calculations between different values of ;.

We start by considering j = p — 1 and j = p — 2, and then discuss calculations for a general
jel0o,p—1].

331 j=p-1

The corresponding term in (3.2) for j = p — 118 P(z+1lym = i, H, ). One can observe this
is identical to the single step update case considered in Section 3.2, yet here we consider a

single step from m = k — p. Therefore, following a similar process we generate a set of samples

{xfnirl} from the propagated belief b~ [x,41],
biy [Xme1] 2 POt | Hop s Yo = 1), 3.9)
and approximate P(z,,+1lym = H ) as
S L
Z Z P @nsille 1 Ta (L), (3.10)
n=1g Q|
which corresponds to (3.8). Note that for this first step, i.e. j = p -1, b, ~[xn+1] is @ Gaussian

distribution. To shorten notations in the following sections, we denote

IZ]

1
S22 < Z il e, (0. 3.11)

Intuitively, f(x,z) represents the probability of obtaining a given measurement z from robot

pose x considering all possible data associations to the |L| landmarks. Finally, substituting (3.11)

15



into (3.10) yields

S
Pt | Ym = i Hopo) ~ D FO L zma). (3.12)
n=1

332 j=p-2

We now consider calculation of the term P(zy+2 | ym = i, H, ;) from (3.2). Similarly to (3.7),

performing marginalization and chain rule, yields

IZ|

1 i
Nrow P2 | Igs Xms2)by [mi2)dxms, (3.13)
g=1 g xm+2€ng

where, as in (3.9), b}, [Xms2] £ P(tmez | H, oy Vi = 0).
Performing chain and Bayes rules, marginalizing over x,,.; and data association hypotheses

for z,,,41 yields

L]

by ozl = |

M+ g=1
P(Zm+1 | lga xm+l)b£;[xm+l]dxm+ly (3.14)

1
o P(xma2 | Xims1s Uma1)
Ly Xm+IEQIg

i

where i\ | = Pmsr | H 5y Yim = 1)

In practice, we approximate bi-[x,,+2] and 7' . via sampling, considering S samples from

i
m+1

b;;[xm+1]:
. S . .
by Dimaal & 20 P | X0 ), (3.15)
n=1
and
TS L CLE SRV, N (3.16)

with i 2 35 | f(x™ | Zpe1), such that ¥5_, & = 1.

Note, the set of samples {x’;;il} from bﬁ; [xm+1] was already obtained from section 3.3.1.

Further, observe that b;; [Xm42] from (3.15) corresponds to a mixture belief over x;,,.», where
each of the samples x”;ﬂr | from the previous step is propagated via the transition model (2.1).
Thus, in context of Sequential Monte Carlo (SMC), this corresponds to the bootstrap particle
filter [35], i.e. where the proposal distribution is chosen to be transition model. Yet, here we also
account for ambiguous data association aspects. Thus, as we consider in this work Gaussian
models (2.1), bf,; [Xm+2] is a GMM belief with S components, where g“,’;’il is the weight of the
nth component.

Note that in (3.15) and (3.16) we have f (x:;i 1> Zm+1)- Instead of calculating it from scratch

considering samples xfr;i] from the propagated belief b'-[x,,.1], our key observation is that it is
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already available from the calculations for j = p — 1, see (3.12).
As before, we approximate the integral in (3.13) by generating a set {le’id}i:l of § samples

from the GMM bﬁ; [xm+2] from (3.15), thus approximating P(zy+2 | ym =i, H, ) as

IL| S

1 1
S ; ]

which, recalling the definition (3.11), can be finally written as

P(amsa | L, X oy (X0, (3.17)
1

n=

S
P2 | Y = by Hopo) > Y F(0hy, 2042) £ - (3.18)
n=1

3.3.3 General case

We are now in a position to calculate P(z+j | ym = i, H, j) for the general case. This is stated

in the following Theorem.

Theorem 3.1. The expression for P(zy+j | ym = i, H . ) from (3.2) for any j € [2,p — 1] is

m+j

given by,
S . .
e | Y = i Hyp ) D FOO 2 ) 2 . (3.19)
n=1

A detailed proof via induction is given in 6.
Informally, as in (3.13), P(zj+j | ym = i, H,, +j) can be written as

IZ]

1 i
E m P(Zm+j | lga xm+j)b;n [xm+j]dxm+je (3.20)
g:1 lg xl)H_je-ng

where bﬁ; [xm+;]is a GMM of § components,

S
Dy e 1 = ) Gt B | X0 st jo1), (3.21)
n=1
where, similar to (3.16),
iy 2 PO T D s (3.22)

with ﬁfn+j—l 2 S f(x:;ij—l’zmﬂ—l)-
The next step is to approximate the integral in (3.20) via sampling from the GMM '™ [x,,4 1,
which yields (3.19).
Similarly to Sec. 3.3.2, calculation re-use can be performed also for the general case
1

n=1’

considered here. To see that, note the set of samples {(x™

it j—1 as well as the corresponding

n,i i . .
values f(x,~. 10 Zm+ j~1)andn 4jo1 are already available to us from calculations performed for

17



the previous step, i.e. for j — 1, and thus can be conveniently re-used. In contrast, in the naive
approach, one would have to re-sample the entire chain from scratch, i.e. starting with m + 1

and until m + j — 1.

3.3.4 Final calculation of ‘¥,

Based on (3.3), the un-normalized weight wjnl s

p—1
W~ | 1 Wi (3.23)
=0

As mentioned in Section 3.1, calculating the normalized weight wfn can be done via (3.4),

Ik
which requires to first calculate Wf’nlk for all hypotheses from time instant m, i.e. Yq € [1, M,,].
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3.4 Re-Evaluation in Retrospective of a Specific Data Association
Hypothesis

In a similar manner, we can also consider a specific data association hypothesis B, = ¢ from
some past time k — p, with ¢ € [1,|L|], rather than a sequence of data association hypotheses

Yk-p = B1u-p = i as done above. Note i € [1, My_,]; without pruning My, = |L[*P.

Indeed, by marginalizing over yy_,-1 = B1.x—p-1 We get
Mi—p—
PBip = cIHO=). PBip = ¢, frap1 = LIHp). (3.24)
=0

However, recall yx_, = B1.k—p, Which can assume M;_, = My_,_1 - |L| values. Further, the
probability for the ith realization of y;_, conditioned on Hy, i.e. Wi—mk with i € [1, My_,], is
given by (3.2).

We now observe the index i designates a combination of some specific realization [ of
Yk-p-1 = Bri—p-1 and some specific realization r of B;_,. We shall denote these specific

realizations for a given i as i./ and i.r, respectively (standing for left and right).

Recall that w;'(_p is available for any i € [1, M_,] from (3.2), see Section 3.3.4. Based on

(3.24), we get
M-,

PBip = clH) = > wi_y T, (3.25)
i=1

i.e. we sum only those realizations of y;_, that consider the ¢’th data association from time

k—p.

bﬁ=2
9
O
OA ﬁzih h;:z O
O: OA: 8 ® O
: O':;z OA Agls * O
E O R At O
O O"Lit0
O O
. - O
k=0§ k=1 k=2 i k=0 k=1 k=2 Q i

(a)

E

Figure 3.1: An example scenario on how new information can effect a specific DA evaluation. In 3.1a the DA evaluation, via
P(B, = I3 | Hy) will be equal to the summation of the hypotheses weights that were generated by 8, = /3, meaning v, and
After performing re-evaluation as seen in 3.1b the value of the weights is updated, and as a direct result our specific DA evaluation

is updated as well, viaP(8, = I3 | H3) = wéB + wgB.
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The example above shows a simple case where at time k& = 2 as shown in 3.1a the orange
and green hypotheses are resulted from the same DA, via 8, = [3. Therefore the value of the
probability for this specific DA to be the correct one, would be the summation of the weights for
both of this hypotheses, meaning the and weights. In 3.1b we obtain information
at k = 3, therefore in a direct from, our updated weights due to re-evaluating the previous step

weight distribution, would effect our ability to re-evaluate a specific DA as well.

3.5 Enhanced Pruning of Hypotheses at Current Time

Another immediate implication of our framework is the ability to enhance hypotheses pruning
at current time. In detail, consider we re-evaluated in retrospective hypotheses i € [1, M,,]

from past time m = k — p, i.e. w};_ as discussed in Section 3.3.4. Then, considering some

plk>

user-specified pruning threshold th, for any ch—p < th we can prune also all its descendant

13
hypotheses at time k.

More formally, considering the jth hypothesis at time k with j € [1, M], i.e. vx = Brx = J,
we again observe that index j designates a combination of some specific realization of B4,
and some specific realization of B;_p+1:x. In a similar fashion to Section 3.4, we shall denote
these realizations for a given j as j.[ and j.r, respectively (standing for left and right). Then, for
any w;;_plk < th we can prune all hypotheses j € [1, M;] from current time k that satisfy j.[ = i.
In other words, each hypothesis j € [1, M] is pruned if its ancestor hypothesis from time & — p,

with index j.[ is below the pruning threshold ¢h. The updated hypotheses’ weights are therefore

Wi = Wi ' ]l{j.n(Wi'ka > th). (3.26)

J

In order to retrieve a valid GMM the weights should be re-normalized to sum to one, i.e. w;

vT/k' / Z?/I:kl Wi, and the zero-weight (pruned) hypotheses discarded.

We note that, in general, a hypothesis j pruned this way may be above a pruning threshold,
i.e. W‘li > th, and thus would not be pruned without re-evaluating its ancestor hypothesis in

retrospective, as suggested herein. We demonstrate this aspect in the results section.
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Figure 3.2: An example for enhanced pruning, where re-evaluation of a strategic point from the past, can result in pruning of all of
the decedents of a given hypothesis. At 3.2a Both hypotheses at k = 1 above threshold, therefore a full GMM tree is created till
k = 3. Where in 3.2b we see that W%B is below pruning threshold, therefore all descendants of /- can be pruned.

In the example above we see a case where at k = 1 none of weights are pruned given the

information till that time, this resulted in a full GMM spanning tree created till k£ = 3, as seen in

2
1

threshold, therefore all of its descents can be pruned as well, and specifically the once at current

3.2a. Yet on the other hand, when we perform re-evaluation, we notice w 5 is below pruning
time, via k = 3, as seen in 3.2b. By that our updated GMM at current time holds four hypotheses

instead of eights, with updated values for there weights, as a result of normalization.

3.6 Computational Complexity Aspects and Algorithm

3.6.1 Computational Complexity

Calculating wfn " involves computation of the unweighted weights W’ ., using (3.23), for each

q
mlk’
of the M,, hypotheses from time instant m, and then normalization via (3.4). For each given
q € [1,M,], following (3.23), this involves calculating ﬁZ_j for all j € [0,p — 1], i.e. from
AL =, until 7 = 4%,

In the naive approach, such calculations are performed from scratch for each ﬁz_j. In other
words, as described in previous sections, this involves sequentially sampling the beliefs from
time instances k until k — j, for each j € [0, p — 1]. Assuming the same number of samples
is taken at each time, for a given j, with j € [0, p — 1], this operation involves generating S
samples j times. Hence, evaluating (3.23) is

: g2 U4Epp

-8 € O(p*S).

As this evaluation has to be performed M,, times, the overall complexity of the naive
approach is O(pS M,,).

In contrast, our approach uses calculations in a recursive form, therefore we only need N
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samples for every calculation of nZ_j. Thus, evaluating (3.23) is

S + S +...+ =p-Se€e0(p-S),
j=p-1 j=p=2 =0

and the corresponding overall complexity of our approach is O(pS M,,), i.e. one order of

magnitude smaller in p than the naive approach.

3.6.2 Algorithm

Algs. 3.1 and 3.2 summarize our approach from Section 3.3.

Algorithm 3.1 w} , calculation

: Inputs:

: Hy: History at time k

: b[X,,]: GMM belief at time m =k — p
i hypothesis index from time m = k — p

: for q=1:M,, do
g .
Calculate Wi USing Alg. 3.2.
: end for
. » Normalization via (3.4)
D My ~q
10: Wik = "flm\k/ Zq:l Wonlk

e A AR S

11: return w'
mlk

Algorithm 3.2 vT/fn " calculation with computation re-use

Inputs:
2: Hy: History at time k

b[Xn]: GMM belief at time m = k — p
4: g: hypothesis index from time m = k — p

6: for j=1:pdo

if j = 1 then
8: Sample set {XZZ] }i:] from b [x,,41], see Sec. 3.3.1
else
10: Reuse {{Z’Z./_l }f:] to form a GMM belief b, [x,+ ;1 from (3.21)

nq

N q-
m+!}n:1 from by, [Xm+ ]

Sample set {x
12: end if

Calculate ﬁ; i using samples {x"7 }S

xm+j n=

14: Calculate weights {(:'ﬁ].}il via (3.22) for sample set {x:;’zj}jzl
end for

16: Calculate and return W'

, as shown in (3.19).

fnlk via (3.23):
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Chapter 4

Results

In this section we examine our proposed algorithm in simulation considering an extremely
perceptually aliased environment comprising |L| = 8 identical spatially scattered static known
landmarks. Our simulations are based on the GTSAM library [13] with a Matlab wrapper.
The robot acquires relative pose observations to landmarks during its motion, yet the data
association is not assumed to be externally provided, i.e. it is unknown which landmark generated
each observation. Two scenarios of 5 and 10 time steps and differently scattered landmarks are
considered, as shown in Figs. 4.1a and 4.1b. In both cases, the robot starts with a uni-modal

Gaussian prior belief on its initial location, 5[ Xy] and performs a pre-defined trajectory.

En
8 End ~ 15 (\
A (
6 A
» ® \
> > 10
4 A
A ‘AAjr’
2 5 A
AL O\A A
0 5 10 0 5 10 15
Xs Xs
(a) Robot’s trajectory (b) Robot’s trajectory b

Figure 4.1: Ground truth trajectory for both for five steps as shown in a, and ten steps as shown in b. Both figures also show the
initial prior belief, and ambiguous landmark setting.

We use a diagonal process covariance matrix X,, with standard deviation (std) of position
of 0.5 meters and std of orientation of mrad. The measurement covariance matrix %, is also

diagonal with position std of 0.48 meters and orientation std of 0.87 - 1072 radians.
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Figure 4.2: ]

First scenario:(a) b[X;=] is a GMM with five components. We choose this point as our "’re-
evaluation” point, where we test our algorithm. The hypothesis marked in green, states the
correct hypothesis generated from the landmark associated to the given measurement. Notice
that the bolder lines correspond to a higher weight of the hypothesis. (b) GMM belief at k = 5;
we should note that the number of components doesn’t increase from the “re-evaluation” point
as a result of pruning. (¢) The belief at k = 5 after merging, which reduces the number of
hypotheses to Ms = 2. (d) The calculated weight distribution at time k = 1 given the gathered
information up to time k = 1 (see (b)), and given information up to time k = 5. The green circle
marks the weight of the correct hypothesis as shown in (b). (e) The current weight distribution
of b[Xs] as shown in (b), via wf{lek:S, where i € [1..Ms] and M5 = 4. (f) Current weight
distribution after merging, i.e. b[Xs], where Ms = 2.
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Figs. 4.2 and 4.3 show the results for both scenarios. At each time step k, following
[16,17], we update the belief from the previous time with the performed action and acquired
observation with unknown data association, producing b[Xy] from (2.3). For each case, we show
in Figs. 4.2(a)-(b) and Figs. 4.3(a)-(b) the corresponding posterior GMM belief, shown in blue

at specific time instances of interest.

Theoretically, the number of GMM components, grows exponentially according to the
recursion My = Mj_; - |L|. However, we prune components with negligible weights and show
only the remaining components. Further, similarly to [16,17], we occasionally merge sufficiently
similar components, as shown in Fig 4.3c and 4.2c. We use the notation & to denote the belief

and components weights after merging.

Given the above, in both scenarios we consider the ith data association hypothesis from time
instant 1, and execute Alg. 3.1 to re-evaluate its probability in retrospective, i.e. given current

time is k we calculate w’i e

For each step in our weight update we take a set of S = 1000 samples from the GMM
created via (3.21). In our current implementation, samples are taken globally from the entire
GMM, where the number of samples per each component is determined according to the GMM

weights distribution.

The results for the first and second scenarios are shown, respectively, in Figs. 4.2d and
4.3d. In both cases we can see that at k = 1 we lack the ability to disambiguate between the
hypotheses, however when using the information up to time £ = 5 and k = 10 respectively, we
can perform full disambiguation according to the updated weight distribution, via wy where
k € [5,10]. In addition in the second test case shown in Fig. 4.3 we see that even after new
information has been acquired along the trajectory, we still have an ambiguous setting with or
without the merging effect: the corresponding weight distribution of the current belief includes
several non-negligible hypotheses at k = 10, as shown in Figs. 4.3e and 4.3f. This is in contrast
to the first scenario that after merging shows a single none negligible weight as shown in
Fig. 4.2f. Nevertheless, as shown in Figs. 4.2d and 4.3d, our approach to update the weights in
retrospective utilizing the information acquired until time k leads to more informative weight
distributions. In particular, in both considered scenarios one of the hypotheses’ value becomes

substantially higher than the rest.
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Second scenario: (a) The belief at k = 1, our re-eveluation point, is a GMM with four
components. The hypothesis marked in green, states the correct hypothesis generated from the
landmark associated to the given measurement. (b) The updated belief at current time, k = 10.
Due to the ambiguity of the environment, the number of hypotheses increased from M| = 4 to
Mo = 28 given pruning. (c¢) The belief at k = 10 with the merging effect, reduces the number of
hypotheses to My = 4. (d) The calculated weight distribution at time k = 1 given the gathered
information up to time k = 1, and given information up to time k = 10. The green circle marks
the weight of the correct hypothesis as shown in 4.3a. (e) The current weight distribution of
b[Xi0], 1.e. wk 10Kk=10° where M1y = 28. (f) Current weight distribution after merging, b[Xi0],
where Mo = 4.
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4.1 Run-Time analysis and Entropy calculation
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(a) Run-Time as a function of S (b) Runtime as a function of p

i
k—4ik )
naive and the proposed incremental approach. (b) Run-Time in seconds of w;ﬁp‘ « calculation vs. p for the naive and the proposed

incremental approach.

Figure 4.4: (a) Run-Time in seconds of w calculation vs. number of samples S. The calculation was performed for both the

We also report runtime for both the naive and our incremental approach. For the first scenario
we calculated runtime as a function of number of samples S € [50, 1000], where the result per a
number of samples is the statistical average of 20 runs. As shown in Fig. 4.4a the naive approach
calculation grows in a higher rate than the incremental. For the second scenario, as shown in
Fig. 4.4b, we calculated the runtime as a function of the parameter p, see e.g. (2.4), where for
this analysis the number of samples was fixed at 100. The runtime of the naive approach shows
a growth at a rate of p?, while the incremental one increases in a linear rate of p, which is in

correlation to our calculation in Section 3.6.1.

1
0.8
0.5
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@ Hewyp). j € [1.5] ) HOwyp), j € [1..10]

Figure 4.5: a The histogram of weight distribution at k¥ = 1 given information at different time points for the five steps trajectory
case, via H(w;;) where j € [1..5], and i € [1..M;]. b The histogram of weight distribution at k = 1 given information at different
time points for the ten steps trajectory case, via H(wyj;) where j € [1..10], and i € [1..M1]..

In addition Figs. 4.5a and 4.5b show the entropy of the weight distribution at the “re-
evaluation” point given information at different time instances, i.e. H(Wy;) = — Z,I-Z f w"”j .
log(w] |j) where j € [1,k]. Both test cases show that as we use more information at the re-
evaluation” point, the level of uncertainty can reduce, although we should mention that this is
not guaranteed, since it is conditioned on the landmarks setting, and the randomized samples

values.
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4.2 Enhanced Pruning of Hypotheses at Current Time

In a similar simulation setting comprising eight identical landmarks and a trajectory of 10 time
steps we examined the enhanced pruning of hypotheses at current time after re-evaluation in
retrospective of past hypotheses (at k = 1), as discussed in Section 3.5. Results are shown in
Fig. 4.6.

Fig. 4.6a shows that at time k = 1 there are two un-pruned hypotheses, i.e. whose weights are
higher value than the pruning threshold ¢4 = 0.005. After we perform re-evaluation, hypotheses
W}|10 was pruned, and we remain with a single hypotheses W%uo marked in orange. As discussed
in Section 3.5, all the descendant hypotheses of w{uo can now be discarded. These hypotheses
are shown in blue color in the GMM “hypotheses tree” in Fig. 4.6d. More in detail, Fig 4.6b
shows the weights of the original GMM belief at k = 10, with M9 = 14 components: 4
descendant hypotheses of w% and 10 of w%, marked in blue and orange, respectively. Note all
components are above the pruning threshold th. Fig. 4.6c shows the reduced GMM after pruning
all the blue hypotheses (descendants of willo) and re-normalizing the weights. Thus, leveraging

the proposed concept the number of components reduces to 10.
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(c) WliO’ i€[5..14] (d) GMM weights spanning tree.

Figure 4.6: (a) The calculated weight distribution at time k = 1 given the gathered information up to time & = 1, and given
information up to time k = 10. (b) The weight distribution at kK = 10. The descendants of w: and wf are marked in blue and orange,
respectively. In total we have Mo = 14 hypotheses (GMM components). (¢) The updated weight distribution at k = 10, where all
descendants of w{ have been discarded after re-evaluation of the weights at k = 1. The number of hypotheses reduces to 10. (d)
The entire hypothesis tree describing the evolution of hypotheses (GMM belief components) from the initial time and until the
current time k = 10. Blue and orange colors represent descendant hypotheses of w{ and n'f, respectively.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We presented an approach to update probabilities of externally-specified hypotheses from some
past time with information obtained since then and until the current time. Our approach is
particularly of interest in the context of robust perception and autonomous navigation in am-
biguous and perceptually aliased scenarios, which necessitate reasoning about data association
hypotheses and thus to maintain mixture distributions such as GMM. In addition we developed
an incremental form for calculation re-use, as opposed to a naive approach that performs re-
calculation in each step. Another direct consequence of our approach is enhanced pruning of
hypotheses at current time, leveraging the updated weights of corresponding ancestor hypotheses
given information thus far. Our simulation shows that re-evaluation of a past time in a highly
aliased setting can assist with hypotheses disambiguation both in past and current time, and with

our ability to discard an entire branch(es) from the GMM hypothesis tree.

5.2 Future work

Possible directions for future work can be,

1. Study the performance of our approach in different real world settings, and see how it

effects the calculated run-time of our algorithm in appose to the naive approach.

2. Add uncertainty to our scattered landmark in a given setting, and explore how this effects

both the formulation of our solution, as well to the aspect of calculation time.

3. In our work we have explored the effect of current time information on a past strategic
point in the robot’s trajectory. However our work deals with the correlation of the full
GMM spanning tree resulted from the chosen hypothesis from time k — p. We think that
another interesting option would be to review a specific correlation between two different

hyptheses from two different time points.

4. Taking this platform to the planning phase.
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Chapter 6

Proof of Lemma 3.1

We now prove Theorem 3.1 from 3.3.3

Theorem 6.1. The expression for P(zpsj | ym =i, H,, , j) forany je[2,p—1]is given by,

S
Pmej | Vi = i Hyp ) & > OO ) 2 iy (6.1)
n=1
6.1 BaseCase: j=p—-2
We wish to prove that,
s
Pmea | Y = i Hpo) = ) 072, 20). 6.2)
n=1
Performing marginalization and chain rule yields,
Ny
P2 | Ym =1, H,:Hz) = Z P(zms2 | lg, Xms2)PBni2 = & | Xma2) P2 | Y = 1, H;H_z) dxpin =
o by Lo
Z T~ 1 P(Zm+2 | lg’ xm+2)b£; [xm+2]dxm+2 (63)
g=1 |ng| Xn+2 €€,

Notice argument bi,j [xm+2] is conditioned by H, ,. where H , includes a new obtained
measurement z,,1, therefore its calculation in (6.3) is not received in a direct form, as we will

show in the following section.

bi [Xm+2] calculation

First, let us perform marginalization over x,,;; and chain rule,

b [xXms2] = P(an | Y = i, H, ) =

f P2 | Xmats Ume1) - Ppgr | ym = 1, H,:1+2)dxm+1 (6.4)
Xm+1
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Second, we take the argument P(xy+1 | ym =i, H, ;) from (6.4), perform Bayes rules, and

marginalization over all possible landmarks to obtain the measurement model,

_ i 1 P(Zm+l I lg, xm+l)bi_ [xm+1]
+2) = Z 0.1

P(ons2 | X1, Mm+1)[ ]dxm+1 =(6.5)

— |ng| X+ 1€ P+t | Ym = 4, Hm+1aam+1)

N

Pxps2 | ym =1, H

1 1

]P(Zm+l | Ym = I Hm+1aam+l) g=1 |ng| Xon+1 €Q

P2 | X1 Ut )P @ma1 | Lgs Xoms 1D (a1 1d X1

P(Bm+1 = & | Xm+1), sets the boundaries of the integral where x,,.; in Q. We start noticing
a strong resemblance to the calculation done for j = p — 1. A direct approach would be to
re-sample the propagated belief 5~ [x,,+1] and receive a set of samples xzq " with n € [1..5].
However, in such an approach we would need to recalculate from scratch the f(x,z) values. In
contrast we propose to re-use the previous taken samples of b’['xmﬂ] from the previous step, and
by that, re-use the calculated values of f(x7  |,znu+1). By doing so (6.5) can be denoted as,

Zn 1 PComsa | X mal’ Up+1) * f(XZH,ZmH)
Pzm+1 | ym =i, H,, +]’am+1)

M ESEYES (6.6)

In the nominator we have two arguments per given sample x” ., the first is the motion model,

m+1?
and the second is the value of the f function for the given sample and measurement.

In order to calculate the denominator let us perform marginalization and chain rule over all

possible landmarks and state at x,,+1,

P(zm+1 | ym = Hm+19 Upi1) = (6.7)

Zf P(zms1 | xm+lalg)P<ﬂm+1 =8| X )DPXmg1 [ ym =1, Hm+])dxm+l =
Xm+1

N

1 i
e Pt | st L)b' ™ (X1 s
—1 |ng| Xm+l€ng

let us notice that the received result is identical to the result of j = m + 1. As before we perform
reuse of the sampled values of b [xn+1] taken from the previous step, and calculated values of

f(x’;l +1>Zm+1), where n € [1..S]. Therefore we denote,

P(Zms1lym = m+1) ~ Z S m+1azm+1) = 77£n+1‘ (6.8)

By taking the denominator from (6.8) and placing it back in (6.6) we will get,

f(xnm > Zm 1)
By Xmia] ZP(xm+z | Xt ) (6.9)

n=1 nm+1

n,i
évarl
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Since the motion model in (6.9) per a given sample of x7 , is a Gaussian distribution we can
address b’ [x,,42] as a GMM with S components, where is fact £ fnil is the normalized weight
of a given n component.

Now that we have shown that bj; [x42] can be addressed as a valid GMM, let us return to
(6.3). In resemblance to previous step of j = m + 1, P(B;,42 = g | Xm+2) sets finite boundaries
to the integral, therefore in order to calculate we will sample bi,j [xm+2] and receive a set of

samples, x* . ne[1,5].

m+2°
RO
Bz | ym = i Hpo) = 5 ) D i P | ¥00) (6.10)
n=1 g=1 8

As in previous sections we can replace the landmark associated index 8,42 = g, with the
landmark’s given coordinates, /,. For the same motivation of calculation re-use as before we

can present (6.10), as

S
P(Zmi2lym = 1, H;ﬁ.z) - Z f(xr,iH.z, Ime2) = ﬁ£n+2 (6.11)

n=1

In conclusion we have proven that for the base case of j =m + 2, P(zjs2 | ym = L, H,, ;) ~
St SO, Zi).

6.2 Induction assumption

Let us make the induction assumption for j =m + [ -1,

N
PG jt | Y = i Hyp i )% D F O 1 Zmej1) (6.12)
n=1
Where x 1 E [1..8]is a set of taken samples from P(xy4 j-1 | Ym = i, H,, i D= bf; (X4 j-1]-
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6.3 Inductive step for j = m + [

We wish to prove,

S
s | Y = i Hyp )~ D s 1 2me ) (6.13)
n=1

We begin our induction proof by performing as before marginalization and chain rule over all

given landmark index’s at time m + j, and over the state at x;,+ j,
NL
P(Zm+j | Ym =1, Hn_1+j) = Zf IE»(Zm+j | lg’ xm+j)P(ﬂm+j =gl xm+j)b;;[xm+j]dxm+j (6.14)
= Xm+j

Where bl [Xpi ] = Pnsj | ym =i, H, ,p)- We notice the calculation of Y [xm+ ] in (6.14),
resemblance to the calculation of bf,; [Xm+2] in (6.3). Again, in order to calculate bf; [Xms ] We
use chain rule and marginalization over the previous state, via x4 j—1, and landmark associations,

perform Bayes rule to substract the observation model for measurement z,4 j_1,

b (X )] = f Pt j | X 1> U j1) - (6.15)

Xm+j—1
[Zi,vil P@nt jo1 | Xt j=15Lg) * PBrnrj=1 = & | X j=1) + bl [ jm1 1] dXm j—1

P(Zm+j—l | Ym =i, Hn_1+j—1)

In order to calculate bqu [Xp+j-1] at (6.15) in the naive approach one needs to marginalize and
perform Byes rule till retrieving the calculations to the time of the hypothesis we wish to
reevaluate its weight. Instead let us look on the argument inside the brackets in (6.15), and see

it resembles the value of P(z;ij-1 | ym = i, H

n +j_1) from our induction assumption in 6.2. So

instead of the direct approach that requires recalculation and re-sample of bﬁ; (Xt j-1], we will
re-use the set of samples x7 PP and by that the set of calculated values of the f function from

the induction assumption. So (6.15) can appear as such,

f(x;r;ﬁj—l s Zm+j—1)

P(Zm+j—1 |’)/m = i’ H;1+j—l)

S
B D1 % D P 1 60t o) - (6.16)
n=1

For the denominator in resemble to 6.1 we marginalize over all given landmarks and x4 1,

and perform chain rule as before,

NL

R 1 i
P@msj1 [ Ym =0, H,yy i y) = Z a Pzt j-1 | Lgs Xt j- )by, (X j-11d X j1
jZ] | lgl xm+j—I€ng
1< .
~ m ZP(Zmﬂ'—l | lg’xzm'—l) = ﬁ;n+j—l (6.17)
8" n=1
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By placing (6.17) into (6.16) we get,

S FO s Zmj-1)
— i—1 m+ j—1° <m+j=1
B Do 1 % " PG | 67t 1) ,~ (6.18)
n=1 nm+j—l
Lo
In resemble to (6.9), in (6.18) we get a GMM with S components, where P(x,+ ; | ij _1, U j—1)
is a motion model with Gaussian distribution per a given sample, x” . ,,nd { - acts as the
j m+j—1

normalized weight for a given n hypothesis in the GMM.
Now after we have shown that bﬁ; [xm+;] s a valid GMM, we can take a set of samples x7 +j
where n € [1..S]. And by that (6.14) yields into,

S Np S
N 1 1 '
Bame |y = i Hy )~ Z‘ ; o F e o) = ;ﬂx,’:H pame). (6.19)

where (6.19) is what we wished to prove by induction.
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TINIA TON R ,OOWIN IR YR TPV DTIN YD DXNIN NN INNIV 29D 11 NTIAya
NIV, TNNR VPN DY MIXNNPA PI NYNINND NYINN YD DXNIN I INNIN NYTD
DV LD DY NPNY 21D PNDNN NTTHN OV YTHN TPV 2D NIVYNIL DNPIY DR N
NYNN NMNNN 'ONY NONINND NDIDN JAT /732 IOV NNNIND 12 DY .0V
PN DINI NP NOYA MHANDN NPV NN 1NN NNN DD GUND ,92apna
GMMn 5w 551510 £1992 NYM9N 92 Nwnd (GMM) gaussian mixture model
NN NTIDND )OI YTIRN TPV NOYA NTMONN NN NOY MHIANDN NN
NN DOPWNN O ,marginalization-5 NXYIND IWND (weight) Dpwn DOXNP

19°9Y YD) 1000 NI PMON Y P2 GMM N 22090 NIPNI DIPOIY PN
NN NN 2IWIND .I2YNN MY NNON MMDN DV DPWNN DWW UINN NOIYN YNNI
, NITY DN DA MNPNRN DPWNN DY NXNIN 1N 1OTIVIN DPWnn 2D DIPNN
YA PN YIANN PNITOY 1N 1IN DD TUNRD DIIDN DV 19951 11 113 D)

Y DN NX NDY NV ONDONN JPITD NNNN NITMON DV AN P2 MHOVIMNOIN
DY21YONN DY NDDINN DN TYNI NTOY TN YD DY 2IWON DAY, MOVINIPIN
NI PIT NN NPVPN DIIYIND NN WINOYW DY IT NI . PINX DTIPY TYSI UMY
DTN TO2 WTNN IWIN DV WD NMIYD

29990 )N ,M2 MMYNYN 1T MY MI220 PNIAVNI INPDI IYNIIY NP0
DIV DYPON MWL IYXIA NPINDIDN .ANIN DXINN PNV DT DN DY
MNYN ,DYTYN NIVYD NYINN P12 YW 0vwNIN2 90N GMM N YW 23N NURIN
YNV .VIAN DV NONNND PIN NNXTR TR TYS MDNPWHRN NI DY WINN 1IWN
32 MMPYNRN D 29 DY YD MNIY 091D NN IT NTIAYD NNXIIN MNDNTN
VTNRN JNN 1D NINRY OV ,RIND NTITH TPV YN YT 7O XD INPNHN 1D NNININ
200NN NO TY

2WIN NYNNN MDININ NWIN DY DIVN NN MINT NN DMNIYN NN TI DY G2
,DONN NIRY OTIP TYNNN DXIVWINI TN VDY DWW NYIIN DY DN 12N DD vIN
MY GIN NN PID NN JITN P2 PNINN DY INPNNI IO TAX ) TUND
LDINNN NNRY NYHD N2 NIN DIRIND DX9NDN NIY .NINTN 7ON DY 1INPNNO

595 191N (pruning) DY) YNIY NI NN MXINDN NPENNDID NIYNI T3 DY GO
D5 DY 72y NITMON HY DIV Y8 NOW NDIDON NN DIDOWN DX IYND , 0NN INY
MYAYN 190 ¥ 127D ONDNN PITIIVN DY WITI NN ,7INND MYANN MIMONN \Y
1,010 DY ND0NN DI TNIRD MOON MIMONN 190N DINNNIA )N ,NNMIYN
DV N DNNINND 190N 51NN NIRXIND YNDN I MNPWNN NI N1NIAN
DDpwnn

1NN H2Y MITMDON DY YINHD PNDIN D NIXIN T NTIAY 2D DINNIND NN DI1DDY
112197 13 DY) .NMYHYN 1T MOY2 M0 NION INY NYINA YOO 01D vIN YN

, VNIV 1T NOYA NN D220 NN WINGD I1ND ,001D 290 DD NPH D
25V VINTIN DY MOLINNN NP IOIND PO ,YNRIN INT NINNY NNINN NTNN
05NN



8PN

ToNN2 .NPPVIZIA OININD I90N PN PN NI MWT XY M0 INMVIX LI

NI VD 91D WX I2T, 01210 DY DIPIIN NN MINT IN NHMP VIAN DY 150NN
DV HIVUNIN DIPINN TOD QDN YD PIXD YW .NNSY YN 1M VITN NYNND J MINTN
OV T YD HDNIY TN DY (“prior’” NIPI ) VININ PN NP 1PN NI O) VI
2100100 THIND VI DIPD NN IRNNDN OMIDYI DY NUPN DIIXMN NN VI DIPIH
NN D) 1DINA 219> A¥HN NVPN IO DI INTI N DINKNI NN I INININ TWND DD 191N
2NN DMNYN DXOVPIIIND DIPD NN IRNNDN NOVPN

. (belief) NN DWA DX NYITN MHIANDN NMNPND YT HY NI IWN DT TN

VTR TOY TONN 1N NYNN TONNA )M NPONN TONN 1N DMIPNN DXIIDN TN
TPNONN NPT DY TPV YNID VI DY , DT NYAP Nya Yo, (Data association)
DY 1999002 YTHRND DY NXT ON .NYAPNN NP NN 2NN 110N LPIAIND DN
DYIN9NN DT NNV IN MRDID DY 17 19010 SWND - NMYHNYN 1T NNMP DVWNIN
D PIXY Y 1PON NN NNNNN INY NPND (perception ) NYIND DN NT 12T ,aNIN2
2APY D) M0 N1 NN ,DINNT DIVPIAIND P TN NNONDN NN YN TPV NI
DTTIN MNIWHON DY PRINN NON

2127 N3 92T NVIVIN NN IOIN )12 XD YT TRV APY MIPY 510Y NN NORYN NIONY)
NNMPN MNTIN ON NITHINDY , 011N DY OIDDVNND D1DDNNN NDIIDN NNV OIND
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