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Introduction: Object
Classification

https:/f80ozcani. glthub |o/aua|pdataset
Frof Aﬁlr Dataset

Object classification is an important problem for
autonomous vehicles and UAVs.

* Notable advancement in recent years with deep
learning and neural networks.

* Reliable classification remains a challenge.

future of-auton ous -vehicles/?ncid= mobllenavt%\ S~
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Introduction: Uncertainties
in Object Classification

* Multiple factors affect classification accuracy:
* Lighting
* Occlusions
* Resolution
* Viewpoint Dependency
 Classifier epistemic uncertainty

* Viewpoint dependency: certain relative viewpoints might
introduce classification aliasing.

* Epistemic uncertainty: test data does not match the
classifier’s training data.

22/3/2021 3
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Introduction: Simultaneous
III localization and mapping (SLAM)

** Given measurements, construct a map of the
environment and infer the robot’s pose.

+* Posterior Distribution:

IP)(XO:kl X° |Zl:kr a0:k—1)

Pillai, Sudeep, and John Leonard. "Monocular slam supported object
recognition." arXiv preprint arXiv:1506.01732 (2015).

Robot poses Object poses Measurements Actions
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III Introduction: SLAM

+» Using Bayes rule and chain rule:

RA

IED(XO:RJ‘X‘Olzl:kr aO:k—l) X IP)(XO,XO) P(xtlxt—lr at—l) ]P)(Ztlxt:xo)
4£=1L

s P(xq,X°) - pose priors.

o P(x;|x;—1,a;_1) - motion model.

o P(Z;|x;, X?)- measurement likelihood, where data association (DA) is important.
+» Data association: assigning measurement to object/landmark.

¢ If Gaussian,P(xy.,,, X°|Z1.k, Qg-xk—1) is computed via methods such as iISAM2.

22/3/2021
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Presentation
Overview

+»Data association aware semantic SLAM via viewpoint
dependent classifier model (published in IROS 2019)

s Distributed semantic SLAM via viewpoint dependent
classifier model (published in RAL/IROS 2020)

s Epistemic uncertainty aware sequential classification
(published in RAL/IROS 2018)

s Posterior epistemic uncertainty aware inference and
belief space planning (upcoming paper 2021)

22/3/2021
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Presentation
Overview

¢ Data association aware semantic SLAM via viewpoint
dependent classifier model (published in IROS 2019)

s Distributed semantic SLAM via viewpoint dependent
classifier model (published in RAL/IROS 2020)

s Epistemic uncertainty aware sequential classification
(published in RAL/IROS 2018)

¢ Posterior epistemic uncertainty aware inference and
belief space planning (upcoming paper 2021)

22/3/2021
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DA Aware Semantic SLAM: Definitions
and Problem formulation

+» Setting: a robot observes objects within the environment, receiving:

* Geometric measurements. E.g., range and bearing.

e Semantic measurements of class probability vectors.
¢ Key challenges:

 Classification aliasing.

* DA aliasing.

+* We aim to maintain the hybrid belief:
P(Xy, C, B1.k|FCx)

T NTT—

Robot and Object classes DA realization Measurements
object poses and actions

22/3/2021
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Pathak, Shashank, Antony Thomas, and Vadim Indelman. "A unified framework
for data association aware robust belief space planning and perception." The
International Journal of Robotics Research 37, no. 2-3 (2018): 287-315.
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DA Aware
Semantic
SLAM:
Contribution

We present an approach that:

*» Maintains a hybrid belief over:
* Robot and object poses.
* Object classes.
* DA hypotheses.

*» Address coupling between classification and SLAM problem via a
viewpoint dependent classifier model.

Leveraging the coupling between poses and classes to:
+»+ Assist in data association disambiguation.

“* Improve classification and localization performance.

Previous works:

+» Consider most likely class semantic measurements.

++ Utilize a viewpoint dependent classifier model with solved data

association.

Published paper: Tchuiev, Vladimir, Yuri Feldman, and Vadim Indelman. "Data Association Aware
Semantic Mapping and Localization via a Viewpoint-Dependent Classifier Model." In IROS, pp.
7742-7749. 2019.
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750 ANPL

22/3/2021

Autonomous Navigation
and Perception Lab

DA Aware Semantic SLAM:
Assumptions

¢ A single robot within a static environment.
+* A known number of objects.

¢ Models: motion P(x, |x,_1, ay_1), geometric
P(Z°°| %, B ), and
classifier P(Z.°™| Xy, C, B) ), are Gaussian.

¢ The object observation model IP’(BR |xrel)
determines if DA realization is feasible given
relative pose.

P(S|x')=0

P(B|x) = const
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III DA Aware Semantic SLAM:
The Classifier Model

50
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*» The model is assumed Gaussian [P(z,ﬁem c,x’”el) =N(h,ZX,)

where h.(x"¢") and Z.(x"%") depend on object class ¢ and
relative pose x"¢!,
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Class Probability

X coordinate [m]
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DA Aware Semantic SLAM: General
Approach

*»Split the hybrid belief to continuous and discrete parts:

[P)(xk' C» ﬁl:kl}[k) — P(Xklc» :Bl:kr }[k) P(C: ﬁl:kl}[k)

E— — = WG
bBl:k [ k] B1:k

'2’b§1_k[xk] is the continuous belief given class and DA realization.

’:’Wé‘l:k is the weight of bél:k | X% ], computed separately for each C and 3.%.
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DA Aware Semantic SLAM: Belief
Update

+* Continuous belief update:

bgl:k [xk] X bgl:k—l [Xk_l] ) P(xklxk—l’ ak—l) ) P(Zklxkr C! Bk)
+* Weight update:

ng:k x W[gl:k—1 jx P(Bklxk) ) bgl:k [Xk]dxk
k
“* Small weights are pruned to keep the number of realizations small.

¢ Viewpoint dependent classifier model in P(Z, | X}, C, Bx) assists in inference DA, and reduces the
number of realizations when pruned.
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robot pose hypothesis \p object pose ground truth robot pose hypothesis yp Object pose ground truth
(darker means more likely) (estimated) robot track (darker means more likely) (estimated) robot track
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+» Comparison between without and with classifier model.

DA Awa re Sema ntiC +»» Highly aliased scenario with 6 identical objects with different
. ) orientations.
SLAM: Simulation

+* Uninformative prior on initial robot pose, causing multiple
probable hypotheses.
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robot pose hypothesis o object pose ground truth robot pose hypothesis Vo object pose ground truth
(darker means more likely) (estimated) ~  robot track (darker means more likely) (estimated) ~  robot track
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DA Awa re Semantic ¢ With classifier:

v’ Fewer belief components.

SLAM S|m UlatiOn v More accurate localization.
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i i v’ Fewer belief components.
SLAM Sl m Ulathn v’ Stronger disambiguation.
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+¢» Data association aware semantic SLAM via

P reS e ntat | O n viewpoint dependent classifier model (published in

IROS 2019)

Overview

¢ Distributed semantic SLAM via viewpoint
dependent classifier model (published in RAL/IROS
2020)

¢ Epistemic uncertainty aware sequential
classification (published in RAL/IROS 2018)

¢ Posterior epistemic uncertainty aware inference and
belief space planning (upcoming paper 2021)

22/3/2021 17
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II Distributed Semantic SLAM:
Problem and Notations

¢ Setting: multiple robots observe objects within the environment,
receiving:

* Geometric measurements. E.g., range and bearing.
* Semantic measurements of class probability vectors.

¢ Key challenges:
* Classification aliasing.
* Estimation consistency.

+* DA is assumed solved.

+* We aim to maintain joint hybrid belief:
Robot Group R

Robot and " f \ Measurements

object poses Object classes and actions

22/3/2021
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Distributed
Semantic
SLAM:
Contribution
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We present a multi-robot approach that:

*» Maintains a hybrid belief over:
* Robot and object poses.
* Object classes.

+“» Address coupling between classification and SLAM problem via a
viewpoint dependent classifier model.

We address estimation consistency:

+%» Continuous random variables.

% Discrete random variables.

Previous works:
** No semantic information in a multi-robot setting.

+» Addressed double counting only for continuous variables.

Published paper: Tchuiev, Vladimir, and Vadim Indelman. "Distributed Consistent Multi-Robot

Z%g\éamtic Localization and Mapping." IEEE Robotics and Automation Letters 5, no. 3 (2020): 4649-

19
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Distributed Semantic SLAM: Double
Counting

In distributed systems, a measurement should be counted no more than once.

Relayed information risks double counting.

Double counting leads to over-confident estimation.
lllustrated: effect of double counting on a 4 category variable with uninformative prior.

Example: consider random variable ¢ with data sets Z, = {z;, z,} and
Zy =1{7,, 23}, the posterior is:

P(c|z1)P(c|z5)*P(c|z3) 08 08 08
P(Clza, Zb) x IP(C) P(c|z,) 06 06 06
Without the denominator IP(c|z,), this measurement is double counted. 04 0s 04
Double counting ‘pushes’ posterior to extremes. OZJ.L °'i O'i
1 2 3 4 1 2 3 4 1 2 3 4
(a) (b) (c)

22/3/2021
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II Distributed Semantic SLAM:
General Approach

“ Each robots maintains two separate hybrid beliefs:
* Its own belief P(X},, CT|Hy) = P(X|CT, H)P(C"|H),)
* Ajoint belief P(X8, CR|HE) = P(XF|CR, 7 E)P(CR|HE)
¢ Each robot maintains a stack of individual beliefs of itself and from other robots.

*** The robots communicate the stacks between them.

“» After communication, the robots update the appropriate slot in the stack if the
received information is newer.

*» By removing the old information, the joint belief for every robot remains consistent.

22/3/2021

¢: Object pose marginals
¢: Object class marginals

k: Time stamp
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Distributed Semantic

1_

oo 0 ] SLAM: Experimental Setup
> _1l
g o P2 o1 ¢ Scenario: 3 robots communicating.
5 5 8 ¢ 6 chairs at different orientations as objects.
X axis [m]

+* 3 candidate classes.
** Trained classifier models.

s Comparing between 3 cases:
* Single robot.
* Distributed.
* With double counting.

+* MISDE as classification benchmark:
1w i
MSDE = = > (Py.(c = i) = P(c = i|#F))

M <
i=1

22/3/2021 22
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Robot communication graph

Ground truth path

Current robot observation

Y axis [mi]
il

I
[l o

\ Communication

LW o

4
&\ Ground truth object poses

o1

_3_3

Robot pose estimation + covariance

22/3/2021

—2 =1y 0
axis [m]

Ground truth robot pose

1

2

3

Object pose estimation + covariance

Distributed
Semantic
SLAM: SLAM
Graph
Notations

23
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Distributed Semantic SLAM:
Class Probability Graph

1.0 :
Notations
=08 -
2
S 0.6 ** Blue: class 1 probability.
>,
i; ().4-‘ RN . | HH
© X : class 2 probability.
O
=0.2 . . -
“» White: class 3 probability.
0.0-

¢ Class 1 is ground truth for all objects.

e——— |
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Distributed Consistent Multi-Robot
Semantic Localization and Mapping

Vladimir Tchuiev and Vadim Indelman

Technion — Israel Institute of Technology

50 ANPL
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V Technion
Israel Institute of
u Technology
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Summary
Thus Far

22/3/2021

¢ An approach for semantic SLAM.

** Maintain a hybrid belief over:
* Robot and object poses.
* Object classes.

¢ Leverage the coupling between poses and classes via a
viewpoint dependent classifier model.

+*¢* The approach assists in DA disambiguation.

*¢* The approach was expanded to a distributed setting.

¢ Avoids double counting for both continuous and discrete
variables.

26
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Presentation
Overview

22/3/2021

+» Data association aware semantic SLAM via viewpoint
dependent classifier model (published in IROS 2019)

+* Distributed semantic SLAM via viewpoint dependent
classifier model (published in RAL/IROS 2020)

¢ Epistemic uncertainty aware sequential classification
(published in RAL/IROS 2018)

+» Posterior epistemic uncertainty aware inference and
belief space planning (upcoming paper 2021)
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Introduction: Classifier
Epistemic Uncertainty

¢ The classifier’s training set is limited.

¢ During test time, when encountering data outside
the training set, classification is unreliable.

¢ Results might be catastrophic.

+¢ Can we reason about how “certain” a classification
score is?

22/3/2021
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III Introduction: Classifier
Epistemic Uncertainty

—_
—_

+*»Class probability vector: . .
- T 2| 2 g
I - — S 1 m z Tk K
Yi = P(c =ill,w), Yie = Yk - YR 3os Sos
DEOA4~ : 204 -
17} N 3 o)
ozl - Tk goz»
s Posterior class probability vector: I % O

. , T
A= Pl =ilyie), Ak = [Ab .., AT

22/3/2021 29
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Introduction: Neural Networks

**We use a Convolutional Neural Network (CNN) classifier.
**The classifier parameters (weights) w are trained from labeled example dataset D.

“*Given fixed weights, the classifier output is deterministic y;,, = f,, (/).

o
O
o o
Xt [sunset 1 P
Lo
A (-] ~O
° No
° No Paog
o ]
-] o
8] =y N g
: . o ]
convolution + max pooling vec |Ia \:
nonlinearity | °
| J
convolution + pooling layers fully connected layers  Nx binary classification

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
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III Introduction: MC-Dropout

¢ Dropout modifies w by randomly turning off neurons and
approximates w ~ P(w|D).

** We get multiple v, points corresponding to the weights:
Yik ~ P(ykllx, D).

¢ Epistemic uncertainty: how close I}, is to the training set?

(a) Standard Neural Net (b) After applying dropout.
AR : _ H HH Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural networks
+* Although this work uses MC-dropout, it can utilize other trom overfitting” IMLR 2014

epistemic-uncertainty-aware classifiers.

22/3/2021 31
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Introduction: Posterior Distribution Of Class
Probability

% Eventually, we aim to infer P(4,|I,.;, D).

++ Because all y are random variables, A is as well.

s P(4,|1,.;, D) may describe cases:

a) Out of distribution

b) High data uncertainty

c) Confident prediction (Ideal scenario)
d) Unconfident prediction

=
-

1

08 o
08 o p— N 0.8
a o 2 @
(1} g £
506 08 306 S 06
S o k)

>

£04 £04 Zo4 Zo4
g 3 8 2
002 E 02 202 o 0.2
o a o

0 19498 ei i L

o
o

0 0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 05
Probability of class 1 Probability of class 1 Probability of class 1 Probability of class 1

(a) (b) (c) (d)

o

22/3/2021
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Epistemic-
Uncertainty-Aware
Sequential
Classification:
Contribution

22/3/2021

** We present sequential classification method for maintaining
P(Ag|I1.k, D).

** We reason about the posterior epistemic uncertainty given the data
thus far.

¢ Previous works:
* Sequential classification methods that reason about posterior
]P)(Ch/l:k)-
. Ianr epistemic uncertainty from classification from a single image
only.

«*» Published paper: Tchuiev, Vladimir, and Vadim Indelman. "Inference over distribution of
posterior class probabilities for reliable bayesian classification and object-level perception." IEEE
Robotics and Automation Letters 3, no. 4 (2018): 4329-4336.
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A single object observed multiple times.

¢ Classifier output of {y} that approximates P(y|I, D).

Epistemic-

U ncerta | nty-Awa re **Uninformative prior for P(c).

Seq Uentlal s Dirichlet distributed non-viewpoint dependent classifier
Classification: models:

Assumptions Li) = Prle =0, L) = L1 7 L7 (0]

-
-
-t

(4
©

©

©
o
®

=2
o

o

o
o
)

Probability of class 2
o o
N »

o
N @

(7]
123 ©
= °
O —-—
< >
204 £04
5 3
3 o
° <]
iE o

(N
N
o ¢
(%)

(=]

0 0.5
Probability of class 1

o
o
o

0.5 0.5
Probability of class 1 Probability of class 1

(=]
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Previous Data: Multiple All
{Ar-1} Pairs
New
Measurements:
73, Projected
Measurements:
o L{yi}
Classifier ¥
Model: L

\ 4

Sub-Sampling

Current Data:
{Ak}

Epistemic-Uncertainty-Aware
Sequential Classification:
Approach

% Using Bayes rule: A%, o< A%, Li(y).

¢ Represent the distribution of each A as a point
cloud {A}.

¢ Multiplying every v, and A, _; is expensive, we
use sub-sampling to reduce computation effort.

———— |

22/3/2021
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Epistemic-Uncertainty-Aware Sequential
Classification: Approach Illustration

*»*Single step: posterior uncertainty decreases: | I

ot e

L 2
Sos
o
&

=]
506
o

E 08

= =
Bos gos

* 8’
S & e 2
. . B g 802
. 3 Fod o
Seda o2 lbtier R
1 1

05 05 1 05
Class babili Class 1 probability Class 1 probability

(a) {Aw-1} (b) {i} (c) {£(7)} (d) {A«}
+»*Single step: posterior uncertainty increases:

1 1 1
20 208 \ 208 208
o Fl Fe} o
06 Sos \ 06 . 06
g g H i H
S0 04— ™ 04 <04
2o %02 fm‘ = %02 202
o .:’. ©" A " S e A (o ha
2N 0 0 0 -
1 ) 05 0 05 1 0

05 . 1 . 05
Class 1 probability Class 1 probability Class 1 probability Class 1 probability

(a) {Ak-1} (b) {7} (c) {£0v)} (d) {A«}

22/3/2021
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Epistemic-Uncertainty-Aware Sequential

Classification: Experiment Setup

**Images of an object with occlusion, blur, and different color filters.
+* 3 candidate classes, class 1 is correct.

+* Compared between the following approaches:

« P(c|yi.x), no classifier model.

« P(c|yi.x), with classifier model.

o P(Ag|l1.x, D), all pairs considered.
o P(Ag|l1.x, D), with sub-sampling.

22/3/2021
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Epistemic-Uncertainty-Aware % o R i
Sequential Classification: 2" |
Experimental Results N

o\’\

2 4 6 8 10
Number of images

No dropout, no model

+¢ Our approach provides superior classification results. i
.08 —Class 18S
RN P d . o . . = ——Class 2 SS
% Provides access to posterior epistemic uncertainty. 506 —Class 35S
= -=-=-Class 1 AP
s - - -Class 3AP
;0'4 ---an: 2AP
¢ Sub sampling results are close to considering all pairs. So2
0 g
2 4 6 8 10

22/3/2021

Number of images

With dropout,
expectation
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E ——Class 2
=06 ——Class 3
Qo
o
Q04
(2]

[%2]
o
002
0
2 4 6 8 10
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0.5
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Q0.2
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©
O 0.1
0
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We proposed maintaining the distribution over the posterior class

S u m m a ry probability for classification and extracting epistemic uncertainty.
Thus Far

We utilize a cloud of class probability vectors as a classier output.

To reduce computational effort, we proposed using a simple sub-
sampling method.

We showed superior results to commonly used approaches for
classification, as well as presenting epistemic uncertainty.

22/3/2021 39
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+¢ Data association aware semantic SLAM via viewpoint
dependent classifier model (published in IROS 2019)

P re S e n tat I O n +» Distributed semantic SLAM via viewpoint dependent classifier
. model (published in RAL/IROS 2020)
Overview

+» Epistemic uncertainty aware sequential classification
(published in RAL/IROS 2018)

¢ Posterior epistemic uncertainty aware inference and belief
space planning (upcoming paper 2021)

22/3/2021
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Introduction: Active Classifier
Epistemic-Uncertainty-Aware

Inference and Planning 50 17—
0.8
’T',I‘O.G
401204 . 3 \\
. . . 0.2 N
+»» Up to this point we presented methods for addressing: i ] T
E 30 4 ” P(gfl) o
* Viewpoint dependency of classification scores. ‘"g’
* Localization and mapping uncertainty. g
* Classifier epistemic uncertainty. == ®
. 1042
% Now we introduce two methods that address both \
simultaneously in inference: RS,
" Nc;lﬂ : :
. . 0 10 20
*  Multi-Hybrid (MH) X coordinate [m]

* Joint Lambda Pose (JLP)

+* We extend the formulation of those two methods to belief
space planning.

22/3/2021 41
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Maintain an epistemic uncertainty aware joint belief over poses and
class probabilities:

+*» Multi-Hybrid (MH).

M U|t|-Hyb rld (M H) +»* Joint Lambda Pose (JLP).
a N d J Ol nt La m bd a Utilize a viewpoint dependent classifier uncertainty model to:

¢ Predicts epistemic uncertainty given viewpoint.

Pose (J I_P) : +»* Improve classification performance in inference.
. . +* Generate predicted measurements for BSP.
Contributions

Propose an information-theoretic reward over posterior epistemic
uncertainty

Previous works:
+» Don’t consider classifier epistemic uncertainty for BSP.

¢ Epistemic uncertainty aware planning with solved localization.

Ongoing work for 2021 paper submission.

22/3/2021 42
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Introduction: Belief Space
Planning (BSP)

s A framework for planning under uncertainty.

*»*Objective Function: given belief b;, and an action sequence a;., . :

L
J(brs Q) = Ezpy i (Z 7 (bi+is ak+i)>

=0

e 7(-)is the reward function.
* by,;is afunction of observations Z, ,;

43
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III Introduction: Belief Space
Planning (BSP)

] (by, ay.r+1) rewritten in a recursive form:

J(by, Qgecge+1) = fzk+1 P(Zy+1|Hie, ar) - J (B 1, Qs 1:1041) AZ k11
$P(Zy, 11| Hy, a): measurement likelihood term.
**The aim is finding an optimal action sequence:

Ak.p+1 = TG ;Z_gﬁ](bk; Akke+L)

. _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________|
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III Introduction: Belief Space

Planning (BSP)

s Key issue: generating predicted semantic measurements.

**Option 1: generating raw images.
* High dimensional problem.
* Feasible only in specifically trained environments.

**Option 2: generating directly from classifier model.
e OQOutput dimension is much smaller.
e Can be generalized to more environments.

22/3/2021
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II MH and JLP: Classifier
Uncertainty Model

* Requirement: a viewpoint dependent model that fits both inference and
planning (sampling).

% Logit transformation of a general probability vector v € R™ to [v € R™

log v, log vm_l]T

lv =
log v, log v,

% vy is Logistical Gaussian distributed, therefore ly, is Gaussian distributed:

P(ly|c,x™) = v (hc(xrel),ZC(xrel))
< Model’s training set: D, = {x"¢, {ly}}.

(a) v space (b) [~ space

¢ Predicts epistemic uncertainty.
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III MH Inference and Planning

% We aim to infer the joint belief (4, X}, |H ). @ Q"?

¢ We determine fixed weight realizations w € /.
@crt=1c2=1 (b)ct=2c2=1

¢ Marginalizing over w:

P Ak, Xic|Hi) = 2w P (X | Ak, Hige, WP (A | Hge, w) ' ‘ ‘

the R.H.S can be inferred via maintaining a hybrid belief per each w. @ e @ @ e @

+¢ In planning, predicted measurements are generated via the classifier ' '
uncertainty model. @ e

(c)ict = 1,c%%=2 (d) c°* =2,c°2 =2

x|W]

** MH is computationally inefficient; therefore, we propose JLP.
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II JLP Inference: Approach

** MH is computationally expensive; we propose a more efficient alternative.
¢ MH maintains multiple hybrid beliefs.
++ JLP maintains a single continuous belief.

+* We aim to maintain the joint belief:
bllAy, Xi] = P(1Ay , X |H y, D)
+* Recursive formulation:

b[lAx, Xi]

= P2 | WAg—1, H i, X1 ) P (2| X )P el =1, g1 ) D[ —q, Xge—q 1dlDge—4
-1

¢ Introducing the novel JLP factor.

¢ JLP is even more efficient than MH when considering multiple objects.
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JLP inference: Approach

Under the condition below, the JLP factor is Gaussian and [A4;.can be inferred by
standard optimization methods.

*»Recall the classifier uncertainty model:

P(ly|c,x™) = N (h¢, Z¢)

®If 2o (x7¢) = T, ;(x"¢") for all candidate classes, then the JLP factor is Gaussian.

s»Even if the condition doesn’t apply, the JLP factor is approximately Gaussian besides
extreme cases.

22/3/2021
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“l JLP Planning: Measurement Generation

¢ Specifically for JLP, the objective function is:

Jb[IAg, Xy, agks1) = E Yo (D[ Aksis Xieil , Arri))

eo
E(lYk+1:k+L):Z(le+1:k+L)’ZI€+1:k+L

+» Sampling of measurements:
e Geometric from the measurement model.
* Semantic from the parameters of the classifier uncertainty model.

% Sampled measurements are used to infer predicted b\ ;, Xy +;].

22/3/2021
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"/l MH and JLP Planning: Reward Functions

** Maintaining b|A, X'| opens access to a reward function of general type 1r(b[A, X'|) with possible
variations:

¢ r(X), e.g., distance to goal.
* r(b[X]), e.g., information-theoretic.

. r(E()\)), e.g., information entropy.
* r(b[A]), a novel reward function type, planning over epistemic uncertainty.
+* The posterior epistemic uncertainty affects every reward.
+* We use negative of differential entropy as reward:
r(BIAD = ~H) = [ bIAT - log (b1 d2
A

s —H(A) accounts for both E () (classification scores) and Z(A) (epistemic uncertainty) without
hyperparameter tuning.
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MH and JLP Planning: .

il

0.8
o . 0.6 0.6
Simulation Setup
0.2 0.2
0 0
¢ 9 objects in a 2D environment. ° w[ldseog] e Y w[ldB:g] e
%+ 2 candidate classes. (@) P(v*=Ye = 1,7) (b) P(v*=c = 2,9)

¢ 5 motion primitives.
+»» Two reward functions:
% Ry = min(— Y ,co HA) , RP*)
* Ry = —Yoeo Lo EA°) - log(E(A%?))

o Ground Truth Motion Primitives
** Compare between:

“ MH

0.0 fobot

Y axis [m]
Y axis [m]
=}
wn

% JLP :Z 15
¢ Without Epistemic Uncertainty (WEU) - @f P9 10/
o7
** MSDE as classification benchmark:
Y

i 2 251
MSDE = iz (Pge(c = 1) = P(c = i|7F)) ! /
m 9 _
=

0 5 10 15 ) -1 0 i 2

X axis [m] X axis [m]
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10.0
2.571
5.0
2.5
0.01

—2.5
-5.0-
_7‘5 4
-10.0

Y axis [m]

26 0 5 10 15
X axis [m]

(a) R1

MH and JLP Planning:
Simulation Results

22/3/2021

Y axis [m]

10.0

7.51

5.0

2.5

0.0

=2:57

-5.0

—-7.51

-10.0

s H9
,":;‘=; o) p&
02
5 0 5 10 15
X axis [m]

(b) R>

Y axis [m]

10.0

7.51

5.0

2:54

0.0

—2.5

-5.0

—-7.51

-10.0

-5 0 5 10 15
X axis [m]

(¢c) WEU

+* We show results for inference after actions already taken.

+*» Trajectories created by planning.
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o —— MHR1 e — JLPR1
rpmes ME.R2 el — JLP R2
-10
_10 ]
e >
g. -20 g -15
4 )
& 5 —-20
—30 1 —
-25
—40 - —30
; . ' -35 . . ;
0 5 10 15 20 0 B 10 15 20
Time step Time step

“* Entropy Y. ,co H(A?) values as a function of time step.

MH and JLP Planning:
Simulation Results

¢ Advantage for using R; over R,.
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0.4 1 —r——MH-R1 0.4 1 —— JLPR1
= MH R2 — JLP R2
— WEU — WEU
0.3 1 0.3
o o
0.2 S 9:0.2 N
0.1 0.1
0.0 ; ‘ ; , ' .
0 5 10 15 20 0 5 10 15 20
Time step Time step

+* MISDE results as a function of time step.
MH and JLP Planni ng. < Advantage for using R, over R,, with both outperforming WEU.

Simulation Results
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S WEU el JLPR1 BN |JPR2 ®Em MHR1 WEm MH R2

Probability of weight
© © o o ¢~
O N U1 N O
o l{'l o U O

Object 1
Object 2
Object 3
Object 4
Object 5
Object 6
Object 7
Object 8
Object 9

+» Classification results for the objects at k = 20: probability of the

MH and JLP P|anning: correct class.

S. | t R |t ¢ Black line represents the posterior epistemic uncertainty.
imulation Results ¢ Advantage for using R, over R,. WEU tends to go to extremes.
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MH and JLP Planning:
Simulation Results

* Computation time comparison between
MH with 10 beliefs, JLP, and WEU.

 WEU is the fastest, JLP is comparable,
while MH is the slowest.

Time [s]

175
150

/\ MHE

—— ~ _ WF

10

15

Time step

20

I
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GER — JLPR1
—— JLPR2

0 5 10

Time step

MH and JLP Planning:
Simulation Results

22/3/2021

20 0 5 10 15 20
Time step

+¢ Statistical results for JLP with planning over R; and R, compared to
WEU: entropy and MSDE.

+» Colored area — one o range.

+» Significant advantage vs WEU, with R; having a small edge over R,.
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Summary

dUncertainties in object classification
+»* Viewpoint dependency.
e A semantic SLAM approach that maintains a hybrid belief over poses and classes.
* Expanding the approach to a distributed multi-robot setting.
* Leveraging the coupling between poses and classes via a viewpoint dependent classifier model.
+» Epistemic uncertainty.
* An approach that maintains the distribution of the posterior class probability vector.

* MH and the faster JLP that reasons both about viewpoint dependency and epistemic uncertainty.
+»* Belief space planning

e Expand MH and JLP for BSP.

* Use a viewpoint dependent classifier uncertainty model both for inference and BSP.

L Our approaches showed increased performance for classification, localization, and
data association disambiguation.



