Qualitative Belief Space Planning via Compositions

Itai Zilberman

Under the supervision of Assoc. Prof. Vadim Indelman and Prof. Ehud Rivlin

MSc Seminar, January 23, 2022

590

・ロト ・合ト ・モト ・ モト - モ

Introduction - Autonomous Systems

Introduction - common problems in robotics

イロト イボト イヨト イヨト

- Qualitative Belief Space Planning via Compositions
- ► Compositions Calculi
- ▶ Summary and Conclusions

Metric Approaches

- Classical robotics applications rely on accurate metric estimations of the environment and robot's location to accomplish their aims.
- Big optimization problems, noise-sensitive

While maintaining accurate information is often essential, it might be unnecessary in some cases.

Qualitative Approaches - Motivation

Consider the following living-room scene:

- Relying on coarse relationships between the different objects may be sufficient to maneuver within the room successfully
- These relationships are known as Qualitative Spatial Relationships or QSR in short

Qualitative Approaches - Motivation

The map can be described through qualitative relationships between objects (triplets in our case):

Flowerpot relative to sofa-table frame: "Middle-Right"

Qualitative localization might be good enough in some cases:

Qualitative Approaches - Motivation

Flowerpot relative to sofa-table frame: "Middle-Right"

charger relative to table-flower pot frame: "Middle-Left"

charger relative to sofa-table frame: "**Top-Right**"

Given two source triplets, we can conclude a third one under some conditions. This operation is known as **Composition**.

Partitioning Types

- ▶ There are several partitioning types in the literature.
- In general, each triplet can be defined based on a different partitioning.

TPCC

EDC

Sac 9/57

Qualitative Approach - pros and cons

Pros:

- Noise robustness suitable for low-cost platforms
- Breaking the original problem into small ones
- Sparse map representations
- Sometimes it's good enough

► <u>Cons</u>:

- Less accurate
- Limited to specific tasks

Related Work

Paper	Localization	Mapping	Planning
Levit1990	>		
Freksa1992a		>	
Freksa1992b		>	
Schliender1993	<		
Schlieder1995		>	
Wagner2004	<		
Moratz2011		\checkmark	
Mossakowsky2012		\checkmark	
McClelland2014	 Image: A set of the set of the	>	
McClelland2016	~	>	
Padget2017		\checkmark	
Padget2018			\checkmark
Mor2020	\checkmark	\checkmark	

Qualitative Belief Space Planning via Compositions

- ► Compositions Calculi
- ► Summary and Conclusions

Qualitative BSP - Contributions

- ► A first-of-its-kind Qualitative Belief Space Planning formulation
- ▶ Compositions incorporation to improve results
- ► A novel cost function that globally measures metric path length

Plan-act-sense-infer framework

- We focus on the planning phase
- We formulate the problem as Belief Space Planning (BSP), considering a qualitative framework

Basic Terms and Notations

Notations:

Robot's state at time step t , relative to frame F_t	$\mathcal{S}^{F_t:X_t}$
For example	$\mathcal{S}^{AB:X_t}$
Set of Robot's States between time steps t and t'	$\mathcal{S}^{X_{t:t'}}$

<u>Notations</u>:

State of the triplet τ	$\mathcal{S}^{ au}$
For example	$\mathcal{S}^{AB:C}$
Set of available triplets' states at time t (where: $\mathcal{M}_t \triangleq \{\tau_1, \dots, \tau_{m_t}\})$	$\mathcal{S}^{\mathcal{M}_t}$

<ロ> <四> <四> <四> <三</p>

Frame's Scale: the global metric distanse between the two landmarks creating the frame.

Notations:

Global scale of frame F	\mathcal{S}^F
For example	\mathcal{S}^{AB}
Set of available frames' scales at time t (where: $\mathbb{F}_t \triangleq \{F_1, \dots, F_{p_t}\})$	$\mathcal{S}^{\mathbb{F}_t}$

 Essential for evaluating future observation's likelihood and metric path's length

Qualitative Action

Enables the robot to move from one qualitative state to another, considering a specific reference frame.

• We assume a probabilistic transition model, given by: $\mathbb{P}(\mathcal{S}^{F_t:X_{t+1}}|\mathcal{S}^{F_t:X_t}, a_t^q)$

Link Action

Allows the robot to switch between different reference frames.

• We assume a probabilistic transition model, given by: $\mathbb{P}(S^{F_t:X_t}|S^{F_{t-1}:X_t}, S^{AB:C}, a_t^{\text{Link}}), \text{ where } a_t^{\text{Link}} = \{AB, BC\}$ Consider k as the current time step. The belief defined as a posterior distribution over over the states of the robot, landmark triplets, and frames' scales:

$$b_k \triangleq \mathbb{P}(\mathcal{S}^{X_{1:k}}, \mathcal{S}^{\mathcal{M}_k}, \mathcal{S}^{\mathbb{F}_k} | \mathcal{H}_k)$$

H_k denotes the history of applied actions, measurements and data associations:

$$\mathcal{H}_{k} \triangleq \{a_{1:k}, z_{1:k}, \beta_{1:k}\}, \text{ where } a_{t} \triangleq \{a_{t}^{q}, a_{t}^{\text{Link}}\}, \forall t \in \{1, \dots, k\}$$

Considering a future horizon of L look-ahead steps, the objective function defined as:

$$J(b_k, a_{k:k+L-1}) \triangleq \mathbb{E}_{z_{k+1:k+L}} \left[\sum_{l=1}^{L-1} c_l(b_{k+l}, a_{k+l-1}) + c_L(b_{k+L}) \right]$$

We aim to find an optimal sequence of actions, that minimizes the objective:

$$a_{k:k+L-1}^* = \operatorname*{arg\,min}_{a_{k:k+L-1}} J(b_k, a_{k:k+L-1})$$

Qualitative BSP - Belief Tree

 Planning is done by constructing a belief tree, reflecting the propagated belief considering various possible future developments

Qualitative BSP - Belief Update Step

▶ Given the candidate tuple a^q_t, β_t, z_t, a^{Link}_t, we update the belief recursively, as follows:

Qualitative Motion Model:

Measurement Model:

Qualitative BSP - Belief Update Step

Composition - Spatial Information Propagation

- Given two triplets, we can evaluate the third
- Source triplets must share two landmarks in common

Compose(AB:C, BC:D) = AB:D

- Incorporating compositions within our algorithm further improves planning results in two ways:
 - It allows us to deal with a broader range of scenarios, i.e., in some cases, a plan can be found only via compositions
 - ▶ We can find better plans, i.e., ones with a lower objective

Link-Graph

- A topological representation of the qualitative map
- Triplets are nodes, and frames are edges

Definition 1. A Link-Graph is a graph G = (V, E) where:

- Each node v ∈ V represents a triplet of landmarks, i.e., v = {L¹, L², L³}.
- 2) There is an edge $e = (v_1, v_2) \in E$ if and only if $|v_1 \cap v_2| = 2$ (i.e., nodes v_1 and v_2 share exactly 2 landmarks in common).

For example:

Link-Graph and robot's mobility

Link-Graph represents mobility between frames:

Lemma 2. A direct *Link* from F_1 to F_2 is feasible based on a triplet τ , if $F_1 \subseteq \tau$, $\forall i \in \{1,2\}$, or, in terms of a *Link-Graph*, if the edges representing F_1 and F_2 are connected to the node representing τ .

 Conclusion: A Link-Graph's path encodes a feasible sequence of link actions

Link-Graph and Compositions

 Conclusion: A Link-Graph's path encodes a feasible sequence of link actions

Using compositions, we can augment our Link-Graph and improve connectivity:

Consequently, in some scenarios, a valid plan can be found exclusively using compositions

Qualitative BSP via Compositions

Cost Functions

Expected number of qualitative states:

$$c_t(b_t, a_{t-1}) = \mathbb{E}\left[d(\mathcal{S}^{F_{t-1}:X_{t-1}}, \mathcal{S}^{F_{t-1}:X_t}) | \mathcal{H}_t\right]$$

Where d(s₁, s₂) represents the minimum number of states traversals required to travel from state s₁ to s₂.

Expected Metric Path Length:

$$c_{t}(b_{t}, a_{t-1}) = \\ \mathbb{E} \left[\mathbb{E} \left[\left\| \mathcal{X}^{F_{t-1}:X_{t}} - \mathcal{X}^{F_{t-1}:X_{t-1}} \right\|_{2} \cdot \mathcal{X}^{F_{t-1}} | \mathcal{S}^{F_{t-1}:X_{t}}, \mathcal{S}^{F_{t-1}:X_{t-1}}, \mathcal{S}^{F_{t-1}}, \mathcal{H}_{t} \right] \right]$$

► Which can be simplified using the Low of Total Expectation: $c_t(b_t, a_{t-1}) = \mathbb{E} \Big[\left\| \mathcal{X}^{F_{t-1}:X_t} - \mathcal{X}^{F_{t-1}:X_{t-1}} \right\|_2 \cdot \mathcal{X}^{F_{t-1}} | \mathcal{H}_t \Big]$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 33 / 57

Result example 1

≣ ્ર 34/57

Result example 2 & Some statistics

		Cost 1 (# q-states)		Cost 2 (metric path length)	
		WO Comp	W Comp	WO Comp	W Comp
All	Plan exists	66%	78.4%	66%	78.4%
${f Tests}\ (2500)$	Executed successfully	59.2%	70.8%	60.1%	72%
Comparable & Different Tests (10%)	Average executed cost	6.65	5.33	2.66	2.32

►

Qualitative Belief Space Planning via Compositions

• Summary and Conclusions

Reminder - The Composition Operator

- Given two triplets, we can evaluate the third
- Source triplets must share two landmarks in common

Compose(AB:C, BC:D) = AB:D

Reminder - The Composition Operator

- Given two triplets, we can evaluate the third
- Source triplets must share two landmarks in common

Compose(AB:C,CD:E) = ?

38 / 57

Composition topological Regime - Lemma

The following Lemma formulates the above:

Lemma A triplet τ can be composed using a single composition operation (or directly) based on the triplets τ_1 and τ_2 , if the following hold:

1) $|\tau_1 \cap \tau_2| = 2$ 2) $\tau \subset \tau_1 \cup \tau_2$

• Examples using Composition-Trees representations:

What if a source triplets required to compose a target one is not available?

Contributions

- We address two questions arising from the above. Given an initial set of source triplets:
 - ► Q1: What new triplets can be composed?
 - ► Q2: What is the optimal sequence of compositions operations to create a target triplet?

A paper regarding this part was accepted to RA-L -"Incorporating Compositions in Qualitative Approaches"

Q1: What triplets can be composed?

We aim to define a sufficient condition on a source set, such that any triplet within the underlying landmark space can be composed.

Landmark Space:

Definition 1. Let \mathcal{T} be a set of triplets. The Landmark Space of \mathcal{T} , denoted by $\mathcal{L}(\mathcal{T})$, is defined as:

$$\mathcal{L}(\mathcal{T}) = \bigcup_{\tau \in \mathcal{T}} \tau$$

$$\mathcal{T}: (ABC) (BCD) (ADE) \longrightarrow \mathcal{L}(\mathcal{T}) = \{A, B, C, D, E\}$$

Q1: What triplets can be composed?

Definition 2. Let \mathcal{T} be a set of triplets. A *Cut* $C = (\mathcal{T}_L, \mathcal{T}_R)$ of \mathcal{T} , is a partition of \mathcal{T} into two disjoint subsets, \mathcal{T}_L and \mathcal{T}_R , s.t. $\forall \tau \in \mathcal{T}$, either $\tau \in \mathcal{T}_L$ or $\tau \in \mathcal{T}_R$, but not both.

$$\mathcal{T}_L: ABC BCD$$

$$\mathcal{T}_R$$
: ADE

► <u>α-common Cut</u>:

Definition 3. Let $\overline{\mathcal{T}}$ be a set of triplets and let $\alpha \in \mathbb{N} \cup \{0\}$. A *Cut* $C = (\mathcal{T}_L, \mathcal{T}_R)$ of \mathcal{T} is called α -common if $|\mathcal{L}(\mathcal{T}_L) \cap \mathcal{L}(\mathcal{T}_R)| \geq \alpha$.

In the example above:

 $|\{\mathcal{L}(\mathcal{T}_L) \cap \mathcal{L}(\mathcal{T}_R)\}| = |\{A, D\}| = 2$

Composable set:

Definition 4. Let \mathcal{T} be a set of triplets and let \mathcal{L} be a
Landmark Space. We say that \mathcal{T} is Composable under \mathcal{L} ,
if $\mathcal{L} \subseteq \mathcal{L}(\mathcal{T})$, and one of the following holds:1) $|\mathcal{T}|=1$.2) $|\mathcal{T}|>1$ and there is a 2-common Cut $C=(\mathcal{T}_L, \mathcal{T}_R)$
of \mathcal{T} , s.t. \mathcal{T}_L is Composable under $\mathcal{L}(\mathcal{T}_L)$ and \mathcal{T}_R is
Composable under $\mathcal{L}(\mathcal{T}_R)$.ABCBCDABC

ペロ> < 同 > < 言 > く 言 > え き うの(44/57 **Theorem 1.** Let \mathcal{T} be a *Composable* set of triplets under the *Landmark Space* \mathcal{L} . Then any triplet $\tau \subseteq \mathcal{L}$ can be composed based on triplets from \mathcal{T} .

45 / 57

Q1: What triplets can be composed?

Proof. We prove Theorem 1 using induction on number of set elements (triplets), $|\mathcal{T}|$.

Base step: Suppose $[T]^{-2}([T] = 1$ is a trivial case). T is *composable under* \mathcal{L} , thus, the only non-trivial Car exists in this case is 2-common. Without loss of generality (WLOG), suppose $T = \{ABC, BCD\}$. Indeed, according to Lemma 1, we can compose ABD and ACD, i.e., all other triplets exist in $\mathcal{L}(T)$ (and thus also in \mathcal{L} , since $\mathcal{L}_{\mathcal{L}}(T)$). Induction step: Suppose any triplet $\tau \subseteq \mathcal{L}$ and be composed based on triples from T, for all $1 \le |T| \le n$. We prove that the same is true for |T| = r+1.

Suppose |T|=n+1 and let $\tau=L_1L_2L_2$ be a triplet in \mathcal{L} . We show that τ can be composed using triplets from \mathcal{T} . Since \mathcal{T} is *Composable* under \mathcal{L} , we are guaranteed that it has a 2-common Cut, (T_L, T_R) , s.t. T_L is *Composable* under $\mathcal{L}(T_L)$ and T_R is *Composable* under $\mathcal{L}(T_R)$.

Suppose, WLOG, that $\{A,B\} \subseteq \mathcal{L}(\mathcal{T}_L) \cap \mathcal{L}(\mathcal{T}_R)$. We examine three possible cases (see illustration in Fig. 4).

 $\begin{array}{l} \underline{Case 1} : \ \|\{I_1, I_2, I_2\} | \cap \{A, B\} \| = 2 \ \text{WLOG}, we assume that <math>I_1 = A$ and $I_2 = B$ and continue examining I_2 . The latter must be in $\mathcal{L}(\mathcal{T}_L)$, or $\mathcal{L}(\mathcal{T}_R)$, or both. WLOG, suppose $I_A = \mathcal{L}(\mathcal{T}_L)$. Thus, we are guaranteed that $\{A, B, L_3\} \subseteq \mathcal{L}(\mathcal{T}_L)$. That and consequently ABI_3 (namely, I_1, I_2, I_3) can be composed according to the assumption since \mathcal{T}_L is Composable under $\mathcal{L}(\mathcal{T}_L)$ and $|\mathcal{T}_L| \leq N$.

 $\begin{array}{l} \underline{Case.2}: \quad \{[J_1, J_2, J_3) \cap \{A, B\}] = 1. WLOG, we assume that <math display="inline">J_{1} = A$ and continue examining L_2, J_3 . If they are both in $\mathcal{L}(T_R)$, we finished (similarly to case 1). Otherwise, WLOG, we assume that L_2 is exclusively in $\mathcal{L}(T_E)$. According to the assumption, we are guaranteed that ABL_2 and ABL_3 can be composed based on T_a and T_R , respectively. Finally, using these two triplets, we can compose AL_2L_3 (Lemma 1), namely, $L_1L_2L_3$.

 $\begin{array}{l} \underline{\operatorname{Case 3}} : & [\{L_1, L_2, L_3\}] = 0. \mbox{ if } \{L_1, L_2, L_3\} \mbox{ and } m \in (\mathcal{T}_L), \mbox{ we finished (similarly to case 1). Otherwise, WLOG, we assume that <math>L_1$ and L_2 are exclusively in $\mathcal{L}(\mathcal{T}_L)$ and L_3 is exclusively in $\mathcal{L}(\mathcal{T}_R)$. According to the assumption, we are guaranteed that ABL_2 and AL_1L_2 can be composed based on \mathcal{T}_L , and that ABL_3 , we can compose AL_2L_3 (Lemma 1). Finally, using AL_1L_3 and AL_2L_3 , we can compose AL_2L_3 (Lemma 1).

I have discovered a truly remarkable proof of this theorem which this margin is too small to contain. 같은 것 같은 Э

We suggest a simple algorithm to address the following problem:

$$T^* \!=\! \mathop{\arg\min}_{T \in \mathbb{T}_{\tau_o}} \sum_{\tau \in T} C(\tau)$$

The cost function takes the following form:

For example, the unit cost accumulates the number of composition operations required to form a target triplet:

 $C(\tau) = \begin{cases} 0, & \text{if } \tau \text{ is a source triplet} \\ 1, & \text{if } \tau \text{ is composed directly using } \tau_L, \tau_R \end{cases}$

Composition-Graph:

The Composition-Graph reflects a direct composition relationship according to the Lemma

イロト イヨト イヨト

Running example:

Landmark Space: $\{A,B,C,D,E\}$ Source set:(ABC)(BCD)Step 1:initialization

49 / 57

Running example:

Running example:

Running example:

Running example:

イロト イヨト イヨト

53 / 57

 For the full algorithm, correctness and complexity analysis, see our paper.

54 / 57

►

- ► Qualitative Belief Space Planning via Compositions
- ► Compositions Calculi

Summary and Conclusions

Conclusions

► Qualitative Belief Space Planning:

- ► A novel Qualitative BSP formulation
- \blacktriangleright Compositions incorporation within our algorithm
- ► A novel cost function

► <u>Compositions Calculi</u>:

- \blacktriangleright Composability a sufficient condition to compose triplets
- ► A first-of-its-kind algorithm to find the optimal compositiontree of a terget triplet

