Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

Antony Thomas

Collaborators: Asst. Prof. Vadim Indelman (Advisor) Dr. Shashank Pathak

Master's Thesis Seminar (January 9, 2017)

Introduction

Why autonomous navigation ?

Autonomous Micro UAVs (Upenn)

Autonomous robot janitor (Fuji Heavy Industries)

Autonomous cars -DARPA Urban Challenge 2007 winner 'Boss' (CMU)

Aerial sensor network (EPFL)

Introduction

- Autonomous navigation involves:
 - Inference (estimation): Where am I?
 - Perception: What is the environment perceived by sensors ?
 e.g.: What am I looking at? Is that the same scene as before?
 - Planning: What is the next best action(s) to realize a task ? e.g.: where to look or navigate next?

Inference (Estimation)

Estimate the state x of the robot, given observations z and controls u

x

Can we say that the robot is precisely at a particular location ?

Inference (Estimation)

- Uncertainty in the robot's motions and observations
- Probability theory used to account for the uncertainty

Perception

• Which is the landmark that the robot is looking at ?

- Robot O
- Landmark 📩
- Robot pose uncertainty

Data Association

 The problem of finding the correct correspondences between observations and landmarks

Planning

Belief space planning (BSP) and decision making under uncertainty

- Determine best *future* action(s) while accounting for different sources of uncertainty (stochastic control, imperfect sensing, uncertain environment)
- Fundamental problem in robotics and AI

BSP for L look-ahead steps, Indelman et al., IJRR'15

Motivation

- What happens if the environment is ambiguous, perceptually aliased ?
 - Identical objects or scenes
 - Objects or scenes that appear similar for some viewpoints
- Examples:
 - Two corridors that look alike
 - Similar in appearance buildings, windows, ...
- What if additionally, we have localization (or orientation) uncertainty ?

Wong et al., IJRR'15

Angeli et al., TRO'08

Motivation

- What happens if the environment is ambiguous, perceptually aliased ?
 - Identical objects or scenes
 - Objects or scenes that appear similar for some viewpoints
- Examples:
 - Two corridors that look alike
 - Similar in appearance buildings, windows, ...
- What if additionally, we have localization (or orientation) uncertainty ?
- Identifying the true object from the aliasing object becomes particularly challenging (data association)
- Incorrect association (wrong scene) can be catastrophic

Robust graph optimization approaches:

- Attempt to be resilient to incorrect data association (outliers overlooked by front-end algorithms, e.g. RANSAC)
- Only consider the passive case whereas we consider the active case

Sünderhauf et al., ICRA'12

- Multi-robot pose graph localization from unknown initial relative poses and data association:
 - Each possible data association modeled either as an inlier or an outlier
 - Only consider the **passive** case whereas we consider the **active** case

Indelman et al., CSM'16

Belief space planning (BSP) approaches:

- Typically assume data association (DA) to be **given** and **perfect**

Contribution

- We develop a belief space planning (BSP) algorithm, considering both
 - Ambiguous data association due to perceptual aliasing, and
 - Localization uncertainty due to stochastic control and imperfect sensing
- Our approach Data Association Aware Belief Space Planning (DA-BSP):
 - Relaxes common assumption in BSP regarding known and perfect DA
 - To that end, we incorporate reasoning about DA within BSP

Formulation

- Consider a robot operating in a known environment (map given)
- The robot takes observations of different scenes or objects as it travels (e.g. images, laser scans)
- These observations are used to infer random variables of interest (e.g. robot pose)

Notations

Probabilistic Formulation

- Motion model:
- $p(x_{i+1}|x_i, u_i), \quad x_{i+1} = f(x_i, u_i) + w_i, \quad w_i \sim \mathcal{N}(0, \Sigma_w)$
- Observation model:

Propagated belief

• Given an action u_k we can propagate the belief using the motion model

Posterior

Observation model used to calculate the posterior belief at k+1

 $b[X_{k+1}] = \eta p(X_k | \mathcal{H}_k) p(x_{k+1} | x_k, u_k) p(z_{k+1} | x_{k+1}, A_j)$

Objective Function

Belief at time k+1, given control u_k and observation z_{k+1} :

$$b[X_{k+1}] \doteq p(X_{k+1}|u_{0:k}, z_{0:k+1})$$

Objective function (single look ahead step):

$$J(u_k) \doteq \mathbb{E}_{z_{k+1}} \left\{ c \left(p(X_{k+1} | u_{0:k}, z_{0:k+1}) \right) \right\} \equiv \mathbb{E}_{z_{k+1}} \left\{ c \left(b[X_{k+1}] \right) \right\}$$

- c(.) for example can be the trace of the covariance of X_{k+1}
- Why expectation ?
 - Observations are not given at planning time
 - Consider all possible realizations of a future observation Z_{k+1}
- Optimal control:

$$u_k^\star \doteq \underset{u_k}{\operatorname{arg\,min}} J(u_k)$$

Formulation – In Brief

- Given: a candidate action(s) and b[X_k]
- Calculate the posterior given u_k and particular future observation z_{k+1}

$$b[X_{k+1}] \doteq p(X_{k+1}|u_{0:k}, z_{0:k+1})$$

- Evaluate the cost function
- Consider all possible values such an observation can assume (expectation)

$$J(u_k) \doteq \mathbb{E}_{z_{k+1}} \left\{ c \left(p(X_{k+1} | u_{0:k}, z_{0:k+1}) \right) \right\} \equiv \mathbb{E}_{z_{k+1}} \left\{ c \left(b[X_{k+1}] \right) \right\}$$

Concept

In presence of perceptual aliasing, the same observation could be obtained from different poses viewing different scenes

How to capture this fact within belief space planning?

Concept – propagated belief

• It is unknown from what actual pose x_{k+1} , a future observation z_{k+1} will be acquired

• Robot pose x_{k+1} can be anywhere within $b[x_{k+1}^-] \doteq p(x_{k+1}|z_{0:k}, u_{0:k})$

 $p(x_{k+1}|z_{0:k}, u_{0:k})$ $Propagated belief, given action
<math display="block">p(x_{k+1}|z_{0:k}, u_{0:k})$ Current belief

Concept - Intuition

Concept - Intuition

Perceptually aliased scenes

 Reason about different scenes (or objects) that a specific future observation
 z_{k+1} could be generated from

ANPL Autonomous Navigation and Perception Lab

A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

- Reason about different scenes (or objects) that a specific future observation
 z_{k+1} could be generated from
- This means marginalizing over all the possible scenes/objects

$$b[X_{k+1}] = \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}, A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$
$$= \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}, A_j) p(A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$

- Reason about different scenes (or objects) that a specific future observation
 z_{k+1} could be generated from
- This means marginalizing over all the possible scenes/objects

$$b[X_{k+1}] = \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}, A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$
$$= \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}, A_j) p(A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$

• Posterior given that observation z_{k+1} was generated by scene A_j

- Reason about different scenes (or objects) that a specific future observation
 z_{k+1} could be generated from
- This means marginalizing over all the possible scenes/objects

$$b[X_{k+1}] = \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}, A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$
$$= \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}, A_j) p(A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$

• Likelihood of scene A_j being actually the one which generated the observation z_{k+1}

Revisiting Objective Function

Objective function (single look ahead step):

$$J(u_k) \doteq \mathbb{E}_{z_{k+1}} \left\{ c \left(p(X_{k+1} | u_{0:k}, z_{0:k+1}) \right) \right\} \equiv \mathbb{E}_{z_{k+1}} \left\{ c \left(b[X_{k+1}] \right) \right\}$$

Write expectation explicitly:

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}) \right)$$

• c(.) for example can be the trace of the covariance of X_{k+1}

Posterior belief

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}) \right)$$

We already saw this term before

$$b[X_{k+1}] = \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}, A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$
$$= \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}, A_j) p(A_j | \mathcal{H}_{k+1}^-, z_{k+1})$$

- In other words
 - Observation is given, hence, **must** capture **one** (unknown) scene
 - Which one? Consider all possible scenes

Likelihood of an observation

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^{-}) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^{-}, z_{k+1}) \right)$$

Observation model

$$p(z_i|x_i, A_j)$$

- Calculate corresponding likelihood for each A_j

$$p(z_{k+1}|\mathcal{H}_{k+1}^{-}) \equiv \sum_{j} p(z_{k+1}, A_j|\mathcal{H}_{k+1}^{-})$$

- Accounting for all viewpoints x_{k+1}

$$p(z_{k+1}|\mathcal{H}_{k+1}^-) \equiv \sum_j \int_x p(z_{k+1}, x, A_j|\mathcal{H}_{k+1}^-)$$

• Likelihood of a specific z_{k+1} to be captured

Likelihood of an observation

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}) \right)$$

Corresponding to each A_j we get w_j

$$p(z_{k+1}|\mathcal{H}_{k+1}^{-}) \equiv \sum_{j} \int_{x} p(z_{k+1}, x, A_j | \mathcal{H}_{k+1}^{-}) \doteq \sum_{j} w_j$$

Summarizing

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}) \right)$$

• Likelihood of a specific z_{k+1} to be captured

$$\underline{p(z_{k+1}|\mathcal{H}_{k+1}^{-})} \equiv \sum_{j} \int_{x} p(z_{k+1}, x, A_j | \mathcal{H}_{k+1}^{-}) \doteq \sum_{j} w_j$$

• Posterior given a specific observation z_{k+1}

$$\underbrace{b[X_{k+1}]}_{j} = \sum_{j} p(X_{k+1} | \mathcal{H}_{k+1}^{-}, z_{k+1}, A_j) p(A_j | \mathcal{H}_{k+1}^{-}, z_{k+1}) \\
 = \sum_{j} \tilde{w_j} b[X_{k+1}^{j+}]$$

A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

Summarizing

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | \mathcal{H}_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1})\right)$$
$$J(u_k) \doteq \int_{z_{k+1}} (\sum_j w_j) c\left(\sum_j \tilde{w_j} b[X_{k+1}^{j+}]\right)$$

•
$$\tilde{w}_j = \eta w_j$$

- $b[X_{k+1}^{j+}] = p(X_{k+1}|H_{k+1}^{-}, z_{k+1}, A_j)$
- In short we get a GMM with weights \tilde{w}_j corresponding to each $b[X_{k+1}^{j+}]$
- Do this for all possible realizations of a future observation z_{k+1}

35

Perceptual Aliasing Aspects

$$J(u_k) \doteq \int_{z_{k+1}} \left(\sum_j w_j\right) c \left(\sum_j \tilde{w_j} b[X_{k+1}^{j+}]\right)$$

- No perceptual aliasing:
 - Only one non-negligible weight \tilde{w}_j
 - Corresponds to the true scene A_j
 - Reduces to state of the art belief space planning
- With perceptual aliasing:
 - Multiple non-negligible weights \tilde{w}_j
 - Correspond to aliased scenes, given z_{k+1}
 - Posterior becomes a mixture of pdfs (GMM)

Summary

- Given belief at time k
 - $-b[X_k]$
- Reason about possible scenes that can generate a future observation
 GMM posterior
- Reason this belief evolution for different candidate actions
 select best action
- Repeat

Results - Considered scenarios

- Scenario 1: Real experiment in Ullman building using laser scanner
- Scenario 2: Simulation in Gazebo environment
- Scenario 3: Real experiment in Industrial Engg. building with April tags

Scenario 1: Real experiment in Ullman building using laser scanner

- DA-BSP in a 3-floor aliased environment with Pioneer robot
- Floor and position disambiguation considered

A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

ANPL Autonomous Navigation and Perception Lab

[•] A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

Scenario 2: Simulation in Gazebo environment

Two floor aliased office floor environment

Scenario 2: Simulation in Gazebo environment

Two floor aliased office floor environment

Incorporating aliasing

ANP

Weights and modes for DA-BSP path

Evolution of weights for L = 2

Quantitative evaluation

- η_{da} weight of the true component
- BSP-uni an association randomly chosen as the correct one(unimodal belief)
- η measures whether association chosen in BSP-uni is correct or not (1/0)

Algorithm	Epoch	L	= 2	L	= 4	Inference		
		t(s)	(η_{da}, \tilde{m})	t(s)	(η_{da}, \tilde{m})	t(s)	(η_{da}, \tilde{m})	
DA-BSP	2	293.45	(0.13, 8)	733.67	(0.49,2)	29.40	(0.12,8)	
	3	262.37	(0.25, 4)	557.57	(0.25, 4)	26.80	(0.12,8)	
	5	10.05	(0.25, 4)	115.95	(1,1)	2.40	(0.26, 4)	
	7	2.47	(1,1)	2.57	(1,1)	1.46	(1,1)	
		t(s)	η	t(s)	η	t(s)	η	
BSP-uni	2	7.04	1	18.96	1	4.17	1	
	3	1.23	1	2.20	0	0.77	0	
	5	1.04	0	1.90	0	0.56	1	
	7	0.47	0	0.50	0	0.46	0	

Scenario 3: Real experiment in Industrial Engg. building with April tags

- Octagonal world with a known map
- April Tags used to simulate aliasing environment and for localization

Starting configuration

ANPL

DA-BSP

BSP- uni

DA-BSP

BSP-*uni*

Quantitative evaluation

• ξ_{ca} - averaged η for 5 random runs

Algorithm	Epoch	L = 1				L = 3				Inference			
		t(s)	η_{da}	${ ilde m}$	DA	t(s)	η_{da}	${ ilde m}$	DA	t(s)	η_{da}	${ ilde m}$	DA
DA-BSP	1	2.60	0.11	4.00	\checkmark	95.57	0.08	5.95	\checkmark	0.80	0.22	4.00	\checkmark
	2	1.21	0.29	2.00	\checkmark	5.75	0.13	1.37	\checkmark	0.05	-	4.00	-
	4	1.00	0.35	2.00	\checkmark	4.29	-	1.00	-	0.61	0.50	2.00	\checkmark
	8	0.11	-	1.00	-	0.35	-	1.00	-	0.02	-	1.00	-
	12	3.90	0.11	4.80	\checkmark	191.48	0.08	6.79	\checkmark	1.16	0.28	4.20	\checkmark
	16	2.62	0.12	3.03	\checkmark	3.58	-	3.02	-	0.60	0.11	4.60	\checkmark
	19	3.14	0.09	2.60	\checkmark	82.16	0.04	6.10	\checkmark	0.94	0.14	6.60	\checkmark
		t(s)	ξ_{ca}		DA	t(s)	ξ_{ca}		DA	t(s)	ξ_{ca}		DA
BSP-uni	1	0.43	0.90		×	2.19	-		-	0.20	1.00		\checkmark
	2	0.15	-		-	1.43	0.86		×	0.03	-		-
	4	0.25	1.00		\checkmark	4.51	0.98		×	0.17	1.00		\checkmark
	8	0.15	-	-	-	1.10	-	-	-	0.05		-	-
	12	0.26	1.	00	\checkmark	3.90		-	-	0.17	1.	00	\checkmark
	16	0.16	-	-	-	1.11	-	-	-	0.08	-	-	-
	19	0.30	1.	00	\checkmark	1.24		-	-	0.17		-	-

Conclusions

- Data association aware belief space planning (DA-BSP)
 - Considers data association within BSP
 - Relaxes typical assumption in BSP that DA is given and correct
 - Approach in particular suitable to handle scenarios with perceptual aliasing and localization uncertainty
 - Unified framework for robust active and passive perception

Thank you

Asst. Prof. Vadim Indelman

Dr. Shashank Pathak

Asaf Feniger

ALL Autonomous Navigation and Perception Lab

ation A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

Term a)

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | H_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1}) \right)$$

• Likelihood of a specific z_{k+1} to be captured

$$p(z_{k+1}|\mathcal{H}_{k+1}^{-}) \equiv \sum_{j} \int_{x} p(z_{k+1}, x, A_{j}|\mathcal{H}_{k+1}^{-}) \doteq \sum_{j} w_{j}$$
$$\equiv \sum_{j} \int_{x} p(z_{k+1}|x, A_{j}, \mathcal{H}_{k+1}^{-}) p(A_{j}|x, \mathcal{H}_{k+1}^{-}) b[x_{k+1}^{-} = x]$$

•
$$b[x_{k+1}^-] = \int_{\neg x_{k+1}}^{\cdot} b[X_{k+1}^-]$$

Term b)

$$J(u_k) \doteq \int_{z_{k+1}} p(z_{k+1} | H_{k+1}^-) c\left(p(X_{k+1} | \mathcal{H}_{k+1}^-, z_{k+1})\right)$$

• $b[X_{k+1}] = \sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}, A_j | \mathcal{H}_{k+1}^-, z_{k+1})$

$$=\sum_{j}^{\{A_{\mathbb{N}}\}} p(X_{k+1}|\mathcal{H}_{k+1}^{-}, z_{k+1}, A_j) p(A_j|\mathcal{H}_{k+1}^{-}, z_{k+1})$$

•
$$p(A_j | \mathcal{H}_{k+1}^-, z_{k+1}) = \int_x p(A_j, x | \mathcal{H}_{k+1}^-, z_{k+1})$$

 $\doteq \eta \int_x p(z_{k+1} | A_j, x, \mathcal{H}_{k+1}^-) p(A_j, x | \mathcal{H}_{k+1})$
 $\doteq \eta \int_x p(z_{k+1} | x, A_j, \mathcal{H}_{k+1}^-) p(A_j | x, \mathcal{H}_{k+1}^-) b[x_{k+1}^- = x]$

Weights

•
$$p(z_{k+1}|\mathcal{H}_{k+1}^{-}) \equiv \sum_{j} \int_{x} p(z_{k+1}, x, A_{j}|\mathcal{H}_{k+1}^{-}) \doteq \sum_{j} w_{j}$$

 $\equiv \sum_{j} \int_{x} p(z_{k+1}|x, A_{j}, \mathcal{H}_{k+1}^{-}) p(A_{j}|x, \mathcal{H}_{k+1}^{-}) b[x_{k+1}^{-} = x]$
 $\doteq \sum_{j} w_{j}$

•
$$p(A_j | \mathcal{H}_{k+1}^-, z_{k+1}) = \int_x p(A_j, x | \mathcal{H}_{k+1}^-, z_{k+1})$$

 $\doteq \eta \int_x p(z_{k+1} | A_j, x, \mathcal{H}_{k+1}^-) p(A_j, x | \mathcal{H}_{k+1})$
 $\doteq \eta \int_x p(z_{k+1} | x, A_j, \mathcal{H}_{k+1}^-) p(A_j | x, \mathcal{H}_{k+1}^-) b[x_{k+1}^- = x]$
 $= \eta w_j \doteq \tilde{w}_j$

Robust graph optimization approaches:

- Attempt to be resilient to incorrect data association (outliers overlooked by front-end algorithms, e.g. RANSAC)
- Only consider the passive case (actions/controls are given)
- In contrast, we consider the active case (belief space planning)

Images from Sunderhauf et al., ICRA'12

- Probably the closest work to our approach is by Agarwal et al., arXiv 2015
- Hypotheses due to ambiguous data association considered and method developed for active disambiguation
- Consider ambiguous data association only within the prior belief
- Assume there indeed exists an action that can yield complete disambiguation.

Intuition regarding GMM prior

- Kidnapped robot scenrio
- Robot can be in either of the 4 rooms initially

Agarwal et al., arXiv 2015

Active hypothesis disambiguation, active object classification

- Finding the correct hypothesis (associations) from a sequence of viewpoints
- Assumes sensor to be localized
- We consider both localization uncertainty and data association aspects within the belief

Atanasov et al., TRO'14

²⁷ A. Thomas, Incorporating Data Association Within Belief Space Planning For Robust Autonomous Navigation

Bimodal posterior belief (GMM)

