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Abstract

Belief space planning (BSP) and perception are fundamental problems in robotics
and artificial intelligence, with applications including autonomous navigation and
active SLAM. State-of-the-art BSP approaches assume that data association (DA), i.e.
determining the correct correspondence between the observations and the landmarks,
is given and perfect. However, real world environments are often ambiguous, which
in the presence of different sources of uncertainty, make perception a challenging task.
For example, an object might be similar in appearance from the current viewpoint to
another object, while successfully matching images from two different but similar in
appearance places (e.g. buildings that look alike) would incorrectly indicate the two
places as one. An incorrect DA can lead to catastrophic results, e.g. a robot considering
it is located in a wrong aliased corridor. Consequently, more advanced approaches,
known as robust perception, are required. Yet, existing robust perception approaches
focus on the passive case where robot actions are externally determined, while existing
BSP methods assume data association to be given and perfect.

In this research we relax the above assumption and incorporate reasoning regarding
DA aspects within BSP, while accounting for different sources of uncertainty (imperfect
sensing, stochastic control, uncertain environment). We develop a data association aware
belief space planning (DA-BSP) approach that explicitly reasons about DA within belief
evolution while considering non-myopic planning and multi-modal beliefs represented
by Gaussian Mixture Models (GMM). We envision such a framework to provide robust
active perception and active disambiguation capabilities, in particular while operating
in ambiguous and perceptually aliased environments. The approach is studied and
proven effective using real-world experiments and synthetic simulations, carried out at
the Autonomous Navigation and Perception Lab at the Technion.
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Abbreviations

BSP : Belief Space Planning
DA : Data Association
GMM : Gaussian Mixture Model
POMDP : Partially Observable Markov Decision Process
SLAM : Simultaneous Localisation and Mapping
DA-BSP : Data Association aware Belief Space Planning
GT-SAM : Georgia Tech-Smoothing and Mapping
ROS : Robot Operating System
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Chapter 1

Introduction

Belief space planning (BSP) and decision-making under uncertainty are fundamental
problems in robotics and artificial intelligence, with applications including autonomous
navigation, object grasping and manipulation, active SLAM, and robotic surgery. In
presence of uncertainty, such as in robot motion and sensing, the true state of variables
of interest (e.g. robot poses), is unknown and can only be represented by a probability
distribution over possible states, given available data. Planning and decision-making
should be therefore performed over this distribution, the belief space, which can be
inferred using probabilistic approaches based on incoming sensor observations and prior
knowledge. The corresponding problem is an instantiation of a partially observable
Markov decision problem (POMDP) [15], where, given an objective function, one
aims to determine an optimal control policy as a function of belief evolution over
application-dependent variables of interest.

However, state-of-the-art BSP approaches typically assume data association to be
given and perfect (see Figure 1.1b), i.e. the robot is assumed to correctly perceive the
environment to be observed by its sensors, given a candidate action. Yet, the world is
often full of ambiguity, that together with other sources of uncertainty, make perception
a challenging task. As an example, matching images from two different but similar in
appearance places, or attempting to recognise an object that is similar in appearance,
from the current viewpoint, to another object. Both cases are examples of ambiguous
situations, where näıve and straightforward approaches are likely to yield incorrect
results, i.e. mistakenly considering the two places as same, and incorrectly associating
the observed object.

Considering data association to be solved and perfect within BSP can thus lead,
in presence of ambiguity, to incorrect posterior beliefs and as a result, to sub-optimal
actions which do not properly consider perceptual aliasing aspects. More advanced
approaches are therefore required to enable reliable operation in ambiguous conditions,
approaches often referred to as (active) robust perception. These approaches typically
involve probabilistic data association and hypothesis tracking given available data. Thus,
for the object detection example, each hypothesis may represent a candidate object from
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Figure 1.1: (a) Generative graphical model. While standard BSP approaches typically assume data association
(DA) is given and perfect, we incorporate data association aspects within BSP and thus capable of reasoning
about ambiguity (e.g. perceptual aliasing) at a decision-making level. (b) Schematic representation of pose,
scene and observation spaces. Scenes A1 and A3 when viewed from perspective x and x′ respectively, produce
the same nominal observation ẑ, giving rise to perceptual aliasing.

a given database that the current observation (e.g. image or point-cloud) is successfully
registered to. Similarly, one might reason probabilistically regarding perceptual aliasing,
as in the first example above, which would also involve probabilistic data association.
Yet, existing robust perception approaches focus on the passive case, where robot actions
are externally determined and given, while the closely related approaches for active
object detection and classification consider the robot to be perfectly localised.

In this work we develop a general data association aware belief space planning
(DA-BSP) framework capable of better handling complexities arising in real world,
possibly perceptually aliased, scenarios. To that end, we rigorously incorporate reasoning
about data association within belief space planning, while also considering other sources
of uncertainty (motion, sensing and environment). In particular, we show our framework
can be used for active disambiguation by determining appropriate actions, e.g. future
viewpoints, for increasing confidence in a certain data association hypothesis.

1.1 Related Work

Calculating optimal solutions to POMDP is computationally intractable (PSPACE-
complete) [21] for all but the smallest problems. The vast research area of approximate
approaches (with reduced computational complexity) can be roughly segmented into
point-based value iteration methods [18, 24], simulation based [28] and sampling based
approaches [2,6,26], and direct trajectory optimization [11,22,30] methods. In all cases,
finding the (locally) optimal actions involves evaluating a given objective function while
considering future observations to be acquired as a result of each candidate action.

However, an underlying typical assumption in these approaches is that data associ-
ation for these future observations is known and perfect. For example, it is typically

6



assumed that the robot can be localised by making observations of known landmarks or
beacons (see, e.g. [2, 26]), while assuming to correctly associate each future measure-
ment with an appropriate landmark. Though reasonable in certain scenarios, such an
assumption becomes unrealistic in the presence of perceptually aliased environments
(two scenes that look alike) and localisation uncertainty, as in this work.

While belief space planning approaches typically assume the environment to be
accurately known (e.g. a given map), recent works, including [8, 9, 11, 17,31], relax this
assumption and model the uncertainty of the environment mapped thus far within the
belief. The corresponding framework is thus tightly related to active SLAM, with the
well known trade-off between exploration and exploitation. Recent work [9, 11, 17, 31] in
this branch focused in particular on probabilistically modelling what future observations
will be obtained given a candidate action. However, these approaches consider each
such future observation to be correctly associated to an appropriate scene, and hence,
assume data association to be given and perfect.

In the last few years, the SLAM research community has investigated approaches
to be resilient to false data association (outliers) overlooked by front-end algorithms
(e.g. image matching), see e.g. [7, 13,14, 20,29]. However these approaches, also known
as robust graph optimization approaches, are developed only for the passive problem
setting, i.e. robot actions are given and externally determined. In contrast, we consider
a complimentary active framework and incorporate data association aspects within BSP.

Our approach is also tightly related with recent work on active hypothesis disam-
biguation in the context object detection and classification [3, 19, 23, 27, 32]. Given
hypotheses regarding object class and pose, these approaches aim to find a sequence
future viewpoints that will lead to disambiguation, i.e. identifying the correct hypothe-
sis. However, these approaches assume the sensor is perfectly localized and thus the
corresponding belief is only about the considered hypotheses.

Probably the closest work to our approach is by Agarwal et al. [1], where the
authors also consider hypotheses due to ambiguous data association and develop a BSP
approach for active disambiguation. However, in that work the authors only consider
ambiguous data association within the prior belief, modelling it as mixture of Gaussians,
and assume there indeed exists an action that can yield complete disambiguation. In
contrast, our framework is more general since we additionally consider ambiguous data
association within future belief (due to future observations) given candidate action(s)
and do not assume there is necessarily a fully-disambiguating action.

1.2 Contributions

As mentioned in chapter 1 we incorporate reasoning regarding data association (DA) in
BSP while accounting for different sources of uncertainty (imperfect sensing, stochastic
control, uncertain environment). As such this framework provides robust active percep-
tion and active disambiguation capabilities, in particular while operating in ambiguous
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and perceptually aliased environments.
Main contributions of this thesis are as follows: We develop a unified framework

for data association aware belief space planning (DA-BSP) in both active and passive
context. Here, the components of our belief may both increase and decrease, thereby
modeling the perceptually aliased environment more faithfully. Additionally, it does not
require a fully disambiguating unique observation. We extend DA-BSP by considering
prior belief as non-Gaussian as well as by considering planning for several lookahead
steps. We show how under helpful assumptions this general approach degenerates to
known BSP approaches. We present complexity analysis of such an algorithm as well as
comment on its correctness. Finally, we analyze key aspects arising due to explicitly
considering data association aspects within BSP in a realistic synthetic simulation and
in a real robotics scenario using a Pioneer robot.

1.3 Organization

The rest of this thesis is organized as follows.

1. We formulate the problem and introduce the notations in chapter 2.

2. In chapter 3 we provide the mathematical build-up for our method. This is done
for both myopic and non-myopic planning.

3. We discuss the key aspects of our method using a synthetic simulation and
real-world experiment in chapter 4.

4. chapter 5 provides a conclusion and discusses potential future work.
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Chapter 2

Notations and Problem
Formulation

Planning and decision making under uncertainty are fundamental problems in the area
of autonomous navigation. In the presence uncertainty arising, for example, due to
stochastic robot motion and imperfect sensing, the true state over variables of interest,
such as robot poses, is unknown and can be only represented by a probability distribution
function (pdf), also known as the belief. The corresponding planning problem is known
as belief space planning (BSP), which is an instantiation of a partially observable Markov
decision problem (POMDP) [15]. Such a framework is applicable to numerous problem
domains and applications such as active simultaneous localization and mapping (SLAM),
active sensing, informative planning, and additional variants of autonomous navigation.

The Simultaneous Localisation and Mapping (SLAM) [15]) problem asks if it is
possible for a mobile robot to be placed at an unknown location in an unknown envi-
ronment and for the robot to incrementally build a consistent map of this environment
while simultaneously determining its location within this map [10]. However in this work
we assume a known environment and use this knowledge in our planning and inference.
In the remaining part of this chapter we first motivate the problem and then go over
the mathematical notations and models that will be used to formulate our problem.
These models are general to any planning problem and we introduce our concept of
incorporating reasoning regarding DA within BSP only in the next chapter.

Consider a robot, uncertain about its pose, operating in a partially known or pre-
mapped environment. The robot takes observations of different scenes or objects in the
environment and uses these observations to infer random variables of interest which are
application-dependent. Thus, in localisation, these observations can be used to better
estimate the robot pose, while in search and rescue missions one is looking for survivors
in a certain region.

A schematic equivalent to this is shown in Figure 1.1. As can be seen, it involves
three spaces: pose-space, scene-space and observation-space. Pose-space involves all
possible perspectives a robot can take with respect to a given world model and in the
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context of task at hand.

We shall denote a particular pose at any time step k as xk, and the sequence of these
poses from 0 up to k as Xk

.= {x0, . . . , xk}. By uncertainty in robot’s pose, we mean that
the current pose of robot at any step k, is known only through a posterior probability
distribution function (pdf) P(Xk|u0:k−1, Z0:k) given all controls u0:k−1

.= {u0, . . . , uk−1}
and observations Z0:k

.= {Z0, . . . , Zk} up to time k. For notational convenience, we
define histories Hk and H−k+1 as

Hk
.= {u0:k−1, Z0:k} , H−k+1

.= Hk ∪ {uk}. (2.1)

and we rewrite the posterior at time k as b[Xk]
.= P(Xk|Hk).

In contrast, scene-space involves a discrete set of objects or scenes, denoted by the
set {AN}, in the given world model, and which can be detected through the sensors of
the robot. We shall use symbols Ai and Aj to denote such typical scenes. Note that
even if the objects are identical, they are distinct in scene space. This is important
when we shall consider the cases where the objects look similar from some perspectives.
Finally, observation-space is the set of all possible observations that the robot is capable
of obtaining when considering its mission and sensory capabilities.

We shall consider such an observation as the model:

zk = h(xk, Ai) + vk , vk ∼ N (0,Σv), (2.2)

and represent it probabilistically as P(zk|xk, Ai). Here we have assumed the same
Gaussian noise for all observations irrespective of the scenes being observed. This is
a reasonable assumption, since such noise would be a typical property of the robotic
sensors employed. Also, h(xk, Ai) is a noise-free observation which we would refer as
nominal observation ẑ.

For example, in case of a camera the function h could be defined as a pinhole
projection operator, thereby projecting the object Ai onto the image plane, while in
case of a range sensor this function calculates the range between (a particular point on)
the object and the robot actual location.

Note that the exposition thus far is equivalently valid also in case where the envi-
ronment model is given but uncertain, and when this model is unknown a priori and
instead is constructed on-line within SLAM framework.

We also consider a standard motion model with Gaussian noise,

xi+1 = f(xi, ui) + wi , wi ∼ N (0,Σw) (2.3)

where Σw is the process noise covariance, and denote this model probabilistically by
P(xi+1|xi, ui).

Given a prior P(x0) and motion and observation models, the joint posterior pdf at
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the current time k can be written as

P(Xk|H) = P(x0)
k∏
i=1

P(xi|xi−1, ui−1)P(Zi|xi, Ai). (2.4)

This pdf is thus a Gaussian P(Xk|Hk) = N (X̂k,Σk) with mean X̂k and covariance
Σk that can be efficiently calculated via maximum a posteriori (MAP) inference, see
e.g. [16].

It is important to note that the underlying assumption in factorisation (2.4) is that
it is known which object is being observed at each time i, i.e. data association is given
and error-free. We will come back to this key point in the sequel.

Given the posterior (2.4) at the current time k, one can reason about the robot’s
best future actions that would minimise (or maximise) a certain objective function.
Such a function, for a single look ahead step, is given by

J(uk) = E
zk+1
{c(P(Xk+1|H−k+1, zk+1))}, (2.5)

where the expectation is taken about the random variable zk+1 with respect to the prop-
agated belief P(Xk+1|H−k+1) to consider all possible realisations of a future observation
zk+1.

For notational convenience we will often represent the posterior P(Xk+1|H−k+1, zk+1)
as the belief b[Xk+1], i.e.:

b[Xk+1] .= P(Xk+1|H−k+1, zk+1). (2.6)

Note that, according to Eq. (2.5), we need to calculate the posterior belief (2.6) for each
possible value of zk+1.

Similarly, we define the propagated joint belief as

b[X−k+1] .= P(Xk+1|H−k+1) = P(Xk|Hk)P(xk+1|xk, uk), (2.7)

from which the marginal belief over the future pose xk+1 can be calculated as b[x−k+1] .=∫
¬xk+1

b[X−k+1].
As earlier, if data association is assumed given and perfect as commonly done in

BSP, then one can consider for each specific value of zk+1 the corresponding observed
scene Ai, and express the posterior (2.6) as

b[Xk+1]=ηP(Xk|Hk)P(xk+1|xk, uk)P(zk+1|xk+1, Ai), (2.8)

which can be represented as b[Xk+1] = N (X̂k+1,Σk+1) with appropriate mean X̂k+1

and covariance Σk+1.
The objective function (2.5) can be now evaluated, given a candidate action uk,

by calculating the cost c(.) for each zk+1. Finally, the optimal action u?k is defined as
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u?k = arg minuk
J(uk).

Assuming data association to be given and perfect simplifies greatly the above
formulation. Yet, in practice, determining data association reliably is often a non
trivial task by itself, especially when operating in perceptually aliased environments.
An incorrect data association (wrong scene Ai in Eq. (2.8)) can lead to catastrophic
results, see, e.g. [12–14]. In this work we relax this restricting assumption and rigorously
incorporate data association aspects within belief space planning.
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Chapter 3

DA-BSP: Data Association aware
Belief Space Planning

3.1 Concept and Approach Overview

We begin by making the following observations that will be transformed into a rigorous
mathematical framework in the following sections.

Given some candidate action (or sequence of actions) and the belief at planning
time k, we can reason about a future observation zk+1 (e.g. an image) to be obtained
once this action is executed. This future observation is yet to be acquired, and therefore
its actual value is unknown. For this reason, all the possible values such an observation
can assume should be taken into account while evaluating the objective function; hence,
the expectation operator in Eq. (2.5). To see that, we write the expectation operator
explicitly which transforms Eq. (2.5) to

J(uk)
.=
∫
zk+1

(a)︷ ︸︸ ︷
P(zk+1 | H−k+1) c


(b)︷ ︸︸ ︷

P(Xk+1|H−k+1, zk+1)

 (3.1)

The two terms (a) and (b) in the above equation have intuitive meaning: for each
considered value of zk+1, (a) represents how likely is it to get such an observation when
both the history H and control uk are known, while (b) corresponds to the posterior
belief given this specific zk+1.

Considering data association is solved and perfect then means we can correctly
associate each possible measurement zk+1 with the corresponding scene Ai it captures,
as in Eq. (2.8).

Yet, it is unknown from what future robot pose xk+1 the actual observation zk+1

will be acquired, since the actual robot pose xk at time k is unknown and the control is
stochastic. Indeed, as a result of action uk, the robot actual (true) pose xk+1 can be
anywhere within the propagated belief b[x−k+1].
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In inference, we have a similar situation with the key difference that the observation
z is given, i.e. it has been acquired. Let us now consider this setting for a moment. Also
here, robot pose at measurement acquisition time is unknown - rather, we are trying
to estimate it. To do so, we must first associate the captured measurement z with the
scene or object Ai it describes, i.e. write the appropriate measurement likelihood term
in the posterior (2.4).

A similar situation, however, arises also in our case: while the probability of acquiring
a specific observation zk+1 is represented by the term (a) in Eq. (3.1), the posterior in
the term (b) is conditioned on this specific observation zk+1. As such, evaluating the
posterior given zk+1 involves inference, as if that observation was actually acquired.
Thus, also here data association needs to be resolved or to be assumed given.

In typical cases such as with navigation assisted through GPS, this data association
is trivially known since the scene coincides with the pose. However, in more complex
applications such as perceptual robotics, the observations could come from multiple
different poses of viewing different scenes. In belief space planning (BSP) framework,
such a data association is assumed to be solved. In other words, if A represents the total
space of scenes (or real world) from where all observations {z} are made and {AN} be
the partitioning of this scene space, then BSP assumes that for each such observation
z ∈ {z} the corresponding observed scene Ai ∈ A is known.

In contrast, in this work, we do not assume data association is solved, and instead
reason about possible scenes or objects that the future observation zk+1 could be
generated from, see Figures 1.1b and 1.1. Clearly, if the environment has only distinct
scenes or objects, then for each specific value of zk+1, there will be only one scene Ai
that can generate such an observation according to the model (2.2). However, in case
of perceptually aliased environments, there could be also several scenes (or objects)
that are either completely identical, or have a similar visual appearance when observed
from appropriate viewpoints that could equally well explain the considered observation
zk+1. In such a case, there are several possible associations {Ai} and due to localisation
uncertainty determining which association is the correct one is not trivial. As we show
in the sequel, in these cases the posterior b[Xk+1] (term (b) in Eq. (3.1)) becomes a
Gaussian mixture with appropriate weights that we rigourously compute.

In the following sections we formalise probabilistically these aspects and develop
an algorithm for data association aware belief space planning, capable of determining
best actions in perceptual aliased and distinct environments without considering data
association is solved. First, however, we formally define what do we mean by perceptually
aliasing.

Perceptual aliasing Intuitively speaking, perceptual aliasing occurs when an object
different from the actual one, produces the same observation and thereby seeks to provide
an alias, in the sense of perception, to the true object. We shall now define two notions of
perceptual aliasing that we consider: exact and probabilistic. Exact perceptual aliasing
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of scenes Ai and Aj is defined as ∃x, x′, h(x,Ai) = h(x′, Aj), and will be denoted in
this thesis by {Ai, Aj}alias. In other words, the same nominal (noise-free) observation
ẑ can be generated by observing different scenes, possibly from different viewpoints.
Such a situation is depicted in Figure 1.1. A probabilistic perceptual aliasing is a more
general form of aliasing, which can be defined as ∃x, x′, |P(z|Ai, x)− P(z|Aj , x′)| < ε

for some small threshold ε.

3.2 Myopic DA-BSP

In this section we develop our approach for data association aware belief space planning,
developing expressions for calculating each of the two terms (a) and (b) in Eq. (3.1)
without assuming data association is solved, and discussing additional aspects. For
simplicity, in this section we assume myopic planning i.e., with the planning horizon
L = 1.For convenience, we specify the corresponding expressions again:

(a) : P(zk+1 | H−k+1) , (b) : P(Xk+1|H−k+1, zk+1) (3.2)

Before proceeding further, recall the conceptual difference between the two terms: term
(a) represents the likelihood of obtaining an observation zk+1, while within term (b) the
observation zk+1 is considered as given.

3.2.1 Computing term (a): P(zk+1 | H−k+1)

Applying total probability over non-overlapping {AN} and marginalizing over all possible
robot poses, yields

P(zk+1 |H−k+1)≡
∑
i

∫
x
P(zk+1, x, Ai |H−k+1) .=

∑
i

wi. (3.3)

As seen from the above equation, to calculate the likelihood of obtaining some obser-
vation zk+1, we consider separately, for each scene Ai ∈ {AN}, the likelihood that this
observation was generated by scene Ai. This probability is captured for each scene
Ai by a corresponding weight wi; these weights are then summed to get the actual
likelihood of observation zk+1. As will be seen below, these weights naturally account
for perceptual aliasing aspects for each considered zk+1.

Proceeding with the derivation further, using the chain rule we get

∑
i

∫
x
P(zk+1 | x,Ai,H−k+1)P(Ai, x | H−k+1) (3.4)

However, since this integral could be over any arbitrary total distribution of x, we
can use the propagated belief b[x−k+1], see Eq. (2.7), to compute it as:

∑
i

∫
x
P(zk+1|x,Ai,H−k+1)P(Ai|H−k+1, x)b[x−k+1 = x]. (3.5)

15



Thus,
wi
.=
∫
x
P(zk+1|x,Ai,H−k+1)P(Ai|H−k+1, x)b[x−k+1 =x]. (3.6)

Here, P(zk+1 | Ai, x,H−k+1) ≡ P(zk+1 | Ai, x) is the standard measurement likelihood
term, while P(Ai | H−k+1, x) represents the event likelihood, which denotes the probability
of scene Ai to be observed from viewpoint x. In other words, this scenario-dependent
term encodes from what viewpoints each scene Ai is observable and could also model
occlusion and additional aspects. As such, this term can be determined given a model
of the environment and thus, in this work, we consider this term to be given.

The weights wi (3.6) naturally capture perceptual aliasing aspects discussed in
Section 3.1: consider some observation zk+1 and the corresponding generative model
zk+1 = h(xtr, Atr) + v with appropriate unknown true robot pose xtr and scene Atr ∈
{AN}. Clearly, the measurement likelihood P(zk+1 | x,Ai,H−k+1) will be high when
evaluated for Ai = Atr and in vicinity of xtr. Note that we will necessarily consider such
a case, since according to Eq. (3.3) we separately consider each scene Ai in {AN}, and,
given Ai, we reason about all poses x in Eq. (3.6). In case of perceptual aliasing, however,
there will be also another scene(s) Aj which could generate the same observation zk+1

from appropriate robot pose x′, i.e. {Ai, Aj}alias. Thus, the corresponding measurement
likelihood term to Aj will also be high for x′.

However, the actual value of wi (for each Ai ∈ {AN}) depends, in addition to
the measurement likelihood, also on the mentioned-above event likelihood and on the
belief b[x−k+1], with the latter weighting the probability of each considered robot pose.
This correctly captures the intuition that those observations z with low-probability
poses b[x−k+1 = xtr] will be unlikely to be actually acquired, leading to low value of
wi with Ai = Atr. However, the likelihood term (3.3) could still go up in case of
perceptual aliasing, where the aliased scene Aj generates a similar observation to zk+1

from viewpoint x′ with latter being more probable, i.e. high probability b[x−k+1 = x′].
In practice, calculating the integral in Eq. (3.9) can be done efficiently if both the

measurement likelihood P(zk+1 | Ai, x,H) and the predicted belief b[x−k+1] are Gaussians
since a product of Gaussians remains Gaussian. The integral can then be only calculated
for the window where event likelihood is non-zero i.e P(Ai | x,H) > 0. In absence of
such assumptions, in general, the integral in Eq. (3.9) should be computed numerically.
Since in practical applications P(Ai | x,H) is sparse w.r.t. x, this computational cost is
not severe. For example, for a robot navigating in a two floor environment, even under
extreme uncertainty of pose, while reasoning for a scene such as a chair, we would only
consider the viewpoints from which the latter is observable, instead of the entire belief
space.

3.2.2 Computing term (b): P(Xk+1|H−k+1, zk+1)

The term (b), P(Xk+1|H−k+1, zk+1), represents the posterior probability conditioned on
observation zk+1. This term can be similarly calculated, with a key difference: since the
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observation zk+1 is given, it must have been generated by one specific (but unknown)
scene Ai according to measurement model (2.2). Hence, also here, we consider all
possible such scenes and weight them accordingly, with weights w̃i representing the
probability of each scene Ai to have generated the observation zk+1.

As will be seen next, in both terms (a) and (b) the same weights are obtained,
however only in the latter case the weights are to be normalised such that

∑
i w̃i = 1.

Applying total probability over non-overlapping {AN} and chain-rule, we get:

∑
i

P(Xk+1, Ai | H−k+1, zk+1) =
∑
i

P(Xk+1 | H−k+1, zk+1, Ai) · P(Ai | H−k+1, zk+1). (3.7)

Here, the first term is the posterior belief conditioned on observations, history as well
as a candidate scene Ai that supposedly generated the observation zk+1. We discuss
how this term can be calculated in Section 3.2.5.

The second term, P(Ai | Hk, uk, zk+1), is merely the likelihood of Ai being actually
the one which generated the observation zk+1. As will be seen now, this term is actually
the normalised weight wi from Section (3.2.1). Marginalising over all robot poses and
applying Bayes rule yields

P(Ai | H−k+1, zk+1) =
∫
x
P(Ai, x | H−k+1, zk+1) = η

∫
x
P(zk+1 | Ai, x,H−k+1)P(Ai, x | H−k+1),

(3.8)
with a normalization constant η .= P(zk+1 | H−k+1).

Similarly to the derivation in Section (3.2.1), since this integral could be over any
arbitrary total distribution of x, we can use the propagated belief b[x−k+1], to compute
it as:

η

∫
x
P(zk+1|Ai, x,H−k+1)P(Ai|x,H−k+1)b[x−k+1 = x]. (3.9)

As seen, the same expression is obtained as in Eq. (3.6), except for the normalisation
constant η. Hence,

P(Ai | zk+1,H−k+1) = ηwi
.= w̃i. (3.10)

In practice, one can avoid calculation of η, and instead normalise the weights wi such
that

∑
i w̃i = 1.

3.2.3 Summary thus far

To summarise the discussion thus far, we have shown that the objective function (3.1)
can be re-written as

J(uk) =
∫
zk+1

(
∑
i

wi) · c
(∑

i

w̃ib[Xi+
k+1]

)
, (3.11)
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with the posterior given scene Ai defined as

b[Xi+
k+1] .= P(Xk+1 | H−k+1, zk+1, Ai). (3.12)

Observe, that for each considered observation zk+1, we get a mixture pdf inside of the
cost c(.), where each component represents the posterior conditioned on the observation
capturing scene Ai, and weighted by w̃i. In case there is no perceptual aliasing, there
will be only one component with high weight w̃i, that corresponds to the correct data
association to scene Ai, with all other weights being negligible. On the other hand, in
presence of perceptual aliasing, we expect to see numerous non-negligible weights. In
the extreme case, where all scenes (objects) are identical, we will get equal normalised
weights w̃i for each Ai ∈ {AN}.

The above insights also apply to the unnormalised weights wi that appear outside
of the cost, from which the likelihood of obtaining observation zk+1 is calculated.
However, as already discussed in Section 3.2.1, this likelihood is calculated by summing
over all such weights (

∑
iwi), with each weight properly capturing the likelihood of a

measurement zk+1 to be generated by scene Ai while taking into account how probable
is the corresponding robot pose x given b[x−k+1]. For practical purposes, one can thus
only consider viewpoints with non-negligible probability according to b[x−k+1]. Moreover,
it is possible to threshold the weights in the mixture

∑
i w̃ib[Xi+

k+1], instead of always
considering all scenes {AN}. Having shown incorporating data association within belief
space planning leads to Eq. (3.11), we now proceed with the exposition of our approach.

3.2.4 Simulating Future Observations {zk+1} given b[X−k+1]

Calculating the objective function (3.11) for each candidate action uk involves considering
all possible realisations of zk+1. One approach to perform this in practice, is to simulate
future observations {zk+1} given propagated belief b[X−k+1], scenes {AN} and observation
model (2.2). One can then evaluate Eq. (3.11) considering all observations in the set
{zk+1}.

We now briefly describe how this concept can be realised. First, viewpoints {x} are
sampled from b[X−k+1]. For each viewpoint x ∈ {x}, an observed scene Ai is determined
according to event likelihood P(Ai | Hk, x). Together, x and Ai are then used to generate
nominal ẑ = h(x,Ai) and noise-corrupted observations {z} according to observation
model (2.2): z = h(x,Ai) + v. The set {zk+1} is then the union of all such generated
observations {z}. Note that while generating {zk+1}, the true association is known
(scene Ai), it is unknown to our algorithm, i.e. while evaluating Eq. (3.11).

3.2.5 Computing Mixture of Posterior Beliefs ∑i w̃ib[X i+
k+1]

As seen from Eq. (3.11), reasoning about data association aspects resulted in a mixture
of posteriors within the cost c(.), i.e.

∑
i w̃ib[Xi+

k+1], for each possible observation zk+1 ∈
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{zk+1}. In this work, the set {zk+1} is simulated as discussed Section 3.2.4; however,
one could also consider treating future observation zk+1 as a random variable [11,25,30].

In this section we briefly describe how one can actually calculate the corresponding
posterior distributions, given some specific observation zk+1 ∈ {zk+1}. For simplicity,
we consider the belief at planning time k is a Gaussian b[Xk] = N (X̂k,Σk). However,
our approach could be applied also to more general cases (e.g. mixture of Gaussians)
with a certain price in terms of computational complexity. Further investigation of these
aspects is left to future research.

Under this setting, each of the components b[Xi+
k+1] in the mixture pdf can be written

as
b[Xi+

k+1] ∝ b[Xk]P(xk+1 | xk, uk)P(zk+1 | xk+1, Ai). (3.13)

It is then not difficult to show that the above belief is a Gaussian b[Xi+
k+1] = N (X̂i

k+1,Σi
k+1)

and to find its first two moments via MAP inference.
Obviously, the mixture of posterior beliefs in the cost c(.) from Eq. (3.11) is now a

mixture of Gaussians:

∑
i

w̃ib[Xi+
k+1] =

∑
i

w̃iN (X̂i
k+1,Σi

k+1). (3.14)

3.2.6 Designing a Specific Cost Function

The treatment so far has been agnostic to the structure of the cost function c(.).
Recalling Eq. (3.11) we see that the belief over which the cost function is defined, is
multimodal in general. Standard cost functions in literature, typically include terms
such as control usage cu, distance to goal cG and uncertainty cΣ, see e.g. [11,30]. In our
case, however, the specific form of the latter should be re-examined and an additional
term quantifying ambiguity level can be introduced. In this section we thus briefly
discuss these two terms, starting with the cost over posterior uncertainty.

Since, unlike in usual BSP, the posterior belief in our case is multimodal and
represented as mixture of Gaussians

∑
i w̃iN (X̂i

k+1,Σi
k+1), see Eq. (3.14), we could

define several different cost structures depending on how we treat the different modes.
Two particular such costs are taking the worst-case covariance among all covariances
Σi
k+1 in the mixture, e.g. Σ = maxi{tr(Σi)}, or to collapse the mixture into a single

Gaussian N (.,Σ), see e.g. [5]. In both cases, we can define the cost due to uncertainty
as cΣ = trace(Σ̂).

The cost due to ambiguity, cw, should penalise ambiguities such as those arising
out of perceptual aliasing. Here, we note that non-negligible weights wi in Eq. (3.11)
arise due to perceptual aliasing with respect to any scene Ai, whereas in case of no
aliasing, all but one of these weights are zero. In most severe case of aliasing (all scenes
or objects Ai are identical), all of these weights are comparable among each other. Thus
we take Kullback-Leibler divergence KLu({w̃i}) of these weights {w̃i} from a uniform
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distribution to penalise higher aliasing, and define cw({w̃i})
.= 1
KLu({w̃i})+ε , where ε is a

small number to avoid division-by-zero in case of extreme perceptual aliasing. With
user-defined weights Mu,MG,MΣ and Mw, the overall cost then can be defined as a
combination

c
.= Mucu +MGcG +MΣcΣ +Mwcw, (3.15)

3.2.7 Formal Algorithm for DA-BSP

We now have all the ingredients to present the overall framework of data-association aware
belief space planning, calling it DA-BSP for brevity. It is summarised in Algorithm 3.2
and briefly described below.

Given belief b[Xk] and candidate action uk, we first propagate the belief to get
b[X−k+1] and then simulate future observations {zk+1} (line 2), as described in Section
3.2.4. The algorithm then calculates the contribution of each observation zk+1 ∈ {zk+1}
to the objective function (3.11). In particular, on lines 8 and 15 we calculate the
weights wi and the posterior beliefs b[Xk+1i+ ] for each Ai ∈ {AN}, respectively. These
calculations are according to Sections 3.2.1 and 3.2.5. Then, after weight normalisation
on line 13, we evaluate the cost c(.) (line 20) and use the accumulated unnormalised
weights ws ≡

∑
iwi to update the value of the objective function J with the weighted

cost for measurement zk+1 (line 21).

Finally, a few words about computational complexity. To see the relation of DA-
BSP with respect to general POMDP, we analyse the discrete space case and show in
Appendix B in supplementary material [4] that under the reasonable assumption that
the cardinality of the scene space is often much less than the cardinality of the state
space, DA-BSP does not introduce significant additional computational complexity.

3.3 Non-Myopic multi-modal DA-BSP

This section would generalize the DA-BSP that was developed in the previous Section 3.2.
We will start with considering a prior which is non-Gaussian. In particular, we will
assume our prior to be a mixture of Gaussians and then follow a similar approach to
compute belief update and perform myopic planning as done earlier. Once this is done
and we have an approach that takes in a GMM belief and updates to another GMM
belief, we will present the most general DA-BSP in a non-myopic setting of several
look-ahead steps of planning.
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Algorithm 3.1 Myopic data association aware belief-space planning
Input: Current belief b[Xk] at step-k, history Hk, action uk, scenes {AN}, event

likelihood P(Ai | Hk, x) for each Ai ∈ {AN}

1: b[X−k+1] ← b[Xk]P(xk+1 | xk, uk)
2: {zk+1} ← SimulateObservations(b[X−k+1], {AN})
3: J ← 0
4: for ∀zk+1 ∈ {zk+1} do
5: ws ← 0
6: for i ∈ [1 . . . |A|] do
7: . compute weight, Eq. 3.6
8: wi ← CalcWeights(zk+1,P(Ai | H−k+1, x), b[X−k+1])
9: ws ← ws + wi

10: . Calculate posterior belief given Ai, Sec. 3.2.5
11: b[Xi+

k+1] ← UpdateBelief(b[X−k+1], zk+1, Ai)
12: end for
13: {w̃i} ← NormalizeWeights({wi})
14: c ← CalcCost({w̃i}, {b[Xi+

k+1]}) . Sec. 3.2.6
15: J ← J + ws · c
16: end for
17: return J

3.3.1 Prior belief as a mixture of Gaussian

Let us assume that prior is Gaussian mixture model. In other words, our belief at time
k is a linear combination of Mk ∈ N Gaussians i.e.,

b[Xk]
.= P(Xk|H−k , zk) =

Mk∑
i=1

ξk,iN (X̂k,i,Σk,i) (3.16)

Since our motion model (see 2.3 is still a Gaussian, the propgated belief is also a
GMM with Mk components. More precisely,

b[X−k+1] .= P(Xk+1|H−k+1) = P(Xk|Hk)P(xk+1|xk, uk) =
Mk∑
i=1

ξk,iN (X̂−k+1,i,Σ
−
k,i) (3.17)

Once the observation zk+1 is obtained, for each of the Mk components, we can
consider all the aliased scenes {AN}. The derivation is very similar along the lines of the
discussion in the previous Section 3.2, with additional parameters introduced. For ease
of disposition, let us reproduce the steps such as Eq. 3.5 which we get after applying
the chain rule and subsequent marginalization over all x and Ai ∈ {AN}.

{AN}∑
i

∫
x
P(zk+1|x,Ai,H−k+1)P(Ai|H−k+1, x)b[x−k+1 = x].
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Thus,
wi
.=
∫
x
P(zk+1|x,Ai,H−k+1)P(Ai|H−k+1, x)b[x−k+1 =x].

Since the propagated belief (see Eq. 3.17), from which b[x−k+1] is calculated, is also a
GMM, we can replace b[x−k+1 = x] with

b[x−k+1 = x] =
Mk∑
j=1

ξk+1,jb[x−k+1,j = x]. (3.18)

However, the actual value of wi (for each Ai ∈ {AN}) depends, in addition to the
measurement likelihood and event likelihood, also on the GMM belief b[x−k+1], with
the latter weighting the probability of each considered robot pose x. This correctly
captures the intuition that those observations z with low-probability poses b[x−k+1 = xtr]
will be unlikely to be actually acquired, leading to low value of wi with Ai = Atr.
Since b[x−k+1] is a GMM with Mk components, low-probability pose xtr corresponds
to low probabilities b[xj−k+1 = xtr] for each component j ∈ {1, . . . ,Mk}. However, the
likelihood term (3.3) could still go up in case of perceptual aliasing, where the aliased
scene Aj generates a similar observation to zk+1 from viewpoint x′ with latter being
more probable, i.e. high probability b[x−k+1 = x′].

In practice, calculating the integral in Eq. 3.6 can be done efficiently considering
separately each component of the GMM b[x−k+1]. Each such component is a Gaussian
that is multiplied by the measurement likelihood P(zk+1 | Ai, x,H) which is also a
Gaussian and it is known that a product of Gaussians remains a Gaussian. The integral
can then be only calculated for the window where event likelihood is non-zero i.e
P(Ai | x,H) > 0. For general probability distributions, the integral in Eq. 3.6 should be
computed numerically. Since in practical applications P(Ai | x,H) is sparse w.r.t. x,
this computational cost is not severe.

Similarly for the term (b), P(Xk+1|H−k+1, zk+1), applying total probability over
non-overlapping {AN} as well as all the components of the propagated belief, we get:

P(Xk+1|H−k+1, zk+1) =
Mk∑
j=1

|AN|∑
i=1

P(Xk+1, Ai, γ = j | H−k+1, zk+1) (3.19)

Proceeding as before, we split the term inside the summation using the chain rule
as follows:

P(Xk+1, Ai, γ = j | H−k+1, zk+1) = P(Xk+1 | H−k+1, zk+1, Ai, γ = j)·P(Ai, γ = j | H−k+1, zk+1)

The first term is the posterior obtained with the scene Ai while considering the j-th
propagated belief component and we denote this by b[Xj+

k+1|Ai].
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For the second term, we again apply the chain rule, to obtain:

P(Ai, γ = j | H−k+1, zk+1) = P(Ai | γ = j,H−k+1, zk+1) · P(γ = j | H−k+1, zk+1)

Here, P(γ = j | H−k+1, zk+1) is equal to ξjk which is the weight of the j-th component
of the prior belief. For the first term, we marginalize over all x to obtain the weights
w̃ijk+1. This is identical to marginalization done in the previous Section 3.2 (see Eq. 3.8)
with the only difference that here all x considered are from the jth component of the
belief.

b[Xk+1] =
Mk∑
j=1

|AN|∑
i=1

ξjkP(Ai | H−k+1, zk+1, γ = j)b[Xj+
k+1|Ai]. (3.20)

w̃ijk+1
.=η′
∫
x
P(zk+1|Ai, x,H−k+1)P(Ai|H−k+1, γ = j, x)b[xj−k+1=x], (3.21)

with η′ = 1/P(zk+1 | H−k+1). Note that for each component j,
∑
i w̃

ij
k+1 = 1. Finally, we

can re-write Eq. 3.20 as

P(Xk+1|H−k+1, zk+1)=
Mk+1∑
r=1

ξrk+1P(Xk+1|Hk+1, γ = r), (3.22)

or in short, b[Xk+1] =
∑Mk+1
r=1 ξrk+1b[X

r+
k+1], where

ξrk+1
.= ξijk+1 ≡ ξ

j
kw̃

ij
k+1 , b[Xr+

k+1] .= b[Xj+
k+1|Ai]. (3.23)

As seen, we got a new GMM with Mk+1 components, where each component r ∈
[1,Mk+1], with appropriate mapping to indices (i, j) from Eq. 3.20, is represented by
weight ξrk+1 and posterior conditional belief b[Xr+

k+1]. The latter can be evaluated as the
Gaussian

b[Xr+
k+1] ∝ b[Xj−

k+1]P(zk+1 | xk+1, Ai) = N (X̂r
k+1,Σr

k+1), (3.24)

where the mean X̂r
k+1 and covariance Σr

k+1 can be efficiently recovered via MAP
inference.

3.3.2 Non-myopic DA-BSP

It is easy to see that once the prior as well as the posterior belief is represented as a
mixture of Gaussians, we can extend the DA-BSP to a non-myopic setting. Informally, for
planning over a horizon of L step, starting with a multimodal prior and a control sequence
u0:L−1, the planning would involve reasoning about the plausible data associations at
each intermediate l ∈ [1, L− 1] step. To make it more concrete, consider a non-myopic
cost function as:
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J(uk:k+L−1) =
∫
zk+1:k+L

L∑
l=1

(a)︷ ︸︸ ︷
P(zk+l | H−k+l) cl


(b)︷ ︸︸ ︷

P(Xk+l|H−k+l, zk+l)

 , (3.25)

where the expectation over future observations is written explicitly, accounting for all
possible realizations of these unknown observations. Although dropped to reduce clutter,
the history H−k+l includes future observations zk+1:k+l−1 up to the lth look ahead step.

Similar to the myopic case in Section 3.2, the two terms (a) and (b) in Eq. 3.25 have
intuitive meaning: for each considered value of zk+l, (a) represents how likely is it to
get such an observation, while (b) corresponds to the posterior belief given this specific
zk+l. However, the difference in a non-myopic case is that both terms are conditioned
on the history H−k+l which is a function of zk+1:k+l−1; hence, the above reasoning is
valid for all possible realizations of zk+1:k+l−1 and the corresponding posterior beliefs
P(Xk+l−1|Hk+l−1).

It is not difficult to show that the posterior at each step k is actually the GMM

P(Xk+l | H−k+l, zk+l, Ai) =
Mk+l−1∑
j=1

ξjk+l−1b[X
j+
k+l|Ai], (3.26)

where b[Xj+
k+l|Ai]

.= P(Xk+l|H−k+l, γ = j, Ai, zk+l) is the posterior of the jth GMM
component of the propagated belief b[X−k+l].

Plugging-in Eq. 3.26 into P(Xk+l|H−k+l, zk+l) ≡ b[Xk+l] from Eq. 2.8 yields:

b[Xk+l] =
|AN|∑
i=1

Mk+l−1∑
j=1

ξjk+l−1P(Ai | H−k+l, zk+l)b[Xj+
k+l|Ai]. (3.27)

Accounting for b[xj−k+l] for each considered jth component as P(Ai | H−k+l, zk+l) =∫
x P(Ai, x | H−k+l, zk+l), and applying Bayes’ rule yields

w̃ijk+l
.=η′
∫
x
P(zk+l|Ai, x,H−k+l)P(Ai|H−k+l, x)b[x

j−
k+l=x], (3.28)

with η′ = 1/P(zk+l | H−k+l). Note that for each component j,
∑
i w̃

ij
k+l = 1. Finally, we

can re-write Eq. 3.20 as

b[Xk+l] =
Mk+l∑
r=1

ξrk+lP(Xk+l|Hk+l, γ = r)=
Mk+l∑
r=1

ξrk+lb[Xr+
k+l], (3.29)

where ξrk+l
.= ξijk+l ≡ ξjk+l−1w̃

ij
k+l and b[Xr+

k+l]
.= P(Xk+l|Hk+l, γ = r). As seen, we

got a new GMM with Mk+l components, where each component r ∈ [1,Mk+l], with
appropriate mapping to indices (i, j) from Eq. 3.20, is represented by weight ξrk+l
and posterior conditional belief b[Xr+

k+l]. The latter can be evaluated as the Gaussian
b[Xr+

k+l] = N (X̂r
k+l,Σr

k+l), with mean X̂r
k+l and covariance Σr

k+l.
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Figure 3.1: GMM posterior b[Xk+1] given zk+1 ∈ {zk+1}. The prior has two equi-probable components while
the posterior has different weights for the two components.

The associated cost of the overall posterior of this L step planning can then be
compared with that of similar posterior of other control sequences, enabling us to
choose an optimal single step action. After the action is taken and a real observation is
obtained, the inference over this observation allows us to update the posterior which
then serves as a prior for next L step planning. However, a näıve implementation of such
a planning would likely suffer from the usual curses of dimensionality and of history.
Luckily, DA-BSP provides a principled way to strike a balance between requirement of
an efficient solution and not losing the correct data association in a challenging aliased
environment.

3.3.3 Overall algorithm

We now have all the ingredients to present the overall framework of data-association aware
belief space planning, calling it DA-BSP for brevity. It is summarised in Algorithm 3.2
and briefly described below.

Given a GMM belief b[Xk] and candidate action uk, we first propagate the belief to
get b[X−k+1] and then simulate future observations {zk+1} (line 2), as described in Section
3.2.4. The algorithm then calculates the contribution of each observation zk+1 ∈ {zk+1}
to the objective function (3.11). In particular, on lines 8 and 9 we calculate the weights
wik+1 that are used in evaluating the likelihood ws of obtaining observation zk+1 (see
Section 3.2.1). On lines 10-16 we compute the posterior belief: according to Section
3.3.2, this involves updating each jth component from the propagated belief b[Xj−

k+1]
with observation zk+1, considering each of the possible scenes Ai. After pruning (line
18), this yields a posterior GMM with Mk+1 components. We then evaluate the cost c(.)
(line 20) and use ws to update the value of the objective function J with the weighted
cost for measurement zk+1 (line 21).

One can observe that according to Eq. 3.27, each of the Mk components from the
belief at a previous time, is split into |AN| new components with appropriate weights.
This would imply an explosion in the number of components, making the proposed
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Algorithm 3.2 Data association aware belief-space planning
Input: Current GMM belief b[Xk] at step-k, history Hk, action uk, scenes {AN}, event likelihood P(Ai | Hk, x)

for each Ai ∈ {AN}

1: b[X−
k+1] ← b[Xk]P(xk+1 | xk, uk) . Eq. 2.7

2: {zk+1} ← SimulateObservations(b[X−
k+1], {AN})

3: J ← 0
4: for ∀zk+1 ∈ {zk+1} do
5: ws ← 0
6: for i ∈ [1 . . . |A|] do
7: . compute weight, Eq. 3.6
8: wi

k+1 ← CalcWeights(zk+1,P(Ai | H−k+1, x), b[X−
k+1])

9: ws ← ws + wi

10: for ∀j ∈ [1, . . . ,Mk] do
11: . compute weight w̃ij

k+1 for each GMM component, Eq. 3.21
12: w̃ij

k+1 ← CalcWeights(zk+1,P(Ai | H−k+1, x), b[Xj−
k+1])

13: ξij
k+1 ← ξj

k
w̃ij

k+1 . Eq. 3.23
14: . Calculate posterior of b[Xj−

k+1], given Ai, Sec. 3.3.2
15: b[Xij+

k+1] ← UpdateBelief(b[Xj−
k+1], zk+1, Ai)

16: end for
17: end for
18: Prune components with weights ξij

k+1 below a threshold
19: Construct b[X+

k+1] from the remaining Mk+1 components via Eq. 3.22
20: c ← CalcCost(b[X+

k+1]) . Sec. 3.2.6
21: J ← J + ws · c
22: end for
23: return J

framework hardly applicable. However, in practice, the majority of the weights will be
negligible, and therefore can be pruned, while the remaining number of components is
denoted by Mk+1 in Eq. 3.22. Depending on the scenario and the degree of perceptual
aliasing, this can correspond to full or partial disambiguation (see Fig. 3.1).

3.3.4 Effect of reducing a mixture of belief

We have seen that DA-BSP on account of considering all the possible data association,
suffers from exponential blow-up in number of components. Using discrete case as an
example, it is easy to show that this – under a reasonable assumption that scene space
is much smaller than state space – does not deteriorate the complexity of the underlying
problem. Moreover, it is important to notice that each such association is accompanied
with the weights, which reflect the significance of such a data association. In particular,
if a scene is quite unique, it is unlikely to be aliased with any other, and consequently
only the posterior conditioned on this correct association would have significant weight.
A simple threshold based pruning is then sufficient to discard insignificant modes, as
shall also be evident from our extensive experiment in this regard later on (see e.g.,
Tab. 4.3).

One can notice that the objective of curtailing the complexity of data-structure
through some pruning heuristics is not a novel approach. Even in the context of
data-association, it occurs in slightly different form when the problem is posed as a
multi-hypothesis tracking (MHT). Roughly speaking, in such a scenario, planning is
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through explicit instantiation of the trajectory of control and pruning decision is often
based on information-theoretic value a particular branch is expected to hold. Thus
MHT can handle passive case of BSP where disambiguation is sought after only in the
inference step and not in planning. In contrast, DA-BSP argues for data-association
within the BSP framework and thus can utilize weights that are shaped by the actual
future associations. Nevertheless, we can harness similar approaches to curtailing the
empirical complexity of DA-BSP, classifying them as local or global and pruning or
merging. When the decision about how to reduce a given mode in DA-BSP is based on
overall likelihood of associations considered from the initial position, we call it global,
while in local approach, only local information of the conditional posterior is sufficient to
decide on it being reduced via merging or pruning. As is evident from the name, pruning
is the process of dropping a component in conditional posterior and re-normalizing the
other weights whereas merging is the process of combining two components to form a
single component, which is optimal (in some heuristic sense) representation of the both.
Both pruning and merging can be recursive processes.

3.3.5 Full vs. Partial Disambiguation

In the context of selecting an appropriate horizon for planning, we can note that in
most of the real-world examples, the greater the horizon the greater is the likelihood
to have a unique observation that results in disambiguation between several or all
components of the belief. However, in general, DA-BSP does not require a complete
or full disambiguation for its correctness. Here, by full disambiguation we mean that
eventually the posterior belief has only a single component. For a usual forward L

step planning, this can not be guaranteed unless we assume an existence of a unique
observation in the future. At best, there would be partial disambiguation, i.e., some
components of the posterior belief vanish due to less aliased observations. On the
contrary, in the cases where a full disambiguation does not occur within the planning
horizon, DA-BSP would maintain all the components with appropriate weights. This not
only allows for partial disambiguation in such a planning scenario where only the aliased
components remain in the posterior belief, but can also result in a full disambiguation
eventually. Hence, DA-BSP captures the reality of perceptually aliased environment
quite well.

3.3.6 Degenerate cases of DA-BSP

Two prominent reasons for considering data-association aware BSP are: firstly, it ac-
curately reflects the reality where due to pose uncertainty, the observation may no
longer be associated with that from nominal pose and secondly, it is a generalization of
usual BSP. In order to elucidate the latter, we shall consider three degenerate cases of
data-association aware BSP: without pose uncertainty, with data-association solved and
without perceptual aliasing.
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Without pose uncertainty: Consider that for all practical purposes, the pose is
known with certainty, hence the belief is a dirac pulse around the nominal x̂k. Since the
scene-space could still be uncertain, the belief space planning should consider all possible
scenes being observed. However, in this case, the integral in equation 3.21 reduces to a
single term. In a more realistic case of small variance in the pose, considering only the
most likely data association may still lead to reasonable performance. This is similar
to many passive inference based approaches where the most likely component is often
sufficient to account for the overall posterior.

With data-association solved: In this case, the scene that is captured from perspective
xk+1 when observation zk+1 is obtained, is known. More precisely

∃t, P(zk+1|xk+1, Aj) =
{ 1 j = t

0 j 6= t

This implies that the summation over all {AN} is reduced to a single At, known a-
priori for each observation zk+1. Therefore, with data association solved, the framework
degenerates to the usual BSP.

Without perceptual aliasing: In the absence of perceptual aliasing, while considering
the observation zk+1, we are guaranteed to have only a single pose and scene pair
(xk+1, Aj) that generated it. This implies that if the observation zk+1 were given, the
posterior beliefs would be all zero except the one corresponding to Aj . However, since
while planning at step k, the observation zk+1 is an unknown random variable, we would
still need to consider all possible events {AN}, that generated it.

3.3.7 On correctness of non-myopic DA-BSP

In order to reason about the correctness of DA-BSP i.e., whenever there is a single
disambiguating data association, the algorithm will recognise it and associate the
observation correctly, we first define pruned and unpruned DA-BSP. Recall that DA-BSP
adjusts the subsequent weights of the components based on likelihood of the observation
and of it being explained by the considered association. An unpruned DA-BSP considers
all such associations no matter how small the weights are (provided they are non-zero),
while pruned DA-BSP has some reasonable threshold below which all of the weights
are pruned away. It is easy to see the correctness of unpruned DA-BSP. Consider
that at step k ∈ [1,∞) a full disambiguation occurs, then by definition belief at k − 1
i.e., b[Xk−1] will also contain the component corresponding to the ground truth. The
subsequent computation of DA-BSP would yield weights that are all strictly 0 except
the one corresponding to this ground truth. However in the case of pruned DA-BSP

this might not be true necessarily as the ground truth component might be pruned
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away in b[Xk−1] leading possibly to even a catastrophic bad data association in the last
step k. Note that this requires either the weight of the correct component to be too
low or the pruning threshold to be too high. The former usually does not hold if we
assume that at the starting the multi-modal belief contains the correct component as
well. The latter can be avoided by judicious choice of pruning threshold. As shown in
the experiments later on, DA-BSP is not sensitive to the choice of this threshold.
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Chapter 4

Results and Discussions

In this section we present an experimental analysis of the proposed approach. First, we
talk about real experiment with a Pioneer platform fitted with an RGB camera in a
perceptually aliased corridor environment. We use a non-myopic planning framework
using explicit scenes simulated via AprilTags. To consider arbitrary levels of ambiguities,
we then talk about a simulated world model (in Gazebo) of two nearly identical office
floors with various look-alike cubicles. In these simulations, the Pioneer robot is fitted
with a laser scanner.

4.1 Implementation of data-association aware BSP

Effective and realistic implementation of DA-BSP requires two separate threads of
development. In order to be efficient, it is crucial that the algorithmic as well as the real
time cost of incorporating the data association within belief space planning remains as
low as possible. We ensured this by representing each component of GMM as a factor
graph so that state-of-the-art tool GT-SAM could be harnessed for a time-efficient
inference. On the other hand, in order to be realistic enough, we implemented it on
a real robotic platform, Pioneer. Here, a propriety ROS Robotics Toolbox was used,
which enabled our implementation to work seamlessly for both a simulated world as
well as a real world scenario. In order to simulate a complex world with arbitrary levels
of ambiguity, we chose Gazebo since it fits nicely to both the robotic platform as well
as the ROS infrastructure. These two streams of development are shown in left and
right parts of Fig. 4.1. The DA-BSP algorithm itself was implemented in object-oriented
MATLAB with the aim of striking a balance between rapid prototyping and obtaining
a generalisable implementation that can be easily ported to languages such as C++.

4.2 Metrics for evaluating DA-BSP

Evaluating DA-BSP is linked to the notion of data association which is typically assumed
to be solved in BSP. As mentioned before, accounting for data association within belief
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Figure 4.1: The overall infrastructure of implementation of DA-BSP. Note that thanks to the middleware block
of ROS, the algorithm is independent of whether it is applied on a real setup or a simulated one.

space planning does not come free. On the other hand, assuming such an association
randomly is bound to fail. In order to evaluate an approach, we keep track of how many
components the belief has and how many times it can make a correct association. Recall
from Section 3.3.7 that as long as the component corresponding to the ground truth
is present in the belief, the correctness can be guaranteed. We denote this by boolean
symbol DA. Note that in case of no pruning, DA-BSP is guaranteed to be correct and
hence DA is set as true. This is true also if the pruning is not detrimental to the correct
component and association. ηda measures the weight of the correct component in the
belief; in case, the correct component is lost, the corresponding ηda will be 0. Time
taken by DA-BSP in any epoch is directly related to the number of the components in
the belief. We keep track of this through the metric m̃. In order to evaluate DA-BSP, we
compare it against the approach where with some probability 1− ε the true association
is known and made by the planning while in all other cases a random choice from
incorrect associations is made. This approach implies that the belief is always unimodal
and is therefore named BSP-uni. In another approach, we assume the similar correct
association with the scene however instead of the correct ground truth component, all
components of the belief are considered. This approach implies that a multi-modal prior
remains multi-modal after inference too. It is named BSP-mul here. In both of these
variants, we are interested in correct associations being made out of many trials. This
is measured by the metric ξca where value 1 would indicate that correct associations
were made in all of the random trials. This could happen when the belief is unimodal
due to lack of ambiguity in the vicinity.

4.3 Real-world application with explicit scenes - octago-
nal corridor

In order to elucidate the crucial properties of non-myopic DA-BSP, we consider a real
world experiment as shown in the Fig. 4.3 with a single robot R. The abstracted schema
of the world is shown in the center. The state space X ∈ R3 consists of 2D coordinates
as shown, as well as the orientation of the robot. Here, Ai denotes an Apriltag with
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the index i. This enables us to simulate arbitrary levels of perceptual aliasing.1 To
ensure robustness, the tag Ai is considered detected only if it is also within a closed
sub-space XAi ⊂ X. Typically, this is decided through the centrality of the detected
tag in the image observed by the camera. Figure 4.2 shows two sampled cases where
the tags are detected and not detected respectively. Initially, the belief of the robot is
a multi-modal distribution, represented by a GMM with 4 components having equal
weights and centered around each xinit. The objective of the robot is to both localize
itself and to reach the elevator denoted by xgoal. Initially, the planner is provided with
a set T of control trajectories. Consequently, depending on the planning algorithm used
(i.e., DA-BSP, or BSP-uni) as well the planning horizon L, the cost of each trajectory
τ ∈ T is evaluated and the optimal (w.r.t this cost) trajectory is chosen. The L-step
planning, followed by enacting one optimal control action and the consequent inference,
shall together be called an epoch. Note that this simple representation of the world is
very general. Indeed, real world complications – such as the state space being of higher
dimension, different levels of ambiguities between the scenes and planning problem of
longer time-scales – can all be easily incorporated into it.

Since we model the visual observation via AprilTags, due to sensory limitations (such
as out-of-view or far-from-center tags), a reliable observation might not be available at
each step of motion. One such instance is depicted in the Fig. 4.2. In such conditions,
no data association can be made and consequently, DA-BSP behaves exactly like the
usual belief space planning.

(a) An object detected (b) No object detected

Figure 4.2: (left) Apriltag is detected, indicated with green patch at the center. This provides the transfor-
mation matrix between the pose of the robot and the landmark pose. Note that a far-away Apriltag, though
visible in this frame, is considered not detected since the non-centrality of the tag makes the observation highly
untrustworthy. (right) No Apriltag lies within the field of view of the camera.

As shown in the Fig. 4.3, the robot resides in an octagonal corridor with ample
instances of ambiguous scenes. Here, the actual floor is shown via laser scan while the
3D view of some typical locations are depicted in the inset figures. Note that the robot
does not have these information, and actually has a semantic representation of the map

1Though not the focus here, any object detector can be easily incorporated in our general framework
of DA-BSP.
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Figure 4.3: Real-world experimental setup (best viewed in colour). The images show the actual third-person
view at different locations of the robot, while the two dimensional figure, shows semantic knowledge of the
environment the robot possesses. Its current belief is a 4-modal GMM with mean position depicted by xinit.
Ground truth robot position is indicated with C; arrows indicate orientation (and not motion). The actual
scenario is depicted through the laser-scan of the environment shown in the green colour. This map is for
representative purposes only and is not available to the robot. The zoomed-in picture of an AprilTag is also
shown.

Algorithm Epoch Planning Inference
t(s) ηda m̃ t(s) ηda m̃

DA-BSP

1 21.81 0.09 6.00 0.84 0.22 4.00
4 5.19 0.28 2.50 0.84 0.31 3.00
8 8.66 - 1.00 0.80 1.00 1.00
12 19.90 - 6.67 2.48 0.35 5.00
16 3.50 0.16 2.00 0.14 - 10.00
20 4.51 0.73 3.80 0.31 1.00 1.00

Table 4.1: Performing DA-BSP on a real corridor environment shown in the Fig. 4.3, with planning horizon
L = 4. The times in seconds spent in planning and in inference is denoted by t, while m̃ stands for average
modes; refer Sec. 4.3.

where perceptual aliasing is accounted for by identical Apriltags. The result of running
the DA-BSP on this setup is shown in the Fig. 4.1.

However, when ambiguous data association occurs, DA-BSP considers all possi-
ble associations and weighs each new component of the posterior according to the
equation 3.28. Fig. 4.4 shows one such instance.

DA-BSP incorporates planning and inference seamlessly under one framework, called
epoch earlier. The overall planning is performed as a model predictive control composed
of several such steps. Fig. 4.5 shows some of the epochs in DA-BSP along with other
approaches such as BSP-uni and BSP-mul.

Once such planning is performed under DA-BSP, the subsequent posterior at the
end of each epoch might have more or even lesser number of components than before.
The former occurs when presence of identical close by tags causes perceptual aliasing
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(a) Prior (b) Propagated (c) Posterior

Figure 4.4: Evolution of belief at an epoch E = 3 under DA-BSP. Here tags are represented by shapes
{∗,+,�,4,O} while ground truth robot position is indicated with C. (a) The prior belief is multimodal
with four distinct modes as shown with the coloured ellipses. (b) After incorporating the motion model, the
propagated belief is similarly a multi-modal distribution. (c) When observation is accounted for and inference is
performed the posterior belief is as shown. Note that some of the earlier components of the prior might vanish
(e.g. here the slight asymmetry around the corner causes one of them to vanish and components reduce from 4
to 3). Also new components in the posterior may emerge (not the case here). Here, L = 3.

while the latter is the result of unlikely components being pruned away naturally, in the
light of new observations. This evident in Fig. 4.5d.

DA-BSP considers all possible associations and then adjusts the weights of the
components accordingly whereas other approaches like BSP-uni and BSP-mul perform
some kind of simplifying assumption on data association. BSP-uni assumes that with
probability 1−ε an oracle tells it the correct component of the prior as well as correct data
association. Under extremely mild or no perceptual aliasing, ε is close to 0. BSP-mul on
the other hand considers correct data association but with respect to all components of
the prior. Here, the number of components can not increase. Naturally, DA-BSP when
compared with BSP-uni and BSP-mul, trades computation efficiency with correctness
of data association. The quantitative aspect of such a comparison is shown in the
Tab. 4.2. Another criticism against DA-BSP could be its prohibitive cost when non-
myopic planning is considered. Exponential blowup of computational complexity as the
planning horizon increases is an issue not specific to DA-BSP. Unfortunately, DA-BSP
can not solve or even reduce this burden. Nevertheless, due to parsimonious data
association the additional cost of DA-BSP may not be significantly more. This is also
depicted in the Tab. 4.2.

Another unique aspect of DA-BSP is that the weights of the components are adjusted
as is suitable after considering all future observations in both mypoic and non-myopic
setting. Based on the configuration of the environment, a longer planning horizon may
enable quicker disambiguation and consequently reduced KL-cost. In Fig. 4.6, we see
how the number of components as well as this cost varies across different epochs of
DA-BSP and also under various planning horizons.

It might appear that DA-BSP is hopelessly expensive in terms of computational
efforts and non-trivial pruning techniques might be required to make it applicable in
any realistic scenario. However, quite the contrary is true. Realistic scenarios typically
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(a) DA-BSP for epochs {4,18,24}.

(b) BSP-uni for epochs {4,18,24}

(c) BSP-mul for epochs {4,18,24}
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(d) GMM weights of corresponding beliefs in DA-BSP at the end of epochs
{0,1,4,8,12,18,24}.

Figure 4.5: (a)-(c) Evolution of inferred belief as decision epoch progresses with L = 3; epochs depicted are
{4,18,24}. They depict evolution of inferred belief, for different planning algorithms, i.e. DA-BSP, BSP-uni and
BSP-mul, respectively. GMM components and associated weights are designated with different colors. Ground
truth robot position is indicated with C. For clarity, the detected scene(s) are shown in different colour. In case
of BSP-mul and BSP-uni, this particular instance of planning leads to catastrophically bad data association.
(d) Evolution of GMM components weights during these epochs. Note that the number of components increases
as well as decreases and eventually goes to 1. Here, planning horizon is L = 3.
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Algorithm Epoch L = 1 L = 3 Inference
t(s) ηda m̃ DA t(s) ηda m̃ DA t(s) ηda m̃ DA

DA-BSP

1 2.60 0.11 4.00 X 95.57 0.08 5.95 X 0.80 0.22 4.00 X
2 1.21 0.29 2.00 X 5.75 0.13 1.37 X 0.05 - 4.00 -
4 1.00 0.35 2.00 X 4.29 - 1.00 - 0.61 0.50 2.00 X
8 0.11 - 1.00 - 0.35 - 1.00 - 0.02 - 1.00 -
12 3.90 0.11 4.80 X 191.48 0.08 6.79 X 1.16 0.28 4.20 X
16 2.62 0.12 3.03 X 3.58 - 3.02 - 0.60 0.11 4.60 X
19 3.14 0.09 2.60 X 82.16 0.04 6.10 X 0.94 0.14 6.60 X

t(s) ξca DA t(s) ξca DA t(s) ξca DA

BSP-uni

1 0.43 0.90 × 2.19 - - 0.20 1.00 X
2 0.15 - - 1.43 0.86 × 0.03 - -
4 0.25 1.00 X 4.51 0.98 × 0.17 1.00 X
8 0.15 - - 1.10 - - 0.05 - -
12 0.26 1.00 X 3.90 - - 0.17 1.00 X
16 0.16 - - 1.11 - - 0.08 - -
19 0.30 1.00 X 1.24 - - 0.17 - -

t(s) ξca DA t(s) ξca DA t(s) ξca DA

BSP-mul

1 2.74 0.15 × 34.33 0.18 × 0.86 0.80 ×
2 2.01 0.27 × 20.84 0.40 × 0.03 - -
4 1.66 0.23 × 4.14 - - 0.77 0.20 ×
8 0.77 - - 1.54 - - 0.18 - -
12 0.80 0.80 × 1.52 - - 0.81 0.20 ×
16 2.33 0.27 × 14.39 - - 0.33 - -
19 1.70 0.63 × 38.33 0.82 × 0.48 - -

Table 4.2: Comparing DA-BSP against BSP-uni and BSP-mul in several steps of planning and inference, with
L = 1 and L = 3. The times in seconds spent in planning and in inference is denoted by t, while average modes
are shown by m̃. DA signifies correct data association; refer Sec. 4.2. Values shown here are for average of 5
random runs.
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Figure 4.6: Evolution of belief as decision epoch progresses during DA-BSP planning. Average number of
components in the belief mixtures and the KLu metric are depicted in left and right respectively.
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Algorithm Epoch σ = 0.20 σ = 0.05 σ = 10−10

t(s) ηda m̃ t(s) ηda m̃ t(s) ηda m̃

DA-BSP

1 14.88 (6.80) 0.11 (0.10) 2.60 (0.89) 16.02 (7.74) 0.12 (0.08) 4.70 (2.22) 14.27 (8.79) 0.15 (0.09) 4.40 (2.19)
2 5.21 (4.78) 0.50 (0.34) 1.75 (0.75) 5.26 (4.87) 0.50 (0.34) 1.85 (0.93) 7.60 (5.74) 0.21 (0.10) 2.50 (0.68)
6 0.37 (0.20) 0.20 (0.45) 1.00 (0.00) 0.38 (0.19) 0.20 (0.45) 1.00 (0.00) 0.50 (0.17) 0.60 (0.55) 1.00 (0.00)
13 13.39 (4.02) 0.29 (0.23) 2.13 (0.51) 52.49 (41.63) 0.17 (0.13) 6.86 (1.58) 114.35 (71.18) 0.10 (0.09) 13.91 (6.80)
16 2.43 (4.49) 0.18 (0.26) 1.70 (0.45) 8.58 (9.72) 0.34 (0.20) 3.18 (2.03) 9.49 (8.34) 0.12 (0.06) 3.37 (1.87)

Table 4.3: Evaluating DA-BSP in several steps of planning, under different pruning thresholds of σ =
{0.2, 0.05, 10−10}. The times in seconds spent in planning is denoted by t, while ηda and m̃ show weight
of correct association and averaged number of modes, respectively. Values shown here are for average of 5
random runs while standard deviation is depicted within the parenthesis. Note that 5% threshold is sufficient
in this case to perform equivalently with almost unpruned DA-BSP with σ = 10−10.

Algorithm Epoch ε = 0.25 ε = 0.50 ε = 0.75 ε = 1.00
t(s) ξca t(s) ξca t(s) ξca t(s) ξca

BSP-uni

1 1.14 (0.23) 0.78 (0.43) 1.08 (0.33) 0.90 (0.14) 1.14 (0.30) 0.96 (0.06) 1.17 (0.34) 0.92 (0.08)
6 0.13 (0.08) - (-) 0.38 (0.33) - (-) 0.20 (0.10) - (-) 0.23 (0.25) - (-)
12 1.17 (0.61) 0.76 (0.43) 1.30 (0.47) 0.59 (0.54) 0.97 (0.60) 0.54 (0.50) 1.02 (0.63) 0.36 (0.50)
18 1.23 (0.60) 1.00 (0.00) 1.04 (0.74) 0.52 (0.49) 0.60 (0.58) 0.37 (0.51) 0.46 (0.23) 0.20 (0.45)

Table 4.4: Evaluating non-myopic BSP-uni in several steps of planning and inference, under different ran-
domizations of ε = {0.25, 0.5, 0.75, 1.0}. Recall that ε is the probability with which BSP-uni chooses a random
association out of all plausible ones. The times in seconds spent in planning is denoted by t, while average correct
association is denoted by ξca. Values shown here are for average of 5 random runs while standard deviation is
depicted within the parenthesis.

do not have persistent ambiguity at each step of navigation, hence the weights of many
components drop down naturally to afford an easy approach of pruning. Also DA-BSP

is not sensitive to such a pruning parameter σ. Effect of σ on DA-BSP is shown in the
Tab. 4.3.

In the presence of data association challenges, the quality of planning can be roughly
assessed by considering if at least one of the posterior contains correct data association.
This is represented by DA in the Tab. 4.2. Here, ηda which also considers the weight
of such associations, is also shown. Naturally, reasoning over all possible associations
results in greater computational effort. We measure the run-time of the algorithm as a
proxy for effectiveness. Both these measures along with the number of hypotheses in
the beliefs are shown in the Tab. 4.2 where we can see the effect of non-myopic DA-BSP
with two different planning horizons.

4.4 Highly-aliased simulated office scenario

To demonstrate our concept in a more challenging scenario under high level of perceptual
aliasing, we considered a Gazebo-based simulation of a Pioneer robot in an aliased
two-floor office room environment. The robot is fitted with realistic sensors enabling
laser scans and odometry estimation. Apart from the implementation mentioned in the
Section 4.1, we use ICP for laser scan matching.

The scenario is as shown in Fig. 4.7a. Unless stated otherwise, we will use natural
numbers to denote specific places in this scenario as it is depicted and notation x→ y to
show a path from x towards y. The two floors are identical except that the floor-2 has
an additional printer p1 (Fig. 4.7a). Additionally, each floor has significant perceptual
aliasing within itself due to identical cubicles and self-similar corridors. However, at the
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end of the corridors, there could be disambiguating feature present such as a vending
machine and sofa at one end and a printer at the other. The goal for the robot is to
reach the cabin c1 (Fig. 4.7a) and to disambiguate between the floors. Initially the robot
wakes up to find itself either of the places 1 or 6 (facing 2 and 7 respectively). Hence its
initial belief is modelled as a four-component GMM (two for each floor) whereas the
ground truth is at 1 i.e., the robot actually is at 1. Throughout this section, we will use
green colour and yellow colour to denote the ground truth and the aliasing respectively.

Consider that the robot starts at 1 (Fig. 4.7a), thus initial belief has mean at this
position. A forward action to 2 (Fig. 4.7a). This action can be used to propagate the
initial belief. Subsequently, the prior and the propagated (means at 1 and 2 respectively)
covariances are shown in Fig. 4.10a. The area of the ellipses equals the actual 2σ
covariance. The laser scan obtained for the belief update is shown in Fig. 4.9b, where
the green coloured scan denotes the actual scan obtained. Note that from a different
view point a similar scan is obtained (shown in yellow). This is due to the aliasing nature
of the environment and considering this aliasing scan within our planning-inference
framework (DA-BSP) gives rise to two components in the posterior belief, each of which
are weighted according to the corresponding likelihood for the respective scans to be
obtained. See Fig. 4.10b.

Starting form the positions 1 or 6 there are many possible paths to reach the goal
(cabin c1 (Fig. 4.7a)). We would like to show two such paths. The shortest path is
6 → 14 → 16 → 12 (Fig. 4.7a). However it leads to an increase in the number of
modes and on reaching the the goal, robot is uncertain of the floor it is in. As seen
previously (e.g., Fig. 4.10), the modes increase due to the highly aliasing environment.
Now consider a longer path 1 → 2 → 3 → 4 → 5 → 13 → 12 → 15 (Fig. 4.7a). Let
us call this the DA-BSP path. While following 1 → 2 and 2 → 3, due to the aliased
cubicles the number of components increase from 4 to 8. See Figures 4.7a to 4.7c) for
the corresponding mean positions of the robot. Intra-floor disambiguation occurs along
the paths 3 → 4 and 8 → 9. This is because of unique features present viz., the sofa
and the printer for these respective paths. Similarly, along 4 → 5, the components
are reduced to 2 (in Fig. 4.7e) and then increases again to 4 along the paths 5 → 13
and 13→ 12 (in Figures 4.7f and 4.7g respectively). Full disambiguation resulting in a
uni-modal belief occurs at 15 due to the presence of the unique printer, p1 (Figure 4.7a).
Fig. 4.9 depicts the evolution of weights along both the paths.

In Fig. 4.8, we see how the different components of the belief and the respective
weights evolve when following DA-BSP path. When planning with horizon L = 2, the
components increase in number and retain similar weights (E=2), while subsequent
discrimination (E=3) and reduction within the components (e.g., E=5) leads eventually
to full disambiguation (E=8). Fig. 4.8b shows the cardinality of components in the
GMM during planning with different horizons viz., L = {1, 3, 5}. It can be seen that
the graph gets steeper with increasing L. For a specific path and depending on the
configuration of the environment, a longer planning horizon might help us disambiguate
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(a) epoch 1 (b) epoch 2

(c) epoch 3 (d) epoch 4

(e) epoch 5 (f) epoch 6

(g) epoch 7 (h) epoch 8

Figure 4.7: Fig. 4.7a Two-floor aliased office environment in a Gazebo simulator. p1 and p2 denote the printers
while 1 and 6 are the mean positions in each floor for the initial four-component GMM belief. Figures 4.7b till
4.7h show the mean positions (modes) of the robot for each step of the DA-BSP path. Green denotes the ground
truth while yellow the aliasing position.
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Figure 4.8: (left) Evolution of weights of the components in the GMM after inference for L = 2. (right)
Average number of components in the belief mixtures for different planning horizon.

(a) Shortest v/s DA-BSP path (b) Aliased laser scan

Figure 4.9: (left) Evolution of weights of the components of the belief when following the shortest path versus
that following the DA-BSP path. (right) Laser scans at ground truth and aliased position (green and yellow
respectively).

(a) Prior belief propagation (b) Perceptual aliasing

Figure 4.10: Prior belief is propagated according to the motion model. Within the subsequent propagated
belief, there are perceptually aliased laser scans observed. Here, 2σ covariance is depicted with each ellipse.
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Algorithm Epoch L = 2 L = 4 Inference
t(s) (ηda,m̃) t(s) (ηda,m̃) t(s) (ηda,m̃)

DA-BSP

2 293.45 (0.13,8) 733.67 (0.49,2) 29.40 (0.12,8)
3 262.37 (0.25,4) 557.57 (0.25,4) 26.80 (0.12,8)
5 10.05 (0.25,4) 115.95 (1,1) 2.40 (0.26,4)
7 2.47 (1,1) 2.57 (1,1) 1.46 (1,1)

t(s) η t(s) η t(s) η

BSP-uni

2 7.04 1 18.96 1 4.17 1
3 1.23 1 2.20 0 0.77 0
5 1.04 0 1.90 0 0.56 1
7 0.47 0 0.50 0 0.46 0

Table 4.5: Evaluating DA-BSP in several steps of planning and inference, for L = 2 and L = 4. The times in
seconds spent in planning and in inference is denoted by t, while m̃ denotes average modes. ηda measures the
level of aliasing whereas DA is a binary variable denoting correct or wrong association.

Algorithm Epoch Inference
t(s) ξca

BSP-uni

2 4.10 (0.42) 0.60 (0.54)
3 0.80 (0.12) 0.60 (0.54)
5 0.53 (0.14) 0.80 (0.44)
7 0.42 (0.09) 0.20 (0.44)

Table 4.6: BSP-uni in 5 different runs. BSP-uni can be seen as a very drastic pruning where data association
may or may not be correct. This is seen from the ξca values (for 5 random runs). Standard deviation are
mentioned within the parenthesis.

faster as can be seen from Fig. 4.8b. Note that full disambiguation occurs at E=8 for
myopic planning (L = 1). Thus, for L = 5 which can project 5 steps in the future, such
a disambiguation occurs from E=4 onwards. L = 3 lies somewhere in between where
the full disambiguation occurs from E=6 onwards.

Tab. 4.5 compares DA-BSP with BSP-uni at different epochs of planning and
inference for planning horizons of L = {2, 4}. Here, the DA-BSP path is considered.
Recall that ηda stands for the weight of the component corresponding to the ground
truth. For example for E=2, DA-BSP inference results in 8 modes arising from 7 other
observations that alias the ground truth. Subsequently, ηda = 0.12. In the case of
BSP-uni the metric ξca measures how many times the correct association was made.
Thus, the table shows that for all random runs there are instances where BSP-uni fails
due to catastrophically bad data association. For example, at E=7, where ξca = 0 the
robot always infers itself to be at a wrong place.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a unified framework for robust perception in planning as
well as inference. State-of-the-art belief space planning (BSP) approaches typically
consider data association to be given and perfect. However, such an assumption is
less appropriate in presence of localization uncertainty while operating in ambiguous
environments, where two scenes could be similar in appearance when observed from
appropriate viewpoints. In contrast with such state of the art, here we developed
a data association aware belief space planning (DA-BSP) approach that relaxes the
data-association assumption by incorporating reasoning regarding DA within BSP. In
the context of passive approach with the observations provided, it results in more robust
inference. On the other hand, in the context of active approach where planning needs
to consider all possible future observations, this provides better action selection such
that catastrophically bad inferences and (if possible) actions leading to ambiguities
are avoided. As such, this work is a unified framework for robust active and passive
perception. DA-BSP considers data-association in a principled rigorous way with the
belief space planning. It is a more faithful representation of an aliased environment
since the number of components can increase as well as decrease. Though this increases
the computational burden of planning, it is both necessary for ambiguous environments
and is still practically applicable, as shown through numerous experiments in both
a realistic Gazebo simulation as well as in real experiment with the Pioneer robot
platform. Additionally, DA-BSP degenerates to usual approaches in the presence of
helpful assumptions such as under very small localization uncertainty and under lack of
ambiguities in the environment. In other words, DA-BSP is a rigorous holistic approach
to consider data-association in the context of belief space planning.

5.1 Future Work

In this thesis we incorporated reasoning regarding DA within BSP. While this is a
novel work by itself there is scope for further improvement/extension of the framework
developed. Given below are few such directions.
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1. In this work, we assume that the environment that the robot operates upon is
known/pre-mapped. The DA-BSP framework can be extended to a general SLAM
framework where the environment itself is partially mapped or unknown.

2. Multi-robot DA-BSP is a natural extension of the single robot case, with numerous
advantages compared to the latter. Yet, multi-robot collaboration is a challenging
problem: To perform cooperative inference, each robot needs to determine what
information to share with other robots, and to correctly associate information
received from nearby robots with appropriate random variables. Building upon
our DA-BSP approach, we propose an active case, reasoning about robot actions
that will facilitate better collaboration between robots in previously unknown
perceptually aliasing environments.

3. In aliasing environments, it becomes important to reason about the probability
of each scene or object to be observed from a view point. This is because only
objects that are likely to be observed should be considered while we reason about
DA. This probability, also called the event likelihood depends on the environment
model we assumed this term to be given. However, a more general approach is to
determine this term from the environment that is being operated upon. A possible
avenue for future work is to investigate such a general representation.
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Chapter 6

Appendix

List of Publications

Publications based on this Master’s research:

1. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “Robust Active Perception
for Belief Space Planning in Perceptually Aliased and Uncertain Environments,”
in The 5th Israeli Conference on Robotics (ICR), Herzliya, Israel, April 2016

2. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “Towards data association
aware belief space planning for robust active perception,” in AI for Long-term
Autonomy, workshop in conjunction with IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, May 2016

3. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “DA-BSP: Towards Data
Association Aware Be-lief Space Planning for Robust Active Perception,” in
European Conference on Artificial Intelligence (ECAI), The Hague, Netherlands,
September 2016

4. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “ Robust Active Perception
via Data-association aware Belief Space Planning,” arXiv:1606.05124 , 2016

5. S. Pathak, A. Thomas and V. Indelman. “Nonmyopic Data Association Aware
Belief Space Planning for Robust Active Perception,” in International Conference
on Robotics and Automation (ICRA 2017)

6. S. Pathak, A. Thomas and V. Indelman. “A Unifed Framework for Data Asso-
ciation Aware Robust Belief Space Planning and Perception,” in International
Journal of Robotics Research, submitted
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הניסויים היעד. אל ההגעה לפני disambiguationל־ שמוביל הרובוט מסלול את לתכנן מצליח DA־BSP

הרכיבים מספר כי הראינו בפרט, שפותחה; הגישה של עיקריות ותכונות היבטים הדגימו והסימולציה

בצורה מעודכנת GMMב־ רכיב כל ידי על המיוצגת הודאות אי לגדול, וגם לקטון יכול GMMב־

כשיטה להיחשב יכולה DA־BSP גישת למעשה, האלגוריתם. של הריצה זמני את וניתחנו מתאימה,

ואקטיבית. פאסיבית משמעות( )לדו חסינה לחישה מאוחדת
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להתחשב מצריך הדבר זה, מאוסף כלשהי אפשרית פעולה עבור מחיר. פונקציית ובהינתן אפשריות

הפעולה, ביצוע לאחר להתקבל שיכולים תמונה( )למשל, עתידית מדידה של האפשריים הערכים בכל

התקבלה. טרם הזאת העתידית והמדידה היות

פונקציית לכימות נדרשים אשר גורמים שני מחשבים אנחנו תצפית, של אפשרי ערך לכל אינטואיטיבית,

ופעולות מדידות של היסטוריה בהינתן הזו התצפית לקבלת הסבירות את מחשבים אנחנו )א( המחיר:

בשני זו. תצפית בהינתן ,(posterior belief) האפוסטריורית האמונה את מחשבים אנחנו ו)ב( כה, עד

משמעותה קיימות, BSP בגישות שנעשה כפי ומושלם, נתון (DA) מידע שיוך של ההנחה המקרים,

שני חישוב את רבות מפשטת זו הנחה )ונכון(. ידוע הינו הזאת התצפית מתוך שנצפה שהאובייקט

של האמיתי המצב הרובוט, במצב ודאות ואי סטוכסטית בקרה תחת זאת, עם שצוינו. הגורמים

הרובוט. מצב עבור המתאים (belief) ההסתברותי הפילוג את לאפיין הינו שניתן כל ידוע; אינו הרובוט

שעלול היא הדבר משמעות זניחים, לא ערכים מקבלת זו אמונה בה בסביבה משמעות דו ישנה אם

שגוי. שיוך להתבצע

ערך )עבור האפשריים השיוכים כל את ומתארים זה מסוג מצבים בחשבון לוקחים אנחנו שלנו, בגישה

אפוסטריורית להתפלגות ישירות מוביל זה תהליך מהאמונה. כחלק העתידית( התצפית של מסוים

.GMM להיות יכולה היא גם שכאמור ,(prior belief) האפריורית מהאמונה המתקבלת , GMM שהיא

הדו לרמת בהתאם להשתנות יכול האפוסטריורית האמונה של GMMב־ הרכיבים מספר שלנו בגישה

העתידית והפעולה במקרה לגדול גם אבל disambiguation של במקרה לקטון בסביבה: משמעות

רכיבי משקלי את מחשבים אנחנו משמעות. דו של גבוהה דרגה עם לאזור הרובוט את מובילה

מהווה זה שהתקבלה. והתצפית prior beliefה־ של GMMה־ משקלי סמך על מפורשת, בצורה GMMה־

כלומר הסתברותי, במרחב לתכנון מאלגוריתם כחלק המידע שיוך בבעיית לטיפול פורמאלית גישה

פעולות למצוא מאפשרת זו גישה בפרט, .(DA־BSP( data association aware space planning גישת

ונתון. פתור מידע שיוך של המקלה ההנחה ללא ייחודית, בסביבה וגם משמעית דו בסביבה מיטביות

פונקציית זו, בעבודה מחיר. פונקציות של רחב מגוון עם להתמודד שיכולה כללית גישה הינה DA-BSP
האיברים שני משמעות. דו המכמת ואיבר ודאות אי ליעד, הגעה ובהם איברים, מספר כוללת המחיר

דו של בהקשר האמונה לאופי מתייחס האחרון האביר .BSP בגישות סטנדרטיים הינם הראשונים

אינטואיטיבית, הרכיבים. משקלי ועל GMMב־ הרכיבים מספר על מסתכלים אנחנו בפרט, משמעות.

מרכיב בעל יהיה posterior beliefה־ של GMMשה־ משמעותה disabmiguationל־ שמובילה פעולה

אפשרויות מספר ישנן זניחים. יהיו הרכיבים שאר כל של משקלם ואילו גבוה משקל בעל אחד

)עם KL divergenceב־ שימוש נעשה למשל, זו, בעבודה אלו. היבטים המייצגות מחיר לפונקציית

המחיר זו, מהתפלגות מתרחקים האמונה שמשקלי שככל כך אחידה, להתפלגות ביחס מינוס( סימן

ערך תקבל זו פונקציה לכן, קודם שתואר disabmiguation של מצב עבור בפרט, קטן. (penalty)
.disabmiguationל־ להוביל צפויות אשר פעולות לזהות ניתן מכך, כתוצאה מאוד. נמוך

סינטטית בסימולציה בוצע הניתוח ;DA־BSP גישת של ביצועים ניתוח גם בוצע זו עבודה במסגרת

and Perception Lab ) עולם וחישת אוטונומי ניווט במעבדת אמתיים בניסויים וגם (Gazebo) מציאותית

,Pioneer מסוג קרקעי ברובוט שימוש נעשה המקרים בשני בטכניון. ( ANPL־Autonomous Navigation

הרובוט נתונה(. מפה )כלומר, ידועה משמעית דו בסביבה פועל אשר במצלמה, או לייזר במד המצויד

מתקבל prior belief ה־ המשמעות, דו ועקב המפה, גבי על מיקומו את לדעת בלי לחיים מתעורר

ה־ אלגוריתם מראש. נקבעת אשר במפה, מסוימת לנקודה להגיע הרובוט על .GMM מסוג להיות
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תקציר

ודאות, אי בנוכחות האוטונומי. הניווט בתחום יסוד בעיות הינן ודאות אי תחת החלטות וקבלת תכנון

הנעלמים של המצב וקטור מושלמת, לא וחישה הרובוט של סטוכטית מתנועה למשל לנבוע שיכולה

פונקציית ידי על לייצוג וניתן ידוע אינו ואוריינטציה, מיקום של במונחים הרובוט מצב כגון בבעיה,

במרחב תכנון הינה המתאימה התכנון בעיית .(belief) כאמונה גם הידועה ,(pdf) הסתברותית פילוג

ואפליקציות, תחומים של רב למגוון ישימה זו מסגרת .(belief space planning, BSP) הסתברותי

וואריאציות אינפורמטיבי, תכנון אקטיבית, חישה ,(Active SLAM) אקטיבי זמני בו ואיכון מיפוי כגון

אוטונומי. ניווט של נוספות

,(DA ,data association) מידע שיוך הינו הסתברותי במרחב בתכנון והן בהסקה/חישה הן חיוני מרכיב

סביבות זאת, עם מתאימים. אקראיים למשתנים תצפיות בין נכון התאמה( )או שיוך קביעת כלומר,

הופך וודאות, אי של שונים גורמים בנוכחות אשר דבר, משמעויות, דו להיות נוטות האמיתי בעולם

אחר לאובייקט דומה להראות יכול אובייקט לדוגמה, למאתגרת. (perception) החישה מטלת את

חזות בעלי שונים מקומות משני תמונות שתי של מוצלחת התאמה ואילו מסוימות, מבט מנקודות

כעל המקומות שני על שגוי באופן תצביע דומה( שנראים מסדרונות או בניינים שני )למשל דומה

רבה חשיבות ישנה ולכן הרסניות, לתוצאות להוביל יכול כן, אם נכון, לא מידע שיוך אחד. מקום

ומושלם. פתור המידע ששיוך מניחות אינן אשר הסתברותי במרחב ולתכנון להסקה גישות בפיתוח

בעיית עבור רק זה מסוג גישות בפיתוח התרכזה ברובוטיקה המחקר קהיליית כה, עד זאת, למרות

לשיוך חסינות להיות המתיימרות גרפיים מודלים מבוססת אופטימיזציה גישות שהניב דבר ההסקה,

הרובוט שפעולות בהנחה כלומר, ההסקה, בבעיית מטפלות אלו גישות כאמור, .(outliers) שגוי מידע

BSP גישות שני, מצד אנושי(. מפעיל ידי על נקבעות או נפרד תהליך ידי על מחושבות )למשל נתונות

תתפתח (belief) האמונה איך לחזות מאפשרת זו הנחה ומושלם; נתון המידע שיוך מניחות קיימות

המיטבית הפעולה את לבחור כך ובעקבות הרובוט, של אחרת או כזו אפשרית עתידית פעולה בעקבות

דו של דרגה שהיא איזה לעתים יש מציאותיים בתרחישים כן, פי על אף נתונה. מחיר פונקציית עבור

מושלם. AD לגבי ההנחה את להצדיק המקשה דבר ,perceptual aliasingו־ משמעות

הקיימות BSP לגישות בניגוד וזאת ומושלם, נתון ADש־ הנחה אין בה BSP גישת מפותחת זה במחקר

להיות יכולה אשר מראש, ממופת או חלקית ידועה בסביבה פועל הרובוט כי מניחים אנחנו כיום.

אובייקטים או אזורים של תצפיות מקבל הרובוט דומה(. שנראים מסדרונות שני )למשל משמעית דו

זוויתי ומצב מיקום לגבי שלו (belief) האמונה את לעדכן מנת על אלו בתצפיות ומשתמש בסביבה,

לגבי היפותזות מספר ישנן ,perceptual aliasingו־ משמעות דו עקב בבעיה(. נוספים נעלמים )ואולי

Gaussian mixture model ב־ שימוש תוך האמונה את ממדלים אנחנו כן ועל הרובוט, של האמיתי המצב

פעולות אוסף מתוך המיטבית הפעולה את למצוא מעוניינים אנחנו ,BSP בעיית בכל כמו .(GMM(
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