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Introduction: Object 
Classification

• Object classification is an important problem for 
autonomous vehicles and UAVs.

• Notable advancement in recent years with deep 
learning and neural networks.

• Reliable classification remains a challenge.
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https://techcrunch.com/2017/08/25/business-models-will-drive-the-
future-of-autonomous-vehicles/?ncid=mobilenavtrend

https://bozcani.github.io/auairdataset
From AU Air Dataset



Introduction: Uncertainties 
in Object Classification

• Multiple factors affect classification accuracy:
• Lighting
• Occlusions
• Resolution
• Viewpoint Dependency
• Classifier epistemic uncertainty

• Viewpoint dependency: certain relative viewpoints might 
introduce classification aliasing.

• Epistemic uncertainty: test data does not match the 
classifier’s training data.
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Introduction: Simultaneous 
localization and mapping (SLAM)

vGiven measurements, construct a map of the 
environment and infer the robot’s pose.

vPosterior Distribution:

ℙ 𝐱𝟎:𝐤, 𝓧𝐨 𝐙𝟏:𝐤, 𝐚𝟎:𝐤&𝟏
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Pillai, Sudeep, and John Leonard. "Monocular slam supported object 
recognition." arXiv preprint arXiv:1506.01732 (2015).
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Introduction: SLAM

vUsing Bayes rule and chain rule:

ℙ 𝑥':( , 𝒳) 𝑍*:( , 𝑎':(&* ∝ ℙ 𝑥', 𝒳) ,
+,*

(

ℙ 𝑥+ 𝑥+&*, 𝑎+&* ℙ 𝑍+ 𝑥+ , 𝒳)

vℙ 𝑥', 𝒳) - pose priors.

vℙ 𝑥+ 𝑥+&*, 𝑎+&* - motion model.

vℙ 𝑍+ 𝑥+ , 𝒳) - measurement likelihood, where data association (DA) is important.

vData association: assigning measurement to object/landmark.

v If Gaussian,ℙ 𝑥':( , 𝒳) 𝑍*:( , 𝑎':(&* is computed via methods such as iSAM2.
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Presentation 
Overview

vData association aware semantic SLAM via viewpoint 
dependent classifier model (published in IROS 2019)

vDistributed semantic SLAM via viewpoint dependent 
classifier model (published in RAL/IROS 2020)

vEpistemic uncertainty aware sequential classification 
(published in RAL/IROS 2018)

vPosterior epistemic uncertainty aware inference and 
belief space planning (upcoming paper 2021)
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DA Aware Semantic SLAM: Definitions 
and Problem formulation

v Setting: a robot observes objects within the environment, receiving:
• Geometric measurements. E.g., range and bearing.
• Semantic measurements of class probability vectors.

v Key challenges:
• Classification aliasing.
• DA aliasing.

v We aim to maintain the hybrid belief:
ℙ 𝓧𝒌, 𝑪, 𝜷𝟏:𝒌 𝓗𝒌

822/3/2021

Robot and 
object poses

Object classes DA realization Measurements 
and actions

Pathak, Shashank, Antony Thomas, and Vadim Indelman. "A unified framework 
for data association aware robust belief space planning and perception." The 
International Journal of Robotics Research 37, no. 2-3 (2018): 287-315.



DA Aware 
Semantic 
SLAM: 
Contribution

We present an approach that:

v Maintains a hybrid belief over:
• Robot and object poses.
• Object classes.
• DA hypotheses.

v Address coupling between classification and SLAM problem via a 
viewpoint dependent classifier model.

Leveraging the coupling between poses and classes to:

v Assist in data association disambiguation.

v Improve classification and localization performance.

Previous works:

v Consider most likely class semantic measurements.

v Utilize a viewpoint dependent classifier model with solved data 
association.

Published paper: Tchuiev, Vladimir, Yuri Feldman, and Vadim Indelman. "Data Association Aware 
Semantic Mapping and Localization via a Viewpoint-Dependent Classifier Model." In IROS, pp. 
7742-7749. 2019.
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DA Aware Semantic SLAM: 
Assumptions

vA single robot within a static environment.

vA known number of objects.

vModels: motion ℙ 𝑥( 𝑥(&*, 𝑎(&* , geometric 
ℙ 𝑍(

-.) 𝒳( , β( , and 
classifier ℙ 𝑍(/.0 𝒳( , 𝐶, β( , are Gaussian.

vThe object observation model ℙ β( 𝑥1.2
determines if DA realization is feasible given 
relative pose.
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DA Aware Semantic SLAM:
The Classifier Model

v𝑧(/.0 ∈ ℝ3 is viewpoint dependent.

vThe model is assumed Gaussian ℙ 𝑧(/.0 𝑐, 𝑥1.2 = 𝒩 ℎ4 , Σ4
where ℎ4 𝑥1.2 and Σ4 𝑥1.2 depend on object class 𝑐 and 
relative pose 𝑥1.2.
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DA Aware Semantic SLAM: General 
Approach

vSplit the hybrid belief to continuous and discrete parts:

ℙ 𝒳&, 𝐶, 𝛽':& ℋ& = ℙ 𝒳& 𝐶, 𝛽':&,ℋ&
)!":$
% 𝒳$

ℙ 𝐶, 𝛽':& ℋ&
+!":$
%

v𝑏,":$
- 𝒳& is the continuous belief given class and DA realization.

v𝑤,":$
- is the weight of 𝑏,":$

. 𝒳& , computed separately for each 𝐶 and β':&.
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DA Aware Semantic SLAM: Belief 
Update

vContinuous belief update:

𝑏5$:%
6 𝒳( ∝ 𝑏5$:%&$

6 𝒳(&* ⋅ ℙ 𝑥( 𝑥(&*, 𝑎(&* ⋅ ℙ 𝒵( 𝑋( , 𝐶, β(
vWeight update:

𝑤5$:%
6 ∝ 𝑤5$:%&$

6 <
𝒳'
ℙ β(|𝒳( ⋅ 𝑏5$:%

6 𝒳( 𝑑𝒳(

vSmall weights are pruned to keep the number of realizations small.
vViewpoint dependent classifier model in ℙ 𝒵( 𝑋( , 𝐶, β( assists in inference DA, and reduces the 

number of realizations when pruned.
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DA Aware Semantic 
SLAM: Simulation

vComparison between without and with classifier model.

vHighly aliased scenario with 6 identical objects with different 
orientations.

vUninformative prior on initial robot pose, causing multiple 
probable hypotheses.

1422/3/2021



DA Aware Semantic 
SLAM: Simulation

vWith classifier:
ü Fewer belief components.
ü More accurate localization.

1522/3/2021



DA Aware Semantic 
SLAM: Simulation

vWith classifier:
ü Fewer belief components.
ü Stronger disambiguation.

1622/3/2021



Presentation 
Overview

vData association aware semantic SLAM via 
viewpoint dependent classifier model (published in 
IROS 2019)

vDistributed semantic SLAM via viewpoint 
dependent classifier model (published in RAL/IROS 
2020)

vEpistemic uncertainty aware sequential 
classification (published in RAL/IROS 2018)

vPosterior epistemic uncertainty aware inference and 
belief space planning (upcoming paper 2021)
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Distributed Semantic SLAM: 
Problem and Notations

v Setting: multiple robots observe objects within the environment, 
receiving:
• Geometric measurements. E.g., range and bearing.
• Semantic measurements of class probability vectors.

v Key challenges:
• Classification aliasing.
• Estimation consistency.

v DA is assumed solved.

vWe aim to maintain joint hybrid belief:  

!ℙ(𝓧𝒌
𝑹, 𝑪𝑹|𝓗𝒌

𝑹

1822/3/2021

Robot Group R

Robot and 
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Measurements 
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Distributed 
Semantic 
SLAM: 
Contribution

We present a multi-robot approach that:

v Maintains a hybrid belief over:
• Robot and object poses.
• Object classes.

v Address coupling between classification and SLAM problem via a 
viewpoint dependent classifier model.

We address estimation consistency:

v Continuous random variables.
v Discrete random variables.

Previous works:
v No semantic information in a multi-robot setting.
v Addressed double counting only for continuous variables.

Published paper: Tchuiev, Vladimir, and Vadim Indelman. "Distributed Consistent Multi-Robot 
Semantic Localization and Mapping." IEEE Robotics and Automation Letters 5, no. 3 (2020): 4649-
4656.
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Distributed Semantic SLAM: Double 
Counting

v In distributed systems, a measurement should be counted no more than once.

v Relayed information risks double counting.

v Double counting leads to over-confident estimation.

v Example: consider random variable 𝑐 with data sets }𝑍! = {𝑧", 𝑧# and 
}𝑍$ = {𝑧#, 𝑧% , the posterior is:

• ℙ(𝑐|𝑍! , 𝑍$) ∝ ℙ(𝑐)
&ℙ()|+!)ℙ )|+" "ℙ()|+#

)ℙ()|+"
• Without the denominator )ℙ(𝑐|𝑧# , this measurement is double counted.

v Double counting ‘pushes’ posterior to extremes.

Illustrated: effect of double counting on a 4 category variable with uninformative prior.

2022/3/2021



Distributed Semantic SLAM: 
General Approach 

v Each robots maintains two separate hybrid beliefs:
• Its own belief ℙ 𝒳-

. , 𝐶. ℋ-
. = ℙ 𝒳-

. 𝐶. ,ℋ-
. ℙ 𝐶. ℋ-

.

• A joint belief ℙ 𝒳-
/ , 𝐶/ ℋ-

/ = ℙ 𝒳-
/ 𝐶/ ,ℋ-

/ ℙ 𝐶/ ℋ-
/

v Each robot maintains a stack of individual beliefs of itself and from other robots.

v The robots communicate the stacks between them.

v After communication, the robots update the appropriate slot in the stack if the 
received information is newer.

v By removing the old information, the joint belief for every robot remains consistent.

22/3/2021 21
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𝑘:  Time stamp



Distributed Semantic 
SLAM: Experimental Setup

v Scenario: 3 robots communicating.
v 6 chairs at different orientations as objects.
v 3 candidate classes.

v Trained classifier models.
v Comparing between 3 cases:

• Single robot.
• Distributed.
• With double counting.

v MSDE as classification benchmark: 

𝑀𝑆𝐷𝐸 ≐
1
𝑀
7
01"

2

8ℙ34(𝑐 = 𝑖) − ℙ(𝑐 = 𝑖|ℋ-
/

#

Ground Truth:

2222/3/2021



Distributed 
Semantic 
SLAM: SLAM 
Graph 
Notations

2322/3/2021



Distributed Semantic SLAM: 
Class Probability Graph 
Notations

vBlue: class 1 probability.

vOrange: class 2 probability.

vWhite: class 3 probability.

vClass 1 is ground truth for all objects.

2422/3/2021
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Summary 
Thus Far

vAn approach for semantic SLAM. 

vMaintain a hybrid belief over:
• Robot and object poses.
• Object classes.

vLeverage the coupling between poses and classes via a 
viewpoint dependent classifier model.

vThe approach assists in DA disambiguation.

vThe approach was expanded to a distributed setting.

vAvoids double counting for both continuous and discrete
variables.

2622/3/2021



Presentation 
Overview

vData association aware semantic SLAM via viewpoint 
dependent classifier model (published in IROS 2019)

vDistributed semantic SLAM via viewpoint dependent 
classifier model (published in RAL/IROS 2020)

vEpistemic uncertainty aware sequential classification 
(published in RAL/IROS 2018)

vPosterior epistemic uncertainty aware inference and 
belief space planning (upcoming paper 2021)
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Introduction: Classifier 
Epistemic Uncertainty 

vThe classifier’s training set is limited.

vDuring test time, when encountering data outside 
the training set, classification is unreliable.

vResults might be catastrophic. 

vCan we reason about how “certain” a classification 
score is?

2822/3/2021

https://money.cnn.com/2016/07/26/technology/tesla-ntsb-autopilot/



Introduction: Classifier 
Epistemic Uncertainty 

vClass probability vector: 
𝛾&/ ≐ ℙ 𝑐 = 𝑖 𝐼&, 𝑤 , γ& ≐ γ&' , … , γ&0

1

vPosterior class probability vector:
λ&/ ≐ ℙ 𝑐 = 𝑖 γ':& , λ& = λ&' , … , λ&0

1

2922/3/2021



Introduction: Neural Networks

vWe use a Convolutional Neural Network (CNN) classifier.

vThe classifier parameters (weights) 𝑤 are trained from labeled example dataset 𝐷.

vGiven fixed weights, the classifier output is deterministic γ& = 𝑓+ 𝐼& .

3022/3/2021

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Introduction: MC-Dropout

vDropout modifies 𝑤 by randomly turning off neurons and 
approximates 𝑤 ∼ ℙ 𝑤 𝐷 .

vWe get multiple γ( points corresponding to the weights: 
γ( ∼ ℙ γ( 𝐼( , 𝐷 .

vEpistemic uncertainty: how close 𝑰𝒌 is to the training set?

vAlthough this work uses MC-dropout, it can utilize other 
epistemic-uncertainty-aware classifiers.

3122/3/2021

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks 
from overfitting”, JMLR 2014



Introduction: Posterior Distribution Of Class 
Probability

v Eventually, we aim to infer ℙ 𝝀𝒌 𝑰𝟏:𝒌, 𝑫 .

v Because all γ are random variables, λ is as well.

v ℙ 𝝀𝒌 𝑰𝟏:𝒌, 𝑫 may describe cases:

a) Out of distribution
b) High data uncertainty
c) Confident prediction (Ideal scenario)
d) Unconfident prediction

(a) (b) (c) (d)

3222/3/2021



Epistemic-
Uncertainty-Aware 
Sequential 
Classification: 
Contribution

v We present sequential classification method for maintaining 
ℙ 𝝀𝒌 𝑰𝟏:𝒌, 𝑫 .

v We reason about the posterior epistemic uncertainty given the data 
thus far.

v Previous works:
• Sequential classification methods that reason about posterior 
ℙ 𝑐 γ(:) .

• Infer epistemic uncertainty from classification from a single image 
only.

v Published paper: Tchuiev, Vladimir, and Vadim Indelman. "Inference over distribution of 
posterior class probabilities for reliable bayesian classification and object-level perception." IEEE 
Robotics and Automation Letters 3, no. 4 (2018): 4329-4336.
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Epistemic-
Uncertainty-Aware 
Sequential 
Classification: 
Assumptions

vA single object observed multiple times.

vClassifier output of {𝜸𝒌} that approximates ℙ 𝜸𝒌 𝑰𝒌, 𝑫 .

vUninformative prior for 𝑃 𝑐 . 

vDirichlet distributed non-viewpoint dependent classifier 
models:

ℒ* 𝛾) ≐ 𝑃 𝛾) 𝑐 = 𝑖 , ℒ γ) = ℒ( γ) , … , ℒ+ γ)

3422/3/2021



Epistemic-Uncertainty-Aware 
Sequential Classification: 
Approach

vUsing Bayes rule: 𝝀𝒌𝒊 ∝ 𝝀𝒌&𝟏𝒊 𝓛𝒊 𝜸𝒌 .

vRepresent the distribution of each 𝛌 as a point 
cloud {λ}.

vMultiplying every γ( and λ(&* is expensive, we 
use sub-sampling to reduce computation effort.

3522/3/2021



Epistemic-Uncertainty-Aware Sequential 
Classification: Approach Illustration

vSingle step: posterior uncertainty decreases:

vSingle step: posterior uncertainty increases:

3622/3/2021



Epistemic-Uncertainty-Aware Sequential 
Classification: Experiment Setup

vImages of an object with occlusion, blur, and different color filters.

v3 candidate classes, class 1 is correct.

vCompared between the following approaches:

• ℙ 𝑐 γ*:( , no classifier model.
• ℙ 𝑐 γ*:( , with classifier model.
• ℙ λ( 𝐼*:( , 𝐷 , all pairs considered.
• ℙ λ( 𝐼*:( , 𝐷 , with sub-sampling.

3722/3/2021



Epistemic-Uncertainty-Aware 
Sequential Classification: 
Experimental Results

vOur approach provides superior classification results.

vProvides access to posterior epistemic uncertainty.

vSub sampling results are close to considering all pairs.

3822/3/2021



Summary 
Thus Far

We proposed maintaining the distribution over the posterior class 
probability for classification and extracting epistemic uncertainty.

We utilize a cloud of class probability vectors as a classier output.

To reduce computational effort, we proposed using a simple sub-
sampling method.

We showed superior results to commonly used approaches for 
classification, as well as presenting epistemic uncertainty.

3922/3/2021



Presentation 
Overview

vData association aware semantic SLAM via viewpoint 
dependent classifier model (published in IROS 2019)

vDistributed semantic SLAM via viewpoint dependent classifier 
model (published in RAL/IROS 2020)

vEpistemic uncertainty aware sequential classification 
(published in RAL/IROS 2018)

vPosterior epistemic uncertainty aware inference and belief 
space planning (upcoming paper 2021)
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Introduction: Active Classifier 
Epistemic-Uncertainty-Aware 
Inference and Planning

v Up to this point we presented methods for addressing:

• Viewpoint dependency of classification scores.
• Localization and mapping uncertainty.
• Classifier epistemic uncertainty. 

v Now we introduce two methods that address both 
simultaneously in inference:

• Multi-Hybrid (MH)
• Joint Lambda Pose (JLP)

v We extend the formulation of those two methods to belief 
space planning.

22/3/2021 41



Multi-Hybrid (MH) 
and Joint Lambda 
Pose (JLP): 
Contributions

Maintain an epistemic uncertainty aware joint belief over poses and 
class probabilities:
v Multi-Hybrid (MH).
v Joint Lambda Pose (JLP).

Utilize a viewpoint dependent classifier uncertainty model to:
v Predicts epistemic uncertainty given viewpoint.
v Improve classification performance in inference.
v Generate predicted measurements for BSP.

Propose an information-theoretic reward over posterior epistemic 
uncertainty

Previous works:
v Don’t consider classifier epistemic uncertainty for BSP.
v Epistemic uncertainty aware planning with solved localization.

Ongoing work for 2021 paper submission.

4222/3/2021



Introduction: Belief Space 
Planning (BSP)

vA framework for planning under uncertainty.

vObjective Function: given belief 𝑏&, and an action sequence 𝑎&:&45:

𝐽 𝑏), 𝑎):),- = 𝐸.89::89; .
*/0

-

𝑟 𝑏),*, 𝑎),*

• 𝑟(⋅) is the reward function.
• 𝑏),* is a function of observations 𝑍),*

4322/3/2021



Introduction: Belief Space 
Planning (BSP)

v𝐽 𝑏&, 𝑎&:&45 rewritten in a recursive form:

𝐽 𝑏), 𝑎):),- = ∫.89:ℙ 𝑍),( ℋ), 𝑎) ⋅ 𝐽 𝑏),(, 𝑎),(:),- 𝑑𝑍),(

vℙ 𝑍&4' ℋ&, 𝑎& : measurement likelihood term.

vThe aim is finding an optimal action sequence:

𝑎):),-∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
28:89;

𝐽 𝑏), 𝑎):),-

4422/3/2021



Introduction: Belief Space 
Planning (BSP)

vKey issue: generating predicted semantic measurements.

vOption 1: generating raw images.
• High dimensional problem.
• Feasible only in specifically trained environments.

vOption 2: generating directly from classifier model.
• Output dimension is much smaller.
• Can be generalized to more environments.

4522/3/2021



MH and JLP: Classifier 
Uncertainty Model

v Requirement: a viewpoint dependent model that fits both inference and 
planning (sampling).

v Logit transformation of a general probability vector 𝑣 ∈ ℝ< to 𝑙𝑣 ∈ ℝ<=𝟙: 

𝑙𝑣 ≐
𝑙𝑜𝑔 𝑣"
𝑙𝑜𝑔 𝑣<

, … ,
𝑙𝑜𝑔 𝑣<="
𝑙𝑜𝑔 𝑣<

?

v γ- is Logistical Gaussian distributed, therefore 𝑙γ- is Gaussian distributed: 

ℙ 𝑙γ 𝑐, 𝑥.@A = 𝒩 ℎ) 𝑥.@A , Σ) 𝑥.@A

v Model’s training set: 𝐷) ≐ {𝑥.@A , {𝑙γ}}.

v Predicts epistemic uncertainty.

4622/3/2021



MH Inference and Planning

v We aim to infer the joint belief ℙ 𝝀𝒌, 𝓧𝒌 𝓗𝒌 .

v We determine fixed weight realizations 𝑤 ∈ 𝑊.

v Marginalizing over 𝑤: 
ℙ λ), 𝒳) ℋ) = ∑3ℙ 𝒳) λ),ℋ), 𝑤 ℙ λ) ℋ), 𝑤

the R.H.S can be inferred via maintaining a hybrid belief per each 𝒘.

v In planning, predicted measurements are generated via the classifier 
uncertainty model.

v MH is computationally inefficient; therefore, we propose JLP.

22/3/2021 47
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JLP Inference: Approach

v MH is computationally expensive; we propose a more efficient alternative.
v MH maintains multiple hybrid beliefs.
v JLP maintains a single continuous belief.

v We aim to maintain the joint belief: 

𝒃 𝒍𝝀𝒌, 𝓧𝒌 ≐ 𝑷 𝒍𝝀𝒌 , 𝓧𝒌 𝓗𝒌, 𝑫
v Recursive formulation:

𝑏 𝑙λ- , 𝒳-

= L
AB$%!

𝑷 𝒍𝝀𝒌 𝒍𝝀𝒌=𝟏,𝓗𝒌, 𝓧𝒌 𝑃 𝑧-
3@C 𝒳- 𝑃 𝑥- 𝑥-=", 𝑎-=" 𝑏 𝑙λ-=", 𝒳-=" 𝑑𝑙λ-="

v Introducing the novel JLP factor.

v JLP is even more efficient than MH when considering multiple objects.

4822/3/2021



JLP inference: Approach

Under the condition below, the JLP factor is Gaussian and 𝒍𝝀𝒌can be inferred by 
standard optimization methods.

vRecall the classifier uncertainty model: 

ℙ 𝑙γ 𝑐, 𝑥678 = 𝒩 ℎ., Σ.
vIf Σ.9/(𝑥678) = Σ.9:(𝑥678) for all candidate classes, then the JLP factor is Gaussian.

vEven if the condition doesn’t apply, the JLP factor is approximately Gaussian besides 
extreme cases.

22/3/2021 49



JLP Planning: Measurement Generation

vSpecifically for JLP, the objective function is:
𝐽 𝑏 𝑙λ( , 𝒳( , 𝑎(:(:; = 𝐸< 2=%($:%() ,? 2=%($:%() ,@%($:%()

*+, ∑A,'; 𝑟 𝑏 𝑙λ(:A , 𝒳(:A , 𝑎(:A

vSampling of measurements:
• Geometric from the measurement model.
• Semantic from the parameters of the classifier uncertainty model.

vSampled measurements are used to infer predicted 𝑏 𝑙λ(:A , 𝒳(:A .

22/3/2021 50



MH and JLP Planning: Reward Functions

vMaintaining 𝒃 𝝀,𝓧 opens access to a reward function of general type 𝒓 𝒃 𝝀,𝓧 with possible 
variations:
• 𝑟 𝒳 , e.g., distance to goal.
• 𝑟 𝑏 𝒳 , e.g., information-theoretic.
• 𝑟 𝐸 λ , e.g., information entropy.
• 𝑟 𝑏 λ , a novel reward function type, planning over epistemic uncertainty.

vThe posterior epistemic uncertainty affects every reward.

vWe use negative of differential entropy as reward:

𝑟 𝑏 λ = −𝐻 λ = <
B
𝑏 λ ⋅ 𝑙𝑜𝑔 𝑏 λ 𝑑λ

v−𝐻 λ accounts for both 𝐸 λ (classification scores) and Σ λ (epistemic uncertainty) without 
hyperparameter tuning.

5122/3/2021



MH and JLP Planning: 
Simulation Setup

v 9 objects in a 2D environment.
v 2 candidate classes.
v 5 motion primitives.
v Two reward functions:

v R( = min −∑4∈6H λ , R(789
v 𝑅: = −∑;∈<∑=D𝐸 λ=,; ⋅ 𝑙𝑜𝑔 𝐸 λ=,;

v Compare between:
v MH
v JLP
v Without Epistemic Uncertainty (WEU)

vMSDE as classification benchmark: 

𝑀𝑆𝐷𝐸 ≐
1
𝑚.

*/(

+

Uℙ?@(𝑐 = 𝑖) − ℙ(𝑐 = 𝑖|ℋ)
A

:

Ground Truth Motion Primitives

5222/3/2021



MH and JLP Planning: 
Simulation Results

vWe show results for inference after actions already taken.

vTrajectories created by planning.
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MH and JLP Planning: 
Simulation Results

vEntropy ∑)∈D𝐻 λ) values as a function of time step.

vAdvantage for using 𝑅* over 𝑅E.
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MH and JLP Planning: 
Simulation Results

vMSDE results as a function of time step.

vAdvantage for using 𝑅* over 𝑅E, with both outperforming WEU.
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MH and JLP Planning: 
Simulation Results

vClassification results for the objects at 𝑘 = 20: probability of the 
correct class.

vBlack line represents the posterior epistemic uncertainty.

vAdvantage for using 𝑅* over 𝑅E. WEU tends to go to extremes.
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MH and JLP Planning: 
Simulation Results

• Computation time comparison between 
MH with 10 beliefs, JLP, and WEU.

• WEU is the fastest, JLP is comparable, 
while MH is the slowest.
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MH and JLP Planning: 
Simulation Results

v Statistical results for JLP with planning over R( and R: compared to 
WEU: entropy and MSDE.

v Colored area – one σ range.

v Significant advantage vs WEU, with R( having a small edge over R:. 
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Summary

qUncertainties in object classification
vViewpoint dependency.

• A semantic SLAM approach that maintains a hybrid belief over poses and classes.
• Expanding the approach to a distributed multi-robot setting.
• Leveraging the coupling between poses and classes via a viewpoint dependent classifier model.

vEpistemic uncertainty.
• An approach that maintains the distribution of the posterior class probability vector.
• MH and the faster JLP that reasons both about viewpoint dependency and epistemic uncertainty.

vBelief space planning
• Expand MH and JLP for BSP.
• Use a viewpoint dependent classifier uncertainty model both for inference and BSP.

qOur approaches showed increased performance for classification, localization, and 
data association disambiguation.
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