Incorporating Data Association
Within Belief Space Planning For
Robust Autonomous Navigation

Antony Thomas






Incorporating Data Association
Within Belief Space Planning For
Robust Autonomous Navigation

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Aerospace Engineering

Antony Thomas

Submitted to the Senate
of the Technion — Israel Institute of Technology
Shevat 5777 Haifa February 2017






This research was carried out under the supervision of Assistant Prof. Vadim Indelman,

in the Faculty of Aerospace.

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Vadim Indelman for
accepting me as his student and providing continuous support throughout my Master’s
study. He was a constant source of motivation and his guidance helped me throughout
this research work. Passion for research is something that I have learned from Vadim
and I have also drawn a lot of inspiration from his work ethic. I could not have imagined
having a better advisor and mentor for my Master’s study.

I would also like to thank my collaborator, Dr. Shashank Pathak, for all his help,
patience, knowledge and valuable inputs. He was always ready to share ideas and discuss
them at length and would patiently answer all my questions. I wish him all the best for
his future career.

My sincere thanks also goes to Asaf Feniger, our lab engineer, for all his help, and
my other lab-mates, especially Tal Regev, who have have helped me during the course
of this work.

I would also like to sincerely thank all my friends here at the Technion, especially
my friends from the shabbat group without whom my stay here would not have been
possible.

Finally, I would also like to thank my parents and my brother for the infinite support,

care and love.

The generous financial help of the Technion is gratefully acknowledged.






Contents

List of Figures

List of Tables

Abstract

Abbreviations

1 Introduction
1.1 Related Work . . . . . . . . . e
1.2 Contributions . . . . . . . . . e

1.3 Organization . . . . . . .. .. ..

2 Notations and Problem Formulation

3 DA-BSP: Data Association aware Belief Space Planning

3.1 Concept and Approach Overview . . . . . . .. .. ... ... ......
3.2 Myopic DA-BSP . . . . . . .

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Computing term (a): P(zpq1 [ Hp,y) - - o o oo oo
Computing term (b): P(Xpy1|Hp 15 2001) - - - o v o o oot
Summary thus far . . .. .. ... o 0oL
Simulating Future Observations {241} given b[X; ] . . . . ..
Computing Mixture of Posterior Beliefs ), wib[XZ:_l] ......
Designing a Specific Cost Function . . . . . . ... ... ... ..
Formal Algorithm for DA-BSP . . . . ... .. ... ... ....

3.3 Non-Myopic multi-modal DA-BSP . . . . . ... ... ... .......

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Prior belief as a mixture of Gaussian . . . . . . . ... ... ...
Non-myopic DA-BSP . . . . . . o vt i it
Overall algorithm . . . . . .. ... ... .. ... ... ...
Effect of reducing a mixture of belief . . . . . . . ... ... ...
Full vs. Partial Disambiguation . . . . . . .. ... ... .....
Degenerate cases of DA-BSP . . . . . . .. ...
On correctness of non-myopic DA-BSP . . . . . . ... ... ...

o g O O



4 Results and Discussions
4.1 Implementation of data-association aware BSP . . . ... ... ... ..
4.2 Metrics for evaluating DA-BSP . . . . . . . ...
4.3 Real-world application with explicit scenes - octagonal corridor . . . . .

4.4 Highly-aliased simulated office scenario . . . . . . .. ... ... .....

5 Conclusions and Future Work
5.1 Future Work . . . . . .

6 Appendix

Hebrew Abstract

31
31
31
32
38

43
43

45



List of Figures

1.1

3.1

4.1

4.2

4.3

(a) Generative graphical model. While standard BSP approaches typically assume data
association (DA) is given and perfect, we incorporate data association aspects within BSP
and thus capable of reasoning about ambiguity (e.g. perceptual aliasing) at a decision-making
level. (b) Schematic representation of pose, scene and observation spaces. Scenes A1 and Ag
when viewed from perspective z and z’ respectively, produce the same nominal observation

2, giving rise to perceptual aliasing.

GMM posterior b[Xy1] given zi41 € {#zk+1}. The prior has two equi-probable components

while the posterior has different weights for the two components.

The overall infrastructure of implementation of DA-BSP. Note that thanks to the middleware
block of ROS, the algorithm is independent of whether it is applied on a real setup or a

simulated one.

(left) Apriltag is detected, indicated with green patch at the center. This provides the trans-
formation matrix between the pose of the robot and the landmark pose. Note that a far-away
Apriltag, though visible in this frame, is considered not detected since the non-centrality of
the tag makes the observation highly untrustworthy. (right) No Apriltag lies within the field

of view of the camera.

Real-world experimental setup (best viewed in colour). The images show the actual third-
person view at different locations of the robot, while the two dimensional figure, shows se-
mantic knowledge of the environment the robot possesses. Its current belief is a 4-modal
GMM with mean position depicted by x;ni¢+. Ground truth robot position is indicated with
&; arrows indicate orientation (and not motion). The actual scenario is depicted through
the laser-scan of the environment shown in the green colour. This map is for representative
purposes only and is not available to the robot. The zoomed-in picture of an AprilTag is also

shown. .

25

32

33

34



4.4

4.5

4.6

4.7

4.8

4.9

4.10

Evolution of belief at an epoch E = 3 under DA-BSP. Here tags are represented by shapes
{x,+,0, A, v} while ground truth robot position is indicated with . (a) The prior belief
is multimodal with four distinct modes as shown with the coloured ellipses. (b) After in-
corporating the motion model, the propagated belief is similarly a multi-modal distribution.
(c) When observation is accounted for and inference is performed the posterior belief is as
shown. Note that some of the earlier components of the prior might vanish (e.g. here the
slight asymmetry around the corner causes one of them to vanish and components reduce
from 4 to 3). Also new components in the posterior may emerge (not the case here). Here,
L=3.

(a)-(c) Evolution of inferred belief as decision epoch progresses with L = 3; epochs depicted
are {4,18,24}. They depict evolution of inferred belief, for different planning algorithms,
i.e. DA-BSP, BSP—uni and BSP-mul, respectively. GMM components and associated weights
are designated with different colors. Ground truth robot position is indicated with . For
clarity, the detected scene(s) are shown in different colour. In case of BSP-mul and BSP-uni,
this particular instance of planning leads to catastrophically bad data association. (d) Evolu-
tion of GMM components weights during these epochs. Note that the number of components
increases as well as decreases and eventually goes to 1. Here, planning horizon is L = 3.

Evolution of belief as decision epoch progresses during DA-BSP planning. Average number of

components in the belief mixtures and the K L,, metric are depicted in left and right respectively.

Fig. 4.7a Two-floor aliased office environment in a Gazebo simulator. p; and p2 denote the
printers while 1 and 6 are the mean positions in each floor for the initial four-component
GMM belief. Figures 4.7b till 4.7h show the mean positions (modes) of the robot for each
step of the DA-BSP path. Green denotes the ground truth while yellow the aliasing position.
(left) Evolution of weights of the components in the GMM after inference for L = 2. (right)
Average number of components in the belief mixtures for different planning horizon.

(left) Evolution of weights of the components of the belief when following the shortest path
versus that following the DA-BSP path. (right) Laser scans at ground truth and aliased
position (green and yellow respectively).

Prior belief is propagated according to the motion model. Within the subsequent propagated
belief, there are perceptually aliased laser scans observed. Here, 20 covariance is depicted

with each ellipse.

35

36

37

40

41

41

41



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

Performing DA-BSP on a real corridor environment shown in the Fig. 4.3, with planning
horizon L = 4. The times in seconds spent in planning and in inference is denoted by t, while
m stands for average modes; refer Sec. 4.3.

Comparing DA-BSP against BSP-uni and BSP-mul in several steps of planning and inference,
with L =1 and L = 3. The times in seconds spent in planning and in inference is denoted by
t, while average modes are shown by m. DA signifies correct data association; refer Sec. 4.2.
Values shown here are for average of 5 random runs.

Evaluating DA-BSP in several steps of planning, under different pruning thresholds of o =
{0.2,0.05,10719}. The times in seconds spent in planning is denoted by t, while ng, and
m show weight of correct association and averaged number of modes, respectively. Values
shown here are for average of 5 random runs while standard deviation is depicted within the
parenthesis. Note that 5% threshold is sufficient in this case to perform equivalently with
almost unpruned DA-BSP with ¢ = 10710,

Evaluating non-myopic BSP-uni in several steps of planning and inference, under differ-
ent randomizations of e = {0.25,0.5,0.75,1.0}. Recall that ¢ is the probability with which
BSP-uni chooses a random association out of all plausible ones. The times in seconds spent
in planning is denoted by t, while average correct association is denoted by &.q. Values
shown here are for average of 5 random runs while standard deviation is depicted within the
parenthesis.

Evaluating DA-BSP in several steps of planning and inference, for L = 2 and L = 4. The
times in seconds spent in planning and in inference is denoted by t, while /m denotes average
modes. 74, measures the level of aliasing whereas DA is a binary variable denoting correct
or wrong association.

BSP-uni in 5 different runs. BSP-uni can be seen as a very drastic pruning where data
association may or may not be correct. This is seen from the £.q values (for 5 random runs).

Standard deviation are mentioned within the parenthesis.

34

37

38

38

42

42






Abstract

Belief space planning (BSP) and perception are fundamental problems in robotics
and artificial intelligence, with applications including autonomous navigation and
active SLAM. State-of-the-art BSP approaches assume that data association (DA), i.e.
determining the correct correspondence between the observations and the landmarks,
is given and perfect. However, real world environments are often ambiguous, which
in the presence of different sources of uncertainty, make perception a challenging task.
For example, an object might be similar in appearance from the current viewpoint to
another object, while successfully matching images from two different but similar in
appearance places (e.g. buildings that look alike) would incorrectly indicate the two
places as one. An incorrect DA can lead to catastrophic results, e.g. a robot considering
it is located in a wrong aliased corridor. Consequently, more advanced approaches,
known as robust perception, are required. Yet, existing robust perception approaches
focus on the passive case where robot actions are externally determined, while existing
BSP methods assume data association to be given and perfect.

In this research we relax the above assumption and incorporate reasoning regarding
DA aspects within BSP, while accounting for different sources of uncertainty (imperfect
sensing, stochastic control, uncertain environment). We develop a data association aware
belief space planning (DA-BSP) approach that explicitly reasons about DA within belief
evolution while considering non-myopic planning and multi-modal beliefs represented
by Gaussian Mixture Models (GMM). We envision such a framework to provide robust
active perception and active disambiguation capabilities, in particular while operating
in ambiguous and perceptually aliased environments. The approach is studied and
proven effective using real-world experiments and synthetic simulations, carried out at

the Autonomous Navigation and Perception Lab at the Technion.
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Chapter 1

Introduction

Belief space planning (BSP) and decision-making under uncertainty are fundamental
problems in robotics and artificial intelligence, with applications including autonomous
navigation, object grasping and manipulation, active SLAM, and robotic surgery. In
presence of uncertainty, such as in robot motion and sensing, the true state of variables
of interest (e.g. robot poses), is unknown and can only be represented by a probability
distribution over possible states, given available data. Planning and decision-making
should be therefore performed over this distribution, the belief space, which can be
inferred using probabilistic approaches based on incoming sensor observations and prior
knowledge. The corresponding problem is an instantiation of a partially observable
Markov decision problem (POMDP) [15], where, given an objective function, one
aims to determine an optimal control policy as a function of belief evolution over
application-dependent variables of interest.

However, state-of-the-art BSP approaches typically assume data association to be
given and perfect (see Figure 1.1b), i.e. the robot is assumed to correctly perceive the
environment to be observed by its sensors, given a candidate action. Yet, the world is
often full of ambiguity, that together with other sources of uncertainty, make perception
a challenging task. As an example, matching images from two different but similar in
appearance places, or attempting to recognise an object that is similar in appearance,
from the current viewpoint, to another object. Both cases are examples of ambiguous
situations, where naive and straightforward approaches are likely to yield incorrect
results, i.e. mistakenly considering the two places as same, and incorrectly associating
the observed object.

Considering data association to be solved and perfect within BSP can thus lead,
in presence of ambiguity, to incorrect posterior beliefs and as a result, to sub-optimal
actions which do not properly consider perceptual aliasing aspects. More advanced
approaches are therefore required to enable reliable operation in ambiguous conditions,
approaches often referred to as (active) robust perception. These approaches typically
involve probabilistic data association and hypothesis tracking given available data. Thus,

for the object detection example, each hypothesis may represent a candidate object from
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Figure 1.1: (a) Generative graphical model. While standard BSP approaches typically assume data association
(DA) is given and perfect, we incorporate data association aspects within BSP and thus capable of reasoning
about ambiguity (e.g. perceptual aliasing) at a decision-making level. (b) Schematic representation of pose,
scene and observation spaces. Scenes A1 and A3 when viewed from perspective x and z’ respectively, produce
the same nominal observation 2, giving rise to perceptual aliasing.

a given database that the current observation (e.g. image or point-cloud) is successfully
registered to. Similarly, one might reason probabilistically regarding perceptual aliasing,
as in the first example above, which would also involve probabilistic data association.
Yet, existing robust perception approaches focus on the passive case, where robot actions
are externally determined and given, while the closely related approaches for active
object detection and classification consider the robot to be perfectly localised.

In this work we develop a general data association aware belief space planning
(DA-BSP) framework capable of better handling complexities arising in real world,
possibly perceptually aliased, scenarios. To that end, we rigorously incorporate reasoning
about data association within belief space planning, while also considering other sources
of uncertainty (motion, sensing and environment). In particular, we show our framework
can be used for active disambiguation by determining appropriate actions, e.g. future

viewpoints, for increasing confidence in a certain data association hypothesis.

1.1 Related Work

Calculating optimal solutions to POMDP is computationally intractable (PSPACE-
complete) [21] for all but the smallest problems. The vast research area of approximate
approaches (with reduced computational complexity) can be roughly segmented into
point-based value iteration methods [18,24], simulation based [28] and sampling based
approaches [2,6,26], and direct trajectory optimization [11,22,30] methods. In all cases,
finding the (locally) optimal actions involves evaluating a given objective function while
considering future observations to be acquired as a result of each candidate action.
However, an underlying typical assumption in these approaches is that data associ-

ation for these future observations is known and perfect. For example, it is typically



assumed that the robot can be localised by making observations of known landmarks or
beacons (see, e.g. [2,26]), while assuming to correctly associate each future measure-
ment with an appropriate landmark. Though reasonable in certain scenarios, such an
assumption becomes unrealistic in the presence of perceptually aliased environments
(two scenes that look alike) and localisation uncertainty, as in this work.

While belief space planning approaches typically assume the environment to be
accurately known (e.g. a given map), recent works, including [8,9,11,17,31], relax this
assumption and model the uncertainty of the environment mapped thus far within the
belief. The corresponding framework is thus tightly related to active SLAM, with the
well known trade-off between exploration and exploitation. Recent work [9,11,17,31] in
this branch focused in particular on probabilistically modelling what future observations
will be obtained given a candidate action. However, these approaches consider each
such future observation to be correctly associated to an appropriate scene, and hence,
assume data association to be given and perfect.

In the last few years, the SLAM research community has investigated approaches
to be resilient to false data association (outliers) overlooked by front-end algorithms
(e.g. image matching), see e.g. [7,13,14,20,29]. However these approaches, also known
as robust graph optimization approaches, are developed only for the passive problem
setting, i.e. robot actions are given and externally determined. In contrast, we consider
a complimentary active framework and incorporate data association aspects within BSP.

Our approach is also tightly related with recent work on active hypothesis disam-
biguation in the context object detection and classification [3,19,23,27,32]. Given
hypotheses regarding object class and pose, these approaches aim to find a sequence
future viewpoints that will lead to disambiguation, i.e. identifying the correct hypothe-
sis. However, these approaches assume the sensor is perfectly localized and thus the
corresponding belief is only about the considered hypotheses.

Probably the closest work to our approach is by Agarwal et al. [1], where the
authors also consider hypotheses due to ambiguous data association and develop a BSP
approach for active disambiguation. However, in that work the authors only consider
ambiguous data association within the prior belief, modelling it as mixture of Gaussians,
and assume there indeed exists an action that can yield complete disambiguation. In
contrast, our framework is more general since we additionally consider ambiguous data
association within future belief (due to future observations) given candidate action(s)

and do not assume there is necessarily a fully-disambiguating action.

1.2 Contributions

As mentioned in chapter 1 we incorporate reasoning regarding data association (DA) in
BSP while accounting for different sources of uncertainty (imperfect sensing, stochastic
control, uncertain environment). As such this framework provides robust active percep-

tion and active disambiguation capabilities, in particular while operating in ambiguous



and perceptually aliased environments.

Main contributions of this thesis are as follows: We develop a unified framework
for data association aware belief space planning (DA-BSP) in both active and passive
context. Here, the components of our belief may both increase and decrease, thereby
modeling the perceptually aliased environment more faithfully. Additionally, it does not
require a fully disambiguating unique observation. We extend DA-BSP by considering
prior belief as non-Gaussian as well as by considering planning for several lookahead
steps. We show how under helpful assumptions this general approach degenerates to
known BSP approaches. We present complexity analysis of such an algorithm as well as
comment on its correctness. Finally, we analyze key aspects arising due to explicitly
considering data association aspects within BSP in a realistic synthetic simulation and

in a real robotics scenario using a Pioneer robot.

1.3 Organization

The rest of this thesis is organized as follows.
1. We formulate the problem and introduce the notations in chapter 2.

2. In chapter 3 we provide the mathematical build-up for our method. This is done

for both myopic and non-myopic planning.

3. We discuss the key aspects of our method using a synthetic simulation and

real-world experiment in chapter 4.

4. chapter 5 provides a conclusion and discusses potential future work.



Chapter 2

Notations and Problem

Formulation

Planning and decision making under uncertainty are fundamental problems in the area
of autonomous navigation. In the presence uncertainty arising, for example, due to
stochastic robot motion and imperfect sensing, the true state over variables of interest,
such as robot poses, is unknown and can be only represented by a probability distribution
function (pdf), also known as the belief. The corresponding planning problem is known
as belief space planning (BSP), which is an instantiation of a partially observable Markov
decision problem (POMDP) [15]. Such a framework is applicable to numerous problem
domains and applications such as active simultaneous localization and mapping (SLAM),
active sensing, informative planning, and additional variants of autonomous navigation.

The Simultaneous Localisation and Mapping (SLAM) [15]) problem asks if it is
possible for a mobile robot to be placed at an unknown location in an unknown envi-
ronment and for the robot to incrementally build a consistent map of this environment
while simultaneously determining its location within this map [10]. However in this work
we assume a known environment and use this knowledge in our planning and inference.
In the remaining part of this chapter we first motivate the problem and then go over
the mathematical notations and models that will be used to formulate our problem.
These models are general to any planning problem and we introduce our concept of
incorporating reasoning regarding DA within BSP only in the next chapter.

Consider a robot, uncertain about its pose, operating in a partially known or pre-
mapped environment. The robot takes observations of different scenes or objects in the
environment and uses these observations to infer random variables of interest which are
application-dependent. Thus, in localisation, these observations can be used to better
estimate the robot pose, while in search and rescue missions one is looking for survivors
in a certain region.

A schematic equivalent to this is shown in Figure 1.1. As can be seen, it involves
three spaces: pose-space, scene-space and observation-space. Pose-space involves all

possible perspectives a robot can take with respect to a given world model and in the



context of task at hand.

We shall denote a particular pose at any time step k as xj, and the sequence of these
poses from 0 up to k as Xy = {xg, ..., }. By uncertainty in robot’s pose, we mean that
the current pose of robot at any step k, is known only through a posterior probability
distribution function (pdf) P(X|uo.x—1, Zo.x) given all controls ug.x—1 = {ug, ..., ur_1}
and observations Zyr = {Zo,...,Z;} up to time k. For notational convenience, we

define histories Hy and H,_ , as
Hi = {uok—1, Zok} , Hppq = He U{up} (2.1)

and we rewrite the posterior at time k as b[Xy] = P(Xx|Hx).

In contrast, scene-space involves a discrete set of objects or scenes, denoted by the
set {An}, in the given world model, and which can be detected through the sensors of
the robot. We shall use symbols A; and A; to denote such typical scenes. Note that
even if the objects are identical, they are distinct in scene space. This is important
when we shall consider the cases where the objects look similar from some perspectives.
Finally, observation-space is the set of all possible observations that the robot is capable

of obtaining when considering its mission and sensory capabilities.

We shall consider such an observation as the model:
2k = h(zg, A) + ok, v ~N(0,%,), (2.2)

and represent it probabilistically as P(zx|x, A;). Here we have assumed the same
Gaussian noise for all observations irrespective of the scenes being observed. This is
a reasonable assumption, since such noise would be a typical property of the robotic
sensors employed. Also, h(zy, A;) is a noise-free observation which we would refer as

nominal observation Z.

For example, in case of a camera the function h could be defined as a pinhole
projection operator, thereby projecting the object A; onto the image plane, while in
case of a range sensor this function calculates the range between (a particular point on)

the object and the robot actual location.

Note that the exposition thus far is equivalently valid also in case where the envi-
ronment model is given but uncertain, and when this model is unknown a priori and

instead is constructed on-line within SLAM framework.

We also consider a standard motion model with Gaussian noise,
Tit1 = f(xz,ul) +w; , Wi~ N(O, Ew) (23)

where X, is the process noise covariance, and denote this model probabilistically by
P(wiﬂ \xi, UZ)

Given a prior P(x¢) and motion and observation models, the joint posterior pdf at

10



the current time k£ can be written as

k
P(Xp|H) = P(zo) [ ] P(ai|wi1, uim1)P(Zi|zi, Ad). (2.4)
i=1
This pdf is thus a Gaussian P(Xy|Hz) = N (Xk, Zk) with mean X}, and covariance
Yi that can be efficiently calculated via maximum a posteriori (MAP) inference, see
e.g. [16].

It is important to note that the underlying assumption in factorisation (2.4) is that
it is known which object is being observed at each time ¢, i.e. data association is given
and error-free. We will come back to this key point in the sequel.

Given the posterior (2.4) at the current time &, one can reason about the robot’s
best future actions that would minimise (or maximise) a certain objective function.

Such a function, for a single look ahead step, is given by
J(ur) = B {cP(Xps1[Hip, 2e41))} (2.5)

where the expectation is taken about the random variable z; 1, with respect to the prop-
agated belief (X} 1|H, ;) to consider all possible realisations of a future observation
Zk+1-

For notational convenience we will often represent the posterior P(X k+1|’H,;+1, Zk+1)
as the belief b[Xj11], i.e.:

b[Xpt1] = P(Xpi1 Mgy 2h41)- (2.6)

Note that, according to Eq. (2.5), we need to calculate the posterior belief (2.6) for each
possible value of zx1.

Similarly, we define the propagated joint belief as
b[X 1] = P( X1 |Hy ) = P(Xk|Hi)P(z1 Tk, u), (2.7)

from which the marginal belief over the future pose 1 can be calculated as blx; ;] =
f_‘xk+1 b[X1€_+1]'

As earlier, if data association is assumed given and perfect as commonly done in
BSP, then one can consider for each specific value of z;4; the corresponding observed

scene A;, and express the posterior (2.6) as

b[X k1] =P (X | Hi)P(xpt1|zr, uk)P(2ks1|Ths1, Ai), (2.8)

which can be represented as b[Xj11] = N(Xk+1, Yk+1) with appropriate mean Xk+1
and covariance 1.
The objective function (2.5) can be now evaluated, given a candidate action wy,

by calculating the cost ¢(.) for each z,1;. Finally, the optimal action u} is defined as

11



uy = argmin,, J(ug).

Assuming data association to be given and perfect simplifies greatly the above
formulation. Yet, in practice, determining data association reliably is often a non
trivial task by itself, especially when operating in perceptually aliased environments.
An incorrect data association (wrong scene A; in Eq. (2.8)) can lead to catastrophic
results, see, e.g. [12-14]. In this work we relax this restricting assumption and rigorously

incorporate data association aspects within belief space planning.
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Chapter 3

DA-BSP: Data Association aware
Belief Space Planning

3.1 Concept and Approach Overview

We begin by making the following observations that will be transformed into a rigorous
mathematical framework in the following sections.

Given some candidate action (or sequence of actions) and the belief at planning
time k, we can reason about a future observation zp,1 (e.g. an image) to be obtained
once this action is executed. This future observation is yet to be acquired, and therefore
its actual value is unknown. For this reason, all the possible values such an observation
can assume should be taken into account while evaluating the objective function; hence,
the expectation operator in Eq. (2.5). To see that, we write the expectation operator

explicitly which transforms Eq. (2.5) to

(a) (b)
J(ug)= [ Plzesr | Hyyy) o | P(Xk1[Hy g5 2041) (3.1)

Zk+1

The two terms (a) and (b) in the above equation have intuitive meaning: for each
considered value of zp11, (a) represents how likely is it to get such an observation when
both the history H and control uy are known, while (b) corresponds to the posterior
belief given this specific zj41.

Considering data association is solved and perfect then means we can correctly
associate each possible measurement zx1 with the corresponding scene A; it captures,
as in Eq. (2.8).

Yet, it is unknown from what future robot pose xy1 the actual observation zj1
will be acquired, since the actual robot pose x at time k is unknown and the control is
stochastic. Indeed, as a result of action uy, the robot actual (true) pose xp,1 can be

anywhere within the propagated belief b[x; . ,].

13



In inference, we have a similar situation with the key difference that the observation
z is given, i.e. it has been acquired. Let us now consider this setting for a moment. Also
here, robot pose at measurement acquisition time is unknown - rather, we are trying
to estimate it. To do so, we must first associate the captured measurement z with the
scene or object A; it describes, i.e. write the appropriate measurement likelihood term
in the posterior (2.4).

A similar situation, however, arises also in our case: while the probability of acquiring
a specific observation zj1 is represented by the term (a) in Eq. (3.1), the posterior in
the term (b) is conditioned on this specific observation zpi 1. As such, evaluating the
posterior given z,11 involves inference, as if that observation was actually acquired.
Thus, also here data association needs to be resolved or to be assumed given.

In typical cases such as with navigation assisted through GPS, this data association
is trivially known since the scene coincides with the pose. However, in more complex
applications such as perceptual robotics, the observations could come from multiple
different poses of viewing different scenes. In belief space planning (BSP) framework,
such a data association is assumed to be solved. In other words, if A represents the total
space of scenes (or real world) from where all observations {z} are made and {An} be
the partitioning of this scene space, then BSP assumes that for each such observation
z € {2z} the corresponding observed scene A; € A is known.

In contrast, in this work, we do not assume data association is solved, and instead
reason about possible scenes or objects that the future observation z;y1 could be
generated from, see Figures 1.1b and 1.1. Clearly, if the environment has only distinct
scenes or objects, then for each specific value of 241, there will be only one scene A;
that can generate such an observation according to the model (2.2). However, in case
of perceptually aliased environments, there could be also several scenes (or objects)
that are either completely identical, or have a similar visual appearance when observed
from appropriate viewpoints that could equally well explain the considered observation
zk+1- In such a case, there are several possible associations {A;} and due to localisation
uncertainty determining which association is the correct one is not trivial. As we show
in the sequel, in these cases the posterior b[Xyi1] (term (b) in Eq. (3.1)) becomes a
Gaussian mixture with appropriate weights that we rigourously compute.

In the following sections we formalise probabilistically these aspects and develop
an algorithm for data association aware belief space planning, capable of determining
best actions in perceptual aliased and distinct environments without considering data
association is solved. First, however, we formally define what do we mean by perceptually

aliasing.

Perceptual aliasing Intuitively speaking, perceptual aliasing occurs when an object
different from the actual one, produces the same observation and thereby seeks to provide
an alias, in the sense of perception, to the true object. We shall now define two notions of

perceptual aliasing that we consider: exact and probabilistic. Exact perceptual aliasing
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of scenes A; and A;j is defined as 3z, 2, h(z, A;) = h(z’, A;), and will be denoted in
this thesis by {A;, A;}alias. In other words, the same nominal (noise-free) observation
Z can be generated by observing different scenes, possibly from different viewpoints.
Such a situation is depicted in Figure 1.1. A probabilistic perceptual aliasing is a more
general form of aliasing, which can be defined as 3z, 2, |P(z|4;,z) — P(2|4;,2")| < e

for some small threshold e.

3.2 Myopic DA-BSP

In this section we develop our approach for data association aware belief space planning,
developing expressions for calculating each of the two terms (a) and (b) in Eq. (3.1)
without assuming data association is solved, and discussing additional aspects. For
simplicity, in this section we assume myopic planning i.e., with the planning horizon

L = 1.For convenience, we specify the corresponding expressions again:

(@) P(zpgr [ Hppq) 5 (0) 0 P(Xia My, 2041) (3.2)

Before proceeding further, recall the conceptual difference between the two terms: term
(a) represents the likelihood of obtaining an observation zj1, while within term (b) the

observation zjpy1 is considered as given.

3.2.1 Computing term (a): P(zp41 | Hjpq)

Applying total probability over non-overlapping { Ay} and marginalizing over all possible
robot poses, yields

Plavi [ M) = [ Pl o, Ail M) = 3w (3.3)

As seen from the above equation, to calculate the likelihood of obtaining some obser-
vation zxy1, we consider separately, for each scene A; € {An}, the likelihood that this
observation was generated by scene A;. This probability is captured for each scene
A; by a corresponding weight w;; these weights are then summed to get the actual
likelihood of observation zp,1. As will be seen below, these weights naturally account
for perceptual aliasing aspects for each considered zjyi.

Proceeding with the derivation further, using the chain rule we get
> / P(zsr | @, An Hi  )P(A 2 | Hipyy) (3.4)
4 x

However, since this integral could be over any arbitrary total distribution of z, we

can use the propagated belief b[x; ], see Eq. (2.7), to compute it as:
3 / P(zpa), Ai, Hioy )P(Ai|Hiy, 2)blag, , = . (3.5)
i xX
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Thus,
wii/ P(zg41|z, Ajy Ho ) P(A; ]7—[,;+1, m)b[w,;rl =zl (3.6)

Here, P(2x11 | Aiy 2, H; 1) = P(2ky1 | Aisz) is the standard measurement likelihood
term, while P(A; | H,_ ;, x) represents the event likelihood, which denotes the probability
of scene A; to be observed from viewpoint x. In other words, this scenario-dependent
term encodes from what viewpoints each scene A; is observable and could also model
occlusion and additional aspects. As such, this term can be determined given a model
of the environment and thus, in this work, we consider this term to be given.

The weights w; (3.6) naturally capture perceptual aliasing aspects discussed in
Section 3.1: consider some observation zi41 and the corresponding generative model
2kp1 = (2!, A') + v with appropriate unknown true robot pose x!" and scene A" €
{An}. Clearly, the measurement likelihood P(z41 | @, A;, H;,, ;) will be high when
evaluated for A; = A" and in vicinity of '". Note that we will necessarily consider such
a case, since according to Eq. (3.3) we separately consider each scene A; in { Ay}, and,
given A;, we reason about all poses z in Eq. (3.6). In case of perceptual aliasing, however,
there will be also another scene(s) A; which could generate the same observation zjq
from appropriate robot pose ', i.e. {A;, A;}alias- Thus, the corresponding measurement
likelihood term to A; will also be high for z’.

However, the actual value of w; (for each A; € {Ay}) depends, in addition to
the measurement likelihood, also on the mentioned-above event likelihood and on the
belief b[z,_,,], with the latter weighting the probability of each considered robot pose.
This correctly captures the intuition that those observations z with low-probability
poses b[a:,;rl = 2'"] will be unlikely to be actually acquired, leading to low value of
w; with A; = A", However, the likelihood term (3.3) could still go up in case of
perceptual aliasing, where the aliased scene A; generates a similar observation to zp41
from viewpoint z" with latter being more probable, i.e. high probability b[z; ,, = 2'].

In practice, calculating the integral in Eq. (3.9) can be done efficiently if both the
measurement likelihood P(25 11 | A;, z,H) and the predicted belief b[z;, ] are Gaussians
since a product of Gaussians remains Gaussian. The integral can then be only calculated
for the window where event likelihood is non-zero i.e P(A; | ,H) > 0. In absence of
such assumptions, in general, the integral in Eq. (3.9) should be computed numerically.
Since in practical applications P(A; | z,H) is sparse w.r.t. x, this computational cost is
not severe. For example, for a robot navigating in a two floor environment, even under
extreme uncertainty of pose, while reasoning for a scene such as a chair, we would only
consider the viewpoints from which the latter is observable, instead of the entire belief

space.

3.2.2 Computing term (b): P(Xji1|Hy, 1, 2k+1)

The term (b), P(Xp11|H; 1, 2k41), represents the posterior probability conditioned on

observation zp1. This term can be similarly calculated, with a key difference: since the
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observation zp,1 is given, it must have been generated by one specific (but unknown)
scene A; according to measurement model (2.2). Hence, also here, we consider all
possible such scenes and weight them accordingly, with weights w; representing the

probability of each scene A; to have generated the observation zj,1.

As will be seen next, in both terms (a) and (b) the same weights are obtained,

however only in the latter case the weights are to be normalised such that ), w; = 1.

Applying total probability over non-overlapping { Ay} and chain-rule, we get:
D P(Xpi1, Ai | Hpyyy ze1) = O P(Xneyr | Hpys 21, Ad) - P(Ai | Hyyys 2ka1)- (3.7)
i i

Here, the first term is the posterior belief conditioned on observations, history as well
as a candidate scene A; that supposedly generated the observation z;11. We discuss

how this term can be calculated in Section 3.2.5.

The second term, P(A; | Hg, uk, 2k+1), is merely the likelihood of A; being actually
the one which generated the observation z;1. As will be seen now, this term is actually
the normalised weight w; from Section (3.2.1). Marginalising over all robot poses and

applying Bayes rule yields

P(A | iy n) = [ P | My z0) = 1 [ Plonga | Ana M JB(An | Hi),
’ ’ (3.8)
with a normalization constant n = P(z11 | H, )
Similarly to the derivation in Section (3.2.1), since this integral could be over any
arbitrary total distribution of x, we can use the propagated belief b[x,;_l], to compute

it as:

1 [ Pl Hicy P (Ao iy bla, = o). (3.9)

X
As seen, the same expression is obtained as in Eq. (3.6), except for the normalisation
constant 1. Hence,
P(Ai | 2r41, Hiyy) = mwi = 5. (3.10)

In practice, one can avoid calculation of 7, and instead normalise the weights w; such

3.2.3 Summary thus far

To summarise the discussion thus far, we have shown that the objective function (3.1)

can be re-written as

J(uy) = /Zk+1 O wi)-c <Z wib[X,QLO ; (3.11)

%
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with the posterior given scene A; defined as
DIXG] = P(Xpr | Higyys 21, Ad) (3.12)

Observe, that for each considered observation zx11, we get a mizture pdf inside of the
cost ¢(.), where each component represents the posterior conditioned on the observation
capturing scene A;, and weighted by w;. In case there is no perceptual aliasing, there
will be only one component with high weight @;, that corresponds to the correct data
association to scene A;, with all other weights being negligible. On the other hand, in
presence of perceptual aliasing, we expect to see numerous non-negligible weights. In
the extreme case, where all scenes (objects) are identical, we will get equal normalised
weights w; for each A; € {An}.

The above insights also apply to the unnormalised weights w; that appear outside
of the cost, from which the likelihood of obtaining observation zyy; is calculated.
However, as already discussed in Section 3.2.1, this likelihood is calculated by summing
over all such weights (>, w;), with each weight properly capturing the likelihood of a
measurement zx11 to be generated by scene A; while taking into account how probable
is the corresponding robot pose x given blx, +1]' For practical purposes, one can thus
only consider viewpoints with non-negligible probability according to b[z;_, ;]. Moreover,
it is possible to threshold the weights in the mixture ), u?ib[X,iil], instead of always
considering all scenes { Ax}. Having shown incorporating data association within belief

space planning leads to Eq. (3.11), we now proceed with the exposition of our approach.

3.2.4 Simulating Future Observations {2z} given b[X, ]

Calculating the objective function (3.11) for each candidate action uy involves considering
all possible realisations of zx1. One approach to perform this in practice, is to simulate
future observations {zy1} given propagated belief b[X; ], scenes { Ay} and observation
model (2.2). One can then evaluate Eq. (3.11) considering all observations in the set
{21}

We now briefly describe how this concept can be realised. First, viewpoints {z} are
sampled from b[X, " ,]. For each viewpoint z € {z}, an observed scene A; is determined
according to event likelihood P(A; | Hy, x). Together, x and A; are then used to generate
nominal 2 = h(z, A;) and noise-corrupted observations {z} according to observation
model (2.2): z = h(x, A;) +v. The set {241} is then the union of all such generated
observations {z}. Note that while generating {zxy1}, the true association is known

(scene A;), it is unknown to our algorithm, i.e. while evaluating Eq. (3.11).

3.2.5 Computing Mixture of Posterior Beliefs Y, w;b[ X1 ]

As seen from Eq. (3.11), reasoning about data association aspects resulted in a mixture

of posteriors within the cost ¢(.), i.e. >, wib[X,iil], for each possible observation z;1 €
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{#zk+1}. In this work, the set {zx41} is simulated as discussed Section 3.2.4; however,
one could also consider treating future observation z,1 as a random variable [11,25,30].
In this section we briefly describe how one can actually calculate the corresponding
posterior distributions, given some specific observation zi11 € {zx+1}. For simplicity,
we consider the belief at planning time & is a Gaussian b[X}] = N (X, Zx). However,
our approach could be applied also to more general cases (e.g. mixture of Gaussians)
with a certain price in terms of computational complexity. Further investigation of these
aspects is left to future research.
Under this setting, each of the components b[ X ,’;1] in the mixture pdf can be written
as
b[X,iil] X b[ Xk ]P(zrt1 | Th, u)P(2kt1 | Trg1, Ai)- (3.13)

It is then not difficult to show that the above belief is a Gaussian b[ X[ ;] = N/ (Xi T 2h)
and to find its first two moments via MAP inference.
Obviously, the mixture of posterior beliefs in the cost ¢(.) from Eq. (3.11) is now a

mixture of Gaussians:

Zwib[Xliil] = ZwiN(XliJrla Sht1)- (3.14)

3.2.6 Designing a Specific Cost Function

The treatment so far has been agnostic to the structure of the cost function c(.).
Recalling Eq. (3.11) we see that the belief over which the cost function is defined, is
multimodal in general. Standard cost functions in literature, typically include terms
such as control usage ¢,, distance to goal ce and uncertainty cy, see e.g. [11,30]. In our
case, however, the specific form of the latter should be re-examined and an additional
term quantifying ambiguity level can be introduced. In this section we thus briefly
discuss these two terms, starting with the cost over posterior uncertainty.

Since, unlike in usual BSP, the posterior belief in our case is multimodal and
represented as mixture of Gaussians 3, w;N (X} 110 5541), see Eq. (3.14), we could
define several different cost structures depending on how we treat the different modes.
Two particular such costs are taking the worst-case covariance among all covariances

2+1 in the mixture, e.g. ¥ = max;{tr(%;)}, or to collapse the mixture into a single
Gaussian N (., X)), see e.g. [5]. In both cases, we can define the cost due to uncertainty
as ¢y, = trace(3).

The cost due to ambiguity, ¢, should penalise ambiguities such as those arising
out of perceptual aliasing. Here, we note that non-negligible weights w; in Eq. (3.11)
arise due to perceptual aliasing with respect to any scene A;, whereas in case of no
aliasing, all but one of these weights are zero. In most severe case of aliasing (all scenes
or objects A; are identical), all of these weights are comparable among each other. Thus

we take Kullback-Leibler divergence K L, ({w;}) of these weights {w;} from a uniform
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distribution to penalise higher aliasing, and define ¢, ({w;}) = m, where € is a

small number to avoid division-by-zero in case of extreme perceptual aliasing. With
user-defined weights M,,, Mg, My, and M,,, the overall cost then can be defined as a
combination

c = Myc, + Mgcag + Mses; + My,cy, (3.15)

3.2.7 Formal Algorithm for DA-BSP

We now have all the ingredients to present the overall framework of data-association aware
belief space planning, calling it DA-BSP for brevity. It is summarised in Algorithm 3.2
and briefly described below.

Given belief b[X}| and candidate action ug, we first propagate the belief to get
b[X,, ] and then simulate future observations {241} (line 2), as described in Section
3.2.4. The algorithm then calculates the contribution of each observation zx11 € {241}
to the objective function (3.11). In particular, on lines 8 and 15 we calculate the
weights w; and the posterior beliefs b[X}, 1i+] for each A; € {An}, respectively. These
calculations are according to Sections 3.2.1 and 3.2.5. Then, after weight normalisation
on line 13, we evaluate the cost ¢(.) (line 20) and use the accumulated unnormalised
weights ws = >, w; to update the value of the objective function J with the weighted

cost for measurement zjy; (line 21).

Finally, a few words about computational complexity. To see the relation of DA-
BSP with respect to general POMDP, we analyse the discrete space case and show in
Appendix B in supplementary material [4] that under the reasonable assumption that
the cardinality of the scene space is often much less than the cardinality of the state

space, DA-BSP does not introduce significant additional computational complexity.

3.3 Non-Myopic multi-modal DA-BSP

This section would generalize the DA-BSP that was developed in the previous Section 3.2.
We will start with considering a prior which is non-Gaussian. In particular, we will
assume our prior to be a mixture of Gaussians and then follow a similar approach to
compute belief update and perform myopic planning as done earlier. Once this is done
and we have an approach that takes in a GMM belief and updates to another GMM
belief, we will present the most general DA-BSP in a non-myopic setting of several

look-ahead steps of planning.
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Algorithm 3.1 Myopic data association aware belief-space planning

Input: Current belief b[Xy| at step-k, history Hj, action wuy, scenes {An}, event
likelihood P(A; | Hy, x) for each A; € {An}

L O[Xp ] = O[XRIP(zps | op, i)
2: {zk41} + SimulateObservations(b[X; ], {An})

3:J+0

4: for Vzp11 € {241} do

5: ws < 0

6: foriec[l...|A]] do

T > compute weight, Eq. 3.6

8: w; < CalcWeights(zgy1, P(Ai | Hy s 2),0[X; 1))
9: Wg — Wg + W;

10: > Calculate posterior belief given A;, Sec. 3.2.5

11: b[X;Jrl] + UpdateBelief(b[X, ], zk+1,4i)

12: end for

13: {w;} < NormalizeWeights({w;})

14: ¢ < CalcCost({w;}, {b[X,iil]}) > Sec. 3.2.6
15: J—Jt+ws-c

16: end for

17: return J

3.3.1 Prior belief as a mixture of Gaussian

Let us assume that prior is Gaussian mixture model. In other words, our belief at time

k is a linear combination of M} € N Gaussians i.e.,
My,
b[Xk] = P(Xp|H; , 21) = D &piN (Xiis Sii) (3.16)

Since our motion model (see 2.3 is still a Gaussian, the propgated belief is also a

GMM with M} components. More precisely,
WX 1) = P(Xpqa|[Hy ) = P(Xk|Hi)P(@p 41 |2k, uk) Zflm X D) (317)

Once the observation zpy; is obtained, for each of the M} components, we can
consider all the aliased scenes {Ay}. The derivation is very similar along the lines of the
discussion in the previous Section 3.2, with additional parameters introduced. For ease
of disposition, let us reproduce the steps such as Eq. 3.5 which we get after applying

the chain rule and subsequent marginalization over all x and A; € {An}.

{An}
Z /P Zhsr |2, Ai, Hy o )P(A[H )y, )bl = 2.
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Thus,
wii/ P(zp11]@, As, Hl;rl)P(Ai’Hl;rlv x)b[wl;rl =zl.

Since the propagated belief (see Eq. 3.17), from which b[z; ] is calculated, is also a
GMM, we can replace b[r, ; = x| with

M,
b[xl;tl =z|= Z§k+1,jb[x];+1yj =z (3.18)
j=1

However, the actual value of w; (for each A; € {Ayn}) depends, in addition to the
measurement likelihood and event likelihood, also on the GMM belief b[x, ], with
the latter weighting the probability of each considered robot pose x. This correctly
captures the intuition that those observations z with low-probability poses b[z; | = z']
will be unlikely to be actually acquired, leading to low value of w; with A; = A",

r corresponds

Since b[z; ] is a GMM with M}, components, low-probability pose x
to low probabilities b[az{;l = '] for each component j € {1,..., M;}. However, the
likelihood term (3.3) could still go up in case of perceptual aliasing, where the aliased
scene A; generates a similar observation to zx41 from viewpoint z’ with latter being

more probable, i.e. high probability b[z; ; = z'].

In practice, calculating the integral in Eq. 3.6 can be done efficiently considering
separately each component of the GMM b[x,,]. Each such component is a Gaussian
that is multiplied by the measurement likelihood P(zp41 | A;, 2, H) which is also a
Gaussian and it is known that a product of Gaussians remains a Gaussian. The integral
can then be only calculated for the window where event likelihood is non-zero i.e
P(A; | x,H) > 0. For general probability distributions, the integral in Eq. 3.6 should be
computed numerically. Since in practical applications P(A4; | x,H) is sparse w.r.t. z,

this computational cost is not severe.

Similarly for the term (b), P(Xyy1|H, 1, 2k41), applying total probability over

non-overlapping { Ay} as well as all the components of the propagated belief, we get:
M;, |Ax|

P(Xps1 M 2e41) = D O P(Xny1, Aiyy = | Hpyys 2ka1) (3.19)
i=1i=1

Proceeding as before, we split the term inside the summation using the chain rule

as follows:

P(Xk+17 A’Lafy :j ‘ H};J,-la zk+1) - P(Xk‘Jrl ’ H];+17 Zk+1, A’u’y = J)P(AZ77 :.7 ’ H];+17 Zk+1)

The first term is the posterior obtained with the scene A; while considering the j-th

propagated belief component and we denote this by b[X ,JJI]AZ]
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For the second term, we again apply the chain rule, to obtain:
]P)(A’L”Y = ] | %kj+1a Zk+1) = P(A’L | Y= ja/}_[l;+1a Zk-‘rl) : P(/y = ] | H];Jrl) Z/C+1)

Here, P(v = | Hoy1s 2k+1) 18 equal to fi which is the weight of the j-th component
of the prior belief. For the first term, we marginalize over all x to obtain the weights
wk w1~ This is identical to marginalization done in the previous Sectlon 3.2 (see Eq. 3.8)

with the only difference that here all = considered are from the j** component of the

belief.

My, |An|

b Xk+1 Z Z 6[4; A ’ Hk;+17 Zk+1,7 = .7) [X -|-1|‘4 ] (320)
Jj=11i=1

o = /szﬂml,x Hi JP( Al ML,y = § )bl =], (3.21)

with 7' = 1/P(zp41 | H;,1). Note that for each component j, >, uﬁjﬂ = 1. Finally, we

can re-write Eq. 3.20 as

My 1

P(Xps1| My 240 = Y &t P g1 [Hisr, v = 1), (3.22)
r=1

or in short, b[Xy41] = ZM’”I & 101X 1], where

§£+1 §k+1 fkw;fj—i—l ’ b[XIZ::-_l] [XJ‘ZL‘AZ’]- (3-23)

As seen, we got a new GMM with My, components, where each component r €
[1, M}41], with appropriate mapping to indices (4, 7) from Eq. 3.20, is represented by
weight ¢}, ; and posterior conditional belief b[X;T,]. The latter can be evaluated as the
Gaussian

DIXT ] o BIXT P (i | war, Ai) = N (X, Thpn), (3.24)

where the mean X, , and covariance X}, can be efficiently recovered via MAP

inference.

3.3.2 Non-myopic DA-BSP

It is easy to see that once the prior as well as the posterior belief is represented as a
mixture of Gaussians, we can extend the DA-BSP to a non-myopic setting. Informally, for
planning over a horizon of L step, starting with a multimodal prior and a control sequence
ug.,—1, the planning would involve reasoning about the plausible data associations at
each intermediate [ € [1, L — 1] step. To make it more concrete, consider a non-myopic

cost function as:
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/ 5 (@ Q

> Plzryr | Hiyy) a | P(Xkri|Hi g 2610) |+ (3.25)

k+1l:k4+L [—1

J(Uk:ktr—1)

where the expectation over future observations is written explicitly, accounting for all
possible realizations of these unknown observations. Although dropped to reduce clutter,

the history H_ 4 includes future observations zp11.x+7—1 up to the lth look ahead step.

Similar to the myopic case in Section 3.2, the two terms (a) and (b) in Eq. 3.25 have
intuitive meaning: for each considered value of zp.;, (a) represents how likely is it to
get such an observation, while (b) corresponds to the posterior belief given this specific
zk+1. However, the difference in a non-myopic case is that both terms are conditioned
on the history ”H,;_l which is a function of zxy1.547—1; hence, the above reasoning is
valid for all possible realizations of zjy1.x4+7—1 and the corresponding posterior beliefs
P(Xpri-1[Hrr1-1)-

It is not difficult to show that the posterior at each step k is actually the GMM

Mk+l 1
P(Xpit | H o 2hts Ad) = Y &y DIXTL A, (3.26)
7j=1
where b[leciﬂA'] = P(Xp11|H )57 = J, Ais 2141) is the posterior of the jth GMM

component of the propagated belief b[X,_].
Plugging-in Eq. 3.26 into P(Xy1|H; ;, 2x+1) = 0[ Xk from Eq. 2.8 yields:

[An| Mt1-1 .
b[Xpi] = Z Z fk:+l 1P(4; |Hk+l7zk+l)b[X]z;il|Ai]- (3.27)
i=1 j=1

Accounting for b[x‘};l] for each considered jth component as P(A; | H, ,2k11) =
L. P(Ai, x| Hy s 241), and applying Bayes’ rule yields

wk+l*77/P @hi]Ais o, Hy )P(Ai[Hy s @) [%H* zl, (3.28)

with 1" = 1/P(z41 | H,,,,)- Note that for each component j, 3=, w;‘gﬁ = 1. Finally, we

can re-write Eq. 3.20 as

My My
b[Xyi] = Z§k+lP KXkt Hir1,y = 1) = Z bl X 1), (3.29)
where &, = f,i{rl = giﬂ lzb,?H and b[X;T)] = PXpp|His1,7 = 7). As seen, we

got a new GMM with M}, components, where each component r € [1, M|, with
appropriate mapping to indices (7,j) from Eq. 3.20, is represented by weight &,
and posterior conditional belief b[X};il] The latter can be evaluated as the Gaussian

bX; 1) = N(Xl:-s-lv ¥41), with mean Xk+l and covariance ¥ ;.
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Figure 3.1: GMM posterior b[X}11] given 2541 € {zk+1}. The prior has two equi-probable components while
the posterior has different weights for the two components.

The associated cost of the overall posterior of this L step planning can then be
compared with that of similar posterior of other control sequences, enabling us to
choose an optimal single step action. After the action is taken and a real observation is
obtained, the inference over this observation allows us to update the posterior which
then serves as a prior for next L step planning. However, a naive implementation of such
a planning would likely suffer from the usual curses of dimensionality and of history.
Luckily, DA-BSP provides a principled way to strike a balance between requirement of
an efficient solution and not losing the correct data association in a challenging aliased

environment.

3.3.3 Overall algorithm

We now have all the ingredients to present the overall framework of data-association aware
belief space planning, calling it DA-BSP for brevity. It is summarised in Algorithm 3.2
and briefly described below.

Given a GMM belief b[X}]| and candidate action uy, we first propagate the belief to
get b[X, ;] and then simulate future observations {231} (line 2), as described in Section
3.2.4. The algorithm then calculates the contribution of each observation zx41 € {241}
to the objective function (3.11). In particular, on lines 8 and 9 we calculate the weights
wi, 41 that are used in evaluating the likelihood ws of obtaining observation zj,1 (see
Section 3.2.1). On lines 10-16 we compute the posterior belief: according to Section
3.3.2, this involves updating each jth component from the propagated belief b[X ,Jgjrl]
with observation zj41, considering each of the possible scenes A4;. After pruning (line
18), this yields a posterior GMM with M} components. We then evaluate the cost ¢(.)
(line 20) and use ws to update the value of the objective function J with the weighted
cost for measurement zjy1 (line 21).

One can observe that according to Eq. 3.27, each of the M} components from the
belief at a previous time, is split into |Ayn| new components with appropriate weights.

This would imply an explosion in the number of components, making the proposed
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Algorithm 3.2 Data association aware belief-space planning

Input: Current GMM belief b[X}] at step-k, history Hy, action uy, scenes { Ay}, event likelihood P(A; | Hg, )
for each A; € {An}

1: b[XI;+1] — b[Xk}P(xk.+1 ‘ xk,uk) > Eq. 2.7
2: {zk+1} + SimulateObservations(b[X, ], {An})

3: J«0

4: for Vzp41 € {2zk4+1} do

5: ws < 0

6: forie[1...|A]] do

7 > compute weight, Eq. 3.6

8: wy, ¢ CalcWeights(zgt1, P(A; | Hy 4, 2),0[X, 4])

9: Ws — Ws + wj

10: for Vj € [1,..., My] do

11: > compute weight w;J_H for each GMM component, Eq. 3.21

12: 12).;7_*_1 — C.al.c?Weights(szrl,IP(Ai | 7—[];_1,1),17[)(}]6_7_1])

13: RIS AT ' > Eq. 3.23
14: > Calculate posterior of b[Xi_‘__l], given A;, Sec. 3.3.2

15: b[X;J:_l] — UpdateBelief(b[XiIl],zk_H,A,-)

16: end for

17: end for 3

18: Prune components with weights §]?+1 below a threshold

19: Construct b[X,;:l] from the remaining M1 components via Eq. 3.22

20: c+ CalcCost(b[X,jJrl}) > Sec. 3.2.6
21: J<+— J+ws-c

22: end for

23: return J

framework hardly applicable. However, in practice, the majority of the weights will be
negligible, and therefore can be pruned, while the remaining number of components is
denoted by Mjy41 in Eq. 3.22. Depending on the scenario and the degree of perceptual

aliasing, this can correspond to full or partial disambiguation (see Fig. 3.1).

3.3.4 Effect of reducing a mixture of belief

We have seen that DA-BSP on account of considering all the possible data association,
suffers from exponential blow-up in number of components. Using discrete case as an
example, it is easy to show that this — under a reasonable assumption that scene space
is much smaller than state space — does not deteriorate the complexity of the underlying
problem. Moreover, it is important to notice that each such association is accompanied
with the weights, which reflect the significance of such a data association. In particular,
if a scene is quite unique, it is unlikely to be aliased with any other, and consequently
only the posterior conditioned on this correct association would have significant weight.
A simple threshold based pruning is then sufficient to discard insignificant modes, as
shall also be evident from our extensive experiment in this regard later on (see e.g.,
Tab. 4.3).

One can notice that the objective of curtailing the complexity of data-structure
through some pruning heuristics is not a novel approach. Even in the context of
data-association, it occurs in slightly different form when the problem is posed as a

multi-hypothesis tracking (MHT). Roughly speaking, in such a scenario, planning is
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through explicit instantiation of the trajectory of control and pruning decision is often
based on information-theoretic value a particular branch is expected to hold. Thus
MHT can handle passive case of BSP where disambiguation is sought after only in the
inference step and not in planning. In contrast, DA-BSP argues for data-association
within the BSP framework and thus can utilize weights that are shaped by the actual
future associations. Nevertheless, we can harness similar approaches to curtailing the
empirical complexity of DA-BSP, classifying them as local or global and pruning or
merging. When the decision about how to reduce a given mode in DA-BSP is based on
overall likelihood of associations considered from the initial position, we call it global,
while in local approach, only local information of the conditional posterior is sufficient to
decide on it being reduced via merging or pruning. As is evident from the name, pruning
is the process of dropping a component in conditional posterior and re-normalizing the
other weights whereas merging is the process of combining two components to form a
single component, which is optimal (in some heuristic sense) representation of the both.

Both pruning and merging can be recursive processes.

3.3.5 Full vs. Partial Disambiguation

In the context of selecting an appropriate horizon for planning, we can note that in
most of the real-world examples, the greater the horizon the greater is the likelihood
to have a unique observation that results in disambiguation between several or all
components of the belief. However, in general, DA-BSP does not require a complete
or full disambiguation for its correctness. Here, by full disambiguation we mean that
eventually the posterior belief has only a single component. For a usual forward L
step planning, this can not be guaranteed unless we assume an existence of a unique
observation in the future. At best, there would be partial disambiguation, i.e., some
components of the posterior belief vanish due to less aliased observations. On the
contrary, in the cases where a full disambiguation does not occur within the planning
horizon, DA-BSP would maintain all the components with appropriate weights. This not
only allows for partial disambiguation in such a planning scenario where only the aliased
components remain in the posterior belief, but can also result in a full disambiguation
eventually. Hence, DA-BSP captures the reality of perceptually aliased environment

quite well.

3.3.6 Degenerate cases of DA-BSP

Two prominent reasons for considering data-association aware BSP are: firstly, it ac-
curately reflects the reality where due to pose uncertainty, the observation may no
longer be associated with that from nominal pose and secondly, it is a generalization of
usual BSP. In order to elucidate the latter, we shall consider three degenerate cases of
data-association aware BSP: without pose uncertainty, with data-association solved and

without perceptual aliasing.
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Without pose uncertainty: Consider that for all practical purposes, the pose is
known with certainty, hence the belief is a dirac pulse around the nominal Z. Since the
scene-space could still be uncertain, the belief space planning should consider all possible
scenes being observed. However, in this case, the integral in equation 3.21 reduces to a
single term. In a more realistic case of small variance in the pose, considering only the
most likely data association may still lead to reasonable performance. This is similar
to many passive inference based approaches where the most likely component is often

sufficient to account for the overall posterior.

With data-association solved: In this case, the scene that is captured from perspective

Zr+1 when observation zxy1 is obtained, is known. More precisely

1 j=t

Eltv P(Zk+l|xk+la‘4j) :{ 0 j ?é +

This implies that the summation over all { Ay} is reduced to a single A;, known a-
priori for each observation zj1. Therefore, with data association solved, the framework

degenerates to the usual BSP.

Without perceptual aliasing: In the absence of perceptual aliasing, while considering
the observation zpy1, we are guaranteed to have only a single pose and scene pair
(xk41,A;) that generated it. This implies that if the observation zj4; were given, the
posterior beliefs would be all zero except the one corresponding to A;. However, since
while planning at step k, the observation zx; is an unknown random variable, we would

still need to consider all possible events { Ay}, that generated it.

3.3.7 On correctness of non-myopic DA-BSP

In order to reason about the correctness of DA-BSP i.e., whenever there is a single
disambiguating data association, the algorithm will recognise it and associate the
observation correctly, we first define pruned and unpruned DA-BSP. Recall that DA-BSP
adjusts the subsequent weights of the components based on likelihood of the observation
and of it being explained by the considered association. An unpruned DA-BSP considers
all such associations no matter how small the weights are (provided they are non-zero),
while pruned DA-BSP has some reasonable threshold below which all of the weights
are pruned away. It is easy to see the correctness of unpruned DA-BSP. Consider
that at step k € [1,00) a full disambiguation occurs, then by definition belief at k£ — 1
i.e., b[Xj_1] will also contain the component corresponding to the ground truth. The
subsequent computation of DA-BSP would yield weights that are all strictly 0 except
the one corresponding to this ground truth. However in the case of pruned DA-BSP

this might not be true necessarily as the ground truth component might be pruned
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away in b[Xj_1] leading possibly to even a catastrophic bad data association in the last
step k. Note that this requires either the weight of the correct component to be too
low or the pruning threshold to be too high. The former usually does not hold if we
assume that at the starting the multi-modal belief contains the correct component as
well. The latter can be avoided by judicious choice of pruning threshold. As shown in

the experiments later on, DA-BSP is not sensitive to the choice of this threshold.
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Chapter 4

Results and Discussions

In this section we present an experimental analysis of the proposed approach. First, we
talk about real experiment with a Pioneer platform fitted with an RGB camera in a
perceptually aliased corridor environment. We use a non-myopic planning framework
using explicit scenes simulated via AprilTags. To consider arbitrary levels of ambiguities,
we then talk about a simulated world model (in Gazebo) of two nearly identical office
floors with various look-alike cubicles. In these simulations, the Pioneer robot is fitted

with a laser scanner.

4.1 Implementation of data-association aware BSP

Effective and realistic implementation of DA-BSP requires two separate threads of
development. In order to be efficient, it is crucial that the algorithmic as well as the real
time cost of incorporating the data association within belief space planning remains as
low as possible. We ensured this by representing each component of GMM as a factor
graph so that state-of-the-art tool GT-SAM could be harnessed for a time-efficient
inference. On the other hand, in order to be realistic enough, we implemented it on
a real robotic platform, Pioneer. Here, a propriety ROS Robotics Toolbox was used,
which enabled our implementation to work seamlessly for both a simulated world as
well as a real world scenario. In order to simulate a complex world with arbitrary levels
of ambiguity, we chose Gazebo since it fits nicely to both the robotic platform as well
as the ROS infrastructure. These two streams of development are shown in left and
right parts of Fig. 4.1. The DA-BSP algorithm itself was implemented in object-oriented
MATLAB with the aim of striking a balance between rapid prototyping and obtaining

a generalisable implementation that can be easily ported to languages such as C++.

4.2 Metrics for evaluating DA-BSP

Evaluating DA-BSP is linked to the notion of data association which is typically assumed

to be solved in BSP. As mentioned before, accounting for data association within belief
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Figure 4.1: The overall infrastructure of implementation of DA-BSP. Note that thanks to the middleware block
of ROS, the algorithm is independent of whether it is applied on a real setup or a simulated one.

space planning does not come free. On the other hand, assuming such an association
randomly is bound to fail. In order to evaluate an approach, we keep track of how many
components the belief has and how many times it can make a correct association. Recall
from Section 3.3.7 that as long as the component corresponding to the ground truth
is present in the belief, the correctness can be guaranteed. We denote this by boolean
symbol DA. Note that in case of no pruning, DA-BSP is guaranteed to be correct and
hence DA is set as true. This is true also if the pruning is not detrimental to the correct
component and association. 7y, measures the weight of the correct component in the
belief; in case, the correct component is lost, the corresponding 74, will be 0. Time
taken by DA-BSP in any epoch is directly related to the number of the components in
the belief. We keep track of this through the metric m. In order to evaluate DA-BSP, we
compare it against the approach where with some probability 1 — € the true association
is known and made by the planning while in all other cases a random choice from
incorrect associations is made. This approach implies that the belief is always unimodal
and is therefore named BSP—uni. In another approach, we assume the similar correct
association with the scene however instead of the correct ground truth component, all
components of the belief are considered. This approach implies that a multi-modal prior
remains multi-modal after inference too. It is named BSP-mul here. In both of these
variants, we are interested in correct associations being made out of many trials. This
is measured by the metric ., where value 1 would indicate that correct associations
were made in all of the random trials. This could happen when the belief is unimodal

due to lack of ambiguity in the vicinity.

4.3 Real-world application with explicit scenes - octago-

nal corridor

In order to elucidate the crucial properties of non-myopic DA-BSP, we consider a real
world experiment as shown in the Fig. 4.3 with a single robot R. The abstracted schema
of the world is shown in the center. The state space X € R3 consists of 2D coordinates

as shown, as well as the orientation of the robot. Here, A; denotes an Apriltag with
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the index i. This enables us to simulate arbitrary levels of perceptual aliasing.! To
ensure robustness, the tag A; is considered detected only if it is also within a closed
sub-space X4, C X. Typically, this is decided through the centrality of the detected
tag in the image observed by the camera. Figure 4.2 shows two sampled cases where
the tags are detected and not detected respectively. Initially, the belief of the robot is
a multi-modal distribution, represented by a GMM with 4 components having equal
weights and centered around each z;,;. The objective of the robot is to both localize
itself and to reach the elevator denoted by 2404 . Initially, the planner is provided with
a set T of control trajectories. Consequently, depending on the planning algorithm used
(i.e., DA-BSP, or BSP—uni) as well the planning horizon L, the cost of each trajectory
T € T is evaluated and the optimal (w.r.t this cost) trajectory is chosen. The L-step
planning, followed by enacting one optimal control action and the consequent inference,
shall together be called an epoch. Note that this simple representation of the world is
very general. Indeed, real world complications — such as the state space being of higher
dimension, different levels of ambiguities between the scenes and planning problem of
longer time-scales — can all be easily incorporated into it.

Since we model the visual observation via AprilTags, due to sensory limitations (such
as out-of-view or far-from-center tags), a reliable observation might not be available at
each step of motion. One such instance is depicted in the Fig. 4.2. In such conditions,
no data association can be made and consequently, DA-BSP behaves exactly like the

usual belief space planning.

(a) An object detected (b) No object detected

Figure 4.2: (left) Apriltag is detected, indicated with green patch at the center. This provides the transfor-
mation matrix between the pose of the robot and the landmark pose. Note that a far-away Apriltag, though
visible in this frame, is considered not detected since the non-centrality of the tag makes the observation highly
untrustworthy. (right) No Apriltag lies within the field of view of the camera.

As shown in the Fig. 4.3, the robot resides in an octagonal corridor with ample
instances of ambiguous scenes. Here, the actual floor is shown via laser scan while the
3D view of some typical locations are depicted in the inset figures. Note that the robot

does not have these information, and actually has a semantic representation of the map

!Though not the focus here, any object detector can be easily incorporated in our general framework
of DA-BSP.
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Figure 4.3: Real-world experimental setup (best viewed in colour). The images show the actual third-person
view at different locations of the robot, while the two dimensional figure, shows semantic knowledge of the
environment the robot possesses. Its current belief is a 4-modal GMM with mean position depicted by T;nit-
Ground truth robot position is indicated with ; arrows indicate orientation (and not motion). The actual
scenario is depicted through the laser-scan of the environment shown in the green colour. This map is for
representative purposes only and is not available to the robot. The zoomed-in picture of an AprilTag is also
shown.

Algorithm Epoch Planning Inference
6(8) e t(S) Maa M

1 21.81 0.09 6.00 |/ 0.84 0.22 4.00
4 5.19 0.28 250 0.84 0.31 3.00

DA-BSP 8 8.66 - 1.00(0.80 1.00 1.00
12 1990 - 6.67( 248 0.35 5.00
16 3.50 0.16 2.00| 0.14 - 10.00
20 451 0.73 3.80|0.31 1.00 1.00

Table 4.1: Performing DA-BSP on a real corridor environment shown in the Fig. 4.3, with planning horizon
L = 4. The times in seconds spent in planning and in inference is denoted by t, while m stands for average
modes; refer Sec. 4.3.

where perceptual aliasing is accounted for by identical Apriltags. The result of running
the DA-BSP on this setup is shown in the Fig. 4.1.

However, when ambiguous data association occurs, DA-BSP considers all possi-
ble associations and weighs each new component of the posterior according to the
equation 3.28. Fig. 4.4 shows one such instance.

DA-BSP incorporates planning and inference seamlessly under one framework, called
epoch earlier. The overall planning is performed as a model predictive control composed
of several such steps. Fig. 4.5 shows some of the epochs in DA-BSP along with other
approaches such as BSP-uni and BSP-mul.

Once such planning is performed under DA-BSP, the subsequent posterior at the
end of each epoch might have more or even lesser number of components than before.

The former occurs when presence of identical close by tags causes perceptual aliasing
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Figure 4.4: Evolution of belief at an epoch E = 3 under DA-BSP. Here tags are represented by shapes
{*,+,0,A, v} while ground truth robot position is indicated with . (a) The prior belief is multimodal
with four distinct modes as shown with the coloured ellipses. (b) After incorporating the motion model, the
propagated belief is similarly a multi-modal distribution. (¢) When observation is accounted for and inference is
performed the posterior belief is as shown. Note that some of the earlier components of the prior might vanish
(e.g. here the slight asymmetry around the corner causes one of them to vanish and components reduce from 4
to 3). Also new components in the posterior may emerge (not the case here). Here, L = 3.

while the latter is the result of unlikely components being pruned away naturally, in the
light of new observations. This evident in Fig. 4.5d.

DA-BSP considers all possible associations and then adjusts the weights of the
components accordingly whereas other approaches like BSP-uni and BSP-mul perform
some kind of simplifying assumption on data association. BSP—uni assumes that with
probability 1—e an oracle tells it the correct component of the prior as well as correct data
association. Under extremely mild or no perceptual aliasing, € is close to 0. BSP-mul on
the other hand considers correct data association but with respect to all components of
the prior. Here, the number of components can not increase. Naturally, DA-BSP when
compared with BSP-uni and BSP-mul, trades computation efficiency with correctness
of data association. The quantitative aspect of such a comparison is shown in the
Tab. 4.2. Another criticism against DA-BSP could be its prohibitive cost when non-
myopic planning is considered. Exponential blowup of computational complexity as the
planning horizon increases is an issue not specific to DA-BSP. Unfortunately, DA-BSP
can not solve or even reduce this burden. Nevertheless, due to parsimonious data
association the additional cost of DA-BSP may not be significantly more. This is also
depicted in the Tab. 4.2.

Another unique aspect of DA-BSP is that the weights of the components are adjusted
as is suitable after considering all future observations in both mypoic and non-myopic
setting. Based on the configuration of the environment, a longer planning horizon may
enable quicker disambiguation and consequently reduced KL-cost. In Fig. 4.6, we see
how the number of components as well as this cost varies across different epochs of
DA-BSP and also under various planning horizons.

It might appear that DA-BSP is hopelessly expensive in terms of computational
efforts and non-trivial pruning techniques might be required to make it applicable in

any realistic scenario. However, quite the contrary is true. Realistic scenarios typically
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(d) GMM weights of corresponding beliefs in DA-BSP at the end of epochs
{0,1,4,8,12,18,24}.

Figure 4.5: (a)-(c) Evolution of inferred belief as decision epoch progresses with L = 3; epochs depicted are
{4,18,24}. They depict evolution of inferred belief, for different planning algorithms, i.e. DA-BSP, BSP-uni and
BSP-mul, respectively. GMM components and associated weights are designated with different colors. Ground
truth robot position is indicated with . For clarity, the detected scene(s) are shown in different colour. In case
of BSP-mul and BSP-uni, this particular instance of planning leads to catastrophically bad data association.
(d) Evolution of GMM components weights during these epochs. Note that the number of components increases
as well as decreases and eventually goes to 1. Here, planning horizon is L = 3.
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Algorithm Epoch L=1 L= Inference
t(s) maa 1 DA t(s) Mg ™ DA t(s) nae M DA

1 2.60 0.11 4.00 v | 9557 0.08 595 v |[0.80 0.22 4.00 Vv

2 1.21 0.29 2.00 v | 575 013 137 v ||0.05 - 4.00 -

4 1.00 0.35 2.00 v | 4.29 - 100 - ||0.61 0.50 2.00 Vv

DA-BSP 8 0.11 - 1.00 - 0.35 - 100 - | 0.02 - 1.00 -
12 390 0.11 480 v |191.48 0.08 6.79 v | 1.16 0.28 4.20 Vv

16 2.62 0.12 3.03 v | 3.58 - 3.02 - |0.60 0.11 4.60 Vv

19 3.14 0.09 260 v | 8216 0.04 6.10 v |[094 0.14 6.60 Vv
t(s) Eea DA t(s) I DA t(s) [ DA

1 0.43 0.90 X 2.19 - - ]/ 0.20 1.00 v

2 0.15 - - 1.43 0.86 x || 0.03 - -

4 0.25 1.00 v | 451 0.98 x || 0.17 1.00 v

BSP-uni 8 0.15 - - 1.10 - - | 0.05 - -
12 0.26 1.00 v | 3.90 - - ] 017 1.00 v

16 0.16 - - 1.11 - - 0.08 - -

19 0.30 1.00 v | 124 - - || 017 - -
t(s) Eea DA t(s) Eea DA t(s) [ DA

1 2.74 0.15 x | 34.33 0.18 x |/ 0.86 0.80 X

2 2.01 0.27 x| 20.84 0.40 x || 0.03 - -

4 1.66 0.23 X 4.14 - - 0.77 0.20 X

BSP-mul 8 0.77 - - 1.54 - - || 0.18 - -
12 0.80 0.80 X 1.52 - - 0.81 0.20 X

16 2.33 0.27 X 14.39 - - 0.33 - -

19 1.70 0.63 x | 38.33 0.82 x | 0.48 - -

Table 4.2: Comparing DA-BSP against BSP—-uni and BSP-mul in several steps of planning and inference, with
L =1and L = 3. The times in seconds spent in planning and in inference is denoted by t, while average modes
are shown by m. DA signifies correct data association; refer Sec. 4.2. Values shown here are for average of 5
random runs.
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Figure 4.6: Evolution of belief as decision epoch progresses during DA-BSP planning. Average number of
components in the belief mixtures and the K L, metric are depicted in left and right respectively.
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Algorithm Epoch o=0.20 o =0.05 c=10"1

t(s) Nda n t(s) Nda m t(s) Nda M

1 14.88 (6.80) 0.11 (0.10) 2.60 (0.89) || 16.02 (7.74) 0.12 (0.08) (2.22) || 14.27 (8.79) 0.15 (0.09) 4.40 (2.19)
2 521 (4.78)  0.50 (0.34) 1.75 (0.75) || 5.26 (4.87)  0.50 (0.34) (0.93) || 7.60 (5.74)  0.21 (0.10) 2.50 (0.68)
DA-BSP 6 0.37 (0.20)  0.20 (0.45) 1.00 (0.00) || 0.38 (0.19) 0.20 (0.45) 1.00 (0.00) || 0.50 (0.17)  0.60 (0.55) 1.00 (0.00)
13 13.39 (4.02) 0.29 (0.23) 2.13 (0.51) | 52.49 (41.63) 0.17 (0.13) (1.58) | 114.35 (71.18) 0.10 (0.09) 13.91 (6.80)
16 243 (4.49) 0.18 (0.26) 1.70 (0.45) | 8.58 (9.72) 0.34 (0.20) (2.03) | 949 (8.34)  0.12 (0.06) 3.37 (1.87)

Table 4.3: Evaluating DA-BSP in several steps of planning, under different pruning thresholds of o =
{0.2,0.05,10~19}. The times in seconds spent in planning is denoted by t, while 14, and 7 show weight
of correct association and averaged number of modes, respectively. Values shown here are for average of 5
random runs while standard deviation is depicted within the parenthesis. Note that 5% threshold is sufficient
in this case to perform equivalently with almost unpruned DA-BSP with o = 1010,

Algorithm Epoch e=0.25 e =0.50 e=0.75 e =1.00
t(s) £ea t(s) &ea t(s) €ca t(s) &ea
1 1.14 (0.23) 0.78 (0.43) || 1.08 (0.33) 0.90 (0.14) || 1.14 (0.30) 0.96 (0.06) || 1.17 (0.34) 0.92 (0.08)
BSP-uni 6 0.13 (0.08) - () 0.38 (0.33) - () 0.20 (0.10) - () 0.23 (0.25) - ()
12 1.17 (0.61) 0.76 (0.43) || 1.30 (0.47) 0.59 (0.54) || 0.97 (0.60) 0.54 (0.50) || 1.02 (0.63) 0.36 (0.50)
18 1.23 (0.60) 1.00 (0.00) || 1.04 (0.74) 0.52 (0.49) || 0.60 (0.58) 0.37 (0.51) || 0.46 (0.23) 0.20 (0.45)

Table 4.4: Evaluating non-myopic BSP-uni in several steps of planning and inference, under different ran-
domizations of € = {0.25,0.5,0.75,1.0}. Recall that € is the probability with which BSP-uni chooses a random
association out of all plausible ones. The times in seconds spent in planning is denoted by t, while average correct
association is denoted by £.,. Values shown here are for average of 5 random runs while standard deviation is
depicted within the parenthesis.

do not have persistent ambiguity at each step of navigation, hence the weights of many
components drop down naturally to afford an easy approach of pruning. Also DA-BSP
is not sensitive to such a pruning parameter o. Effect of 0 on DA-BSP is shown in the
Tab. 4.3.

In the presence of data association challenges, the quality of planning can be roughly
assessed by considering if at least one of the posterior contains correct data association.
This is represented by DA in the Tab. 4.2. Here, 14, which also considers the weight
of such associations, is also shown. Naturally, reasoning over all possible associations
results in greater computational effort. We measure the run-time of the algorithm as a
proxy for effectiveness. Both these measures along with the number of hypotheses in
the beliefs are shown in the Tab. 4.2 where we can see the effect of non-myopic DA-BSP

with two different planning horizons.

4.4 Highly-aliased simulated office scenario

To demonstrate our concept in a more challenging scenario under high level of perceptual
aliasing, we considered a Gazebo-based simulation of a Pioneer robot in an aliased
two-floor office room environment. The robot is fitted with realistic sensors enabling
laser scans and odometry estimation. Apart from the implementation mentioned in the
Section 4.1, we use ICP for laser scan matching.

The scenario is as shown in Fig. 4.7a. Unless stated otherwise, we will use natural
numbers to denote specific places in this scenario as it is depicted and notation z — y to
show a path from x towards y. The two floors are identical except that the floor-2 has
an additional printer p; (Fig. 4.7a). Additionally, each floor has significant perceptual

aliasing within itself due to identical cubicles and self-similar corridors. However, at the
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end of the corridors, there could be disambiguating feature present such as a vending
machine and sofa at one end and a printer at the other. The goal for the robot is to
reach the cabin ¢; (Fig. 4.7a) and to disambiguate between the floors. Initially the robot
wakes up to find itself either of the places 1 or 6 (facing 2 and 7 respectively). Hence its
initial belief is modelled as a four-component GMM (two for each floor) whereas the
ground truth is at 1 i.e., the robot actually is at 1. Throughout this section, we will use
green colour and yellow colour to denote the ground truth and the aliasing respectively.

Consider that the robot starts at 1 (Fig. 4.7a), thus initial belief has mean at this
position. A forward action to 2 (Fig. 4.7a). This action can be used to propagate the
initial belief. Subsequently, the prior and the propagated (means at 1 and 2 respectively)
covariances are shown in Fig. 4.10a. The area of the ellipses equals the actual 2¢
covariance. The laser scan obtained for the belief update is shown in Fig. 4.9b, where
the green coloured scan denotes the actual scan obtained. Note that from a different
view point a similar scan is obtained (shown in yellow). This is due to the aliasing nature
of the environment and considering this aliasing scan within our planning-inference
framework (DA-BSP) gives rise to two components in the posterior belief, each of which
are weighted according to the corresponding likelihood for the respective scans to be
obtained. See Fig. 4.10b.

Starting form the positions 1 or 6 there are many possible paths to reach the goal
(cabin ¢; (Fig. 4.7a)). We would like to show two such paths. The shortest path is
6 — 14 — 16 — 12 (Fig. 4.7a). However it leads to an increase in the number of
modes and on reaching the the goal, robot is uncertain of the floor it is in. As seen
previously (e.g., Fig. 4.10), the modes increase due to the highly aliasing environment.
Now consider a longer path 1 -2 -3 -4 =5 — 13 — 12 — 15 (Fig. 4.7a). Let
us call this the DA-BSP path. While following 1 — 2 and 2 — 3, due to the aliased
cubicles the number of components increase from 4 to 8. See Figures 4.7a to 4.7¢) for
the corresponding mean positions of the robot. Intra-floor disambiguation occurs along
the paths 3 — 4 and 8 — 9. This is because of unique features present viz., the sofa
and the printer for these respective paths. Similarly, along 4 — 5, the components
are reduced to 2 (in Fig. 4.7e) and then increases again to 4 along the paths 5 — 13
and 13 — 12 (in Figures 4.7f and 4.7g respectively). Full disambiguation resulting in a
uni-modal belief occurs at 15 due to the presence of the unique printer, p; (Figure 4.7a).
Fig. 4.9 depicts the evolution of weights along both the paths.

In Fig. 4.8, we see how the different components of the belief and the respective
weights evolve when following DA-BSP path. When planning with horizon L = 2, the
components increase in number and retain similar weights (E=2), while subsequent
discrimination (E=3) and reduction within the components (e.g., E=5) leads eventually
to full disambiguation (E=8). Fig. 4.8b shows the cardinality of components in the
GMM during planning with different horizons viz., L = {1,3,5}. It can be seen that
the graph gets steeper with increasing L. For a specific path and depending on the

configuration of the environment, a longer planning horizon might help us disambiguate
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(g) epoch 7 (h) epoch 8

Figure 4.7: Fig. 4.7a Two-floor aliased office environment in a Gazebo simulator. p; and p2 denote the printers
while 1 and 6 are the mean positions in each floor for the initial four-component GMM belief. Figures 4.7b till
4.7h show the mean positions (modes) of the robot for each step of the DA-BSP path. Green denotes the ground
truth while yellow the aliasing position.

40



Wi ght s
L
Components #

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epochs Epochs
(a) Weights & (b) components of GMM

Figure 4.8: (left) Evolution of weights of the components in the GMM after inference for L = 2. (right)
Average number of components in the belief mixtures for different planning horizon.
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Figure 4.9: (left) Evolution of weights of the components of the belief when following the shortest path versus

that following the DA-BSP path. (right) Laser scans at ground truth and aliased position (green and yellow
respectively).
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Figure 4.10: Prior belief is propagated according to the motion model. Within the subsequent propagated
belief, there are perceptually aliased laser scans observed. Here, 20 covariance is depicted with each ellipse.
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Algorithm Epoch L=2 L=4 Inference

0 Ogei) 08 (ae) 06 (jaai)
2 29345 (0.13,8) | 733.67 (0.49,2) || 29.40 (0.12,8)
papse 3 262.37 (0.25,4) | 557.57 (0.25,4) || 26.80 (0.12,8)
5 10.05 (0.254) | 11595  (1,1) | 2.40 (0.26,4)
7 247 (1) | 257 (11) | 146 (1,1)
t(s) n t(s) n t(s) n
2 7.04 1 18.96 1 117 1
.3 1.23 1 2.20 0 0.77 0
BSP-uni 4 1.04 0 1.90 0 0.56 1
7 0.47 0 0.50 0 0.46 0

Table 4.5: Evaluating DA-BSP in several steps of planning and inference, for L = 2 and L = 4. The times in
seconds spent in planning and in inference is denoted by t, while m denotes average modes. 14, measures the
level of aliasing whereas DA is a binary variable denoting correct or wrong association.

Algorithm Epoch Inference
t(s) §ea
2 4.10 (0.42) 0.60 (0.54)
BSP-uni 3 0.80 (0.12) 0.60 (0.54)
5 0.53 (0.14) 0.80 (0.44)
7 0.42 (0.09) 0.20 (0.44)

Table 4.6: BSP-uni in 5 different runs. BSP-uni can be seen as a very drastic pruning where data association
may or may not be correct. This is seen from the & values (for 5 random runs). Standard deviation are
mentioned within the parenthesis.

faster as can be seen from Fig. 4.8b. Note that full disambiguation occurs at E=8 for
myopic planning (L = 1). Thus, for L = 5 which can project 5 steps in the future, such
a disambiguation occurs from E=4 onwards. L = 3 lies somewhere in between where
the full disambiguation occurs from E=6 onwards.

Tab. 4.5 compares DA-BSP with BSP-uni at different epochs of planning and
inference for planning horizons of L = {2,4}. Here, the DA-BSP path is considered.
Recall that 74, stands for the weight of the component corresponding to the ground
truth. For example for E=2, DA-BSP inference results in 8 modes arising from 7 other
observations that alias the ground truth. Subsequently, n4, = 0.12. In the case of
BSP—-uni the metric £, measures how many times the correct association was made.
Thus, the table shows that for all random runs there are instances where BSP—uni fails
due to catastrophically bad data association. For example, at E=7, where &., = 0 the

robot always infers itself to be at a wrong place.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a unified framework for robust perception in planning as
well as inference. State-of-the-art belief space planning (BSP) approaches typically
consider data association to be given and perfect. However, such an assumption is
less appropriate in presence of localization uncertainty while operating in ambiguous
environments, where two scenes could be similar in appearance when observed from
appropriate viewpoints. In contrast with such state of the art, here we developed
a data association aware belief space planning (DA-BSP) approach that relaxes the
data-association assumption by incorporating reasoning regarding DA within BSP. In
the context of passive approach with the observations provided, it results in more robust
inference. On the other hand, in the context of active approach where planning needs
to consider all possible future observations, this provides better action selection such
that catastrophically bad inferences and (if possible) actions leading to ambiguities
are avoided. As such, this work is a unified framework for robust active and passive
perception. DA-BSP considers data-association in a principled rigorous way with the
belief space planning. It is a more faithful representation of an aliased environment
since the number of components can increase as well as decrease. Though this increases
the computational burden of planning, it is both necessary for ambiguous environments
and is still practically applicable, as shown through numerous experiments in both
a realistic Gazebo simulation as well as in real experiment with the Pioneer robot
platform. Additionally, DA-BSP degenerates to usual approaches in the presence of
helpful assumptions such as under very small localization uncertainty and under lack of
ambiguities in the environment. In other words, DA-BSP is a rigorous holistic approach

to consider data-association in the context of belief space planning.

5.1 Future Work

In this thesis we incorporated reasoning regarding DA within BSP. While this is a
novel work by itself there is scope for further improvement/extension of the framework

developed. Given below are few such directions.
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1. In this work, we assume that the environment that the robot operates upon is
known/pre-mapped. The DA-BSP framework can be extended to a general SLAM

framework where the environment itself is partially mapped or unknown.

2. Multi-robot DA-BSP is a natural extension of the single robot case, with numerous
advantages compared to the latter. Yet, multi-robot collaboration is a challenging
problem: To perform cooperative inference, each robot needs to determine what
information to share with other robots, and to correctly associate information
received from nearby robots with appropriate random variables. Building upon
our DA-BSP approach, we propose an active case, reasoning about robot actions
that will facilitate better collaboration between robots in previously unknown

perceptually aliasing environments.

3. In aliasing environments, it becomes important to reason about the probability
of each scene or object to be observed from a view point. This is because only
objects that are likely to be observed should be considered while we reason about
DA. This probability, also called the event likelihood depends on the environment
model we assumed this term to be given. However, a more general approach is to
determine this term from the environment that is being operated upon. A possible

avenue for future work is to investigate such a general representation.

44



Chapter 6

Appendix

List of Publications

Publications based on this Master’s research:

1. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “Robust Active Perception

for Belief Space Planning in Perceptually Aliased and Uncertain Environments,
in The 5th Israeli Conference on Robotics (ICR), Herzliya, Israel, April 2016

2. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “Towards data association

)

aware belief space planning for robust active perception,” in Al for Long-term
Autonomy, workshop in conjunction with IEEE International Conference on

Robotics and Automation (ICRA), Stockholm, Sweden, May 2016

3. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “DA-BSP: Towards Data
Association Aware Be-lief Space Planning for Robust Active Perception,” in
European Conference on Artificial Intelligence (ECAI), The Hague, Netherlands,
September 2016

4. S. Pathak, A. Thomas, A. Feniger, and V. Indelman. “ Robust Active Perception
via Data-association aware Belief Space Planning,” arXiv:1606.05124 , 2016

5. S. Pathak, A. Thomas and V. Indelman. “Nonmyopic Data Association Aware

)

Belief Space Planning for Robust Active Perception,” in International Conference

on Robotics and Automation (ICRA 2017)

6. S. Pathak, A. Thomas and V. Indelman. “A Unifed Framework for Data Asso-

i

ciation Aware Robust Belief Space Planning and Perception,” in International

Journal of Robotics Research, submitted
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