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Inference over Distribution of Posterior Class
Probabilities for Reliable Bayesian Classification

and Object-Level Perception
Vladimir Tchuiev and Vadim Indelman

Abstract—State of the art Bayesian classification approaches
typically maintain a posterior distribution over possible classes
given available sensor observations (images). Yet, while these
approaches fuse all classifier outputs thus far, they do not
provide any indication regarding how reliable the posterior
classification is, thus limiting it’s functionality in terms of
autonomous systems and robotics. On the other hand, current
deep learning based classifiers provide an uncertainty measure,
thereby quantifying model uncertainty. However, they do so
on a single frame basis and do not consider a sequential
framework. In this paper we develop a novel approach that
infers a distribution over posterior class probabilities, while
accounting for model uncertainty. This distribution enables
reasoning about uncertainty in the posterior classification, and
therefore is of prime importance for robust classification, object-
level perception in uncertain and ambiguous scenarios, and for
safe autonomy in general. The distribution of the posterior class
probability has no known analytical solution, thus we propose
to approximate this distribution via sampling. We evaluate
our approach in simulation and using real images fed into a
convolutional neural network classifier.

Index Terms—Deep Learning in Robotics and Automation;
Recognition

I. INTRODUCTION

CLASSIFICATION and object recognition is a funda-
mental problem in robotics and computer vision, which

plays a significant role in numerous problem domains and ap-
plications, including semantic mapping, object-level SLAM,
active perception and autonomous driving. Yet, reliable and
robust classification in uncertain and ambiguous scenarios
is challenging, as object classification is often viewpoint
dependent, influenced by environmental visibility conditions
such as lighting, clutter, image resolution and occlusions,
and limited by the classifier’s training set. In these challeng-
ing scenarios, classifier output can be sporadic and highly
unreliable. Moreover, approaches that rely on most likely
class observations can easily break, as these observations
are treated equally regardless if the most likely class has
high probability or not, potentially giving large significance
to ambiguous observations.

Indeed, modern (deep learning based) classifiers provide
much richer information that is being discarded by resort-
ing to only most likely observations. Current convolutional

Manuscript received: February 20th 2018; Revised May 17th 2018;
Accepted June 18th 2018. This paper was recommended for publication
by Editor Tamim Asfour upon evaluation of the Associate Editor and
Reviewers’ comments.

The authors are with the Department of Aerospace Engineering,
Technion - Israel Institute of Technology, Haifa 32000, Israel, {vovatch,
vadim.indelman}@technion.ac.il.

neural network (CNN) classifiers provide not only vector
of class probabilities (i.e. probability for each class), but,
recently, also output an uncertainty measure, quantifying how
(un)certain each of these probabilities is.

Even though CNN-based classification achieved remark-
able results in the last few years, as with any data driven
method, actual performance heavily depends on the training
set. In particular, if the classified object is represented poorly
in the training set, the classification result will be unreliable
and vary greatly with slightly different classifier weights.
This variation is referred to as model uncertainty. High model
uncertainty tends to arise from input that is far from the
classifier’s training set, which could be caused by an object
not being in the training set or by occlusions. In addition,
classification, where each frame is treated separately, is
influenced by environmental conditions such as lighting and
occlusions. Consequently, it can provide unstable classifi-
cation results. Various methods were proposed to compute
model uncertainty from a single image (see [1]–[3]).

To address this problem, various Bayesian sequential clas-
sification algorithms (e.g. [4]–[10]) that maintain a posterior
class distribution were developed; however, none of these
approaches address model uncertainty. Crucially, while pos-
terior class distribution fuses all classifier outputs thus far, it
does not provide any indication regarding how reliable the
posterior classification is. In Bayesian inference over con-
tinuous random variables (e.g. SLAM problem), this would
correspond to getting the maximum a posteriori solution
without providing the uncertainty covariances! Clearly, this
is highly undesired, in particular in the context of safe
autonomous decision making (e.g. in robotics, or for self
driving cars), where a key question is when should a decision
be made given available data thus far (see e.g. [11]). On
the other hand, existing approaches that account for model
uncertainty do not consider sequential classification. As a
consequence, none of the existing approaches reason about
the posterior uncertainty, given images thus far.

In this paper we address this gap and propose to maintain a
distribution over posterior class probabilities while account-
ing for model uncertainty. This distribution enables reasoning
about uncertainty in posterior classification, which is crucial
for robust classification, and for safe autonomy in general.
In particular, we derive equations to sequentially update the
distribution over posterior class probabilities. We evaluate our
approach in simulation, and using real images fed into a deep
learning classifier.
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II. RELATED WORK

Several sequential classification algorithms were developed
in recent years. Coates and Y. Ng [4] proposed a method
that updates posterior class probability by multiplying prior
class probability with a new classification measurement,
considering an object detection problem. Omidshafiei et
al. [5] mention the Static State Bayes Filter (SSBF) al-
gorithm that extends the work by Coats and Y. Ng for
multiple possible classes. It assumes the prior, posterior and
likelihood all categorically distributed. Patten et al. [10]
used a method similar to SSBF in the context of active
classification. Atanasov et al. [6] proposed a method that
updates categorically distributed posterior pairs of candidate
object classes and orientations. This approach utilizes a view-
point dependent observation model. Omidshafiei et al. [5]
developed the hierarchical Bayesian noise inference (HBNI)
algorithm. At each time step, the algorithm updates class
probabilities with the likelihood of the soft-max classifier
output modeled by a Dirichlet distribution, with a noise
parameter for each possible class. Mu et al. [7] utilizes a
Dirichlet prior and most likely classifier observations, while
addressing the challenging problem of data association.

Works by Teacy et al. [8] and Velez et al. [9] propose
approaches that utilize a viewpoint dependent classifier model
to update posterior class probability. Both works are pre-
sented in the context of active classification. While Velez
et al. only consider correlation aspects of past observations,
Teacy et al. also consider correlation aspects for future
observations. Crucially, these approaches do not consider
model uncertainty, i.e. how reliable is the classifier output.

Recently, several works developed methods for computing
model uncertainty for deep learning applications. Grimmett
et al. [12] suggested using normalized entropy of class
probability as a measure of classification uncertainty. How-
ever that approach does not consider model uncertainty. Gal
and Ghahramani [1] [2] proposed utilizing neural network
dropout to estimate model uncertainty for an input of a
single image. Kendal and Cipolla [13] build upon these
works, utilizing dropout to compute uncertainty in CNN-
based camera relocalization. Both infer model uncertainty
from a single image input only. Further, Kendal and Gal
[14] analyze the major two types of uncertainty: epistemic
uncertainty or model uncertainty, and aleatoric uncertainty
that captures noise inherent in observations. Mishkov and
Julier [3] compare between multiple methods to predict
uncertainty in classifier output, using Hybrid Monte Carlo
(HMS) as a baseline. They found that Stochastic Gradient
Langevin Dynamics (SGLD) and Dropout (see [2]) methods
performed the best in terms of accuracy. Yet, these works
consider classification given a single image frame, as opposed
to Bayesian sequential classification given multiple images
that we consider herein.

III. NOTATION AND PROBLEM FORMULATION

Consider a robot observing a single object from multi-
ple viewpoints, aiming to infer its class while quantifying

uncertainty in the latter. Each class probability vector is
γk

.
=
[
γ1k · · · γik · · · γMk

]
, where M is the number

of candidate classes. Each element γik is the probability of
object class c being i given image zk, i.e. γik ≡ P(c = i|zk),
while γk resides in the (M − 1) simplex such that

γik > 0 ||γk||1 = 1. (1)

Existing Bayesian sequential classification approaches do not
consider model uncertainty, and thus maintain a posterior
distribution λk for time k over c,

λk
.
= P(c|γ1:k), (2)

given history γ1:k obtained from images z1:k. In other words,
λk is inferred from a single sequence of γ1:k, where each γt
for t ∈ [1, k] corresponds to an input image zt. However, the
posterior class probability λk by itself does not provide any
information regarding how reliable the classification result is
due to model uncertainty. For example, a classifier output γk
may have a high score for a certain class, but if the input is
far from the classifier training set the result is not reliable
and may vary greatly with small changes in the scenario and
classifier weights.

In this paper we wish to reason about model uncertainty,
i.e. quantify how “far” an image input zt is from the training
set D by modeling the distribution P(γt|zt, D). Given a
training set D and classifier weights w, the output γt is a
deterministic function of input zt for all t ∈ [1, k]:

γt = fw(zt), (3)

where the function fw is a classifier with weights w. How-
ever, w are stochastic given D, thus inducing a probability
P(w|D) and making γt a random variable. Gal and Ghahra-
mani [2] showed that an input far from the training set will
produce vastly different classifier outputs for small changes
in weights. Unfortunately, P(w|D) is not given explicitly.
To combat this issue, Gal and Ghahramani [2] proposed
to approximate P(w|D) via dropout, i.e. sampling w from
another distribution closest to P(w|D) in a sense of KL
divergence. Practically, we run an input image zt through
a classifier with dropout multiple times to get many different
γt’s for corresponding w realizations, creating a point cloud
of class probability vectors. Note that every distribution in
this paper is dependent on the training set D, so we omit it
from further expressions to avoid clutter.

In this paper, a class-dependent likelihood P(γk|c = i),
referred as a classifier model, is utilized. We use a Dirichlet
distributed classifier model with a different hyperparameter
vector θi ∈ RM×1 per class i ∈ [1,M ], rewriting P(γk|c = i)
as:

P(γk|c = i) = Dir(γk; θi). (4)

This distribution is the conjugate prior of the categorical
distribution, thus it supports class probability vectors, partic-
ularly γk. Sampling from Dirichlet distribution necessarily
satisfies conditions (1), unlike other distributions such as
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Gaussian. The probability density function (PDF) of the
above distribution is as follows:

Dir(γk; θi) = C(θi)

M∏
j=1

(
γjk

)θji−1
, (5)

where C(θi) is a normalizing constant dependent on θi, and
θji is the j-th element of vector θi. To shorten notation, we
will write this likelihood as:

P(γk|c = i)
.
= Li(γk), P(·|c = i)

.
= Li. (6)

We denote the likelihood vector as L(γk)
.
=[

L1(γk) · · · LM (γk)
]
. For simplicity, we consider

these hyperparameter vectors to be known or inferred.
Furthermore, in this paper we assume an uninformative prior
P(c = i) = 1/M .

We must distinguish between the classifier model Li(γk),
and the model uncertainty derived from P(γk|zk) for class i
and time step k. The classifier model Li(γk) is the likelihood
of a single γk given a class hypothesis i; it is computed prior
to the scenario for each class from the training set, and it
is assumed constant within the scenario. On the other hand,
P(γk|zk) is the probability of γk given an image zk, and
is computed during the scenario. Note that if the true object
class is i and it is “close” to the training set, the probabilities
P(γk|zk) and Li(γk) will be “close” to each other as well.

A key observation is that λk is a random variable, as it
depends on γ1:k (see Eq. (2)) while each γt, with t ∈ [1, k],
is a random variable distributed according to P(γt|zt, D).
Thus, rather than maintaining the posterior Eq. (2), our goal
is to maintain a distribution over posterior class probabilities
for time k, i.e.

P(λk|z1:k). (7)

This distribution allows to calculate the posterior class dis-
tribution, P(c|z1:k), via expectation

P(c = i|z1:k) =
∫
λi
k
P(c = i|λik, z1:k)P(λik|z1:k)dλik

=
∫
λi
k
P(c = i|λik)P(λik|z1:k)dλik = E[λik],

(8)

where we utilized the identity P(c = i|λik) = λik.
Moreover, as will be seen, Eq. (7) allows to quantify

the posterior uncertainty, thereby providing a measure of
confidence in the classification result given all data thus far.

At this point, it is useful to summarize our assumptions:
1) A single object is observed multiple times.
2) P(γt|zt, D) is approximated by a point cloud {γt} for

each image zt.
3) An uninformative prior for P(c = i).
4) A Dirichlet distributed classifier model with with desig-

nated parameters for each class c ∈ [1, . . . ,M ]. These
parameters are constant and given (e.g. learned).

IV. APPROACH

We aim to find a distribution over the posterior class
probability vector λk for time k, i.e. P(λk|z1:k). First, λk is

expressed given some specific sequence γ1:k. Using Bayes’
law:

λik = P(c = i|γ1:k) ∝ P(c = i|γ1:k−1)P(γk|c = i, γ1:k−1).
(9)

We assume, for simplicity, classifier outputs are statistically
independent1 and re-write Eq. (9) as

λik ∝ P(c = i|γ1:k−1)P(γk|c = i). (10)

Per the definition for λk−1 (Eq. (2)) and P(γk|c = i)
(Eq. (6)), λik assumes the following recursive form:

λik ∝ λik−1Li(γk). (11)

We now recall that γt (for each time step t ∈ [1, k]) is a
random variable, making also λik−1 and λik random variables.
Thus, our problem is to infer P(λk|z1:k), where, according
to Eq. (11), for each realization of the sequence γ1:k, λk is
a function of λk−1 and γk.

We present our approach in Algorithm 1. At each time
step t, a new image zt is classified using multiple forward
passes through a CNN with dropout, yielding a point cloud
{γt}. Each forward pass gives a probability vector γt ∈ {γt},
which is used to compute the class likelihood L(γt), that is
modeled as a Dirichlet distribution. In addition, we have a
point cloud {λt−1} from the previous step. We multiply all
possible pairs of λit−1 and Li(γt) , as in Eq. (11). Finally
Nss,n pairs are chosen for the next step, in a sub-sampling
algorithm that will be detailed in Section IV-B. We eventually
get a point cloud {λt} that approximates P(λt|z1:t).

1 Inputs:
2 z1:k: k images of an object.
3 P(c = i) ∀ i = 1, ...,M : a prior for object class.
4 Li ∀ i = 1, ...,M : a classifier model.
5 Nss,n maximum points per time step
6 Outputs:
7 A point cloud {λk} that approximates P(λk|z1:k).
8 Initialize: λi

0 = P(c = i)
9 for t = 1 : k do

10 Classify image zt, and produce a point cloud {γt}.
11 for All possible γt and λt−1 pairs: do
12 for i = 1 :M do
13 λi

t ∝ Li(γt)λ
i
t−1

14 end
15 end
16 Select randomly Nss,n pairs to form {λt}
17 end
18 return {λk}

Algorithm 1: P(λk|z1:k) inference algorithm with sub-
sampling.

We need to initialize the algorithm for the first image.
Recalling Eq. (2), we define λi1 (first image) for class i and
time k = 1 as:

λi1
.
= P(c = i|γ1). (12)

1In this paper we do not consider viewpoint-dependent classifier models
and thus model all γ1:k to be statistically independent from each other. We
refer to our recent work [15] that relaxes this assumption while investigating
complimentary aspects to this work.
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Using Bayes law:

P(c = i|γ1) =
P(γ1|c = i)P(c = i)

P(γ1)
(13)

where P(c = i) is a prior probability of class i, P(γ1) serves
as a normalizing term, and P(γ1|c = i) is the classifier model
for class i. Per definition Eq. (6), Eq. (13) can be written as:

λi1 ∝ P(c = i)Li(γ1), (14)

thus λi1 is a function of prior P(c = i) and γ1, and in the
subsequent steps we can use the update rule of Eq. (11) to
infer P(λk|z1:k).

Remark: There is a numerical issue where λik for suffi-
ciently large k can practically become 0 or 1, preventing any
possible change for future time steps. In our implementation,
we overcome this by calculating log λik instead of λik.

In the next section we discuss the properties of
P(λk|z1:k)), analyze the corresponding posterior uncertainty
versus time, and consider two inference approaches that
approximate this PDF.

A. Inference over the Posterior P(λk|z1:k)
In this section we consider how the distribution P(λk|z1:k)

develops and seek to find an inference method to track
this distribution over time. As discussed in Section III, we
consider all γt as random variables; hence, according to
Eq. (11), P(λk|z1:k) accumulates all model uncertainty data
from all P(γt|zt) up until time step k, with t ∈ [1, k].

Fig. 1 illustrates an example for inference of P(λk|z1:k)
from P(γk|zk) and P(λk−1|z1:k) using a known classi-
fier model, considering three possible classes. Fig. 1a-1c
present example distributions for the classifier model. Fig. 1d
presents a point cloud that describes the distribution of λk−1.
Fig. 1e presents P(γk|zk) represented by a point cloud of
γk instances. Each γk is projected via L(γk) to a different
cloud in the simplex, presented in Fig. 1f. Finally, based on
Eq. (11), the multiplication of points from Fig. 1d and 1f
creates a {λk} point cloud, shown in Fig. 1g. In the presented
scenario, the spread of {λk} (Fig. 1g) point cloud was smaller
than {λk−1} (Fig. 1d), because both point clouds {λk−1} and
{L(γk)} are near the same simplex edge. In general, classifier
models with large parameters (see Eq. 5) create {L(γt)} point
clouds that are closer to the simplex edge. In turn, the {λk}
point cloud (updated via Eq. (11)) will converge faster to a
single simplex edge.

In this paragraph we discuss the behavior of P(λk), depen-
dent on both λk−1 and γk. The spread of {λk} is indicative
of accumulated model uncertainty, and is dependent on the
expectation and spread of both {λk−1} and {γk}. For specific
realizations of λk−1 and γk, as seen in Eq. (11), λik is a
multiplication of λik−1 and Li(γk). Therefore, when L(γk)
is within the simplex center, i,e. Li(γk) = Lj(γk) for all
i, j = 1, ...,M , the resulting λk will be equal to λk−1.
On the other hand, when L(γk) is at one of the simplex’
edges, its effect on λk will be the greatest. Expanding to the
probability P(λk|z1:k), there are several cases to consider.
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Figure 1: An example to illustrate the inference process of P(λk|z1:k). (a), (b), and
(c)Li classifier model for classes 1, 2 and 3, respectively, with higher probability zones
presented in yellow. (d) distribution of λk−1 from the previous step. Note that for k =
1, λ0 is given by the prior P(c). (e) a point cloud {γk} approximating P(γk|zk) via
multiple forward passes of the (CNN) classifier with dropout, given a new measurement
zk (an image) at current time step k. (f) The corresponding likelihood L(γk) for each
γk ∈ {γk} from (e). Finally, multiplying λk−1 and L(γk) (Eq. (11)) results in the
point cloud shown in (g) representing a distribution over λk . λk’s spread is smaller
in this case than λk−1’s, as both L(γk) and P(λk−1|zk−1) are close to the same
simplex corner.

If P(λk−1|z1:k−1) and {L(γk)} “agree” with each other, i.e.
the highest probability class is the same, and both are far
enough from the simplex center, the resulting P(λk|z1:k)
will have a smaller spread compared to P(λk−1|z1:k−1)
and its expectation will have the dominant class with a
high probability. On the other hand, if P(λk−1|z1:k−1) and
{L(γk)} “disagree” with each other, i.e. they are close to the
same simplex corner, the spread of P(λk|z1:k) will become
larger; an example for this case is illustrated in Fig. 2. In
practice such a scenario can occur when an object of a certain
class is observed from a viewpoint where it appears like a
different class. If both P(λk−1|z1:k−1) and {L(γk)} are near
the simplex center, the spread of P(λk|z1:k) will increase as
well. Finally, if only one of P(λk−1|z1:k−1) and {L(γk)} is
near the simplex center, P(λk|z1:k) will be similar to the one
that is farther from the simplex center.
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Figure 2: An example to illustrate a case where the posterior uncertainty grows with an
additional image. The classifier model is the same as in Fig. 1, as well as the inference
steps. (a) represents P(λk−1|zk−1). Here, in (b) the point cloud {γk} is closer to
class 3, compared to {λk−1} cloud from (a) that is closer to class 1. The classifier
model translates γk into L(γk) in (c), projecting the point cloud around class 3, and
thus after the multiplication in (d) the distribution is more spread out compared to (a).

From P(λk|z1:k) we can infer the expectation E(λk)
(computed as in Eq. (8)) and covariance matrix Cov(λk)
of λk. As E(λk) takes into account model uncertainty from
each image, unlike existing approaches (e.g. [5]), we can
achieve a posterior classification that is more resistant to
possible aliasing. The covariance matrix Cov(λk) represents
the spread of λk, and in turn accumulates the model uncer-
tainty from all images z1:k. In general, lower Cov(λk) values
represent smaller λk spread, and thus higher confidence with
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the classification results. Practically, this can be used in a
decision making context, where higher confidence answers
are preferred. In this paper we compare between values of
V ar(λik) for all classes i = 1, ...,M , as it is simpler to
describe the uncertainty per class.

There is a correlation between the expectation E(λk) and
Cov(λk). The largest covariance values will occur when
E(λk) is at the simplex’ center. In particular, it is not difficult
to show that the highest possible value for V ar(λik) for
any i is 0.25; it can occur when λik = 0.5. In general, if
E(λk) is close to the simplex’ boundaries, the uncertainty
is lower. Therefore, to reduce uncertainty, E(λk) should be
concentrated in a single high probability class.

To the author’s knowledge, the expression P(λk|z1:k),
where the expression for λk is described in Eq. (11), has no
known analytical solution. The next most accurate method
available is multiplying all possible permutations of point
clouds {γt}, for all images at times t ∈ [1, k]. This method is
computationally intractable as the number of λk points grows
exponentially. In the next section we propose a simple sub-
sampling method to approximate this distribution and keep
computational tractability.

B. Sub-Sampling Inference

As mentioned previously in section III, each measurement
we receive a cloud of Nk probability vectors {(γk)n}Nk

n=1.
Each probability vector is projected via the classifier model
to a different point with the simplex, which provides a new
point cloud {L(γk)n}Nk

n=1. We assume that P(λk−1|z1:k−1)
is described by a cloud of Nk−1 points. Given the data for
γk and λk−1, the most accurate approximation to P(λk|z1:k)
is given by multiplying all possible pairs of λk−1 and L(γk).
Thus, P(λk|z1:k) is described with a cloud of Nk−1 × Nk
points. For subsequent steps the cloud size grows exponen-
tially, making it computationally intractable. We address this
problem by randomly sampling from the point cloud for λk
a subset of Nss,n points and use them for the next time step.
In practice, we keep Nss,n constant across all time steps, see
line 16 in Algorithm 1.

V. EXPERIMENTS

In this section we study our method in simulation and using
real images fed into an AlexNet [16] CNN classifier. We used
a PyTorch implementation of AlexNet for classification, and
Matlab for sequential data fusion. Our hardware is an Intel
i7-7700HQ CPU running at 2.8GHz, and 16GB of RAM. We
compare between four different approaches:

1) Method-P(c|z1:k)-w/o-model: Naive Bayes that
infers the posterior of P(c|z1:k) where the classifier
model is not taken into account (SSBF in [5]).

2) Method-P(c|z1:k)-w-model: A Bayesian approach
that infers the posterior of P(c|z1:k) and uses a clas-
sifier model; essentially using Eq. (11) with a known
classifier model.

3) Method-P(λk|z1:k)-AP: Inference of P(λk|z1:k)
multiplying all possible combinations of λk−1 and

L(γk). Note that the number of combinations grows
exponentially with k, thus the results are presented up
until k = 5.

4) Method-P(λk|z1:k)-SS: Inference of P(λk|z1:k) us-
ing the sub-sampling method.

Our proposed approaches are 3 and 4.

A. Simulated Experiment

This experiment is a simulation to demonstrate the algo-
rithm’s performance. This simulation is designed to emulate
a scenario of a robot traveling in a predetermined trajectory
and observing an object from multiple viewpoints. This
object’s class is one of three possible candidates. We infer
the posterior over λ and display the results as expectation
E(λik) and standard deviation per class i:

σi
.
=
√
V ar(λik). (15)

This simulation is a study on the effect of using classifier
model in the inference for highly ambiguous measurements.
In addition, we analyze the uncertainty behavior for this
scenario. We use a categorical uninformative prior of P(c =
i) = 1/M for all i = 1, ...,M .

Each of the three classes has its own (known) classifier
model Eq. (16), as shown in Figures 3a-3c. This classifier
model is assumed Dirichlet distributed with the following
hyperparameters θi for all i ∈ [1, 3]:

θ1 = [6 1 1]
θ2 = [2 7 2]
θ3 = [1 1.5 2] .

(16)

In this experiment the true class is 3. These hyperparameters
were selected to simulate a case where the γ measurements
are spread out (corresponds to ambiguous appearance of
the class), thus leading to incorrect classification without
a classifier model. The classifier model for this class L3

predicts highly variable γ’s using the training data (Fig. 3c).
The {γt} point clouds for each t ∈ [1, k] are different from
each other (Fig. 3e), representing an object photographed by
a robot from multiple viewpoints.

We simulate a series of 5 images. Each image at time
step t has its own different P(γt|zt). For the approaches that
infer P(c|z1:k), we sample a single γt per image zt for all
t ∈ [1, k] (Fig. 3f, also we present the γt order). This sample
simulates the usual single classifier forward pass that is used.
For our approaches we sample 10 γt’s from each P(γt|zt),
except for the first step t = 1 where we sample 100 γ1’s. For
Method-P(λk|z1:k)-SS each {λt} point cloud is capped at
100 points. The expectation of these generated measurements
are presented in Fig. 3d, along with the cloud order. In Fig. 3e
{γt} point clouds for three different t’s are presented in
distinct colors. The input for methods 1 and 2 is shown in
Fig. 3f, and some of the input for methods 3 and 4 is shown
in Fig. 3e

Fig. 4 presents results obtained with our algorithm, in
terms of expectation E(λik) and

√
V ar(λik) for each class i,
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Figure 3: (a)-(c) Classifier likelihood model (Eq. (16)) for classes 1 to 3 respectively.
Blue and orange colors correspond, respectively, to low and high probability values.
(d) E(γt) for t ∈ [1, 5] (i.e. 5 images). (e) Point cloud {γt} for 3 images. (f) CNN
classifier without dropout. In (d) and (f), image indices are shown.

as a function of classifier measurements. In Fig. 4a and 4b we
use a single sampled γt for zt (see Fig. 3f), while in Fig. 4c
and 4d we create a {γt} point cloud for zt (see Fig. 3e). In
Fig. 4a and 4b results for Method-P(c|z1:k)-w/o-model
and Method-P(c|z1:k)-w-model respectively. Without
classifier model the results generally favor class 2 incorrectly,
as the measurements tend to give that class the higher
chances. With classifier models the results favor class 3,
the correct class. Because the classifier model for class 3 is
more spread out than for the other classes, γ’s in the simplex
middle (as in Fig. 3e) have higher L3(γ) values than L1(γ)
and L2(γ). While method Method-P(c|z1:k)-w-model
gives eventually correct classification results, it does not
account for model uncertainty, i.e. uses a single classifier
output γ obtained with a forward run through the classifier
without dropout. In this simulation we sample a single γ from
each point cloud to simulate this forward run.

Figs. 4c and 4d present the results for
Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP,
expectation and standard deviation respectively. Throughout
the scenario class 3 has the highest probability correctly, and
the deviation drops as more measurements are introduced.
Compared to Fig. 4b where class 3 has high probability only
at time step t = 3, in Fig. 4c class 3 is the most probable
from time step t = 1. Both Method-P(λk|z1:k)-SS and
Method-P(λk|z1:k)-AP behave similarly. Note that class
1 has much smaller deviation than the other two because its
probability is close to 0 through the entire scenario.
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for both of our methods.

Figure 4: (a)-(c) Posterior class probabilities: (a) Method-P(c|z1:k)-w/o-model;
(b) Method-P(c|z1:k)-w-model; (c) P(c|z1:k) calculated via expectation (8) for
Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP; (d) presents the posterior
standard deviation Eq. (15)

Fig. 5 presents the development of {λk} point clouds for
Method-P(λk|z1:k)-SS at different time steps. Those fig-
ures show the gradual decrease in {λk}’s spread, coinciding
with the corresponding standard deviation at Fig. 4d.
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(c) k=3

Figure 5: The figure depicts the evolution of the {λk} point cloud, as calculated by
Method-P(λk|z1:k)-SS, for different time instances k.

B. Experiment with Real Images

Our algorithm is tested using a series of images of an
object (space heater) with conflicting classifier outputs when
observed from different viewpoints. This corresponds to a
scenario where a robot in a predetermined path observes an
object that is obscured by occlusions and different lighting
conditions. The experiment presents our algorithm’s robust-
ness to these difficulties in classification, and addressing them
is important for real-life robotic applications.

The database photographed is a series of 10 images of
a space heater with artificially induced blur and occlusions.
Each of the images is run through an AlexNet convolutional
neural network [16] with 1000 possible classes. Similar to
Section V-A, we use an uninformative classifier prior on
P(c) with P(c = i) = 1/M for all i = 1, ...,M classes.
Our algorithm is used to fuse the classification data into
a posterior distribution of the class probability and infer
deviation for each class. As in the previous section, we
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present results with and without classifier model. Fig. 6
presents four of the dataset images, exhibiting occlusions,
blur and different colored filters in a monotone environment.

(a) (b) (c) (d)

Figure 6: Four of the 10 images used in the dataset with occlusions and different
viewpoints. Blurring and colored filters were introduced to some images artificially.

We compare between the same methods that are used in the
previous sub-sections. For Method-P(c|z1:k)-w/o-model
and Method-P(c|z1:k)-w-model, we forward the images
through the classifier without dropout and use a single output
γ for each image. For Method-P(λk|z1:k)-SS, we run
each image 10 times through the classifier with dropout,
producing a point cloud {γ} per image. The cap for number
of λk points with Method-P(λk|z1:k)-SS is 100. For
Method-P(λk|z1:k)-AP method, we present results only for
the first five images as the calculations become infeasible due
to the exponential complexity.

As AlexNet has 1000 possible classes (one of them is
”Space Heater”), it is difficult to clearly present results for
all of them. Because we wish to compare between the most
likely classes, we select 3 likely classes by averaging all γ
classifier outputs and selecting the three with highest proba-
bility. The probabilities for those classes are then normalized,
and utilized in the scenario. All other classes outside those
three are ignored. We require a classifier model for each
class; assuming the classifier model is Dirichlet distributed,
we classified multiple images unrelated to the scenario for
each class with the same AlexNet classifier but without
dropout. The classifier produced multiple γ’s, one per image,
and via a Maximum Likelihood Estimator [17] we inferred
the Dirichlet hyperparameters for each class i ∈ [1, 3]. The
classifier model P(γk|c = i) = Dir(γk; θi) was used with
the following hyperparameters θi:

θ1 = [5.103 1.699 1.239]
θ2 = [0.143 208.7 5.31]
θ3 = [0.993 14.31 25.21]

(17)

In this experiment, class 1 is the correct class (i.e. ”Space
Heater”). Fig. 7 presents the simplex representation of the
classifier model per class, and a normalized simplex of
classifier outputs for three high probability classes, similarly
to Fig. 3. The classifier model for class 1 is much more
spread than the other two (Fig. 7a), therefore the likelihood
of measurements within a larger area will be higher for this
class. Interestingly, the classifier model for class 3 predicts
P(γk|c = 3) will be between classes 2 and 3 (Fig. 7c). Fig. 7e
presents 4 of the 10 {γt} point clouds used in the scenario.
Fig. 7d presents the expectation of each {γt} point cloud for
t ∈ [1, 10]. Fig. 7f presents classifier outputs without dropout,
i.e. a single γt per image. Both Fig. 7d and 7f have indices
that represent the images order.
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Figure 7: A simplex representation of the classifier model for (a) class 1, (b) class 2,
and (c) class 3. In (b), note the distribution is very tight centered at the top left corner
of the simplex. (d) E(γt) for t ∈ [1, 10] (i.e. 10 images). (e) Pointcloud {γt} for
4 images. (f) CNN classifier output without dropout. In (d) and (f), image indices are
shown.

Fig. 8 presents the classification results for
all the methods presented. Fig. 8a and 8b show
results for Method-P(c|z1:k)-w/o-model and
Method-P(c|z1:k)-w-model respectively. Without a
classifier model, i.e. the former method, incorrectly indicates
class 2 as the most likely, because the classifier outputs
often show class 2 as the most likely (see Fig. 7f). With a
classifier model, the results jump between classes 1 and 3
as most probable. This can be explained by the likelihood
vector L from Eq. (17) that projects the γ’s from different
images approximately to different simplex edges (e.g. γ2
and γ4 for class 1, and γ3 and γ5 for class 3).

Figs. 8c and 8d present results for
Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP,
expectation and standard deviation respectively. Fig. 8c
presents class 1 as most likely correctly in both methods
from k = 2 onwards, and the results are smoother than in
Fig. 8b because our algorithm takes into account multiple
realizations of γ1 to γ10 - we recall that for each image we
use a point cloud of γ’s. In addition, we can reason about
the standard deviation of λk, representing the posterior
uncertainty, as seen in Fig. 8d. Note that starting from the
4th image, the uncertainty increases, as later measurement
likelihoods do not agree with λk−1 about the most likely
class at those time steps, similar to the example presented
in Fig. 2.

Fig. 9a presents the computational time comparison be-
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Figure 8: (a)-(c) Posterior class probabilities: (a) Method-P(c|z1:k)-w/o-model;
(b) Method-P(c|z1:k)-w-model; (c) P(c|z1:k) calculated via expectation (8) for
Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP; (d) presents the posterior
standard deviation Eq. (15) for both of our methods.

tween those two methods for the scenario presented in this
section, including different number of samples Nss,n per time
step. Importantly, the results for Method-P(λk|z1:k)-SS
are similar to Method-P(λk|z1:k)-AP while offering
significantly shorter computational times. Note that the
computational time per step is constant as well for
Method-P(λk|z1:k)-SS. Fig. 9b presents mean square
error (MSE) of Method-P(λk|z1:k)-SS compared to
Method-P(λk|z1:k)-AP, as a function of Nss,n. As ex-
pected, larger Nss,n values produce lower MSE.
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Figure 9: (a) Computational time comparison between Method-P(λk|z1:k)-AP and
Method-P(λk|z1:k)-SS per time step. The figure presents computational times for
Nss,n ∈ {50, 100, 200, 400} points per time step for Method-P(λk|z1:k)-SS.
(b) The statistical mean square error of Method-P(λk|z1:k)-SS as a function of
Nss,n ∈ [50, 500] relative to Method-P(λk|z1:k)-AP.

VI. CONCLUSIONS

We proposed a method that infers a distribution over
posterior class probabilities with a measure of uncertainty
using a modern, deep learning classifier. As opposed to state
of the art, our approach enables quantification of uncertainty
in posterior classification given all data thus far, and as such
is important for robust classification, object-level perception
and safe autonomy. In particular, we showed that the current
posterior class probability vector is a function of the previous,
accounting for model uncertainty. We used a sub-sampling
approximation to obtain a point cloud that approximates the
function’s distribution. Our approach is studied in simulation,

and with real images fed into a deep learning classifier,
providing classification posterior along with uncertainty es-
timates for each time instant. Future research might explore
active classification aspects via belief space planning.
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