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Motivation

* Autonomous Agents

* Planning Under Uncertainty

* Online Agents
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* Partially Observable Markov Decision Process (POMDP)
Commonly formulated as a tuple (X,A4,Z,T,0,R,y)

X - state space

A - action space

Z - observation space

T - probabilistic transition model

O - probabilistic observation model
R - reward model

y - discount factor

VYV VY VYVYVY

b[Xk]

Infer: Update Belief

Zk

Sense: Get Measurements

Planning (Under Uncertaincy)

* *
Afk+L-1 0T TT

* Autonomous platform acting under uncertainty

Act: Execute Action
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Background

e Belief Space Planning (BSP)
* Instead of planning over the state space, plan in the probabilistic space over
the state (denoted as belief)

* blxi] = P(xk | a1:-1, Z1:k bo)

* Allows the use of Information Theoretic rewards (e.g.):
» Differential Entropy
» Mutual information
» Information Gain

* (Can be very useful
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Background

“Secrets of Life”
Always ook ahead.

* Online Planning

 Multiple steps ahead in time

* Multiple realizations of action-observation sequences:
{(ao,21), (a1, 22), (a2, 23), .., (-1, 21)}

e Commonly done by building a Belief Tree
» tree root is the current time belief

» Requires a “black box” simulator or motion and observation models access
» Tree size limited by predefined params such as time/depth/number of nodes
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* Online Planning — the Belief tree
* Each node induces areward: r(b,a) € R
* Planning goal:
Find the actions sequence that induces
highest cumulative reward

* More formally...
» Find optimal Policy m: b — a
» Maximizing the Value Function

Ve(by) = Egp, [r(b, @) + VP (bis)]
A AA A M A A A A
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* Online Planning — the Belief tree
* Challenges?

» Curse of History o 1 Ems 2
> Curse of Dimensionality }’J NE
> Continuous Domains } -
» Non-parametric beliefs ] 3 +
» Information Theoretic L
{ -

Video source: Google DeepMind, David Silver


https://www.youtube.com/watch?v=Wujy7OzvdJk&t=1423s&ab_channel=TheArtificialIntelligenceChannel
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Background

* Non-parametric distributions
A more general setting
* Typically, approximations resort to sampling
A well studied problem in Statistics,
Information theory, Machine learning etc.
e Commonly in planning:
» State samples
» Observation samples

Image source
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 Monte Carlo Tree Search (MCTS)

* Breaks the curse of history by “revealing” only parts of the full
tree.

* Breaks the curse of dimensionality by using a predefined number
of state samples

T

(a) Selection (b) Expansion (¢) Simulation (d) Backpropagation

Image source: ‘An Analysis of Monte Carlo Tree Search’ by James et al.
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https://www.researchgate.net/publication/312172859_An_Analysis_of_Monte_Carlo_Tree_Search
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Background

 Monte Carlo Tree Search (MCTS)

* Additional details:
» Builds the tree incrementally using a predefined time/iterations

budget
» Requires some heuristics for exploration strategy and rollout policy,
e.g., UCB (R)
(R)
(R)
o g 5
R
(a) Selection (b) Expansion (¢) Simulation (d) Backpropagation

Image source: ‘An Analysis of Monte Carlo Tree Search’ by James et al.
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https://www.researchgate.net/publication/312172859_An_Analysis_of_Monte_Carlo_Tree_Search
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Related Work

* Recall our considered setting:
* Online POMDP planning
e Continuous state space
e Continuous observation space
* Information theoretic rewards (reward over the belief)
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Related Work

e Online POMDP Planners

e POMCP (2010 Silver et al.)
» POMCPOW (2017 Sunberg et al.)
» |PFT-DPW (2017 Sunberg et al.)
» |IPFT (2020 Fischer et al.)
» | p-POMCP (2021 Thomas et al.)
« DESPOT (2017 Ye et al.)
» |DESPOT- (2019 Garg et al.)
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Related Work

* Online POMDP Planners Comparison

Algorithm Continuous Continuous Rewards over | Use Particle Filter
state space observation space the belief

POMCP x
POMCPOW v v x x
PFT-DPW v 4 v Y
IPFT v v v v
p-POMCP v x v v
DESPOT v x x x
DESPOT-a v v x v

. Many other solvers exist, but aren’t designed to continuous state space and/or Online
setting: PBVI, HSVI, HSVI2, SARSOP, ABT, SARISA, p-POMDP, LC-HSVI etc.

16
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* Novel simplification for our POMDP setting

* Novel simplification based differential entropy
approximation bounds

* Embedding into a Sparse-Sampling planning scheme
* Embedding into a state-of-the-art MCTS planning scheme

* Theoretical guarantees for:
» Tree-Consistency
» Solution consistency
» Time complexity analysis
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e Simplification

Solving a POMDP accurately is not tractable
Many approximation methods take place

Simplification deals with relaxation of the decision-making
problem (e.g.)

» Simplified decision making in the belief space using belief sparsification by K. Elimelech and V. Indelman
IJRR 2021 accepted

»  Ft-bsp: Focused topological belief space planning by M. Shienman, A. Kitanov, and V. Indelman RA-L 2021
|deally provides the same solution

If not possible, the potential objective error is bounded



Autonomous Navigation
and Perception Lab

Y TECHNION | €55y e temy o e o %50 ANPL
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* Differential entropy approximation
* The belief is approximated as a set of particles

* Approximation can be achieved via Kernel Density Estimation or a
method by Boers et al.
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* Chosen Simplification
e Belief node simplification — use a sub-set of particles
* Instead of expensive belief dependent reward calculation,
calculate simplification-based reward bounds
* Reward bounds can be generalized to
Value function/Action-Value function bounds
* We consider differential entropy approximation by Boers as a reward function

. A N°
b® = {x], u)]}
=1

Simplifictaion O
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Novel Differential Entropy Bounds

22
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* Novel Simplification based bounds
» Differential entropy: H(X) = — fxb(x) : log(b(x)) dx
* Boers original approximation:
7:[<bk:+1) = log [Z P(Zk:—i-l | mflz;+1)wli€] _Zwlic—i—l - log |:P(Zk+1 |xi+1)zp($z+1 |37{;aak)wi;
 Our novel bounds (over: — H):

u = —log {ZP (Ze1lhpr)wk | + Z w41 - log [ConSt P (2k+1‘x2+1)J
i

1€E—AS

k+1

1€EAS J

£ Z w§s+1'10g {P (zk+1|x}i+1)Z]P’ ($i+1|$iaak)wi:|

k+1

¢ £ _ log ZIP A«k;+1|xk+1 wk

+Zwk+1 log {P (zh+1]Tk41) ZP $k+1|$k7ak) k]

JEAS )3
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* Novel Simplification based bounds

* Our novel bounds:
* Where:
P(z | x) observation model

u2 —log {ZIF’ (zk+1\m};+1)w’};jl + Z wh 1 - log [const - P (241 |2}y q)]

‘€A

p . + Z wlic+1'10g I:IP) (zk+1|x};+1)ZP (Iz+1mi>ak)wi:|
P(x’ | x,a) motion model €474, j
w! weight of state sample x* 2 _log [Z]P’ (o Yok
A® set of simplified state indexes

+Zwk+1 log |:P (Zk+1|xk+1 ZP $A+1|$k>ak) k
jGA

— A% compliment of A®
constis max P(x’ | x,a)
x/!

VYV VYV VYV

24
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* Novel Simplification based bounds
* Our bounds properties

» Convergence N — number of

» Monotonically increasing & decreasing particles

» On-demand tightening representing

> Complexity of O(N - N¥) instead of O(N - N) original belief b
: T N3 — number of

» User defined simplification levels ,

> Calculati particles

g alculation reuse representing

No time loss whatsoever simplified belief b
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* Extending the bounds to objective bounds
* Objective function:

J (b, Ty ) =7 (bk, ax) +Z51{J(bk+1, T(k+1)+) ) Where: ;. = Mg+
* Planning:
J(br, Ty ) = maxqr (b, @k)+ZE1{J(bk+1,7T(k+1)+)}}

* Rewards bounds translate to objective bounds:
Ib(b®,b,a) <r(b,a) <ub(b®,b,a) = UB(biv 7T73+) :ub(bfv bi, CL))—|— E {UB( 2l 7T(H—1)+)}
Zi4+1

LB(bi, miy ) =1b(b7, b;,a) + E {LB(bit1, T(i+1)+) )

Zi+1 26
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Simplified Information Theoretic BSP
(SITH-BSP)

27
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* Planning using objective bounds

* Analytical bounds along the tree
* We can prune sub optimal branches traversing up the tree if the
O

objective bounds do not overlap

B © 5o o ogdye

) 5 I L 5 _ N /ébé/\ é@bé/})

B I % — 6@66%'
560000 2 .

(b)

J(ba 7T”H-)
[

(a)
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* Planning using objective bounds

* Overlapping bounds?
Increment the simplification level, in our case - take more particles

to represent the simplified belief.

* This is done with calculation re-use ‘
Y iz,
3 i

' E T II 5 - B /éb E)\ Ciobé/})
! 7;”’7r”” i i = ! i”w”” 6Qb é% -
5bo0ds C .

(b)

J(ba 7T”H-)
[

(a)
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* Full algorithmic scheme: Simplified Information Theoretic
Belief Space Planning (SITH-BSP)

ai as

30
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* Full algorithmic scheme: Simplified Information Theoretic
Belief Space Planning (SITH-BSP)

Algorithm 1 Prune Branches Algorithm 2 Simplified Information Theoretic Belief Space Planning (SITH-BSP)
1: procedure PRUNE 1: procedure FIND OPTIMAL PoLICY(belief-tree: T)
9 Input: (belief-tree root, b; bounds of root’s children, {£LB™,UB™}C _,) 2 8480
going out of b. 33 return ADAPT SIMPLIFICATION(T,s)
3 LB* « max{ﬁBm}C_l 4: end procedure
m L 5: procedure ADAPT SIMPLIFICATION(belief-tree: T, s;)
4 for all children of b do - .
if B B™ th 6: if T is a leaf then
> . i LI. then . 7: return {lb, ub}
6: prune child m from the belief tree 3: end if
7 end if 9: Set simplification level: s < s;
8 end for 10:  for all subtrees T’ in T do
9: end procedure 11: ADAPT SIMPLIFICATION(T’,s)
12: Calculate £B*",UB*’ according to s and (11)
13: end for

14: Using {£B*,uB*’ }ijill and Alg. 1 prune branches
15: while not all T/ but 1 in T pruned do
° Su bm |tted to |CRA/RA—L 2022 16: Increase simplification level: s < s+ 1
17: ADAPT SIMPLIFICATION(T,s)
Online POMDP Planning via Simplification 18: end while _
19: Update {EBSJ*,Z/{BSJ*} according to (14) _ ‘
20: return optimal action branch that left a* and {£B*"*,UB*"*}.
21: end procedure

31


https://arxiv.org/abs/2105.05296
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Method

* Restricting assumption?
* The belief tree is given
e State-of-the-Art methods build the tree incrementally
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Simplified Information Theoretic Particle

Filter Tree
(SITH-PFT)

33
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* Following work
 We incorporate the bounds into a state-of-the-art POMDP planner
* Not straightforward
* The goal was to show speed up compared to the baseline

e Chosen baseline
 PFT-DPW (Sunberg et al. 2017)

e Chosen because it is the least restricting.
e Uses Particle Filter with Double Progressive Widening over a MCTS framework
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 MCTS Adaptation

* Main Challenge: Build the same tree as PFT-DPW without
calculating the rewards (only the bounds)

* Baseline tree build is guided by UCB1:

B ~ [log(N(h))
UCB1(ha) = Q(ha) + ¢ \/ N(ha)

Where:

» h, a are history (belief representation) and action respectively
» (@ (ha) belief action value function (known as Q function)

» c exploration constant

» N(-) belief/belief-action node visitation counter
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 MCTS Adaptation

* Main Challenge: Build the same tree as PFT-DPW without
calculating the rewards (only the bounds)

* Solution: We use the bounds to lower and upper bound the UCB:

log(N(h))
N (ha)

UCB(ha) = Q% (ha) + A\LB(ha) + c - \/

log(N(h))
N (ha)

UCB(ha) = Q% (ha) + \XUB(ha) + ¢ - \/

Autonomous Navigation

36
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Algorithmic Overview

Light green section
is determined by
following a specific
“Resimplification
Strategy”

Resimplify

)
IJI T

i
a

Overlap

Bounds

38
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* Theorems:

Theorem 1. The SITH-PFT and PFT-DPW are Tree Consistent
Algorithms

Theorem 2. The SITH-PFT provides the same solution as PFT-DPW

Theorem 3. The specific resimplification strategy is a converging
and finite-time resimplification strategy
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* Full proofs along with time complexity analysis can be

found in the original paper:

e ‘Simplified Belief-Dependent Reward MCTS Planning with Guaranteed Tree
Consistency’ by O. Sztyglic*, A. Zhitnikov*, V. Indelman 2021 (submitted to NeurlPS
2021)

Algorithm 1 SITH-PFT

1: procedure PLAN(belief: b)

2 he( Algorithm 2 Action Selection
3 fori€l:ndo 1: procedure ACTION SELECTION(b, I
4 SIMULATE(b, duyay, h) A P — z
5 Al lor 2 while true do Algorithm 3 Resimplification
6 return ACTION SELECTION(b, | 3 Status, a < SELECT BEST(b.

nullified exploration constant ¢ 4: if Status then 1: pro?edqre RESIMPLIFY(D, )
7: end procedure 5: break 2 if bis a leaf then
8: procedure SIMULATE(belief: b, dep! ¢ else 3 REFINE{L"}(b)
lgf i dre:tf":%e“ 7: forallt',o € C(ha)do 4 RESIMPLIFY ROLLOUT(b, h)
11:  endif 8: RESIMPLIFY(V', hao) 5: return
12: @ + ACTION SELECTION(b, k)  9: end for 6 end if
13 if|C(ha)| < koN(ha)® then  10: reconstruct LB(ha),UB( P 3 =
14: 0 < sample x from b, genera 1. end if 7 a<-arg ZnaX{N(ha) (Z/{B(h(l) LB(h(l))}
1s: V7% 4= Grr(m) (bao) 12:  end while 38 for all v/, 0 € C(ha) do
16: Calculate initial «’, ¢’ for ¥’ b 13: retuma i Ry

minimal simp. level 9: RESIMPLIFY(V', hao)
17: C(ha) « C(ha) U {(r*, ¢, 14 end procedure 10:  end for
18: R,L,U « r*,¢' '+ Ror 15: procedure SELECT BEST(b, h) 11 reconstruct LB(ha), UB(ha)
19: else 16: Status < true R g b £
20: (r, 0, u', b/, 0) « sample ur 17 a < arg max{UCB(ha)} 12: EFINE (/.3 (b)
21: RLU ¢ 1=,¢ ' +~ SIM g 13: RESIMPLIFY ROLLOUT(D, h)
2:  endif 18:  gap<0 14: return
23: if deepest resimplification depth < 19: child-to-resimplify < a

for updated deeper in the tree bounds 5(). for all ha Chi]grer)l, of b do 15: end procedure
24: reconstruct LB(ha),UB(ha) 21: if UCB(h) < UCB(ha) A 16: procedure RESIMPLIFY ROLLOUT(b, h)
25:  endif ) ! "y fals AT prollout « find weakest link in rollout
26: N(h) < N(h)+1 22 .Status = Jalse rollout
27: N(ha) < N(ha) + 1 23: if UB(ha) — LB(ha) > ¢ 18: REFINE 7.} (b )
8 Q(ha) & Q7 (ha) + BoZ ) 24: gap ¢ UB(ha) — L 19: end procedure
2:  LB(ha) « LB(ha) + L5EEe) 254 child-to-resimplify « 20: progedure REFINE /.3 (b) )

UotiBha) 26 end if 21: if (12) holds for b, refine its £, u and promote
30: UB(ha) < UB(ha) + ~— ‘5. d if b ik z 5
5 Ny~ 27: end i its simplification level

31 return R, L,U . S
32: end procedure 285 end for : ... 22: end procedure
- 29: return Status, child-to-resimplify

30: end procedure
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* Bounds Convergence study

* Predefined action sequence

* True belief is Gaussian so we can access the ground truth
differential entropy

 The agent maintains a belief as a weighted particle set
 We experiment with changing number of particles

e Scenario setting: Continuous 2D ‘Light-Dark’ problem
* Map is known along with motion and observation models
* Belief is over the agent 2D location
* Near scattered ‘Light-Beacons’ the uncertainty is reduced
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e Scenario:

Actual
Belief GT
Landmarks
Belief Particles
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Evaluation — SITH-BSP

 Bounds Comparison (200 particles):

—— GT Entropy

Boers \/
KDE

—— Discrete Entropy
—-—- Lower bound
——- Upper bound
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Time Step

Simplification level: 0.9
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* Bounds Comparison:

Differential Entropy

ANPL

Autonomous Navigation
and Perception Lab

GT Entropy
Boers

KDE

Discrete Entropy
Lower bound
Upper bound

Differential Entropy

Differential Entropy

H s
Time Step

7 :
Time Step

Fig. 1: Differential Entropy Approximations ans Bounds. Calculations were done using 100 particles. From left to right:

Differential Entropy

3 s
Time Step
Simplification is N* = {0.1,0.5,0.9} - N

GT Entropy

Boers e
KDE
Discrete Entropy
Lower bound
Upper bound
/ S

Differential Entropy

Differential Entropy

i 3
Time Step

3 3
Time Step

Fig. 2: Differential Entropy Approximations ans Bounds. Calculations were done using 50 particles. From left to right:

Differential Entropy
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Time Step
Simplification is N* = {0.1,0.5,0.9} - N

GT Entropy
- Boers \
KDE

Discrete Entropy -

Lower bound \\

Upper bound

Differential Entropy

-6

Differential Entropy

3 s
Time Step

3 G
Time Step

i s
Time Step

Fig. 3: Differential Entropy Approximations ans Bounds. Calculations were done using 20 particles. From left to right: Simplification is N* = {0.1,0.5,0.9} - N

45



Autonomous Navigation
and Perception Lab

W TECHNION | &5y e e e o 1050 ANPL
Evaluation — SITH-BSP

* Planning baseline: A ‘Sparse-Sampling” scheme
 Tree predefined observation branching factor
* Find optimal action sequence/policy using Bellman updates
» Different tree structures and a ‘hard’ and an ‘easy’ scenarios

e Scenario setting: Continuous 2D ‘Light-Dark’ problem

 Map, motion, and observation models are known

» Belief is over the agent 2D location

» ‘Light-Beacons’ for uncertainty reduction

 Reward model: ‘distance to goal’ & differential entropy approximation



V. TECHNION | <55

The Henry and Marilyn Taub
Faculty of Computer Science @ ANPL

‘Evaluation — SITH-BSP

Autonomous Navigation
and Perception Lab

e Scenario:

Actual
Particles Mean
Landmarks
Belief Particles
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e Results (Planning time in seconds):

Simulation Horizon [14] Tree Horizon [21] Tree Horizon [2] Tree
20 50 100 10 20 30 20 50 100
1 0.124/0.043 0.741/0.192 2.892/0.667 1 0.554/0.287 4.065/1.437 12.908/3.953 S 1.13/0.776 6.625/2.008 28.19/7.232
Setting I 2 0.364/0.129 2.196/0.584 8.616/2.042 2 11.02/5.386 - - 10 2.648/2.555 15.342/8.214 -
3 0.853/0.339 5.059/1.324 19.899/4.658 3 - - - 15 4.2/3.677 26.205/20.174 -
1 0.245/0.099 1.513/0.4 5.855/2.018 1 1.112/0.953 8.501/5.143 26.375/11.977 5 1.383/0.733 8.417/3.864 33.244/10.97
Setting 1I 2 1.209/0.738 7.195/3.821 30.638/13.49 2 - - - 10 2.985/2.112 17.293/6.092 -
3 5.027/3.212 31.515/18.288 - 3 - - - 15 4.53/3.701  27.712/11.385 -
1.0 A 1.0 4
c c
= ke)
. oo . S S
e Simplification level: &~
Y— Y-
E‘ 0.6 1 E‘ 0.6
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Evaluation — SITH-PFT

* Planning baseline: PFT-DPW with entropy approximation

* Some comparison with IPFT that incorporates entropy approximation with PFT-DPW

e Scenario setting: Continuous 2D ‘Light-Dark’

 Map, motion, and observation models are known

» Belief is over the agent 2D location

» ‘Light-Beacons’ for uncertainty reduction

 Reward model: ‘distance to goal’ & differential entropy approximation
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‘Evaluation — SITH-PFT

e Scenario:

target 0.125 target . target 0.125
belief belief belief

starting position starting position @ starting position

true state true state true state

observed 0.100 observed F observed 0.100
light beacons light beacons light beacons

0.075 0.075
0.050 0.050
0.025 0.025
0 0

(a) SITH-PFT (b) PFT-DPW (c) IPFT
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Evaluation — SITH-PFT

e Time results:

(m, d, #iter.)  Algorithm  planning time [sec]
(50,30,200)  ¢ypioy 23.%9564f 092149
(50,50, 500 GrrpRr  Sie1am
aoo.30.200 GEPRE B ETIR
(100,50,500 bR br s st
(200.30.200) G pr 5046+ 7,08
(200.50,500) et 10000 < L1 oo
400.30.200)  GiTiper 16036+ 5105
400.50.500) Gy ppT 41465 = 53,87
(600, 30, 200) ngTﬁ]_jﬁg 530;)4.708j 4341.'2631
(600.50,500) I bRT 919,09 - 11608
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Conclusion
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Conclusion

For the setting of POMDP with belief-dependent rewards:

 We introduced novel highly functional bounds over
differential entropy approximation based on weighted
particles

* Developed a general Sparse-Sampling adaptation to such
simplification based converging bounds, leading to
substantial speed up.

* Developed a general MCTS adaptation to such
simplification based converging bounds, leading to speed

up.
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Conclusion

* Future possible work:

* Incorporation of the bounds into other POMDP planning
algorithms

* Incorporation of the bounds into other Domains such as SLAM

* Given other analytical converging bounds, they can be
incorporated into our existing Sparse-Sampling and MCTS
adaptations

* Usage of the bounds (or some linear variant of them) as an
exploration heuristics for rollout estimators required by MCTS
algorithms
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Thank you for your time, any questions?
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