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Abstract

Planning under uncertainty, also known as belief space planning (BSP), is a crucial
component in many autonomous systems and robotics applications. The aim is to find
an optimal sequence of actions (i.e., plan) to accomplish a predefined task. Usually,
the robot maintains a posterior distribution over the map and its self-locations, known
as belief. A cost function is then defined on the belief as a penalty mechanism. The
chosen plan is the one that most likely achieves the task’s goal while minimizing the cost.
Solving this problem becomes particularly challenging under conditions of uncertainty,
that is, where there may be incomplete or faulty information, and the same actions
may not always produce identical results. While most of the research done in the BSP
domain formulates the problem via metric representation, other alternatives exist. A
less common one is the Qualitative formulation, where the map is represented as a sparse
set of Qualitative Spatial Relationships (QSRs) in independent and local coordinate
frames. QSRs specify the robot’s or landmarks’ locations in terms of qualitative states
(“Middle Right”, “Top Left”, etc.) rather than in an accurate manner. Since this
approach does not aim to achieve an accurate description of the environment in the
first place, it is more robust to noise compared to the metric. Thus, it becomes very
useful in the absence of high-quality sensors. While several qualitative methods for
localization and mapping exist in the literature, so far, only one qualitative work has
addressed the planning problem.

Motivated by the above, in this research, we present a novel qualitative Belief Space
Planning approach, highly suitable for platforms with low-cost sensors and particu-
larly appealing in sparse environment scenarios. Innovatively, our planning algorithm
smoothly incorporates compositions, which enable spatial information propagation be-
tween different QSRs to infer new ones.

However, incorporating compositions within a qualitative approach is not trivial.
For instance, if the information required to perform a specific composition operation is
unavailable, it must be inferred first, possibly via a preparatory composition operation.
This recursive issue becomes more challenging as the amount of information grows. Two
main questions are arising from the above, which remained open: 1. Given an initial set
of qualitative spatial relationships, what new ones can be composed? 2. What is the
optimal sequence of compositions operations to create a target QSR among all possible
sequences? As a preparatory step for our qualitative BSP formulation, we address these
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two questions and hence clarify how compositions should be incorporated in qualitative
approaches in general.
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Abbreviations and Notations

BSP : Belief Space Planning
SLAM : Simultaneous Localization and Mapping
QSR : Qualitative Spacial Relationship
QRM : Qualitative Relational Map
PQRM : Probabilistic Qualitative Relational Map
FSC : Freksa Single Cross partitioning
FDC : Freksa Double Cross partitioning
EDC : Extended Double Cross partitioning
WLOG : Without Loss Of Generality

L : Landmark Space
Li : The ith landmark under L
Ft : Frame Space at time step t

Ft : Frame at time step t

Ft:L : The triplet that locates L relative to frame Ft

X L
Ft

: Metric state of Ft:L
SL

Ft
: Qualitative state of Ft:L

Mt : Set of all available landmark triplets from time step t

SMt : Set of qualitative state of elements from Mt

Ft′ :Xt : The triplet that locates the robot at time step t relative to Ft′

X Xt
F

t
′ : Metric state of Ft′ :Xt

SXt
F

t
′ : Qualitative state of Ft′ :Xt

SX
t
′ :t : Set of all consecutive robot states from time step t

′ to t
X Ft : Metric global frame scale of Ft

SFt : Qualitative global frame scale of Ft

SFt : Set of qualitative scales of frames taken from Ft

aq
t : Qualitative action taken at time step t

aLink
t : Link action taken at time step t

at : A tuple of qualitative and Link actions, both taken at time step t
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βt : Data Association from time step t

zt : Measurement from time step t

□t′ :t : Sequence of consecutive elements from time index t′ to t
Ht : History of all actions measurements up to time t
H−

t : History of all actions up to time t and measurements up to time t−1
P(·) : Probability density function
bt : Qualitative belief at time step t

b
Mt+1
t : Qualitative belief at time step t augmented with composed triplets
R : Robot’s sensing range
c(·) : Cost function
Jt : Objective function at time step t

η : Normalization factor
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Chapter 1

Introduction
1.1 Qualitative approaches

Many robotics applications rely on accurate metric estimations of the environment and
robot’s location to accomplish their aims.

However, in the absence of high-quality sensors, accurate robotics methods en-
counter significant difficulties. These methods, e.g., [1] and [2], are noise-sensitive and
tend to accumulate errors as they rely on metrical estimates of map and robot’s trajec-
tory. Thus, noisy measurements can significantly impair their accuracy, cause undesir-
able drifts, and eventually lead to divergence if the loop-closer fails. Another concern
that arises from the metric approaches is the need to maintain a dense, potentially
large map representation, which often comes at the cost of substantial computational
and memory resources.

While maintaining accurate information is often essential, it might be unnecessary
in some cases, and therefore a burden. For instance, consider an autonomous cleaning
robot operating in a living room, as illustrated in Fig. 1.1.

Figure 1.1: A simplified living room scene. 1-door; 2-sofa; 3-cleaning robot; 4-table;
5-TV; 6-flowerpot; 7-charger. Given known QSRs, the cleaning robot can compose new
ones, which may aid it in accomplishing its task.
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A typical living room contains a relatively small number of meaningful objects.
Relying on rough relative relationships between the different objects, rather than on
exact metric coordinates, may be sufficient for the robot to maneuver within the room
successfully. E.g., if the robot seeks to clean under the table, it must pass safely between
the table’s legs. However, neither the exact metric coordinates of the legs nor the
exact robot’s location between them is required. Moreover, in long-term autonomous
navigation missions, the robot is often required to travel long distances, so relying on
a small number of critical landmarks along the way might be a good enough strategy.
In other scenarios, the nature of the surrounding landscape is relatively monotonic and
poor (for example, a desert or snowy terrain), and any methods that depend on finding
dense features are prone to fail.

Qualitative approaches are motivated by the above. In contrast to the metrical
methods, the environment and robot’s poses are tracked using coarse, relative geomet-
rical relations, known as qualitative spatial relationships (QSRs). Each QSR fixes a
coordinate system based on a small set of landmarks and discretizes space into disjoint
regions, called qualitative states. Then, the location of a target landmark or robot pose
is described in terms of these states. See Fig. 1.2 below for illustration.

Figure 1.2: The Freksa Double Cross (FDC) partition divides the space into 6 disjoint
qualitative states - ”Top Left”, ”Top Right”, ”Middle Left”, ”Middle Right”, ”Bottom
Left”, ”Bottom Right”.

This coarse manner of reasoning about spatial information is potentially more
noise-robust and suitable for low-cost platforms. Also, Qualitative Relational Mapping
(QRM) algorithms produce QSR-based maps that sparsely represent the environment,
in line with the motivation given above. Lastly, the robot can reason about the envi-
ronment and even plan while accounting for partial information involved in a single or
few QSR only, thus saving computational energy.

Since qualitative approaches represent spatial information through a set of QSRs,
each in its own local independent coordinate frame, propagating information between
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different relationships may be essential. The composition operator was first introduced
in 1992 out of this very need [3]. Given a pair of source QSRs, the latter aims to
conclude the third one under some topological conditions. For example, consider a
scenario where the above-mentioned cleaning robot has finished its work and is currently
located between the sofa and the table. Suppose the robot seeks to return to its charger.
Consider τ1 to be a known QSR that describes the flowerpot’s state relative to the sofa-
table frame as ”Middle Right”. Furthermore, consider τ2 to be another known QSR
that describes the charger’s state relative to the table-flowerpot frame as ”Middle Left”.
Given τ1 and τ2, the robot can compose a new QSR, τ3, which describes the charger’s
state relative to the sofa-table frame, as ”Top Right”. For illustration, see Fig. 1.3,
where the sofa, table, flowerpot, and charger, correspond to landmarks A,B,C, and D.
The robot then can use τ3 to infer its target heading.

Figure 1.3: Illustration of the composition operation. Given evaluated qualitative
states for AB:C (”Middle Right”) and BC:D (”Middle Left”), the composition operator
determines which qualitative states for AB:D are feasible (”Top Right” and ”Middle
Right”).

In the first part of this research, we focus on the composition operator alone and
address two main theoretical issues that remain open until today. In the second part, we
introduce a novel BSP approach adapted to the qualitative framework. Our approach
utilizes compositions to further improve results.

Before stating our contributions, we briefly review the most relevant work done in
the field to trace the existing gaps.

1.2 Related Work

QSR applications for various robotics tasks began to emerge about three decades ago.
Naturally, passive aspects were the first to be addressed. A pioneer work by [4] pre-

sented a novel approach for egocentric robot localization based on the relative ordering
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of observed landmarks. [5] and [6] further improved this idea by encoding ordering
views in a more complex hence distinguishable fashion, enabling localization ambiguity
reduction.

Freksa suggested in [3] to represent the qualitative location of a landmark relative to
a boundary line settled by a pair of other landmarks used as a reference. The location
is described as ”to the left” or ”to the right” of the boundary. Freksa further refined
this binary partitioning of space in [7], into quadratic and hexagonal ones, by adding
extra boundary lines perpendicularly crossing the original one. The latter mentioned
partitioning forms known as the ”Freksa’s Single Cross” (FSC) and ”Freksa’s Double
Cross” (FDC). Moreover, in [3], Freksa introduced the binary composition operator
that allows inference about the qualitative relationships between landmarks not directly
observed together.

Schlieder presented in [8] a set of qualitative spatial constraints between oriented
straight line segments formed by pair of landmarks (dipoles) to describe the environ-
ment. [9] and [10] further extended this work and formulated a bipole-based composi-
tion operator. Another important QRM technique was suggested by [11], who developed
a topological graph representation reflecting the adjacency between qualitative regions
that divide the plane.

(a) (b) (c) (d)

Figure 1.4: Four different QSR partitions. (a) binary left-right [3]; (b) Freksa Single
Cross (FSC, [7]); (c) Freksa Double Cross (FDC, [7]); (d) Extended Double Cross
(EDC, [12]);

McClelland et al. took a step forward and introduced a more comprehensive QSR-
based method for autonomous localization and mapping in [13]. The proposed algo-
rithm constructs a graph-based map that encodes the environment using the relative
geometrical layout of landmark triplets. For each triplet, one landmark is estimated
in a local frame defined by the other two. The landmark is associated with one of
several possible qualitative states, considering the FDC partitioning. McClelland ex-
tended his work in [12] by incorporating a method of determining the qualitative state
for landmarks based on a novel set of geometric constraints. The above yielded a new
qualitative spatial partitioning called the ”Extended Double Cross” (EDC). This par-
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tition and those mentioned above are illustrated in Fig. 1.4. In addition, this work
contributed a new composition operator, suitable for triplets, formulated as a look-up
table. Another followed-up paper generalized the latter by developing a probabilistic
QRM method (PQRM, [14]). Mor and Indelman were the first to incorporate stochas-
tic motion model constraints in his formulations, reducing uncertainty levels of both
landmarks and robot trajectory estimations [15]. In addition, the authors contributed
a novel derivation of a probabilistic composition.

While many qualitative methods for localization and mapping have been developed,
active planning approaches are much rarer. Previously mentioned [11] and [12] sug-
gested applying the Dijkstra algorithm on the graph-based maps they developed to
find the shortest path to the desired destination. However, they both proposed only a
general strategy rather than a detailed algorithm. In contrast, Padgett and Campbell
developed a complete qualitative planning paradigm recently in [16]. The proposed
Q-Link is a three-level planning architecture that generates high-level plans over QRM
”links” (edges). It then uses local planners to execute trajectories to enable a robot to
navigate from a start to a goal.

However, even though the Q-Link considered some stochastic aspects, its high-
level mechanism is essentially deterministic and does not exploit the potential of using
compositions.

1.3 Contributions

We shall now briefly review the main contributions of this research.
As we saw in Sec. 1.2, compositions have been formulated in numerous ways in past

works. However, two fundamental questions remain open, which we aim to address in
the first part of this research:

• Given a set of QSRs to start with, one seek to know what new QSRs can be
formed using compositions. Consider the example from Sec. 1.1, given the initial
set of τ1, τ2, and potentially more QSRs, τ3 is only one possible target QSR among
many others. We provide a theoretical derivation to address this question.

• Given a target triplet to compose, in general, they may be several alternatives to
choose the source QSRs. Furthermore, at least one source might be unavailable
and requires additional compositions to form it. This issue may occur recursively.
Namely, there may be multiple composition sequences to form a target QSR,
and it is unclear how to choose the optimal one. In the example, rather than
composing τ3 using τ1 and τ2, we could have chosen a different strategy if the
initial QSRs set was richer. Thus, we develop an algorithm that finds the optimal
sequence of composition operations to compose a target triplet, considering a cost
criterion of interest.
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In the second part, we aim to formulate a qualitative BSP approach that utilizes
compositions. Our contributions in this part are:

• We develop a first-of-a-kind Qualitative Belief Space planning approach. Our
planning mechanism accounts for possible future developments of the robot’s and
world’s state by propagating a corresponding probabilistic distribution. It is not
restricted by deterministic assumptions, in contrast to the methods discussed in
Sec. 1.2, and thus more general.

• We innovatively incorporate compositions in our algorithm, allowing our planning
process to consider qualitative relationships between landmarks that have never
been observed together. We benefit from using these new relationships in two
ways. Firstly, we can plan under challenging scenarios where other algorithms
have failed. Secondly, we are able to find better plans in terms of expected
cumulative cost, i.e., to find shortcuts.

• We introduce the concept of qualitatively estimating global scales of frames.
Namely, we reason about the distances between pairs of landmarks, which form
different reference frames. The distances are evaluated qualitatively in global
terms. This capability is crucial when estimating the likelihood to observe a spe-
cific triplet of landmarks, which may not have been viewed together so far, given
a candidate action to execute.

• We further take advantage of the latter capability and derive a new cost function,
which globally measures metric path length.

10



Chapter 2

Background

In this chapter, we briefly explain several tools and concepts that serve as our work’s
basis. First, we introduce the Belief Space Planning problem considering the traditional
metric formulation. Then, we elaborate on two concepts related to the qualitative field.
The first is the Link action, which is unique to the qualitative framework and widely
used in this work. The second is the Link-Graph, a useful topological representation
for a qualitative map that reflects mobility in terms of Links. Finally, we introduce
the composition operator, allowing spatial information propagation between different
QSRs.

2.1 Belief Space Planning

Belief Space Planning (BSP in short) is a probabilistic decision-making mechanism
based on a belief, i.e., a posterior probability density function (pdf) maintained over
variables of interest, such as the robot poses and the environment’s landmarks.

We shall now concisely formulate the BSP problem, considering a metric space.
Later on, in Sec. 4, we formulate a BSP approach considering a qualitative framework
based on this formulation.

Let xi and Wi denote the robot state and the world state at time step i. Also, let
zi and ui denote the available observation and the control action applied at time step
i. The belief at present time k is defined as:

bk ≜ P(x0:k,Wk|z1:k,u1:k−1), (2.1)

where x0:k ≜ {x0, . . . ,xk} denotes all past robot states from time step 0 to k. Also,
z1:k≜{z0,z1, . . . ,zk} and u1:k−1≜{u0,u1, . . . ,uk−1} represent all the available measure-
ments and past controls until time steps k and k−1, respectively.

At planning, we assume a future horizon of L look ahead steps. Consider the future
time step t∈{k+1, . . . k+L}. we define the objective Jk(uk:k+L) as the cumulative cost
with respect to a candidate control sequence uk:k+L−1:
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J(uk:k+L)=Ezk+1:k+L

[ L∑
l=1

cl(bk+l,uk+l−1)
]
, (2.2)

where cl is the cost considered at the lth future step.

At planning time t, the optimal control sequence is the one that minimizes the
above objective, i.e.:

u∗
k:k+L = arg min

uk:k+L

J(uk:k+L). (2.3)

A more comprehensive formulation of the Belief Space Planning considering a metric
framework can be found in [17, 18].

2.2 Link Action

Navigation with a Qualitative Relational Map (QRM) poses a unique challenge because
all information about the environment is preserved as coarse relationships relative to lo-
cal reference frames (QSRs). As the robot moves, it relies on the QSRs in its immediate
surroundings to locate itself, update the map based on newly acquired measurements,
or plan its next course of action. Thus, the ability to transition between these QSRs’
coordinate frames is essential. First introduced in [16], the Link action, enables the
robot to do exactly that, i.e., to switch between different reference frames. Note that
it is not a natural action in the sense that the robot makes no actual movement but
rather only translates its self-location from one frame to another.

A robot can execute a Link action between two frames only if it has sufficient
information required for the transition. Topologically speaking, sufficient information
might be the triplet relates between the frames, as. For instance, to link from AB

to BC, the robot can rely on the triplet AB:C (i.e., C’s state relative to AB). In a
deterministic setting, as was considered in [16], sufficient information means the triplet’s
state. In a probabilistic setting, it often means a belief over the triplet’s state. The
following Lemma formalizes the above topological rule:

Lemma 2.2.1. A direct Link from F1 to F2 is feasible based on a triplet τ , if Fi ⊆
τ, ∀i ∈ {1, 2}.

To conceptually understand how the robot uses Links during navigation, consider
the example shown in Figure 2.1.
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Figure 2.1: A simple example that illustrates how the robot navigates using Links. At
time step t=2, the robot links from AB to BC to further use BC:D’s state and decide
on its next action towards the goal landmark, D.

Suppose that at time step t=1, a robot is located at the ”Middle Left” state relative
to the frame AB and aims to reach landmark D, where the environment considered
in this example contains the landmarks A,B,C, and D. Moreover, suppose that the
only information the robot has on the environment is AB:C’s and BC:D’s qualitative
states. As a first step, the robot computes an action towards landmark C. Given
its initial state relative to AB, AB:X1=”Middle Left”, and given that AB:C=”Top
Right”, it infers that after ”passing between A and B”, C is likely to be at its left side.
Suppose the robot has executed this action and reached near landmark C. Next, to
reach its goal landmark D, the robot must rely on the only available triplet involving
it, BC:D. Since the latter is given in BC coordinate system, the robot first needs to
locate itself relative to this frame, i.e., to link from AB to BC. Given its current state,
AB:X2=”Middle Right”, and given that AB:C=”Top Right”, the robot deduces that
after the Link, its new location is BC:X2=”Middle Right”. Finally, using the state
BC:D=”Middle Right”, the robot can continue in the same manner and compute its
next action towards D. Such an action might be ”continue straight while keeping C to
your left”.

In this research, we embrace the concept of Link action and widely use it, as we
shall see in Section 4.

2.3 Link-Graph

A Link-Graph is a topological representation of a QRM. First introduced in [16], the
Link-Graph was used for generating high-level plans over a QRM as part of a more
comprehensive planning architecture called Q-Link.

Formally, the Link-Graph is defined as follows:

Definition 2.3.1. A Link-Graph is a graph G = (V,E) where:

1. Each node v ∈ V represents a triplet of landmarks, i.e., v = {L1, L2, L3}.
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2. There is an edge e = (v1, v2) ∈ E if and only if |v1
⋂
v2| = 2 (i.e., nodes v1 and

v2 share exactly 2 landmarks in common).

Link-Graphs are useful representations, as they encode Links’ mobility (i.e., they
visually encode Lemma 2.2.1). Recall from Section 2.2, a Link action between two
frames can be taken (or considered during planning), based on the triplet relating
between the frames. In Link-Graph’s terms, it means that a Link action between two
frames is feasible only if the edges representing these frames are connected through a
node in the graph (implying that the state of the triplet relates between them is known).
For instance, consider a QRM represented by the Link-Graph shown in Figure 2.2.

Figure 2.2: An example of a Link-Graph. An edge exists between every two nodes
representing triplets that share exactly two landmarks in common. For example, ABD
and ADE nodes are connected since A and D are common landmarks.

Based on this QRM, a Link from AD to AE is feasible via the triplet ADE. In
contrast, a Link from AD to DF is not feasible, as the triplet ADF is not represented
in the graph. We extend Lemma 2.2.1 to Link-Graph’s terms as well:

Lemma 2.3.2. A direct Link from F1 to F2 is feasible based on a triplet τ , if Fi ⊆
τ, ∀i ∈ {1, 2}, or, in Link-Graph’s terms, if the edges representing F1 and F2 are
connected to the node representing τ .

One can further conclude from Lemma 2.3.2 that a Link-Graph’s path encodes a
feasible sequence of link actions, where the edges along the path are the different frames,
and the in-between nodes are the triplets the robot relies on to execute the Links.

In this research, we use link graphs for explanatory purposes, as their topological
structure reflects Lemma 2.2.1 (and its follow-up conclusion) visually.
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2.4 Compositions - Spatial Data Propagation

The composition operator, first suggested in 1992 by [3], propagates data from two
overlapping source triplets, τ1=AB:C and τ2=BC:D, to infer the third one τ3=AB:D.
[12] contributed a new composition operator, suitable for triplets, formulated as a look-
up table, as illustrated in Fig. 2.3.

(a) (b)

Figure 2.3: (a) The Extended Double Cross (EDC) partitioning, with enumerated
qualitative states. (b) The composition operator as a look-up table, specifying the
feasible qualitative states of the target triplet, given the states of the pair of source
ones. For example, given the states AB:C=1 and BC:D=5, feasible state of AB:D are
1,5,11,12,17,19.

From a topological point of view, compositions must respect the following lemma:

Lemma 2.4.1. A triplet τ can be composed using a single composition operation (or
directly) based on the triplets τ1 and τ2, if the following hold:

1. |τ1 ∩ τ2| = 2

2. τ ⊂ τ1 ∪ τ2

For example, as was demonstrated above, we can directly compose AB:D using
AB:C and BC:D. The mutual landmarks, B and C, allow us to fix both triplets relative
to the same frame and, hence, infer (compose) relationships between new triplets’
combinations.

[15] formulated the composition as a probabilistic operator, yielding a posterior
distribution over the resulted state:
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P(Sτ3 |H1,H2) =
∑
Sτ1

∑
Sτ2

P(Sτ1 |H1)P(Sτ2 |H2) ·
∫∫

X τ1 ∈Sτ1 X τ2 ∈Sτ2

P(Sτ3 |X τ1 ,X τ2) dX τ1 dX τ2 , (2.4)

where P(Sτ3 |X τ1 ,X τ2) is a simple deterministic geometric model.
In this research, we integrate compositions within our qualitative BSP approach,

considering the formulation from Eq. (2.4). Additionally, we address two main theo-
retical issues concerning compositions calculi, stemming from Lemma. 2.4.1.
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Chapter 3

Incorporating Compositions in
Qualitative Approaches

3.1 Problem Statement

We consider a robot operating in a 2D environment, consisting of a known set of
landmarks, denoted by L. The robot is entrusted with a valuable task, such as planning
its next course of action to reach a desirable destination. It maintains a map consisting
of Qualitative Spatial Relationships (QSRs) between triplets of landmarks. For each
triplet, a target landmark is localized relative to a local landmark-centric frame based
on the other two. A predefined partition divides the space into a finite set of qualitative
states (Fig. 1.4), and the target landmark is associated with one of them, using methods
such as in [14] and [15]. We stress that these methods evaluate the triplets while
assuming data association is solved. Accordingly, we assume the same in this work.

Let T denote the set of triplets evaluated by the robot. In the following, we shall
refer to T as the set of source triplets. We consider only triplets in this work, as
this is the most basic and standard case, and since richer QSRs can always be broken
down into ternary ones. We exclude binary QSRs, as these are relevant when dealing
with complex volumed landmarks (extended landmarks, see [11] and [19]), while we
are assuming point landmarks in order to be aligned with the majority of works in this
field.

As part of the robot’s task, evaluating new triplets via composition may be helpful.
Topologically speaking (recall Lemma. 2.4.1), to compose a target triplet, using a single
composition operation, we need a pair of landmark triplets, such that their intersection
size equals 2 (namely, they share two landmarks in common), and their union con-
tains all three landmarks that form the target triplet (see [12]). The mutual landmarks
allow us to fix both triplets relative to the same frame and hence to infer (compose)
relationships between new combinations of triplets (consisting of landmarks taken from
the union). For example (also given in Sec. 2.4), given the triplets AB:C and BC:D,
where the landmark after the colon is the target one, we can compose AB:D. Similarly,
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using AC:B and CB:D, we can compose AC:D. Note that all ordered permutations
of a given triplet are available using additional unary manipulations, via the operators
”INVERSE”, ”LEFT”, and ”RIGHT” defined in [12]. Consequently, given the triplets
ABC and BCD (and by omitting the ’:’ notation, we mean, no matter the permuta-
tion), we can compose either ABD or ACD (all possible permutations). Hence, from
this point on, we shall omit the colon notation.

One difficulty that may arise when performing compositions stems from recursive
aspects. Consider a target triplet to compose τ . The triplets τ1 and τ2 required to
perform the composition according to Lemma 2.4.1 may not be available (i.e., not
in T ), and therefore, we would have to compose them first. This issue may occur
repeatedly. Consequently, to compose τ , we need to perform a concrete sequence of
composition operations, relying on source triplets from T , that creates τ as a final
outcome.

We aim to address two main issues arising from the above. The first refers to the
initial set of source triplets. Intuitively, given only a sparse set of sources T , we can
compose only some triplets in L or worse, none. For that reason, we first identify and
formulate a sufficient topological condition required for T so that any desired triplet in
L would be feasible to compose (Sec. 3.2.1). The second issue is that there are often
multiple alternatives for generating a sequence of composition operations to create a
target triplet. We propose an algorithm that generates the optimal one in terms of a
predefined cost (Sec. 3.2.2).

3.2 Approach

3.2.1 Composable Set of Triplets

In this section, we establish the term of a Composable set of triplets. We prove that we
can compose any target triplet in the relevant landmark space given a source set T of
this particular topological form.

As a preliminary step, we first define the following auxiliary terms:

Definition 3.2.1. Let T be a set of triplets. The Landmark Space of T , denoted by
L(T ), is defined as:

L(T )=
⋃

τ∈T
τ (3.1)

Note that the Landmark Space of a single triplet set is the triplet itself: L({τ})=τ .

Definition 3.2.2. Let T be a set of triplets. A Cut C=(TL,TR) of T , is a partition of
T into two disjoint subsets, TL and TR, s.t. ∀τ∈T , either τ∈TL or τ∈TR, but not both.

Definition 3.2.3. Let T be a set of triplets and let α∈N∪{0}. A Cut C=(TL,TR) of
T is called α-common if |L(TL)∩L(TR)|≥α.

We are now ready to define the term of a Composable set of triplets.
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Definition 3.2.4. Let T be a set of triplets and let L be a Landmark Space. We say
that T is Composable under L, if L ⊆ L(T ), and one of the following holds:

1. |T |=1.

2. |T |>1 and there is a 2-common Cut C=(TL, TR) of T , s.t. TL is Composable
under L(TL) and TR is Composable under L(TR).

Fig. 3.1 demonstrates the above definitions.

Figure 3.1: Demonstration of definitions 3.2.1-3.2.4. An example for
a set of triplets, T ={ABC,BCD,ADE}, is presented. The Land-
mark Space of T is L(T )={A,B,C,D,E}. The line represents the Cut
C=(TL={ABC,BCD}, TR={ADE}) of T . Both landmarks A and D are com-
mon to the Landmark Spaces L(TL) and L(TR). Thus, C is 2-common. Note that C
is also 1-common and 0-common by definition (but not 3-common). Finally, T is a
Composable set under L(T ) (or any L⊆L(T )), since C is 2-common such that: (1) TL is
Composable under L(TL), since the only non-trivial Cut C ′=(T ′

L={ABC}, T ′
R={BCD})

is 2-common and both T ′
L and T ′

R are Composable under L(T ′
L) and L(T ′

R), respectively
(|T ′

L|=|T ′
R|=1). (2) TR is Composable under L(TR), since |TR|=1.

We now aim to prove that we can compose any triplet τ⊆L, given a Composable
set under L.

(a) (b) (c)

Figure 3.2: An illustration for the three cases described in Theorem 3.1’s proof. (a)
case 1; (b) case 2; (c) case 3; Triplets are shown inside circles. The line represents the
Cut that splits the original set, T , into two disjoint ones, TL and TR (represented by the
clouds), with the {text} specifies landmarks that L(TL) and L(TR) share in common.
Finally, a pair of triplets that points on a third one via black arrow represent that the
latter is directly composed using the first two.

Theorem 3.1. Let T be a Composable set of triplets under the Landmark Space L.
Then any triplet τ⊆L can be composed based on triplets from T .
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Proof.. We prove Theorem 3.1 using induction on number of set elements (triplets),
|T |. Base step: Suppose |T |=2

(
|T |=1 is a trivial case

)
. T is Composable under

L, thus, the only non-trivial Cut exists in this case is 2-common. Without loss of
generality (WLOG), suppose T ={ABC,BCD}. Indeed, according to Lemma 2.4.1, we
can compose ABD and ACD, i.e., all other triplets exist in L(T ) (and thus also in L,
since L⊆L(T )).

Induction step: Suppose any triplet τ⊆L can be composed based on triples from
T , for all 1≤|T |≤n. We prove that the same is true for |T |=n+1.

Suppose |T |=n+1 and let τ=L1L2L3 be a triplet in L. We show that τ can be
composed using triplets from T . Since T is Composable under L, we are guaranteed
that it has a 2-common Cut, (TL,TR), s.t. TL is Composable under L(TL) and TR is
Composable under L(TR).

Suppose, WLOG, that {A,B}⊆L(TL)∩L(TR). We examine three possible cases (see
illustration in Fig. 3.2).

Case 1 : |{L1,L2,L3}∩{A,B}|=2. WLOG, we assume that L1=A and L2=B and
continue examining L3. The latter must be in L(TL), or L(TR), or both. WLOG,
suppose L3∈L(TL). Thus, we are guaranteed that {A,B,L3}⊆L(TL), and consequently
ABL3 (namely, L1L2L3) can be composed according to the assumption since TL is
Composable under L(TL) and |TL|≤n.

Case 2:|{L1,L2,L3}∩{A,B}|=1. WLOG, we assume that L1=A and continue exam-
ining L2,L3. If they are both in L(TL) or both in L(TR), we finished (similarly to case
1). Otherwise, WLOG, we assume that L2 is exclusively in L(TL) and L3 is exclusively
in L(TR). According to the assumption, we are guaranteed that ABL2 and ABL3 can
be composed based on TL and TR, respectively. Finally, using these two triplets, we
can compose AL2L3 (Lemma 2.4.1), namely, L1L2L3.

Case 3 : |{L1,L2,L3}∩{A,B}|=0. If {L1,L2,L3} are all in L(TL) or all in L(TR),
we finished (similarly to case 1). Otherwise, WLOG, we assume that L1 and L2 are
exclusively in L(TL) and L3 is exclusively in L(TR). According to the assumption,
we are guaranteed that ABL2 and AL1L2 can be composed based on TL, and that
ABL3 can be composed based on TR. Using ABL2 and ABL3, we can compose AL2L3

(Lemma 2.4.1).
Finally, using AL1L2 and AL2L3, we can compose L1L2L3(Lemma 2.4.1). ■

3.2.2 Optimal Composition Sequence

As we saw in the previous section, given a Composable set of source triplets under the
Landmark Space L, we can compose any triplet in L. Once we chose a target triplet to
compose, we aim to find an appropriate sequence of composition operations to create it,
considering the recursive aspects discussed in Sec. 3.1. Topologically, such a sequence
can be described as a binary tree representing all compositions required to create a
target triplet. Each tree node represents a triplet to compose, with its child nodes
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representing the triplets pair required to composed it (directly). The root specifies the
target triplet, while the leaves specify source triplets taken from T (the initial set of
source triplets which considered given). We name this binary tree a Composition-Tree.
Its formal definition is given below:

Definition 3.2.5. A Composition-Tree is a binary tree, T=(V ,E), where:

1. Each node vτ ∈V represents a triplet of landmarks τ .

2. Each node vτ ∈V has either two children, vτL ,vτR∈V , representing that τ is com-
posed directly using τL and τR, or none, if τ is a source triplet (in which case, vτ

is a leaf).

See Figs. 3.7e-3.7f for illustration. In general, many topologically suitable trees may
exist for a target triplet. So it is still a question, how to select the best one among all
possibilities.

Formally, consider the set of source triplets T , and a target triplet to compose,
τo. We denote by Tτo the set of all possible Composition-Trees with τo being the root
and leaves taken from T . We aim to find the optimal Composition-Tree, considering all
instances from Tτo , in terms of a predefined cost C (see cost specifications in Sec. 3.2.2).
That is:

T ∗= arg min
T ∈Tτo

∑
τ∈T

C(τ). (3.2)

We propose a three-stage algorithm for solving the above problem, given an initial
set of source triplets, T . First, we initialize a unique topological structure called a
Composition-Graph (Sec. 3.2.2). The graph sets the infrastructure for the cost mainte-
nance regarding the different triplets that exist in L(T ). Next, we show how to update
the graph every time a new source triplet is being considered (Sec. 3.2.2). Finally, given
a query triplet to compose, τo⊆L(T ), we extract from the graph the Composition-Tree
representing the optimal sequence of compositions to form τo. In case no valid sequence
exists, the Composition-Tree will be empty (Sec. 3.2.2).

Alg. 1 summarizes the above. Further aspects regarding the algorithm are analyzed
in Sec. 3.2.3. A comprehensive running example can be found in Sec. 3.2.4.

Figure 3.3: Optimal Composition Sequence - Algorithm description.

21



Composition-Graph Initialization

The Composition-Graph is a useful topological representation that allows propagating
costs between triplets easily. Its exact structure is defined as follows:

Definition 3.2.6. A Composition-Graph is a bipartite graph, G=(Vτ ,Vq,E) where:

1. Each node vτ ∈Vτ represents a triplet of landmarks τ .

2. Each node vq∈Vq represents a sub-space of four landmarks (a quartet) q.

3. There is an edge e=(vτ ,vq)∈E, where vτ ∈Vτ and vq∈Vq, if and only if τ⊂q.

The above representation is motivated by Lemma 2.4.1, where each quartet node
connects exactly four triplets nodes with a direct composition relationship. Meaning,
each pair of triplets taken from this foursome can be used to compose one of the
remaining two, using a single composition. Alg. 2 shows how to construct and initialize
a new Composition-Graph, considering a given Landmark Space L . An illustration for
the Composition-Graph initialization can be found in Fig. 3.7a. Note that we initialize
a complete Composition-Graph, that is, it contains all possible

(|L|
3

)
triplet and

(|L|
4

)
quadrants that exist in L, since potentially we aim to use it to compose any triplet in
L. Furthermore, each triplet node vτ is initialized with a cumulative cost value (denoted
by d) of ∞, which is later updated considering the arrival of new information regarding
source triplets. The cumulative cost represents the total cost of the current optimal
Composition-Tree of τ embedded in the graph. In addition, each vτ is initialized with
an empty parents list, later updated with the nodes representing the triplets designated
to compose τ directly. Note that the parents (in terms of the Composition-Graph) are
later referred to as children (in terms of the extracted Composition-Tree).

Figure 3.4: Initialize Composition-Graph - Algorithm description.
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Composition-Graph Update

Given a source triplet τ∈T , we aim to properly update our Composition-Graph by
updating the cumulative cost of vτ and all affected triplets nodes. To that end, we
define the following cost:

C
(
τ̃

)
=

{
Csource(τ̃), if τ̃ is a source triplet
Ccomp(τ̃L, τ̃R), if τ̃ is composed directly using τ̃L, τ̃R

, where Csource can be any real function and where Ccomp can be any symmetric non-
negative real function. The cost is designed by the user to consider a desired criterion
of interest. A specific selection example is given in Sec. 3.2.4.

We shall now explain in detail how we update the Composition-Graph, considering
the arrival of new information regarding the source triplet τ .

First, we calculate c=Csource(τ), the new candidate cumulative cost of τ resulted
from the newly arrived information. We then locate the node representing τ , vτ , and
check whether c is better (lower) than the cumulative cost currently assigned to it,
d(vτ ). If so, we update vτ with the new cost c and reset its parent list, stating that τ
is qualified to be used as a source triplet.

In case of an update, we continue examining all quadrant nodes adjacent to vτ .
For each adjacent node vq, we look at the other three triplets nodes connected to
it. Let vτ1 ,vτ2 , and vτ3 denote these nodes. We check for each one if we can im-
prove its cumulative cost as a result of the recently updated one of vτ . Consider vτ1

for example, we compare its current cumulative cost, d(vτ1), with the candidate ones
ci=d(vτ )+d(vτi)+Ccomp(τ ,τi),∀i∈{2,3}. If for some i∈{2,3} ci improves d(vτ1), we as-
sign it to vτ1 and update its parents to be vτ and vτi , stating that τ1 is designated to
be composed directly using vτ and vτi . For each newly updated triplet node, we go
through the same process until there are no more updates.

The Composition-Graph is updated incrementally, each time based on a single
source triplet from T . Note that since the update rule obeys Lemma 2.4.1 topolog-
ically, Theorem 3.1 determines which nodes are expected to be updated based on the
topological structure of T alone. That is, if T is Composable under the Landmark Space
L, then each node representing a triplet τ in L is guaranteed to be updated with a fi-
nite cost value. The latter means that we can extract a non-empty Composition-Tree
describing the optimal sequence of composition operations required to compose τ . Of
course, even when all the triplets nodes are assigned with finite costs, extra updates
can only lead to further improvement.

Alg. 3 formalizes the above.
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Figure 3.5: Composition Graph Update - Algorithm description.

Composition-Tree Extraction

Given an updated Composition-Graph and a finite-cost node vτo , we aim to extract the
optimal Composition-Tree of the corresponding triplet τo (Eq. 3.2).

Alg. 3 assigns to each node its optimal parents in terms of yielded cumulative cost.
The latter converted to be the node’s children in the embedded Composition-Tree.
Accordingly, all we have left is to recursively extract the Composition-Tree embedded in
the graph, starting from the root vτo . We stop when we reach nodes representing source
triplets, which are reflected as the tree leaves. Alg. 4 sums the recursive extraction
process.

Figure 3.6: Extract Composition-Tree - Algorithm description.
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3.2.3 Algorithm 3.3 Analysis

In this section, we analyze the correctness of Alg. 1 and explain why its convergence is
guaranteed. In addition, we provide complexity analysis regarding time and place.

To analyze our algorithm, we shall first identify that the update step (Alg. 3)
is an instance of a generalized version of Dijkstra [20] for directed Hyper-Graphs,
called SBT-Dijkstra [21]. Recall that a directed Hyper-Graph is a pair G=(V ,E),
where V = {v1,v2, . . . ,vn} is the set of nodes and E={e1,e2, . . . ,em}, with , ei =(
T (ei)⊆V,H(ei) ⊆ V

)
, ∀i = 1, 2, . . . ,m, is the set of directed hyperedges. T and H

known as the tail and head of the hyperedge. Note that the above definition generalizes
the standard directed graph (if |T (ei)|=|H(ei)|=1,∀i=1,2, . . . ,m, we get a standard
directed graph). Alternatively, we could have defined the Composition-Graph as a
directed Hyper-Graph, where each directed hyperedge connects a foursome of triplets
having a direct composition relationship. Specifically, two out of the four triplets form
the tail, whereas the remaining two form the head, stating that each head triplet can
be composed directly using the pair of tail ones. Consequently, we would replace each
quartet node in the original Composition-Graph with a set of 6 directed hyperedges,
since we have

(4
2
)
=6 ways of choosing pair of tail triplets (the head is dictated given

that choice). Moreover, accordingly, the cost Ccomp would now be the weight of the
hyperedges.

Correctness. The correctness of each update step is guaranteed based on the correct-
ness of the SBT-Dijkstra procedure. Similarly to the original Dijkstra algorithm, it can
be proven using induction over the number of visited nodes (i.e., nodes pulled out from
Q). As explained in [21], a crucial key point to be ensured is that no negative cycle
is detected during the algorithm’s operations, as it might lead to cyclic costs improve-
ments of nodes in the graph. Indeed, in our case, all cycles are nondecreasing, as node
cumulative costs are being aggregated additively and since Ccomp is nonnegative. While
the original Dijkstra detects shortest paths, the SBT-Dijkstra detects shortest hyper-
paths (i.e., sequences of nodes and hyperedges). In our case, the hyperpath is equivalent
to an embedded Composition-Tree branch. It is important to note that applying the
update step multiple times, as we do in Alg. 1, does not affect its correctness (the same
induction proof mentioned above still holds). As long as we keep the cumulative costs
from previous update steps, Alg. 1 is guaranteed to terminate with the optimal embed-
ded branches, considering all source triples (multiple sources shortest paths). For that
reason, we only initialize the cumulative cost of each triplet node once, during Alg. 1.
Consequently, at the end of all update steps, any finite cost node can be reversely
opened into the shortest Composition-Tree rooted at that node.

Considering the above, and given a target triplet to compose, τo, we are guar-
anteed that Alg. 4 extracts the shortest Composition-Tree originating in vτo , i.e.,
T ∗= arg minT ∈Tτo

d(vτo), where Tτo is the set of all possible Composition-Trees with
vτo as root. Assuming vτL and vτR are the parents (children in terms of the embedded

25



Composition-Tree) assigned to vτo , we can rewrite the above as
T ∗= arg minT ∈Tτo

d(vτL)+d(vτR)+C(vτo). We can repeat this recursively until we reach
nodes representing source triplets, which have no parents (Composition-Tree leaves).
We get T ∗ = arg minT ∈Tτo

∑
τ∈T C(τ) (Eq. 3.2).

Complexity. Time complexity: Composition-Graph initialization is O(|Vτ |+ |Vq|+ |E|).
Then, each update step is O(max{|Vτ | + |Vq| + |E|, |Vτ |2}), as the total cost of node
selection and removals from Q is O(|Vτ |2) and the total cost of propagating costs in
the graph is O(|Vτ | + |Vq| + |E|) (based on [21]). Assuming a set of k source triplets to
update the Composition-Graph with, we get O

(
max{|Vτ | + |Vq| + |E|, |Vτ |2} · k

)
. The

extraction stage is O(|Vτ |) at most, in case the target Composition-Tree consists of all
the nodes in Vτ . In total, we have O

(
max{|Vτ | + |Vq| + |E|, |Vτ |2} · k

)
.

Space complexity: here, the initialization is the bottleneck. We have O(|Vτ |+ |Vq|+
|E|).

3.2.4 Running Example

We shall now demonstrate Alg. 3.3 via a running example. Consider the initial set of
source triplets, T = {ABC,BCD,ADE}, and suppose we aim to compose the triplets
ACE and BCE, using minimum composition operations, based on triplets from T .
Note that Theorem 3.1 guarantees that the above can be done since T is Composable
under the Landmark Space L={A,B,C,D,E}, which contains both target triplets. We
show how we infer the optimal (i.e., minimal) sequence of composition operations to
create these triplets.

First, we formulate the following cost function:

C
(
τ

)
=

{
0, if τ is a source triplet
1, if τ is composed directly using τL,τR,

i.e., a triplet τ is assigned with the cost value of 0 if it is a source triplet (since we
need 0 composition operations to form it), and with 1 if it is designated to be composed
directly using the pair τL and τR (since we need a single composition to create τ , given
τL and τR).

We start by initializing an appropriate Composition-Graph (Alg. 3.4), with L as
the input Landmark Space (Fig. 3.7a). We then perform the update step (Alg. 3.5)
for each source triplet in T . The outcome graphs after update steps for ABC, BCD
and ADE are illustrated in Fig. 3.7b-3.7d, respectively. At the end of these three
update steps, every triplet node in the graph is updated with a finite cumulative cost,
which indicates (due to the particular cost function we chose) the minimal amount of
composition operations required to form it. As Fig. 3.7d shows, two compositions are
required to create ACE and three to create BCE.

Finally, we extract the optimal (minimal) sequence of compositions, each repre-
sented via a Composition-Tree, to create these target triplets (Alg. 3.6). Fig. 3.7e and
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Fig. 3.7f show the extracted trees for the target triplets. Recall that while Alg. 3.6
extracts the optimal Composition-Tree for a query triplet, many other non-optimal
ones exist. For instance, BCE can also be composed directly using BDE and CDE,
but such a choice would require at least five composition operations in total since both
BDE and CDE require two composition operations each in the optimal case.
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Figure 3.7: A running example of Alg. 3.3, as described in Section 3.2.4. (a) illustrates
Composition-Graph initialization, as an output of Alg. 3.4, with L={A,B,C,D,E}.
Triplets nodes are shown in mustard color, whereas quartet nodes are in black; (b)-(d)
demonstrate the graph update (Alg. 3.5), considering the cost described in Section 3.2.4.
The outcome graphs of three consecutive update steps, in which the cost of ABC,BCD,
and ADE is set to 0, are shown. Since the set of triplets mentioned above is Composable
under L, the update of the entire graph is guaranteed. Note that after the second step
(c), all four triplets exist under the sub-space {A,B,C,D} are updated, as {ABC,BCD}
is a Composable set under that space. Moreover, the same is true if we considering
the first step (b) alone and the Landmark Space {A,B,C} (however, the latter is a
degenerate case, as no extra triplets exist in this sub-space); (e)-(f) Two Composition-
Trees extracted from the Composition-Graph (Alg. 3.6);
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Chapter 4

Qualitative Belief Space Planning
via Compositions

4.1 Problem Statement

4.1.1 Qualitative Belief Definition

We consider a robot operating in a partially known environment, consisting of a known
set of key landmarks, denoted by L. As it travels in space, the robot moves between
different landmark-centric frames (see e.g. [12, 14]). Each frame sets a local coordi-
nate system determined by two reference landmarks. The first fixes the origin, i.e.,
(0, 0), whereas the second fixes an additional coordinate, in most cases, (0, 1). Then, a
predefined partition divides space into a finite set of non-overlapping and complemen-
tary regions, known as qualitative states (see Fig. 1.4). We denote by F the set of all
available frames, based on landmarks from L.

The robot maintains its self-poses and map through Qualitative Spatial Relation-
ships (QSRs). Each QSR localizes a target point, either a landmark or a robot pose,
relative to a chosen frame F∈F by associating it with one of the qualitative states dis-
cussed above. This ternary type of QSRs is often referred to as triplets. In this work,
we consider only triplets, as this is the most basic and standard case, and richer QSRs
can always be split into triplets. We exclude binary QSRs, as these are relevant when
dealing with complex volumed landmarks (extended landmarks, see [11] and [19]), while
we assume point landmarks. In the following, we denote an ordered triplet by τ , or
explicitly by F :L, where F and L are the triplet’s reference frame and target landmark,
respectively (for example, τ=AB:C). We further denote by Sτ and X τ , or explicitly
by SL

F and X L
F the qualitative and metric location of L relative to F (i.e., of τ=F :L).

Similarly, SXt
F and X Xt

F denote the robot’s qualitative and metric location at time step
t, both relative to F as well. Note that SL

F and SXt
F are discrete variables, while X L

F

and X Xt
F are continuous.

Apart from self-poses and triplets, the robot accounts also for Global Frame Scales’.
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A Global Frame Scale is a new concept suggested in this work, which refers to the
global metric distance between the two landmarks creating the frame. For example,
the global frame scale of AB is the global metric distance between the landmarks A and
B. We further clarify the usage of this term in Sections 4.2.3 and 4.2.7. We denote the
metric and qualitative scale of a frame F by X F and SF , respectively. Furthermore, we
denote by nF ∈ N the resolution according to which we evaluate SF . Given a selected
value of nF (typical values are 4 − 6), SF is a discrete random variable (RV) equals to
s ∈ [1, 2, . . . , nF ] if X F ∈

[ (s−1)·2R
nF

, s·2R
nF

]
and equal to nF + 1 if X F ∈

[
s·2R
nF

,∞). Here, R
is the robot’s sensing range given in some global frame units (for example, meters). In
the case where sF =nF + 1, the frame is considered unobservable since its global scale
is bigger than 2R.

Due to the nature of the robot’s mobility, we consider two types of actions. The first,
referred to as qualitative action, allows the robot to travel between different qualitative
states w.r.t. a given frame. We shall denote by aq

t a qualitative action taken at time
step t. In contrast, the second type, referred to as link action [16], enables the robot to
switch from one local frame to another. We shall denote by aLink

t a link action taken
at time step t. The robot executes the abovementioned actions alternately. Namely,
consider the robot’s frame at time step t, Ft, and the corresponding robot’s state SXt

Ft
.

After executing aq
t , the robot moves to a new state, SXt+1

Ft
. Then, it links to a new

frame by executing the action aLink
t , which results in the state SXt+1

Ft+1
. Note that aLink

t

is not a natural action in the sense that the robot makes no actual movement. In fact,
the latter can equivalently be written as a tuple of source and destination frames, i.e.,
aLink

t ≜(Ft, Ft+1). Note that aLink
t may be degenerated, in case Ft=Ft+1. Each time the

robot completes a qualitative action, it acquires a new measurement. Let zt denote a
measurement acquired by the robot at time step t. We further denote by βt the data
association from time step t, that is, the identity of the landmarks captured in zt. Of
course, determining the data association is a very challenging problem in itself. In this
work, we assume it to be solved.

Consider k as the current time step. We denote by Hk the history of applied
actions, measurements and data associations up to that time step. That is, Hk ≜
{a1:k−1, z1:k, β1:k}, where ai represents a consecutive pair of qualitative and link actions
{aq

i , a
Link
i }, ∀i ∈ {1, . . . , k}. The index t:t′ compactly refers to a series of elements

between time steps t and t
′ . Due to the stochastic nature of the problem, the robot

maintains a qualitative belief, i.e., a posterior probability over the states of the robot,
landmark triplets, and frames’ scales, given by:

bk ≜ P(SX1:k ,SMk ,SFk |Hk), (4.1)

where SX1:k represents the set of robot states SX1:k≜{SXi
Fi

}k
i=1, SMk represents all

available landmark triplets states at time step k, SMk≜{Sτj }mk
j=1, with mk being the

set size, and finally, SFk represents all available frames’ scales at time step k, i.e.,
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SFk≜{SFq }pk
q=1, with pk being the set size.

Inspired by [14, 16], we maintain marginals over qualitative states conditioned on
only local information, prioritizing computational speedup over an accurate model.
Accordingly, we maintain the belief as a product of individual posteriors:

bk≈
k∏

i=1
P(SXi

Fi
|HXi

k )
mk∏
j=1

P(Sτj |Hj
k)

pk∏
q=1

P(SFq |Hq
k). (4.2)

In the above, HXi
k ,Hj

k,H
q
k denote relevant part of the history used to evaluate SXi

Fi
,Sτj ,

and SFq , respectively. While Eq. (4.2) is beneficial for implementation needs, the
theoretical formulations in this work are derived using Eq. (4.1) to stay as general as
possible.

4.1.2 Qualitative Belief Space Planning

We now introduce a belief space planning (BSP) formulation considering the qualitative
framework discussed above.

BSP, in essence, is the problem of finding an optimal sequence of actions, or policy,
that minimizes a meaningful objective function. In this work, we consider actions
sequences rather than policies. Assuming a future horizon of L look-ahead steps, we
compactly represent by ak+ a candidate sequence of actions from time step k to the
predefined horizon, that is, ak+≜ak:k+L−1. The objective function maps the current
belief, bk, and a candidate actions sequence, ak+, to an expected cumulative cost:

J(bk,ak+)≜ E
zk+1:k+L

[ L∑
l=1

cl(bk+l, ak+l−1)
]
, (4.3)

where cl is the l-th cost function with the appropriate arguments, with l∈{1,2,. . .,L}.
While the above formulation is expressed in terms of a general cost function, we

choose a specific one that best serves our purposes. We elaborate on the different types
of costs in the Approach section. The optimal action sequence is defined by:

a∗
k+ = arg min

ak+
J(bk,ak+). (4.4)

4.2 Approach

4.2.1 Approach Overview

We present an end-to-end algorithm to address the qualitative BSP problem defined in
Sec. 4.1.2. Our algorithm operates in two steps.

First, we construct a belief tree, reflecting the future posterior beliefs considering
various possible future developments. We describe the construction process and the
different models assumed in this work in Secs. 4.2.2-4.2.4. We explain how to update
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the belief between two adjacent tree nodes in Sec. 4.2.5. In Sec. 4.2.6, we further explain
how compositions can be incorporated within the updating step. We construct the tree
considering a predefined depth L∈N.

(a) (b)

Figure 4.1: (a) A belief tree, suitable for the qualitative framework, is illustrated. Each
construction step between two consecutive times t−1 and t required updating the belief
according to Eq. (4.25). (b) The same tree is illustrated, this time with compositions
incorporated within the planning process. As shown, we can consider a wider data
association space via compositions, thereby improving planning performance.

In the second step, we utilize the constructed belief tree to evaluate the objective
(4.7) for each candidate action sequence. Then, we search for the action sequence
that minimizes the objective through a proper optimization process. In Sec. 4.2.7, we
suggest two types of costs to consider while evaluating the objective.

4.2.2 Qualitative Action and Transition Model

The qualitative action enables the robot to move from one qualitative state to another,
considering a specific reference frame. Mathematically, we assume a probabilistic tran-
sition model,

P(SXt
Ft−1

|SXt−1
Ft−1

,aq
t ), (4.5)

which maps any realization of the pair SXt−1
Ft−1

,aq
t to a Q dimensional vector which

describes the outcome distribution of the new robot’s state, SXt
Ft−1

. The values of each
vector are chosen or learned offline according to the level of noise that characterizes
the robot’s control system. We consider this transition model to be available and
assume that a proper low-level controller exists. Furthermore, we assume a finite set of
(Q− 1)2 qualitative actions, where for any mutual realization SXt

Ft−1
=i,SXt−1

Ft−1
=j, where
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i̸=j, there is a corresponding qualitative action that transforms the robot to state j
with high probability, given that its current state is i.

4.2.3 Data Association and Measurement Likelihood

The objective requires evaluating the likelihood of capturing a measurement zt and a
corresponding data association βt for any time step t∈{k+1, . . . ,k+L}. In this section,
we rigorously derive the abovementioned likelihood term.

Formally, we can rewrite Eq. (4.3) recursively, as follows:

J(bk,ak+)= E
zk+1

[
c1(bk+1,ak)+J(bk+1,a(k+1)+)

]
, (4.6)

where the expectation is with respect to P(zk+1|H−
k+1). In the above, and throughout

the rest of this work, H−
t ≜Ht−1∪{at−1}, ∀t∈{k+1, . . . ,k+L}. Uniquely in this work,

data associations play a major role as they dictate link actions considered by the robot,
as we shall see in Sec. 4.2.4. Therefore, explicitly incorporating them within the objec-
tive is useful. We can rewrite (4.6) as:

J(bk,ak+)=E
βk+1

[
E

zk+1|βk+1

[
c1+J(bk+1,a(k+1)+)

]]
, (4.7)

where c1≜c1(bk+1,ak). As the above implies, the law of total probability relates between
zt and βt, for any t∈{k+1,. . .,k+L}. That is:

P(zt|H−
t )=

∑
βt

P(zt,βt|H−
t ). (4.8)

We aim to derive the joint likelihood term P(zt,βt|H−
t ), given specific realizations of zt

and βt. In contrast to [22], we do so considering a qualitative framework.
First, we marginalize over the robot states SXt

Ft−1
and SXt−1

Ft−1
, global frame scale

SFt−1 and, the qualitative state Sτβt that corresponds to the considered data association
realization βt. To simplify the exposition, we consider the latter to be a single landmark
triplet, although this is not a limitation of our formulation:

P(zt, βt | H−
t ) =

∑
SXt

Ft−1

∑
SXt−1

Ft−1

∑
SFt−1

∑
Sτβt

P(zt, βt,SXt
Ft−1

,SXt−1
Ft−1

,SFt−1 ,Sτβt | H−
t ). (4.9)

Continuing with chain rule over the inner expression, we get:

P(zt,βt,SXt

Ft−1
,SXt−1

Ft−1
,SFt−1 ,Sτβt |H−

t )= (4.10)

P(zt|SXt

Ft−1
,Sτβt ,βt,H−

t )P(βt|SXt

Ft−1
,SFt−1 ,Sτβt ,H−

t )P(SXt

Ft−1
|SXt−1

Ft−1
,aq

t−1)P(SXt−1
Ft−1

,SFt−1 ,Sτβt |Ht−1).

The term P(zt|SXt
Ft−1

,Sτβt ,βt,H−
t ), known as the measurement model, describes the

probability of capturing the measurement zt, given the robot’s state SXt
Ft−1

, the data
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association βt with its corresponding state Sτβt , and history. We further develop it via
marginalization over relevant metric realizations and considering dependencies:

P(zt|SXt
Ft−1

,Sτβt ,βt,H−
t )=

∫∫
x∈SXt

Ft−1
,L∈Sτβt

P(zt|x,L, Ft−1)P(x|SXt
Ft−1

,H−
t )P(L|Sτβt ,H−

t ) dx dL, (4.11)

The term P(zt|x,L, Ft−1) is the metric measurement model. The metric priors
P(x | SXt

Ft−1
,H−

t ) and P(L | Sτβt ,H−
t ) can be further approximated as uniform distribu-

tions by neglecting the history term. Accordingly, (4.11) can be calculated offline.
The term P(βt|SXt

Ft−1
,SFt−1 ,Sτβt ,H−

t ), known as the association model, describes the
probability to observe the triplet βt, given the robot’s and βt’s states and Ft−1’s global
scale. Intuitively, to evaluate this probability, the robot must estimate its sensing range,
R, in local terms of Ft−1. Using Ft−1’s scale, this can be done via marginalizing over
the relevant metric realizations and considering dependencies:

P(βt|SXt
Ft−1

,SFt−1 ,Sτβt ,H−
t )= (4.12)∫∫∫

x∈SXt
Ft−1

,d∈SFt−1 ,L∈Sτβt

P(βt|x, d,L, Ft−1)P(x|SXt
Ft−1

,H−
t )P(d|SFt−1 ,H−

t )P(L|Sτβt ,H−
t ) dx dd dL.

The term P(βt|x,d,L,Ft−1) is a deterministic geometric model that equals 1 if the
metric hypotheses of βt landmarks are inside the robot’s sensing range, R (assumed to
be a known hyperparameter), and 0 else, i.e.:

P(βt|x,d,L,Ft−1)=
∏

Li∈{L1,L2,L}
I
{

∥Li−x∥2 ≤R

d

}
, (4.13)

where L1 and L2 are the local metric coordinate of the reference landmarks creating
Ft−1. In most cases, L1=(0, 0) and L2=(0, 1). The metric priors can be further approx-
imated as uniform distributions by neglecting the history term. Accordingly, (4.12) can
be calculated offline.

Moreover, in (4.10), the term P(SXt
Ft−1

| SXt−1
Ft−1

, aq
t−1) is the qualitative motion model

stated in (4.5), and finally, the term P(SXt−1
Ft−1

,SFt−1 ,Sτβt | Ht−1) can be calculated via
marginalization from the belief from time instant t−1, bt−1.

Generally speaking, we need to consider all possible realizations for both zt and βt,
for any t∈{k+1, . . . ,k+L}, to calculate the objective precisely. However, in practice,
this is intractable. Alternatively, we can sample a finite set of realizations and approx-
imate the objective via proper averaging. Starting with βt, we suggest considering only
triplets’ realizations containing the robot’s current frame. This heuristic prioritizes
triplets that are more likely to be observed, as those containing the current frame are
more likely to be closer. For instance, in case Fk=AB, then ABC is being considered,
also ABD, but not ACD. This heuristic yields Nβ=|L|−2 βt’s realizations, which is
a significant reduction compared to all

(|L|
3

)
triplets existing under the given landmark
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alphabet based on L. In practice, among these, we can only consider those which are
available in bt−1, that is, nβ realizations, where nβ≤Nβ. Crucially, as we shall see in
Sec. 4.2.6, utilizing composition we are able to extend nβ to come closer to, and under
a certain assumption equal to, Nβ. Considering also a finite set of nz measurement
realizations zt for each realization of β (see Fig. 4.1 for illustration), the objective (4.7)
can be approximated as follows:

J(bk,ak+)=E
βk+1

[
E

zk+1|βk+1

[
c1(bk+1,ak)+J(bk+1,a(k+1)+)

]]
(4.14)

=
∑
βk+1

P(βk+1|bk,ak)
∫

zk+1

P(zk+1|βk+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
Nβ∑

m=1

P(βm
k+1|bk,ak)∑Nβ

q=1 P(βq
k+1|bk,ak)︸ ︷︷ ︸

w̃m

∫
zk+1

P(zk+1|βm
k+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
nβ∑
i=1

w̃i∑nβk
q=1 w̃

q︸ ︷︷ ︸
wi

∫
zk+1

P(zk+1|βi
k+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
nβ∑
i=1

wi

nz

nz∑
j=1

P(zi,j
k+1|βi

k+1,bk,ak)·(c1+J(bk+1,a(k+1)+)),

where in the 1st approximation, we consider only the subset of Nβ βk+1’s realizations
containing triplets that involve the current frame (Nβ=|L|−2), in the 2nd approxima-
tion, we further reduced this subset to the nβ triplets available in the belief (nβ≤Nβ),
and finally, in the 3rd approximation, we show how the inner expectation term can be
evaluated via averaging over a finite set of zk+1 samples.

4.2.4 Link Action and Transition Model

The Link action allows the robot to switch between different reference frames. Even
though it is considered an action, in practice, the robot does not make any actual
movement when executing it. Accordingly, a Link action taken at time step t is denoted
by aLink

t , but alternatively can be written as a tuple of source and target frames,
(Ft−1,Ft). As Fig. 4.1 illustrates, the Link action adds another level of decision-making
compared to the traditional BSP approaches, which use a single global frame.

We assume a probabilistic Link model,

P(SXt
Ft

|SXt
Ft−1

,Sτ ,Ht), (4.15)

representing the probability of the robot being located at state SXt
Ft

, given its state
relative to the former frame, SXt

Ft−1
, the state of the triplet relates between the frames,

Sτ , with τ≜Ft−1:Ft\Ft−1, and history, which includes the action aLink
t . To understand

why this model is a probabilistic one, consider the following example. Suppose that,
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Figure 4.2: Illustration of two possible hypotheses for X C
AB. While both hypotheses

yield the same qualitative state SC
AB, they yield different states for SXt

BC .

at time step t, the robot is located relative to an old frame Ft−1=AB and aims to link
to a new one, Ft=BC. To that end, it must translate its location from AB’s terms
to BC’s. Given its (unknown) current metric location X Xt

AB and C’s metric location in
terms of the same frame, X C

AB (i.e., τ=AB:C), the robot can easily infer X Xt
BC , using a

simple geometric transformation. Fig. 4.2 demonstrates two sets of metric realizations
as described above. However, since the Link model considers only the corresponding
qualitative locations rather than the actual metric ones, the robot must account for
many possible metric hypotheses. For this reason, it can only infer a distribution
over the resulting state SXt

Ft
. To calculate this model, we further marginalize over the

relevant metric state:

P(SXt
Ft

|SXt
Ft−1

,Sτ ,Ht)=
∫∫

X Xt
Ft−1

∈SXt
Ft−1

,X τ ∈Sτ

P(SXt
Ft
,X Xt

Ft−1
,X τ |SXt

Ft−1
,Sτ ,Ht) dX Xt

Ft−1
dX τ . (4.16)

We continue developing the inner term using chain rule:

P(SXt
Ft
,X Xt

Ft−1
,X τ |SXt

Ft−1
,Sτ ,Ht)=P(SXt

Ft
|X Xt

Ft−1
,X τ ,aLink

t )P(X Xt
Ft−1

|SXt
Ft−1

,Ht)P(X τ |Sτ ,Ht),
(4.17)

where P(SXt
Ft

|X Xt
Ft−1

,X τ ,aLink
t ) is a geometric model that deterministically determines

the new state, given a metric realization of the former one and of the related triplet.
The metric priors P(X Xt

Ft−1
|SXt

Ft−1
,Ht) and P(X τ |Sτ ,Ht) can be further approximated

as uniform distributions by neglecting the history term. Accordingly, (4.16) can be
calculated offline.
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4.2.5 Belief Update Step

This section focuses on updating the qualitative belief defined in Eq. (4.1) a single
step into the future. Formally, consider the belief from time step t−1∈{k,. . .,k+l−1},
bt−1, candidate action, at−1≜{aq

t−1, a
Link
t−1 }, a measurement, zt, and a corresponding

data association, βt. We aim to infer the belief at time step t, bt, via a proper Bayesian
update rule:

bt = ψ(bt−1, at−1, zt, βt). (4.18)

We start by marginalizing over the next robot’s position relative to the current frame,
SXt

Ft−1
:

bt=
∑

SXt
Ft−1

P(SX1:t ,SXt
Ft−1

,SMt ,SFt |Ht). (4.19)

We continue by breaking the inner term using chain rule:

P(SX1:t ,SXt
Ft−1

,SMt ,SFt |Ht) = P(SXt
Ft

| SXt
Ft−1

,Sτβt ,Ht)P(SX1:t−1 ,SXt
Ft−1

,SMt ,SFt |Ht).
(4.20)

The left term, obtained after omitting all triplets’ states from SMt except for βt’s, is
the Link Model stated in (4.15). We continue developing the right term via Bayes rule
over zt and βt taken from Ht while omitting irrelevant information:

P(SX1:t−1 ,SXt

Ft−1
,SMt ,SFt |Ht) = (4.21)

ηtP(zt|SXt

Ft−1
,Sτβt ,βt,H−

t )P(βt|SXt

Ft−1
,Sτβt ,SFt−1 ,H−

t )P(SXt

Ft−1
|SXt−1

Ft−1
,aq

t−1)P(SX1:t−1 ,SMt ,SFt |H−
t ),

where ηt≜P(zt, βt | H−
t ) is a normalization term, P(zt | SXt

Ft−1
,Sτβt , βt,H−

t ) and
P(βt | SXt

Ft−1
,Sτβt ,SFt ,H−

t ) are the measurement and association models discussed in
Section 4.2.3, respectively, and finally, P(SXt

Ft−1
| SXt−1

Ft−1
, aq

t−1) is the qualitative transition
model (4.5). We continue by applying another chain rule over the remaining term in
(4.21):

P(SX1:t−1 ,SMt ,SFt |H−
t ) = P(SFt−1 |SMt ,SFt−1 ,H−

t )P(SX1:t−1 ,SMt ,SFt−1 |H−
t ). (4.22)

In the above, we consider the new set of frames’ scales at time step t, SFt , as the former
set from time step t−1,SFt−1 unified with the currently considered scale, SFt−1 , i.e.,
SFt=SFt−1∪SFt−1 . The term P(SFt−1 |SMt ,SFt−1 ,H−

t ) is the posterior over the relevant
frame scale, SFt−1 , given the map, SMt , available frames’ scales, SFt−1 , and history,
H−

t . To further develop this term, we assume that the global scale of AB, SAB, is
known. This assumption is fairly reasonable, as it requires prior knowledge of only
one frame scale. Via this scale, we can evaluate the scale of Ft−1={L1,L2}, using the
states SL1

AB and SL2
AB, which locate Ft−1’s landmarks relative to AB. Mathematically,
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we approximate the abovementioned term by neglecting unnecessary information:

P(SFt−1 |SMt ,SFt−1 ,H−
t ) ≈ P(SFt−1 |Ft−1,SL1

AB,S
L2
AB,H

ABL1
t ,HABL2

t ,SAB), (4.23)

where the triplet states SL1
AB,S

L2
AB were taken from SMt , the frame Ft−1 and the rele-

vant local histories HABL1
t ,HABL2

t were taken from H−
t , and finally, SAB is the known

global scale taken from SFt−1 . We can further develop this posterior term, assuming
Ft−1=L1L2, via marginalization over the metric state of AB:L1 and AB:L2, followed
by chain rule:

P(SFt−1 |Ft−1=L1L2,SL1
AB ,S

L2
AB ,H

ABL1
t ,HABL2

t )= (4.24)∫∫
X L1

AB
,X L2

AB

P(SFt−1 |Ft−1=L1L2,X L1
AB ,X

L2
AB)P(X L1

AB ,X
L2
AB | SL1

AB ,S
L2
AB ,H

ABL1
t ,HABL2

t ) dX L1
AB dX L2

AB ,

where P(SFt−1 |Ft−1=L1L2,X L1
AB,X

L2
AB) is a Dirac function equals to 1 if

∥∥∥X L1
AB − X L2

AB

∥∥∥
2

is in the interval represented by the value of SFt−1 and to 0 otherwise. The met-
ric prior term can be approximated via P(X L1

AB,X
L2
AB | SL1

AB,S
L2
AB,H

ABL1
t ,HABL2

t ) ≈∏2
i=1 P(X Li

AB | SLi
AB,H

ABLi
t ), where ∀i∈{1,2} the individual prior term can be further

approximated via P(X Li
AB | SLi

AB,H
ABLi
t )≈P(X Li

AB | SLi
AB), i.e., assuming a uniform dis-

tribution.
. In Sec. 4.2.6, we explain how to compose SL1

AB and SL2
AB in case they are not part

of the current belief.
In total, we get the following update rule:

bt=
∑

SXt
Ft−1

P(SXt
Ft

|SXt
Ft−1

,Sτβt ,Ht)ηt · P(zt|SXt
Ft−1

,Sτβt ,SFt ,βt,H−
t )· (4.25)

P(βt|SXt
Ft−1

,Sτβt ,SFt ,H−
t ) · P(SXt

Ft−1
|SXt−1

Ft−1
,aq

t−1)P(SFt−1 |SMt ,SFt−1 ,H−
t )bt−1.

The above update step describes the operator ψ(·) from Eq. (4.18) explicitly. We apply
it to update the belief between consecutive time steps when constructing the tree, as
illustrated in Fig. 4.1a.

4.2.6 Incorporating Compositions

So far, we have described our qualitative BSP approach in its base form, without
utilizing compositions at all. In this section, we present our second key contribution
and show how compositions can be integrated within our algorithm to further improve
planning in two ways. Firstly, it allows us to deal with a broader range of scenarios, i.e.,
in some cases, a plan can be found only via compositions. Secondly, using compositions,
we can find better plans, i.e., ones with a lower objective. In this section, we provide
theoretical justification for the above. Also, we formally show how to incorporate
compositions within our algorithm.

Recall Sec. 2.4, and the topological rule declared in Lemma 2.4.1. According to the
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rule, two source triplets must share 2 landmarks in common to compose a third triplet.
The mutual landmarks, allow us to fix both triplets relative to the same frame and,
hence, infer (compose) relationships between new triplets’ combinations. For example,
we can directly compose τ3=AB:D using τ1=AB:C and τ2=BC:D.

In Eq. (4.1), we defined the belief as a posterior distribution over, among others, the
different triplets in the map. Consider the map’s state at the current time step, SMk .
Via compositions, the robot can augment Mk with new triplets. However, compositions
are allowed only under specific topological conditions, formulated in Lemma 2.4.1. For
example, if Mk is too sparse, the ability to compose new triplets might be limited or
even impossible. In Sec. 3.2.1 (also published in [23]), we have formulated a sufficient
topological condition attributed to the set Mk, whose existence ensures the ability to
compose any desired triplet under the considered landmark space L. We named such a
sufficiently dense set a Composable set under L (the formal definition can be found in
3.2.4). As this topological aspect is not the focus of this part of the work, we assume
that Mk is Composable under L. However, this assumption is not a must. In Sec. 4.2.3,
we suggested a heuristic that considers a maximum ofNβ triplets as possible realizations
for βt at any planning time step t∈{k+1, . . . ,k+L}. We stressed that, in practice, we
could consider only a subset of nβ triplets out of these Nβ, which are available in bt−1.
Since we assumed Mk is Composable under L, we are now guaranteed that all Nβ

realizations can be considered in planning via compositions, as illustrated in Fig. 4.1b.
We shall now prove that in some scenarios, a plan can be found only via compo-

sitions. We use Link-Graphs throughout the proof. As stated in Sec. 2.3, Link-Graphs
are good representations for links mobility, since each triplet node enables a transition,
or Link, between any two frames’ edges connected to it. Consequently, a Link-Graph’s
path encodes a feasible sequence of link actions, where the edges along the path are
the different frames, and the in-between nodes are the triplets the robot relies on to
execute the Links.

Using this insight, we now aim to prove that in some cases, a plan can be found
only via compositions.

Before approaching the formal proof, we provide some intuition. The key point of
our explanation is simple. Via compositions, the robot can link to more frames than it
could before. According to the conclusion from Lemma 2.2.1, the robot is allowed to
link based on a path of a Link-Graph, whose nodes represent the set of available triplets,
Mk. Thus, without compositions, links are possible only based on existing paths. In
contrast, using composition, we can create new triplets, i.e., augment the graph with
new nodes, thus creating additional paths. Consequently, in cases where there is no
path in the Link-Graph at planning time to a target triplet without compositions, we
cannot find a valid plan towards the triplet.

Suppose that the robot’s initial map, Mk, is Composable under L (see Fig. 4.3a for
illustration). Alternatively, we could assume that a Link-Graph whose nodes represent
Mk is Composable under L, considering the following definition:
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Definition 4.2.1. Let G=(V ,E) be a Link-Graph. We say that G is Composable under
L if V represents a Composable set of triplets under L.

(a) (b)

Figure 4.3: (a) An illustration of a Composable set under L={A,B,C,D,E}, consists
of three tripelts; (b) An illustration of a Link-Graph, based on the set from (a). The
graph has a single edge connecting ABC with BCD, as B and C are mutual landmarks;
There is an Invertible transformation between the two.

We aim to prove that any connected Link-Graph is, in particular, Composable, but
not the other way around:

Theorem 4.1. Let Gcn and Gcm be the sets of all connected and Composable Link-
Graphs under the landmark space L, respectively. Then Gcn⊊Gcm.

Proof.. First we show that Gcn⊆Gcm.
Let G=(V ,E) be a connected Link graph under L. We prove that G is also Composable
under L by induction on number of vertices in G, |V |.
Base step: When |V |=1, V is Composable under L by definition. Thus, G is also
Composable under L by definition.
Induction step: Suppose G is Composable under L for all 1≤|V |≤n. We show
that G is Composable under L for |V |=n+1. We choose a cut in G, C=(S,T ), s.t.
GS≜

(
S,

{
(u,v)∈E|(u,v)∈S2})

and GT≜
(
T,

{
(u,v)∈E|(u,v)∈T 2})

are both connected
graphs, where S, T ̸=∅. Note that such choise always exists for any |V |>1, since G is
connected. Let us now observe the set of edges in G connecting S with T , that is,
ES,T≜{(u,v)∈E|u∈S ∧ v∈T}. Since G is connected, we are guaranteed that ES,T ̸=∅.
Thus, C is a 2-common cut in G. Finally, since GS ,GT are both connected subgraphs of
G, they are both connected Link-Graphs, and since 1≤|S|,|T |≤n, we further conclude
that they are both Composable under L, according to the assumption. That is to say,
we showed by definition that for |V |=n+1, G is Composable under L.
Conclusion: Gcn⊆Gcm.
We are left to show an instance of a Composable Link-Graph under L that is not con-
nected. To that end, consider the landmark space {A,B,C,D,E}, and the Link-Graph
from Fig. 4.3b.
Final conclusion: Gcn⊊Gcm

■ ■
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Figure 4.4: Relationships between general Link-Graphs (G), Composable Link-Graphs
(Gcm), and connected Link-Graphs, all under the same landmark space, (Gcn) are
described through a Venn diagram.

Meaning, in some scenarios, where Mk creates a Composable Link-Graph that is
disconnected, compositions are necessary to allow the robot to plan towards its goal.

For any planning time step t∈{k+1, . . ., k+L}, we shall now explain how to in-
corporate a new set of triplets M∆

t , which can be chosen according to the heuristic
described in Sec. 4.2.3, into the belief. We denote Mt≜Mt−1∪M∆

t and express the
belief after combining the set, given by bM

t−1≜P(SX1:t−1 ,SMt ,SFt−1 |Ht−1), in terms of
the one before combining it, bt−1, via chain rule and Markov assumption:

bM
t−1=P(SM∆

t |SMt−1 ,Ht−1)·bt−1. (4.26)

Suppose |M∆
t |=nt, the term P(SM∆

t |SMt−1 ,Ht−1) can be further broken down into a
product of individuals posteriors, each aims to compose a single triplet from M∆

t :

P(SM∆
t |SMt−1 ,Ht−1)≈

nt∏
i=1

P(Sτi |SMi
t−1 ,Hi

t−1). (4.27)

In the above, Sτi denotes the state of the ith triplet taken from SM∆
t , SMi

t−1

denotes the minimal subset of SMt−1 required for the evaluation, and finally, Hi
t−1

denotes the corresponding local history, where SM∆
t =

nt⋃
i=1

Sτi ,Ht−1 =
nt⋃

i=1
Hi

t−1. For

instance, if Sτi = SD
AB and SMt−1 = {SC

AB,SD
BC ,SE

AD}, then the subsets SMi
t−1 =

{SC
AB,SD

BC},Hi
t−1 = {HABC ,HBCD} are chosen as using the triplets AB:C and BC:D,

we can compose AC:D via a single composition. We can describe the required com-
position using a binary tree, consisting of a root, representing the triplet to compose
AB:D, and two leaves connected to it, representing the required source triplets, AB:C
and BC:D. The abovementioned tree, also known as Composition Tree, was first intro-
duced in [23]. Depending on the identity of the target triplet and the available source
set, we can generally get a large Composition Tree, representing the sequence of com-
positions required to form the target triplet. To find the tree with the minimal number
of leaves (representing the set SMi

t−1), we use an Ad Hoc algorithm developed in [23].
The chosen tree dictates the required sequence of compositions, where each of them is
then performed, inspired by 2.4, as follows:
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P(Sτ3 |Sτ1 ,Sτ2 ,H1,H2)=
∫∫

X τ1 ∈Sτ1 X τ2 ∈Sτ2

P(Sτ3 |X τ1 ,X τ2)P(X τ1 ,X τ2 |Sτ1 ,Sτ1 ,Hτ1
t ,H

τ2
t ) dX τ1 dX τ2 ,

(4.28)

where P(Sτ3 |X τ1 ,X τ2) is a simple deterministic geometric model. The metric prior term
can be approximated via P(X τ1 ,X τ2 |Sτ1 ,Sτ1 ,Hτ1

t ,H
τ2
t ) ≈

∏2
i=1 P(X τi |Sτi ,Hτi

t ), where
∀i ∈ {1,2} the individual prior term can be further approximated via P(X τi |Sτi ,Hτi

t ) ≈
P(X τi |Sτi), i.e., assuming a uniform distribution.

We can now incorporate compositions within the belief update step from (4.25) by
replacing bt−1 with bM

t−1 from (4.26).

4.2.7 Cost Function

The objective function in (4.3) describes for each candidate action sequence ak:k+L−1

its expected accumulated cost. Having access to a qualitative belief allows defining
both state-dependent and belief-dependent cost functions. The cost function is chosen
according to the task’s nature. For instance, if we aim to find the shortest path between
some initial and goal key points, then a distance-based cost can be used, whereas if we
wish to reduce uncertainty, then an entropy-based cost may be a good choice.

In this work we focus on the first type, and suggest now two alternatives for distance-
based costs. The first is to evaluate the expected number of qualitative states traversals:

ct(bt,at−1) = E
s1,s2

[
d(s1,s2)

]
, (4.29)

where s1≜SXt−1
Ft−1

, s2≜SXt
Ft−1

, and where d(s1, s2) is a metric that returns the minimum
number of qualitative states traversals required to travel from state s1 to s2. For a
given QSR representation, this metric is a simple lookup table.

While the above cost measures distance qualitatively, there is no proven correlation
to the true metric distance traveled. To bridge this gap, we propose another option of
evaluating the traveled distance metrically, given the qualitative belief bt. The idea is
simple, at each time step, we evaluate the expected traveled distance in terms of the
current local coordinates system, multiplied by the appropriate global scale taken from
the belief. Mathematically:

ct(bt, at−1)=E
s

[
E
x|s

[ ∥∥∥X Xt
Ft−1

−X Xt−1
Ft−1

∥∥∥
2

·X Ft−1
]]
, (4.30)

where we denoted x≜{X Xt
Ft−1

,X Xt−1
Ft−1

,X Ft−1}, and s≜{SXt
Ft−1

,SXt−1
Ft−1

,SFt−1}. Moreover,
based on the Law of Total Expectation, we can further simplify the above expression
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Cost 1 (# q-states) Cost 2 (metric path length)
W/O Comp W Comp W/O Comp W Comp

All Tests
(3000) Plan exists 68.4% 81.6% 68.4% 81.6%

Comparable
& Different
Tests (13%)

Average
executed cost 6.45 4.97 2.76 2.32

Table 4.1: The first row shows the percentage of tests (considering all 3000 tests) in
which the robot was able to plan towards its goal. The second row shows the average
cost among all different and comparable tests. The two main columns are divided by
the different costs (Sec. 4.2.7), where each considers two planning modes: without and
with compositions.
and replace it with a pure metric version:

ct(bt, at−1)=E
x

[ ∥∥∥X Xt
Ft−1

−X Xt−1
Ft−1

∥∥∥
2

·X Ft−1
]
. (4.31)

To calculate this cost in practice, we must use (4.30) as we only have access to the
metric priors conditioned on the corresponding qualitative states.

4.3 Results

We evaluate our approach using a simulation developed in Python 3.7. We don’t com-
pare our performances to other algorithms, as there are no comparable ones in the
literature. The only other existing work that considers planning under the qualitative
framework, [16], assumed a deterministic framework making any comparison irrelevant.
For simplicity, we consider the following: (1) Motion and Measurement models with
additive gaussian white noise. (2) Small environments with 8−12 landmarks. (3) Data-
Association is solved. (4) The initial belief considers a Composable set of triplets under
L.

We performed 3000 tests, each randomizing a different environment and choosing a
target triplet randomly. We repeated each test four times, once for each cost suggested
in 4.2.7, with and without the robot using compositions. Table 4.1 summarizes the
overall statistics, where Fig. 4.5 emphasizes the advantage of using compositions.

Two specific scenarios are demonstrated in Fig. 4.6, where the robot aims to reach
and observe the goal triplet ABC.

In the first scenario (Fig. 4.6a), which considered the cost formulated in Eq. (4.29),
the robot has succeeded in reaching and observing ABC only via compositions. Specif-
ically, the robot’s initial frame was F1=EG, and its initial belief was over the set of
source landmark triplets M1={ABC,ABD,ABE,ABH,ACI,DEF,DEG,EGJ}. At
time step t=2, the robot linked to a new frame, F2=AE. This link, which was nec-
essary to reach ABC, was feasible exclusively based on the triplet AEG, which was
composed using source triplets from M1. Meaning, in this case, without using compo-
sitions, no feasible path would have been found.
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Fail

31.6%

Success

68.4%

Without Compositions

(a)

Fail

18.4%

Success

81.6%

With Compositions

(b)

Figure 4.5: Improvement in results due to the use of compositions. (a) Without com-
positions, the robot succeeded in planning towards its goal in 68.4% of the tests.; (b)
Via compositions, the robot improved and planned towards its goal in 81.6% of the
tests.
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Figure 4.6: Two scenarios from our simulations are presented. We show the execution
of the calculated paths with replanning between consecutive time steps. For each time
step, the local frame of the robot, considering the EDC partitioning, is displayed. In
both scenarios, the robot aims to reach and observe the goal triplet ABC (filled blue
circles). (a) In scenario 1, the robot succeeded in reaching its goal only via compositions.
(b) in scenario 2, the robot was able to find a path towards its goal with (upper row) and
without (bottom row) compositions. However, via compositions, the path is shorter.
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In the second scenario (Fig. 4.6b), which considered the cost formulated in Eq. 4.30,
the robot was able to find a plan without using composition. However, by composing
the triplet AIJ , it was able to link to AJ at time step t=2 and via that link to find a
shorter path towards ABC’s vicinity.
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Chapter 5

Conclusions

In the first part of this research, we addressed two main issues that arise regarding com-
positions calculi. First, given a set of prior qualitative spatial relationships between
triplets of landmarks (source triplets), we have formulated a sufficient topological con-
dition (Composability) attributed to the set, whose existence ensures the ability to
compose an entire space of spatial relationships between new triplets. Secondly, we
addressed the question of how these triplets should be composed. We presented a novel
algorithm that finds the optimal way to compose a target triplet under an optimality
criterion defined by the user. To the best of our knowledge, this algorithm is the first
of its kind.

This encourages incorporating our algorithm as a component in future qualitative
approaches for a variety of tasks, such as localization, mapping, and active planning.
The latter is addressed in the second part of this research. one can also formulate a
cost function designed to turn a prior map (i.e., the set of qualitative relationships
that form it) into a Composable one, which would allow it to be further expanded
through composition. Future research works may also generalize our work to include
qualitative relationships between pairs of landmarks as well (relaxing the assumption
of point landmarks).

In the second part of this research, we presented a novel algorithm to address the
problem of Belief Space Planning, considering a qualitative framework. Our algorithm
operates in two steps. Given an initial qualitative belief and a target triplet, it first
constructs a belief tree that accounts for multiple possibilities for future developments,
where each corresponds to a candidate plan. This step is the main focus of this work,
where the belief tree is specifically designed to support qualitative belief propagation.
Then, it chooses the best plan, i.e., that minimizes a meaningful objective function.
This step is a standard one. Moreover, our mechanism enables incorporating compo-
sitions to improve planning results. Finally, we suggested a novel cost function, which
considers metric path length, thus being more realistic. We believe this first work on
qualitative BSP opens new research opportunities to follow.
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Chapter 6

Future Work

We believe that our research opens various future possibilities and ideas to investigate.
We detail below several possible directions for expanding our work.

1. Proving (or rejecting) the opposite direction of Theorem 3.1.
In Sec. 4.2.6, we proved that given a Composable set of source triplets under some
Landmark Space, one could compose any triplet existing within this space (see
Proof 1). We suspect that the opposite direction of this theorem is also true, i.e.,
that Composability is not only a sufficient condition to compose all triplets in a
given Landmark Space but also a necessary one. However, we did not manage to
prove it within the time limit of this research scope. We encourage others to try.

2. Incorporating Alg. 3.3 as a component in future qualitative approaches.
Incorporating our mechanism to compose triplets given an initial set of source
ones can be integrated as a component in future qualitative approaches for a
variety of tasks, such as localization, mapping, and active planning. The latter
is addressed in the second part of this research but can be incorporated within
other qualitative planning paradigms as well.

3. A cost function designed to turn a qualitative map Composable.
One can also formulate a cost function designed to turn a prior map (i.e., the
set of qualitative relationships that form it) into a Composable one, which would
allow it to be further expanded through composition.

4. Study the effect of compositions on entropy.
In our research, we empirically saw that the entropy of a posterior distribution
over a composed triplet is increasing as the number of composition operations
required to create it grows. We encourage future studies to try and find a math-
ematical derivation that explains the above.

5. Relaxing the assumption of point landmarks
Future research works may also generalize our work (in both parts) to include
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qualitative relationships between pairs of landmarks (possible with volumed land-
marks) as well (relaxing the assumption of point landmarks).

6. Real life experiment using our qualitative BSP algorithm.
We highly encourage taking our qualitative belief space planning algorithm a step
forward by operating it on a real-life platform.
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קומפוזיציה פעולת ע"י ייתכן תחילה, מוסק להיות עליו זמין, אינו ספציפית קומפוזיציה פעולת ביצוע

ככל יותר מאתגרת נעשית והיא רקורסיבי, באופן ושוב שוב עצמה על לחזור עשויה זו בעיה מקדימה.

בהינתן .1 פתוחות: נותרו אשר לעיל, האמור מן עולות מרכזיות שאלות שתי גדלה. המידע שכמות

.2 קומפוזיציה? בעזרת ליצור ניתן חדשים קשרים אילו איכותיים, מרחביים קשרים של התחלתי סט

בטרם האפשריים? הרצפים כל מתוך נתון קשר ליצירת האופטימלי הקומפוזיציה פעולות רצף מהו

לשלב יש כיצד מבהירים ובכך אלה שאלות שתי על עונים אנו שלנו, התכנון אלגוריתם את ננסח

כללי. באופן איכותיות בגישות קומפוזיציות

ii



תקציר

אוטונומיות במערכות חיוני רכיב הנו האמונה, במרחב כתכנון גם הידוע אי-וודאות, תחת תכנון

מתקדם. רפואי ומיכשור ביתיים אבק שואבי אוטונומיים, רכבים כדוגמת רבות, רובוטיות ואפליקציות

מוגדרת משימה להשלים מנת על תכנית) (דהיינו, פעולות של אופטימלי רצף למצוא היא המטרה

פונקציית כאמונה. גם הידוע העצמיים, ומיקומיו המפה על אוחר פילוג מתחזק הרובוט לרוב, מראש.

מטרת את תשיג הנראה שככל זו הנה הנבחרת התכנית ענישה. כמנגנון האמונה על מוגדרת אזי מחיר

ביותר הקצר המסלול את למצוא היא המטרה אם לדוגמה, המחיר. פונקציית מזעור תוך המשימה

מאתגר נעשה זו בעיה פתרון היעד. אל המרחק את מודדת אשר מחיר פונקציית נבחר היעד, אל

פעולות ואותן בחלקו, שגוי או שלם אינו שהמידע ייתכן כאשר כלומר, אי-וודאות, תנאי תחת במיוחד

האמונה במרחב תכנון על שנעשה המחקר שרוב בעוד זהות. שאינן לתוצאות להוביל לעיתים עשויות

האיכותי, הניסוח הנה נפוצה פחות אחת אחרות. אלטרנטיבות ישנן מטרי ייצוג דרך הבעיה את ניסח

ובלתי-תלויות. מקומיות צירים במערכות איכותיים מרחביים קשרים של סט ע"י מיוצגת המפה בו

("מימין איכותיים מצבים של במונחים הציון נקודות או הרובוט מיקום את מתארים אלה קשרים

להשיג מכוונת אינה זו וגישה מאחר מדויק. מטרי באופן ולא וכו'.) ולמעלה", "משמאל ובאמצע",

כן, על המטרית. זאת לעומת רעשים בפני יותר חסינה היא מלכתחילה, הסביבה של מדויק תיאור

ללוקליזציה איכותיות שיטות מספר בעוד גבוהה. באיכות חיישנים בהיעדר מאוד שימושית נעשית היא

התכנון. בעיית עבור אחת איכותית גישה רק ישנה כה, עד בספרות, קיימות ומיפוי

שימוש תוך האמונה במרחב לתכנון חדשנית גישה מציגים אנו זה, במחקר לעיל, מהאמור מונעים

במיוחד ורלוונטית זולים סנסורים בעלות לפלטפורמות מתאימה אשר מרחביים, איכותיים בקשרים

למסגרת המותאמת אמונה תחילה מגדירים אנו המוצע, באלגוריתם דלילה. הסביבה בהם במקרים

המפה את המתארים איכותיים מרחביים קשרים סט על המוגדרת כזו כלומר, האיכותית, העבודה

אחת התפתחות מתאר ענף כל בו אמונה, עץ בונה הרובוט זו, אמונה בסיס על הרובוט. ומיקומי

פעולות של ייחודי סוג כוללים הנבחנים הפעולות סטי כי נציין נבחן. פעולות סט עבור אפשרית

מוענשים בעץ הענפים לאחרת. אחרת ייחוס ממערכת לעבור לרובוט מאפשרות אשר "לינק", הנקראות

לבסוף, כדאיים. הנם מייצגים הם אותם הפעולות סטי כמה עד מודדים ובכך המחיר פונקציית ע"י

גם נציין נבחר. ביותר הכדאי הפעולות סט העץ, מבנה את המנצל אופטימיזציה תהליך ביצוע תוך

היעד אל המטרי המרחק את משערכת אשר ייחודית, מחיר פונקציית פותחה זה ממחקר כחלק כי

שלנו התכנון אלגוריתם תקדים, חסר באופן בנוסף, בלבד. איכותית האמונה בסיס על גס באופן

איכותיים קשרים בין מרחבי מידע חלחול מאפשרות אשר קומפוזיציות, אינטגרטיבי באופן משלב

חדשים. הסקת לצורך שונים

לצורך דרוש אשר מידע אם לדוגמה, בכך. מה של דבר אינו איכותית בגישה קומפוזיציות שילוב אולם,
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חשמל. להנדסת בפקולטה ריבלין אהוד ופרופ' אינדלמן ואדים חבר פרופ' של בהנחייתו בוצע המחקר

בכנסים למחקר ושותפיו המחבר מאת כמאמרים הוגשו או פורסמו זה בחיבור התוצאות מן חלק
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תודות

ונעימה מלמדת שהיתה המאסטר, במהלך הנחייתו על אינדלמן ואדים חבר לפרופ' להודות ברצוני

להצליח. קדימה אותי שדחפו ועל תמיכתם על למשפחתי להודות ברצוני בנוסף, יחדיו. גם

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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