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Distributed Consistent Multi-Robot Semantic
Localization and Mapping

Vladimir Tchuiev and Vadim Indelman

Abstract—We present an approach for multi-robot consistent
distributed localization and semantic mapping in an unknown
environment, considering scenarios with classification ambigu-
ity, where objects’ visual appearance generally varies with view-
point. Our approach addresses such a setting by maintaining a
distributed posterior hybrid belief over continuous localization
and discrete classification variables. In particular, we utilize a
viewpoint-dependent classifier model to leverage the coupling be-
tween semantics and geometry. Moreover, our approach yields a
consistent estimation of both continuous and discrete variables,
with the latter being addressed for the first time, to the best of
our knowledge. We evaluate the performance of our approach
in a multi-robot semantic SLAM simulation and in a real-world
experiment, demonstrating an increase in both classification and
localization accuracy compared to maintaining a hybrid belief
using local information only.

Index Terms—Multi-robot systems, semantic scene
understanding, SLAM.

I. INTRODUCTION

D EPLOYMENT of multi-robot systems allow for fast in-
formation gathering, and can be used in a wide variety

of applications, for example: search and rescue, autonomous
driving, and agriculture. A significant part of ongoing research is
multi-robot Simultaneous Localization and Mapping (SLAM),
where a group of robots localize themselves and cooperatively
map the environment. Multi-robot SLAM is utilized in a variety
of navigation tasks such as cooperative search and rescue, un-
derwater navigation, or warehouse management. SLAM itself
is a widely researched problem (see e.g. [1]) in the robotics
community. In particular, semantic SLAM reasons about objects
within the environment with richer information, such as object’s
class, compared to geometric SLAM. Yet, often when observed
from certain viewpoints, inferring the correct class of an object
can be challenging, i.e. an object may visually appear similar
to representative objects from different classes. This induces a
viewpoint dependency for classifier outputs and requires infor-
mation from different viewpoints for maintaining a belief over
classification variables.
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In this paper we present the first distributed multi-robot
approach for semantic localization and mapping in the above
setting. Our approach maintains a hybrid belief over continuous
variables (object and camera poses) and discrete variables (ob-
ject classes), while considering the coupling between classifica-
tion and localization, and enforcing consistent, double-counting-
free estimation.

In contrast, existing approaches for multi-robot semantic
SLAM utilize most-likely class measurements to solve data
association. Moreover, these approaches do not maintain a belief
over classification variables, nor model the coupling between
semantic and geometric information.

As each robot uses information from other robots, it must
not use measurements more than once, otherwise it will lead to
erroneous and overconfident estimates, i.e. it will double count
information. To address this key problem, multiple approaches
were proposed, all considering continuous variables: from com-
plex book-keeping (e.g. [2]) to information removal techniques
(e.g. [3]). In this work we address consistent inference of a hybrid
belief that consists of continuous and discrete variables. To the
best of our knowledge, the latter has not been addressed thus far.

To summarize, our main contributions are as follows. (i) we
contribute a multi-robot approach that maintains a hybrid belief
over robot and object poses, and object classes in a distributed
setting, while addressing the coupling between semantic and ge-
ometric information via viewpoint-dependent classifier model;
(ii) we address estimation consistency aspects considering both
continuous and discrete random variables; (iii) we demonstrate
the strength of this approach in simulation and real-world experi-
ment, comparing to single robot and distributed multi-robot with
double counting. This paper is accompanied with supplementary
material [4] which provides further details and results.

II. RELATED WORK

Various works have utilized sequential classification with
a classifier model for a single robot. Omidshafiei et al. [5]
presented a sequential classification approach that used a Dirich-
let distributed classifier model. The classifier model was not
modeled as viewpoint-dependent. Kopitkov and Indelman [6]
presented an approach to train a viewpoint dependent classifier
model. Feldman and Indelman [7] proposed a sequential object
classification that utilizes a viewpoint dependent classifier with
known relative poses a-priori. Tchuiev et al. [8] maintained a
hybrid belief with a viewpoint dependent classifier to disam-
biguate between data association realizations. These works, [8],
address only sequential classification and do not consider the
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coupled problem with SLAM. To our knowledge, our work is
the first to address the coupled problem in a distributed setting.

There are different approaches for distributed multi-robot
SLAM; Walls et al. [9] proposed a distributed geometric SLAM
approach that communicates factors between robots. Other ap-
proaches for geometric SLAM include Extended Kalman Filter
(such as [10]) or Particle Filter based methods (such as [11]).
Choudhary et al. [12] presented an approach for distributed
semantic SLAM which communicates relative poses between
robots and uses object class information for data association. The
geometric approaches do not reason about object classes, while
the semantic approaches consider only most likely classification,
i.e. do not maintain a belief over class variables. Our semantic
approach maintains a belief over object classes and considers
the coupling between the continuous and discrete variables.

Consistent estimation is a key issue in a distributed setup,
with multiple approaches proposed to address it. Bahr et al. [2]
proposed a distributed algorithm for under-water vehicles, with
an approach for using all measurements without information
loss. Indelman et al. [13] proposed a graph based method that
calculated cross-covariance terms that represent the correlation
between measurements from different robots, utilizing it for
consistent estimation. Cunningham et al. [14] presented the
DDF-SAM distributed SLAM algorithm that avoided double
counting by creating two maps for each robot: local and global.
The global map is updated with condensed local maps. A later
work by Cunningham et al. [3] introduced DDF-SAM2, where
each robot maintains only the global map. To avoid double
counting, the old information during communication is filtered
out via down-dating by each robot. These approaches consider
continuous random variables. In contrast, we reason about dis-
crete variables as well.

III. NOTATIONS AND PROBLEM FORMULATION

Consider a group of robots operating in an unknown envi-
ronment represented by object landmarks. All of the robots aim
to localize themselves, and map the environment geometrically
and semantically within a distributed multi-robot framework. In
this work we consider a closed-set setting, where each of the
objects is of one of M possible classes. The number of objects
in the environment prior to the scenario is unknown.

We denote states inferred by robot r with a superscript�r. Set
R is the set of all robots communicating with robot r (including
itself), either directly, or relayed through other robots. Note that
R can increase its size with time. Letxk denote robot pose at time
k, xo

n and cn denote the n’th object pose and class respectively.
Let X o .

= {xo
n}n and C

.
= {cn}n denote poses and classes of

objects, and Xk
.
= {x0:k,X o

k } denotes all poses up to time k.
Subscript new, k representing the objects newly observed at k.

Let Zr
k be the set of measurements robot r receives at time k

by its own sensors. Zr
k is composed of geometric and semantic

measurements Zgeo,r
k , and Zsem,r

k respectively. We assume
independence between geometric and semantic measurements,
as well as between different time steps.

We assume Gaussian and known identical motion Mk
.
=

P (xk|xk−1, ak−1) and geometric P (zgeo,rk |xr
k, x

o,r) models for

TABLE I
MAIN NOTATIONS USED IN THE PAPER

all robots. At each time step, there is a subset of object poses
involved in the geometric and classifier model that is determined
by data association (DA). Unlike our previous work [8], herein,
DA is assumed to be externally determined.

Additionally, we use a viewpoint-dependent classifier model
that “predicts” classification scores (a vector of class proba-
bilities). This model couples classifier scores with viewpoint
dependency between object and camera; this coupling can be
used to improve pose inference performance [8]. The viewpoint
dependency is modeled as a Gaussian with parameters that
depend on the relative viewpoint from the camera to the object
xo,r � xr

k and object’s class c:

P (zsem,r
k |xr

k, x
o, c)=N (hc(x

r
k, x

o,r),Σc(x
r
k, x

o,r)), (1)

where hc(·) and Σc(·) can be learned offline via a Gaussian
Process (GP) [7] or a deep neural network [6]. Note that for M
candidate classes, M viewpoint-dependent models have to be
learned.

Let Lr
k

.
= P (Zr

k |X r
k , C

r
k) be the local measurement likeli-

hood of r that consists of geometric and classifier models:

Lr
k

.
=

∏

xo,r,cr

P (Zgeo,r
k |xr

k, x
o,r)P (Zsem,r

k |xr
k, x

o,r, cr), (2)

where xo,r ∈ X o,r
βk

and cr ∈ Cr
βk

; the term βk represents the
local DA of robot r at time k, i.e. the correspondences between
observations and object IDs. Denote X o,r

βk
the set of all poses of

objects that observed by r at time k, and similarly denote Cr
βk

for object classes. For the reader’s convenience, Table I presents
the important notations used in the paper, some will be defined
in the next section.

A. Problem Formulation

For each robot r we aim to maintain the following hybrid
belief:

P (XR
k , CR|HR

k ), (3)

whereHR
k

.
= {Zr′

1:k, a
r′
0:k−1}r′∈R is the history of measurements

of robot r itself and transmitted information to r, as well as
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actions from all robots in R. The belief in Eq. (3) is a hybrid
belief over both continuous (camera and object poses), and
discrete (object classes) random variables. We aim to update
this hybrid belief per each robot in a recursive manner, using
both local measurements and information sent from other robot
in the neighborhood, as well as sending information by itself. We
aim to keep estimation consistency by avoiding double counting,
i.e. using every measurement only once.

IV. APPROACH

We present a framework for distributed classification, local-
ization, and mapping. As with many multi-robot distributed
frameworks, over-confident estimations, due to double counting,
is a key issue; We propose a framework that simplifies the
book-keeping that allows relaying of information (e.g. robot
1 sends information to robot 2, then 2 sends to 3 information
that also includes the received from robot 1). This framework
requires the maintenance of a local belief P (X r

k , C
r|Hr

k) per
each robot that can be sent and relayed to other robots. From
multiple local beliefs a distributed belief can be constructed. The
local beliefs are stored by each robot, and updated accordingly
when new information arrives, and the receiving robot filters out
the old information, thus avoiding double counting.

In the next sections we derive a recursive formulation for
maintenance of the local belief, the distributed hybrid belief,
and the information stack each robot holds and transmits.

A. Local Hybrid Belief Maintenance

Our formulation for maintaining local hybrid beliefs builds
upon our previous work [8], with the main differences being
that here we assume the DA is solved, and the number of objects
is unknown a-priori. In this section we present an overview of
this approach.

We maintain the hybrid belief of robot r only from local
information. This belief can be split into continuous and discrete
parts as in:

P (X r
k , C

r
k |Hr

k) = P (X r
k |Cr

k ,Hr
k)︸ ︷︷ ︸

brk

P (Cr
k |Hr

k)︸ ︷︷ ︸
wr

k

. (4)

To maintain this hybrid belief, we must maintain a set of con-
tinuous beliefs conditioned on the class realization of all objects
observed in the scene by robot r thus far.

The continuous part can be updated as follows:

brk ∝ brk−1 · Lr
k · Mr

k · P (X o,r
new,k), (5)

where P (X o,r
new,k) =

P(Xo,r
k )

P(Xo,r
k−1)

is the prior over object poses newly

observed at time k. As opposed to [8], this formulation also
supports an increasing number of objects known at each time
step, with both X o,r

k and Cr
k increasing in dimension. Note that

in general brk is different for each class realization, as models (1)
are different for each class.

The discrete part is the weight associated to its correspond-
ing continuous belief. As our measurement models depend on
continuous variables, we use Bayes rule on P (Cr

k |Hr
k) and

marginalize the measurement likelihood as follows:

wr
k ∝ wr

k−1P (Cr
new,k)

∫

X r
k

Lr
k · brk−1 · Mr

kdX r
k , (6)

where P (Cr
new,k) =

P(Cr
k)

P(Cr
k−1)

is the prior over classes of new

objects locally observed by r at time k. We compute the integral
in Eq. (6) by sampling the continuous variables that participate
in P (Zr

k |X r
k , C

r
k), i.e. the last robot pose xr

k and the poses of
observed objects X o,r

βk
at time k. These variables are sampled

from the propagated belief brk−1 · Mr
k. Variables that do not

participate in Lr
k can be marginalized analytically.

B. Distributed Hybrid Belief Maintenance

In this section we extend the formulation presented in Sec-
tion IV-A to include updates from other robots, considering a
distributed multi-robot setting. As will be seen, our formulation
uses each measurement only once, thus keeping estimation
consistency and avoiding double counting. Similarly to (4), we
factorize the distributed hybrid belief (3)

P (XR
k , CR

k |HR
k ) = P (XR

k |CR
k ,HR

k )︸ ︷︷ ︸
bRk

P (CR
k |HR

k )︸ ︷︷ ︸
wR

k

. (7)

As in the single robot case, maintaining this belief requires
managing multiple hypotheses of class realizations. Compared
to the single robot case, the number of objects observed will
be equal or greater for distributed belief, therefore the number
of possible realizations increases as well. Importantly, infor-
mation transmitted by other robots impacts both bRk and wR

k .
Furthermore, the classifier viewpoint-dependent model induces
coupling between localization uncertainty and classification of
different robots.

We present a recursive formulation for maintaining each of
the parts in (7). The distributed measurement history HR

k can
be split to a prior part, and a new part, defined as ΔHR

k , that
consists of measurements and actions from time k, s.t: HR

k =
HR

k−1 ∪ΔHR
k . Similarly, let Hr

k
.
= Hr

k−1 ∪ {Zr
k , a

r
k−1} for the

single robot case. Note information inΔHR
k transmitted by other

robots can potentially be from earlier time instances (as each
robot during communication transmits to robot r its own stack
of local beliefs of other robots, see Section IV-C). Crucially,
each measurement must be used once to avoid double counting.
We also denote history without local measurements and action
at time k as

HR−
k

.
=HR

k \{Zr
k , a

r
k−1} ΔHR−

k
.
= ΔHR

k \{Zr
k , a

r
k−1}. (8)

Using the above notations, one can observe HR−
k = HR

k−1 ∪
ΔHR−

k . Next, we detail our approach for maintaining both
the conditional continuous part bRk and the discrete part wR

k

recursively for a realization of object classes CR
k .

1) Maintaining bRk : Using Bayes rule, we rewrite bRk as:

bRk = η · Lr
k · bR−

k (9)

where η
.
= P (Zr

k |Cr
k ,HR

k \Zr
k)

−1
is a normalization constant

the does not participate in inference of the continuous belief.
The local measurement likelihood, Lr

k, is defined in Eq. (2).
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The term bR−
k

.
= P (XR

k |CR
k ,HR

k \Zr
k) is the distributed prop-

agated belief that is conditioned on information transmitted by
other robots at time k, and on the latest action of robot r but
not on its local measurement. During update, bR−

k is saved to
be used in maintenance of wR

k , as seen in the next subsection.
Using chain rule, we can extract the motion model of the latest
action as well:

bR−
k = Mr

k · P (XR
k \xr

k|CR
k ,HR−

k ). (10)

We can express P (XR
k \xr

k|CR
k ,HR−

k ) in terms of the distributed
continuous prior bRk−1

.
= P (XR

k−1|CR
k−1,HR

k−1), and the new
information received from other robots (see [4, Sec. 2]):

P (XR
k \xr

k|CR
k ,HR−

k ) = bRk−1 ·
P (X o,R

k |Co,R
k ,ΔHR−

k )

P (X o,R
k−1)

(11)

Finally, we substitute Eq. (11) to Eq. (10) and in turn to Eq. (9),
and get the following recursive formulation:

bRk ∝ bRk−1 · Lr
k · Mr

k · P (X o,R
new,k)

P (X o,R
k |Co,R

k ,ΔHR−
k )

P (X o,R
k )

,

(12)
where the measurement likelihoodLr

k accounts for the new local
measurement, Mr

k accounts for the latest action of robot r, and
P (X o,R

k |Co,R
k ,ΔHR−

k ) accounts for new information sent to r
by other robots in R at time k. This pdf is only over object poses
(X o,R

k ), while the other robots’ poses are marginalized out. Thus,
robots communicate the environment states, which are implicitly
affected by the robots’ pose estimation. Computation of the left
update term is further discussed in Section IV-C. Compared to
the local belief update (5), the left update term is the main
difference. The expression P (X o,R

new,k) represents pose prior of
objects newly known by r at time k.

The distributed belief has at worst MNk(R) continuous be-
liefs with corresponding weights, where the number of objects
Nk(R) known by r can increase with time. Naturally, a multi-
robot system will observe more objects than a single robot,
therefore the computational burden for distributed belief will
be larger than for the local belief. Therefore, the significance
of pruning beliefs with small weight grows. We set a threshold
for the ratio between a weight and the largest weight in the
distributed hybrid belief.

2) Maintaining wR
k : To maintain wR

k , we use a similar
derivation to the weight update via local information only,
presented in Sec. IV-A. We use Bayes rule to extract the last
local measurement likelihood:

wR
k = η · wR−

k · P (Zr
k |CR

k ,HR
k \Zr

k), (13)

where wR−
k

.
= P (CR

k |HR
k \Zr

k) is the posterior distributed
weight without accounting for the latest local measurements,
and η

.
= P (Zr

k |HR
k \Zr

k)
−1

is a normalization constant that is
identical in all realizations of CR

k , thus does not participate in
weight inference. As we use a viewpoint dependent classifier
model that utilizes the coupling between relative viewpoint and
object class, we need to marginalize P (Zr

k |CR
k ,HR

k \Zr
k) over

the involved poses in this likelihood: the last robot pose xr
k, and

poses of objects observed at time k. We denote the latter by

X o,r
βk

, and to shorten notations denote X r
inv,k

.
= {xr

k,X r,k
βk

}, and
by ¬X r

inv,k. Thus, P (Zr
k |CR

k ,HR
k \Zr

k) is marginalized as

P (Zr
k |CR

k ,HR
k \Zr

k)=

∫

X r
inv,k

Lr
k · P (X r

inv,k|Cr
k ,HR

k \Zr
k)dX r

inv,k,

(14)
where P (X r

inv,k|Cr
k ,HR

k \Zr
k) is computed by marginalizing

bR−
k over the uninvolved variables ¬X r

inv,k, with XR
k = X r

inv,k ∪
¬X r

inv,k, as

P (X r
inv,k|Cr

k ,HR
k \Zr

k) =

∫

¬X r
inv,k

bR−
k d¬X r

inv,k. (15)

The propagated distributed belief bR−
k is given to us from the

continuous belief with Eq. (10), and includes the external infor-
mation.

In practice, we sample the involved variables X r
inv,k in the

current measurement likelihood and compute its value. As bRk
and Lr

k are Gaussian, η does not play a role in the sampling
process. Despite the classifier outputs being modeled as Gaus-
sian, we integrate over poses; In the general case, expectation
and covariance of the classifier model are a function of the
relative viewpoint, thus we need to sample X r

inv,k as presented
in Section IV-A at Eq. (6).

The other term we will address from Eq. (13) is wR−
k . We

express wR−
k in terms of wR

k−1:

wR−
k ∝ wR

k−1 · P (CR
k−1)

−1 · P (CR
k |ΔHR

k \Zr
k). (16)

Finally, we substitute Eq. (14) and (16) to Eq. (13) to reach our
final recursive form for the discrete belief update:

wR
k ∝ wR

k−1 · P (CR
new,k)

P (CR
k |ΔHR

k \Zr
k)

P (CR
k )

∫

X r
inv,k

Lr
k·

· P (X r
inv,k|Cr

k ,HR
k \Zr

k)dX r
inv,k, (17)

with P (X r
inv,k|Cr

k ,HR
k \Zr

k) computed via Eq. (15). This is a
recursive formulation that includes the discrete prior wR

k−1,
external updates for the class probability from other robots, and
the external updates for the continuous belief contained within
the integral.

Remark: One might be tempted to infer the class of each
object separately, but it is not accurate due to the coupling
between relative viewpoint and object class, as each object class
is possibly implicitly dependent on all poses: robot and objects
(see [4, Sec. 3]).

C. Communication Between Robots

In Section IV-B we presented a framework to maintain a
hybrid belief of r given information obtained from other robots
inR. That information was represented by the continuous update
expression in Eq. (12) and implicitly in Eq. (17), and the discrete
update expression in Eq. (17). In this section, we present our
approach for computing these parts, thus describing the man-
agement of this information and what each robot sends when
communicating. We aim to achieve two goals:
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1) Simple double counting prevention when maintaining the
distributed belief without complex bookkeeping.

2) Distributed belief inference also via data not directly trans-
mitted (e.g. robot r1 sends data to r2, r2 to r3, and r3 is
using data from r1).

As will be shown next, the update terms in Eqs. (12) and
(17) can be expressed via local information transmitted by
different robots in R to robot r. To that end, each robot r
maintains and broadcasts a stack of local hybrid beliefs of other
robots it is aware of. In contrast to (4), these local beliefs
are marginal beliefs over object poses and classes, i.e. robot
poses are marginalized out. Each slot for robot r′ in the stack
of robot r contains Nk(r

′) continuous and discrete marginal
beliefs (defined below as ξr,r

′
k and φr,r′

k ), one pair per class
realization, following a factorization similar to (4). Additionally,
each slot includes a time-stamp that indicates on what data the
local hybrid belief is conditioned upon. All in all, every stack
contains

∑|R|
i=1 Nk(ri) continuous and discrete beliefs. Eq. (18)

presents the stack of robot r as a set of slots, where each slot
contains a hybrid belief of a particular robot ri ∈ R over object
poses and classes, normalized by their priors.

Sr
k

.
=

{(
P (X o,ri

ki
|Cri

ki
,Hri

ki
)P (Cri

ki
|Hri

ki
)

P (X o,ri
ki

)P (Cri
ki
)

, ki

)}

ri∈R
, (18)

where ki is the time-stamp when robot r received information
about ri. In general, time ki is not synchronized with k. The
marginal continuous and discrete beliefs that robot r has about
robot ri ∈ R are denoted ξr,rik

.
= P (X o,ri

ki
|Cri

ki
,Hri

ki
)/P (X o,ri

ki
)

for the continuous part, and φr,ri
k

.
= P (Cri

ki
|Hri

ki
)/P (Cri

ki
) for

the discrete part.
With these definitions of ξr,rik and φr,ri

k , it is possible to show
that the LHS term in Eq. (12) can be expressed as (see full
derivation in supplementary material [4, Sec. 4])

P (X o,R
k |CR

k ,ΔHR−
k )

P (X o,R
k )

=
∏

ri∈R

ξr,rik

ξr,rik−1

(19)

Similarly, the LHS term in Eq. (17) can be expressed as (see full
derivation in supplementary material [4, Sec. 5]):

P (CR
k |ΔHR

k \Zr
z )

P (CR
k )

=
∏

ri∈R

φr,ri
k

φr,ri
k−1

. (20)

Eqs. (19) and (20) present the external update as a product of
local beliefs, with only the updates from k − 1 for robot r are
present. This formulation avoids double counting by removing
old information, ξr,rik−1 and φr,ri

k−1, in each communication and
uses measurements only once. Specifically for ξr,rik−1, we use the
approach presented in [3]. Doing so by maintaining stacks of
individual information does not require complex book-keeping,
only time-stamps for each slot; Thus we fulfill the first goal.
Robots can also relay information transmitted to them, thus the
distributed belief can be updated by information from robots that
did not transmit to the inferring robot, thus fulfilling the second
goal.

Robot ri sends the entire stack during information broadcast.
When robot r receives information, it integrates the broadcast
in as follows: recall that ri’s stack is divided to slots, with a

time stamp per each slot. Robot r compares time stamps with
the received information per slot, and replaces the information
within the slot if the received time stamps is newer. If r receives
information from more than one other robot at the same time,
it will select the newest information per slot. This procedure is
dependent on the relations between time-stamps, thus it is not
necessary to synchronize time between the robots.

In the following section we discuss double counting aspects
of discrete random variables, corresponding to Eq. (20).

D. Double Counting of Discrete Random Variables

Double counting leads to over-confident estimations, and if
an erroneous measurement is counted multiple times, it may
lead to a large error in the state’s estimation in turn. While the
implications of double counting on continuous random variables
(e.g. camera poses and objects) have been investigated, it is not
so for discrete random variables. Both cases have a common
thread: measurements counted multiple times will ‘push’ the
posterior estimation to a certain direction while leading to lower
uncertainty than when double counting is appropriately avoided
(i.e. each measurement is used at most once). In the continuous
Gaussian case, it manifests in a covariance matrix with smaller
eigenvalues. Comparatively, in the discrete case the highest
probability category will have its probability increase while the
probability of not being in this category decreases.

To illustrate the above, consider an example with a categorical
random variable c; we receive two sets of data Za = {z1, z2},
and Zb = {z2, z3}, with a common measurement z2. Consider-
ing a measurement likelihood P (z|c), the posterior over c is (see
e.g. Bailey et al. [15]):

P (c|Za, Zb) ∝ P (c)P (Za, Zb|c)

= P (c)
P (z1|c)P (z2|c)2P (z3|c)

P (z2|c) . (21)

If the common data (measurement z2) is not removed via the
denominator in Eq. (21), it will be double counted. Compared
to Eq. (20), the above nominator and denominator correspond,
respectively, to the terms φr,ri

k and φr,ri
k−1.

Denote P (z2|c = i)
.
= ai, and to shorten the notations

P (c = i)P (z1|c = i)P (z3|c = i)
.
= Li. The normalized poste-

rior can be written as:

P (c = i|Za, Zb) =
aiLi∑m

j=1 ajLj
=

a2iLi∑m
j=1 ajLj · ai (22)

wherem is the number of candidate categories. Double counting,
i.e. without the denominator in Eq. (21), gives after normaliza-

tion a2
iLi∑m

j=1 a2
jLj

.

The largest ai is denoted amax, with imax being the category
corresponding to amax, and subsequently the product of all other
terms for imax is denoted Lmax. Double counting of P (z2|ci)
will increase the probability of imax:

P (c = imax|Za, Zb) =
a2maxLmax∑m

j=1 ajLj · amax
≤ a2maxLmax∑m

j=1 a
2
jLj

.

(23)
Similarly, it can be shown that with higher power (i.e. count-
ing the data more) can increase the posterior probability even
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Fig. 1. Conceptual demonstration of the effects of double counting on discrete
random variables. Consider 4 possible categories with an uninformative prior
over them. (a) is the measurement likelihood for the categories. Considering the
uninformative prior, it is the posterior distribution as well. (b) and (c) counts the
same likelihood twice and thrice respectively.

further; In addition, the reverse can be shown for the lowest
probability in a. This increase in influence can be disastrous if
the category of the highest probability likelihood is not correct,
possibly leading to pruning of the correct class hypothesis when
maintaining the hybrid belief (3).

A visualization can be seen in Fig. 1, where there are 4
categories with uninformed prior and a measurement likelihood;
in Fig. 1(a), (b) and (c) the likelihood is counted once, twice and
thrice respectively. Evidently, the strongest category’s probabil-
ity (cat. 3) is increased when counted more times while all other
have their probability diminish.

V. EXPERIMENTS

We evaluated our approach in a multi-robot SLAM simulation
and with real-world data where we consider an environment
comprising several scattered objects observed by multiple mo-
bile cameras from different viewpoints. Figs. 2(a) and 5(a)
present the ground truth for simulation and experiment respec-
tively. Our implementation uses the GTSAM library [16] with a
python wrapper. The hardware used is an Intel i7-7700 processor
running at 2.8 GHz and 16 GB RAM, with GeForce GTX 1050Ti
with 4 GB RAM.

A. Simulation Setting, Compared Approaches and Metrics

Consider 3 robots, denoted r1, r2, and r3, moving in a 2D envi-
ronment represented by N = 15 scattered objects. We consider
a closed-set setting and assume, for simplicity, M = 2 classes,
where each object can be one of the two. In this scenario the max-
imum number of possible class realizations is MN = 32768.

Our approach is evaluated for both classification, and pose
inference accuracy, as we maintain a hybrid belief. We con-
sider an ambiguous scenario where the classifier model cannot
distinguish between the two classes from a certain viewpoint,
thus requiring additional viewpoints to correctly disambiguate
between the two classes. The robots communicate between
themselves, increasing performance for discrete and continu-
ous variables, i.e. classification and SLAM. Additionally, the
distributed setting extends the sensing horizon, allowing robots
to reason about objects that are not directly observed, while
keeping estimation consistency.

Each robot only communicates with robots within a 10 meter
communication range, relaying the local information stored in
its stack. In particular, initially r2 and r3 share information with
each other, then r1 and r2, relaying information from r3 through
r2. For a complete table of communication in the considered
scenario, see [4, Sec. 7]. Further, we assume the robots share a

common reference frame (this assumption can be relaxed as
in [17]). We simulate relative pose odometry and geometric
measurements, and we crafted a classifier model that simulates
perceptual aliasing.

In the evaluation we compare between three approaches:
local estimations, our approach, and our approach with double
counting, i.e. ξr,rik−1 = 1 and φr,ri

k−1 = 1 in Eqs. (19) and (20)
respectively. In all benchmarks we average the results for each
robot. The parameters are presented in the supplementary ma-
terial [4, Sec. 6].

As explained in Section IV-D, when double counting occurs,
the posterior class probability will converge to extreme results
quicker, and may result on either completely right or wrong
classifications. Therefore, reasoning about a single run is insuffi-
cient, and a statistical study is required. To quantify classification
accuracy, we sample 100 times different geometric and semantic
measurements, and perform a statistical study over the results.
For that, we use mean square detection error (MSDE) averaged
over all objects, robots, and runs (also used by Teacy et al. [18]
and Feldman & Indelman [7]). We define MSDE per robot and
object as follows:

MSDE
.
=

1

m

m∑

i=1

(Pgt(c = i)− P (c = i|HR
k ))

2, (24)

where Pgt(c = i) represents the classification ground truth and
can be either 1 for the correct class or 0 for all other classes.
Therefore MSDE = 1 for completely incorrect classification,
thus allowing us to perform statistical study of the effects of
double counting of discrete random variables. To quantify lo-
calization accuracy, we use estimation error x̃wavg which is the
weighted average of Euclidean distance between the estimated
and ground truth poses.

B. Simulation Results

Fig. 2 presents results for continuous variables, i.e. robot and
object poses. Fig. 2(b) and (c) show a clear advantage to our
approach, where the localization error is the smallest for robots
and objects respectively after the first 10 time steps. In Fig. 2(d)
and (e) the estimation covariance is presented, where the double
counted approach has the smallest values as expected. Fig. 2(e)
shows ‘spikes’ in the average objects’ position covariance; these
correspond to new object detections where the localization un-
certainty is still high.

Fig. 3 visualizes classification and estimations at time k = 60
for local only and for distributed beliefs of robot r2. At that
time, robot r2 communicated earlier with r3, and for the first
time communicates with r1. When comparing Fig. 3(b) (local) to
Fig. 3(d) (distributed), the number of possible class realizations
is reduced. In addition, the estimate of r2’s pose, as well as the
objects, is more certain and accurate. When comparing Fig. 3(c)
and (e), the latter presents a larger map, i.e. more objects
observed, and the class estimations (classification) are closer
to the ground truth.

Fig. 3(a) presents the average MSDE over 100 runs, where as a
whole our approach shows lower MSDE values, i.e. statistically
stronger classification results. In supplementary material [4,
Sec. 8] we present additional classification and SLAM results.
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Fig. 2. Simulation figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different colored lines represent
different robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object position respectively as a function of time.
(d) and (e) present the corresponding square-root of the position covariance for the robot and object average respectively.

Fig. 3. (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 60 of r1. (b) and (d) represent
multiple SLAM hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with
red ellipse represent robot pose estimation. Green and red points represent ground truth for object and robot positions respectively. (c) and (e) represent class
probabilities for c = 1 for objects observed thus far for local and distributed respectively. The X notations represent ground truth (1 for class c = 1, 0 for class
c = 2).

Fig. 4. (a) is an image used in the experiment, with corresponding the bounding
box. (b) and (c) are class probability expectation for class c = 1 for classifier
models of c = 1 and c = 2 respectively.

C. Experiment Setting

In our scenario 3 robots are moving within an environment
with multiple objects within it. We scattered 6 chairs within the
environment and photographed them using a camera on a stand,
keeping a constant height. In Fig. 4(a) we show an image from the
scenario with the corresponding bounding box. The chairs were
detected with YOLO3 DarkNet detector [19], which provided
bounding boxes, and then each bounding box was classified
using a ResNet50 convolutional neural network [20]. We consid-
ered 3 candidate classes out of 1000: ‘barber chair’, ‘punching
bag’, and ‘traffic light’, as c = 1, 2, 3 respectively with c = 1 be-
ing the ground truth class. We trained three viewpoint-dependent
classifier models using three sets of relative pose and class
probability vector pairs, with the spatial parameters being the
yaw and pitch angles from camera to object; The models are
presented in the supplementary material [4, Sec. 9]. For the
ground truth class we photographed an objects from multiple
viewpoints, and then classified it using ResNet 50. For the other
two classifier models, we sampled class probability vectors with
larger probability for the corresponding class of the model, and
used the same relative poses as the first model. Figs. 4(b), (c)

presents expectation of c = 1 for two of the classifier models as
a function of the spatial parameters.

In the experiment (deployment phase), we utilized both ge-
ometric and semantic measurements, using the corresponding
(learned) measurement likelihood models. Relative pose geo-
metric measurements for odometry and between camera and
objects were generated by corrupting ground truth with Gaus-
sian noise, while the semantic measurements are provided by
YOLO3 and ResNet from real images. For parameter details,
see supplementary material [4, Sec. 9]. The same metrics as the
simulation are used here.

D. Experimental Results

Fig. 5 presents SLAM results for the same benchmarks as in
Fig. 2. Figs. 5(b) and (c) present an average x̃wavg over all robots
for robot and object positions, respectively. In general, the ad-
vantage of our approach is evident with lower errors. In addition,
Figs. 5(d) and (e) present a similar pattern to Figs. 2(d) and (e),
respectively, where the covariance of our approach is smaller
than the single robot case, but larger than the over-confident
double counting case.

For classification results, Fig. 6(a) shows the average MSDE
per robot as a function of time step, where eventually our
approach out-performs both the single robot and the double
counting cases, with higher probability for the correct class
realization. In Fig. 6, SLAM and classification results for Robot
2 at time step k = 35 are presented, showing similar resulting
trends to Fig. 3. Comparing Figs. 6(b) and (d), the later shows
more accurate SLAM compared to the former, with less class
realizations. In addition, compared to Figs. 6(e), (c) shows more
accurate classification with an additional object classified.
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Fig. 5. Experiment figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different colored lines represent
different robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object positions respectively as a function of
time for the experiment. (d) and (e) present the corresponding square-root of the position covariance for the robot and object average respectively.

Fig. 6. (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 35 of r2. (b) and (d) represent
multiple SLAM hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with red
ellipse represent robot pose estimation. Green and red points represent ground truth for object and robot poses respectively. (c) and (e) represent class probabilities
for c = 1 and c = 2 for objects observed thus far for local and distributed respectively, with blue and orange for classes 1 and 2 respectively. In this case, the
ground truth class of all objects is c = 1.

For additional results at different time steps, refer to the sup-
plementary material [4, Sec. 10–11] and multimedia submission.

VI. CONCLUSION

We presented an approach for multi-robot semantic SLAM in
an unknown environment. In this approach a distributed hybrid
belief is maintained per robot using local information transmit-
ted to other robots as a ‘stack’, designed to keep estimation
consistency without complex book-keeping, both for continuous
and discrete states. We utilized a viewpoint dependent classifier
model to account for the coupling of relative pose between
robot and object, and object’s class. In simulation and real-world
experiment we showed that our approach improves classification
and localization performance while avoiding double counting.
Future work will incorporate data association disambiguation.
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